Appendix: Details on Estimation for “Variance Risk
Premium Dynamics: The Role of Jumps”

1 Calculation of P(IV,(t)|¥4;)

Combining central limit theorems in Barndorff-Nielsen et al. (2006) and Jacod (2008) about T'Vs(t)
and RVj(t) respectively (in the presence of jumps) we have the following asymptotic approximation
for T'Vs(t) and RVj(t)

TVs(t) = (1—m0+ IV(t)— (1 —7)8) + vy
t+1
JVs(t) = (1—7r)/n G(dx) /+/ h2(x)ji(ds, dx) + vay,

where (v14,v9¢) is a martingale difference sequence with

3.0613 t+1 1.0613 t+1
E (vi) = TE </ 04(U)du> , E(vire) = — i E </ 04(u)du> ,

t+m t+m
E(v3) = 1‘[])\313E (/t::l 04(u)du>
o <4E(IV(t)) / W(x)G(dx) +2(1 - ) / nhQ(x)k(x)G(dx)> |

In the derivation of P(IV,(t)|¥;) we will assume that the approximation holds exact (see Todorov
(2009b) for conditions under which this does not change the estimation results asymptotically). We
can decompose the demeaned IV into two independent parts

V() — (1—m)8=IV@) + IV (1),
. t+1
o) = / Ve(s)ds — (1 — mE(V(s)),

t4m

. t+1 ,
V() = / VI(s)ds — (1 — m)E(V/(s)),

t+m

with V¢(t) and V7(t) specified in equations (3) and (4) respectively. Both ﬁfc(t) and IT/j(t) have

autocorrelations of ARMA(1,1) process and are independent of each other. Also, tt;;l ng h?(x)fi(ds, dx)



is an i.i.d. sequence connected with ﬁ/j(t). Therefore, (ﬁfc(t),ﬁ/j( ) tt;: fRn h2(x)ji(ds, dx))

have the same autocorrelation structure as the following process (yy, yt A )

Yi = bcli_q +ep+0cei g,
vl = Gy + onyi + el + ey, (1.1)
yr = e,

where (e;) = (ef,el, el is a discrete time white noise process, i.e. E (ese],) = 0 for t # s.
Next, I derive the parameters of the above multivariate ARMA process as functions of the
parameters of the underlying SV model (1)-(4). First, it is easy to see that ¢, = e™" and ¢; = 7.
To determine the moving average coeflicient 6. and the variance of the error term in the first

equation, Var(ef), I solve the following system of equations

Var (y;) — ¢.Cov (yf, yf,l) = Var(e (1 + 0.0. + 92)
Cov (yf,yf-1) — dcVar (yf) = Var(e )9c

First, it is easy to derive
(e=(=mke 4 (1 — 7)ke — 1)
ke
03(1 o e—(l—ﬂ)nc>26—7mc

Var (yf) = Var (IVE(t)) = 202

Cov (yf,yf_1) = Cov(IVE(t),IV(t—1)) = =
Cov(ve),Ive(t—1))
Var(1ve(t))
average coefficient (i.e. |0.| < 1) is given by

If we set p. = , then it is easy to verify that the invertible solution for the moving

1+ @2 = 2¢cpe — \/(1 + 2 = 2¢cpe)® — 4(pe — dc)?
2(pe — ¢c) ’
and from here the expression for Var(ef) follows.

Because of the independence of IV from the jumps it is easy to see that we must have E(ef et)
E(efef) = 0. For the correlation between the error terms in the last two equations of the system

0, =

(1.1) I use a representation of v’ (t) with respect to the compensation measure fi derived in
Todorov (2009a) as well as the Ito isometry. After simplifying we have

y t+1
E(clel) = Cov <1v ), /t+ N h2(x)ﬂ(ds,dx)>
e(l_w)pj — — — T .
_ -0 )p]/nhz(x)k(x)G(dx), (1.2)

Pj

and for Var(el)

t+m Rg

t+1
Var(el') = Var (/ h%x)ﬂ(ds,dx)) =(1-m) /n h(x)G(dx).



Finally, we need to determine ¢y, 0; and Var(e{ ). I solve the following system of equations

Var (1) = 6;Cov (y,ul1) = onCov (, iy ) + Vax(e]) (1 + 6,0, + 63)
+6n8;Cov (ef'e ),
Cov (yl,ylr) — a5Var (y) = onCov (el el ) + 0, Var(e]),
Cov (yg',yf_l) — ¢;Cov (efg,eg‘) — gy Var (et) +6;Cov (et,eg)

where I use the following expressions for Var (yi >, Cov (yg , yLl) and Cov (yg , yf_1> ,which are
easy to derive (see Todorov (2009a))

. — — e(1=m)p; _ .
j _ J _ l—e 7+ (1 W)pj / 2
Var (yt) = Var (IV (t)) = p? . k*(x)G(dx),
o . . e™Pi (1 — e(lfw)pj 2
Cov (yg,yg_l) — Cov (IV](t),IVj(t - 1)) _ 3 ) / RAx)G(dx),
J 0

Cov <y§,yf_1) = Cov( /1/ h2(x)fi(ds dx))
t n

(1 m)p;
T (1[)]> / 2 (x)k(x)G(dx).

Finally, to calculate P(IV,(t)|%;) I use the following state-space representation for TV, which
is easy to verify

TVs(t) \ _ 4 _ 0 ,
< J‘/:;(t) ) = (1 7T) < ng hQ(X)G(dX) + H ft + 1 (1.3)
§i41 = F& + vy, (1.4)
where
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From here generating the linear projection P(IV,(t)|%;), given a set of parameters, follows easily
(see e.g. Hamilton (1994), Chapter 13).



2 Calculation of Point Estimates and Standard Errors

All estimates in the paper come from GMM estimation which is conducted using the Chernozhukov
and Hong (2003) MCMC approach which I briefly outline here.
First the generic GMM objective function is given by

J(0) = Ty (0) Wmr(6), (2.5)

where the moment vector m(6) has been specified in the paper for each estimation. The weight-
ing function W is a consistent estimate of the optimal one (i.e. the inverse of the asymptotic
variance-covariance of the moment vector). Due to the separability of parameters and data in the

moment vectors used in the paper, W is constructed on a single step directly from the data. In the
construction of /V[7, I use a HAC estimator with a Parzen kernel with lag length of 80.

Next, following Chernozhukov and Hong (2003), I treat the Laplace transform of J(#), L(0) :=
exp(—0.5J(0)) (the multiplication by 1/2 of J(#) is in order to make the information equality for the
efficient GMM hold), as unnormalized likelihood function and apply standard MCMC estimation.
The prior and the updating of the posterior is done as follows.

1. For all parameters I use flat (uninformative) priors and further I impose all inequality restric-
tions on the parameters as priors.

2. On each step in the MCMC, T use random walk Metropolis-Hasting algorithm with a normal
proposal, updating one parameter at a time.

The output from the MCMC estimation (after the burn-in) is the MCMC chain {6;}%,. Then,
the GMM estimator is computed simply as

6= mode{#;} X . (2.6)

The estimate for the asymptotic variance of 0 is calculated analytically (via numerically computed
derivatives) and is given by Vgmrp(0)WVemyp(0). (Alternatively, one can use the variance of the

MCMC chain, since the GMM estimators used in the paper are efficient, i.e. information equality
holds for them).
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