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Abstract

Using high-frequency stock market data and (synthetic) variance swap rates,
this paper identifies and investigates the temporal variation in the market vari-
ance risk premium. The variance risk is manifest in two salient features of
financial returns: stochastic volatility and jumps. The pricing of these two
separate components is analyzed in a general semiparametric framework. The
key empirical results imply that investors fears of future jumps are especially
sensitive to recent jump activity and that their willingness to pay for protection
against jumps increase significantly immediately after the occurrence of jumps.
This in turn suggests that time-varying risk aversion, as previously documented
in the literature, is primarily driven by large, or extreme, market moves. The
dynamics of risk-neutral jump intensity extracted from deep out-of-the money
put options confirms these findings. (JEL C51, C52, G12, G13)
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A central topic in finance concerns the premium that investors require for bearing
different risks. Much of the work to date has centered on explaining the equity
risk premium, i.e. the compensation for the variation in asset prices (price risk).
However, price risk is not the only risk investors face when holding assets. Over
the last few decades the financial econometrics literature has provided unambiguous
evidence that the asset return variances fluctuate over time (see, e.g., the surveys
in Bollerslev et al. (1994) and Andersen et al. (2005)). This variation introduces an
additional source of risk from holding assets, labeled variance risk. Investors generally
dislike the randomness of the future variance and, in equilibrium, demand a premium
for accepting this risk. This gives rise to the so-called variance risk premium.

The presence of the variance risk premium at the aggregate market level has
already been extensively documented in the literature.1 Bakshi and Kapadia (2003)
detect in a nonparametric way the presence of variance risk premium by analyzing the
profits and losses from delta-hedged positions in S&P 500 and S&P 100 index options.
Carr and Wu (2009) calculate a model-free measure of realized variance risk premia
by comparing the realized variance with its risk-neutral expectation. They show
that this measure is on average negative for a range of stock market indexes, which
indicates that market variance risk is indeed priced. Bakshi and Madan (2006) link
the variance risk premium with higher order moments of the return distribution and
investor risk aversion. Additional evidence for presence of a variance risk premium
are also available from fully parametric estimation of the pricing kernel, see, e.g.,
Bates (2000), Chernov and Ghysels (2000), Pan (2002) and Eraker (2004).

Although the existence of a (market) variance risk premium is by now well estab-
lished, much less is known about the dynamic dependencies in the premium. This is
the main focus of the present paper. In particular, does the compensation demanded
by investors for market variance risk change over time? If so, what determines this
variation? Is it possible to associate the temporal variation with observable character-
istics of the market, including past variances and/or jumps? Is it possible to reconcile
the evidence for a time-varying variance risk premium with a valid economy-wide pric-
ing kernel, and in turn what are the properties of such a pricing kernel? These are
the questions the current study seeks to answer.

The paper starts by identifying the sources of market variance risk. The reasons for
the realized market variance to change over time are twofold. First is the well-known
presence of stochastic volatility, i.e. ex-ante (expected) volatility changes over time.
Second, variance risk is also associated with the occurrence of unanticipated market
jumps. In contrast to previous work, which has typically associated variance risk with
the presence of stochastic volatility only, this study adopts a general semiparametric
stochastic volatility model that explicitly allows for both sources of variance risk.
Since there is less agreement on the correct parametric model for the jumps in the
price and the stochastic volatility as well as their dependence, I purposely leave this
part of the model unspecified. On the other hand, previous empirical work has con-
vincingly demonstrated the need for a two-factor structure akin to the one adopted

1Risk premium for individual stocks variance has been analyzed in Bakshi et al. (2003) and Carr
and Wu (2009).
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here for satisfactory describing the dynamic dependencies in the stochastic volatility,
e.g., Andersen et al. (2002), Alizadeh et al. (2002), Chernov et al. (2003). This semi-
parametric modeling approach thus strikes a reasonable balance between precision of
the estimates for the variance risk premium on the one hand and robustness of the
results on the other.

To actually estimate the variance risk premium, I further explore the recent ad-
vances in high-frequency financial data analysis. In particular, using 5-minute high-
frequency data on the S&P 500 index, I construct model-free measures of the realized
variance and the realized jumps for each of the days in the sample. To estimate the
parameters of the stochastic volatility model, I then match moments of these statistics
with the ones implied by the model. The result of the estimation is a model-based
measure for the future expected variance under the true probability. The variance risk
premium estimate is then simply constructed by differencing this measure with the
model-free risk-neutral expectation of the future variance. The latter is inferred from
a portfolio of out-of-the money option prices on the S&P 500 index that synthesizes
variance swap.2

The resulting estimated variance risk premium varies quite considerably over time.
The estimation results also reveal that both past “realized” price jumps and stochastic
volatility are important determinants of the variance risk premium dynamics. Im-
portantly, the estimated variance risk premium does not rely on any specific pricing
kernel, only requiring the model-free risk-neutral expectation of the future variance.

To further check if the inferred variance risk premium dynamics can be rationalized
in a no-arbitrage setting, I model theoretically the compensation demanded by the
investors for each of the sources of variance risk. Keeping with the semiparametric
approach adopted in the paper, I specify only the part of the economy-wide pricing
kernel that determines the prices of these risks. The modeling of the jump risk price in
particular is quite flexible as it allows for the jumps to be time-homogenous under the
physical measure, yet exhibit significant persistence under the risk-neutral measure.
I infer the dynamics of the pricing kernel, by matching moments of the variance risk
premium against those implied by the pricing kernel.

The results suggest that jumps play a very important role in explaining the vari-
ance risk premium. Jumps are clearly present in the level of market prices, and when
a jump occurs, this is typically associated with a spike, or a jump, in the stochastic
volatility as well. The effect of jumps on the future market dynamics is limited, how-
ever. The jump volatility factor has a very quick mean reversion, thus capturing the
higher frequency moves in the volatility, while the very persistent changes in volatility
are driven by the continuously evolving volatility factor.

Meanwhile, the estimated variance risk premium typically increases after a big
market jump and slowly reverts to its long-run mean thereafter. This is explained
with compensation for jump risk that depends on a persistent state variable which,
in turn, is related with the “realized” price jumps. The differential impact of jumps
on the risk premium and the dynamics of the underlying asset therefore suggests
that investor attitude towards jumps is time-varying. Recent empirical evidence in

2This latter measure also coincides with the new VIX index computed from CBOE.
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favor of time-varying risk aversion have also been reported by, e.g., Bollerslev et al.
(2005) and Brandt and Wang (2003). In contrast to these earlier studies, the results
reported here explicitly link the changes in risk aversion with extreme market events,
or crashes, and suggest that it is the attitude towards these big changes that gets
revised immediately after such events occur.

To further corroborate the main empirical findings, I conduct two robustness
checks. The first relates to presence and structure of jumps in the returns and stochas-
tic volatility. The stochastic volatility is not directly observable. Instead, it is possible
to use the observable VIX index. The latter represents a risk-neutral expectation of
the future variance. Given the fact that both the variance risk premium and the
future variance depend on the current stochastic volatility, a jump in the latter will
translate directly into a jump in the VIX index. Using the test proposed by Lee and
Mykland (2008), I verify the existence of a nontrivial number of days in the sample
for which there is a jump in the stochastic volatility. Further, on a significant number
of these days the market also appears to jump.

The second robustness check concerns the impact of past “realized” jumps on the
future compensation for jump risk demanded by investors. This is the channel through
which past jumps impact the variance risk premium. To isolate the compensation of
jump risk, I use deep out-of-the-money close-to-maturity options on the S&P 500
index and extract a model-free measure for the future tail jump intensity under the
risk-neutral distribution. This measure shows strong dependence on the past realized
jumps, directly in line with the predictions of the model implied by the pricing kernel.

The remainder of the paper is organized as follows. Section 1 introduces the gen-
eral stochastic volatility model for the underlying asset under the physical measure,
along with the actual fit to the S&P 500 data. Section 2 constructs the variance risk
premium and reports empirical evidence for temporal variation in this measure. Sec-
tion 3 derives general prices of diffusive and jump risk within the stochastic volatility
model and discusses their implication for the variance risk premium. This section also
presents tests for the different specifications of diffusive and jump risk compensation
using high-frequency data on the underlying asset and the VIX index. Section 4 de-
tails the nonparametric robustness checks. Section 5 concludes. The main proofs are
given in an appendix at the end of the paper, with additional details available in a
supplementary appendix.

1 Dynamics under the Physical Measure

I start the analysis of the (market) variance risk premium by identifying the sources of
variance risk in the context of a general semiparametric stochastic volatility model. In
this section I also estimate the model using only high-frequency data on the underlying
index in order to: (1) check if it has problems fitting this data alone and (2) construct
later an estimate for the conditional expected future variance to be compared with
the one under the risk-neutral measure (the VIX index).
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1.1 The Stochastic Volatility Model

I fix a filtered probability space (Ω,F ,P), with F = (Ft)t∈R denoting the filtration.
On this space I define with F (t) the price at time t of a futures contract on the stock
market index expiring at some date in the future. I assume that f(t) := log(F (t))
has the following dynamics under the physical measure P

df(t) = b(t)dt + σ(t)(ρdB1(t) +
√

1− ρ2dB2(t)) +

∫

Rn
0

h(x)µ̃(dt, dx), (1)

σ2(t) = V c(t) + V j(t), (2)

dV c(t) = κc(V
c − V c(t))dt + σcv

√
V c(t)dB1(t), (3)

dV j(t) = ρjV
j(t)dt +

∫

Rn
0

k(x)µ(dt, dx), (4)

where (B1, B2) is a standard Brownian motion; x is an n-dimensional vector on Rn
0 ; µ

is a time-homogenous Poisson random measure with compensator (intensity) ν such
that ν(dt, dx) = dtG(dx) for some G : Rn

0 → R+; h : Rn
0 → R and k : Rn

0 → R+ and
µ̃ := µ− ν is the compensated measure.

The futures price in (1) has three components. The first is the drift term, b(t),
which is left unspecified in this paper. The second component of the price is a
continuous martingale. Its time-variation is determined by the process σ2(t). I refer
to σ2(t) as the stochastic variance and model it as a sum of two factors. The first
one, V c(t), is the continuous component of the stochastic variance and follows a
square-root process as in the standard affine stochastic volatility models (Duffie et al.
(2000)). The second component of the stochastic variance, V j(t), is its discontinuous
part. V j(t) is a non-Gaussian OU process (Barndorff-Nielsen and Shephard (2001)).
V j(t) can be equivalently written as

V j(t) =
∑
s≤t

eρj(t−s)∆V j(s),

and therefore it is simply a moving-average of past variance jumps. The impact of
the past jumps on the current level of V j(t) (and hence σ2(t)) is determined by the
value of ρj. The last component of the price in equation (1) is a jump martingale.
Intuitively this component of the price is just a compensated (i.e. demeaned) sum of
jumps.

The variance of f(t) is measured by its quadratic variation (hereafter QV). For a
period (t, t + a] it is given by

[f, f ](t,t+a] =

∫ t+a

t

σ2(s)ds +
∑

t<s≤t+a

(∆fs)
2. (5)

The first term in (5) is due to the continuous part of the futures price. I refer to it as
Integrated Variance (hereafter IV) and denote it IVa(t) :=

∫ t+a

t
σ2(s)ds. The second

term in (5) is the quadratic variation of the jumps.
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The randomness (or time-variation) in QV generates variance risk which we are
after. It is present either because the conditional expected future volatility is random
(i.e. σ2(t) depends on t) or because there are jumps in the price. Note that the
second term in (5) is random in spite of the fact that the price jumps are time-
homogenous (i.e. their conditional volatility is constant). This is very different from
the behavior of the quadratic variation of the continuous martingale, which in the
case of time-homogeneity (i.e. σ2(t) ≡ const) is non-random.

I finish this section with a short discussion of the empirically relevant features of
the SV model (1)-(4), which also explains why this model is chosen.
Price Jumps. The inclusion of price jumps is a necessity rather than a mod-
eling choice. Indeed, recently Barndorff-Nielsen and Shephard (2006), Jiang and
Oomen (2008), Ait-Sahalia and Jacod (2009), Lee and Mykland (2008) and Jacod
and Todorov (2009) propose different nonparametric tests for presence of price jumps
based on high-frequency data. All these papers find overwhelming evidence for jumps
in asset prices which is in line with earlier parametric evidence. In the model (1)-(4),
the price jumps are time-homogenous, i.e., they are modelled as a Lévy process. In
the empirical part in Section 1.2 I find that for the data used in this paper there is no
significant time-variation in the price jumps and hence their modeling with a Lévy
process.
Stochastic Volatility. Another important feature of the financial data is the per-
sistence in the returns variance. Since in the model here the price jumps are time-
homogenous, their conditional variance is constant. Therefore, persistence in the
returns variance can be generated only through time-variation in σ2(t). In the model
here σ2(t) is a sum of two factors, each of which is an AR(1)-type process. This pro-
vides a parsimonious way of capturing persistence in the volatility as already shown
in previous empirical work and it will be further verified in Section 1.2. An important
feature of the model (1)-(4) is that the stochastic variance contains jumps. Later in
Section 4, I will provide further nonparametric evidence for their presence.
Jump Dependence. The modeling of the jumps in the price and the variance is
quite flexible. In equations (1) and (3) the jump sizes in the price and the variance
are expressed as functions of jumps in an n-dimensional space. This way all possible
dependencies between the jumps can be generated. Examples include independent
price and variance jumps, perfect linear dependence between price and variance jumps
(Barndorff-Nielsen and Shephard (2001)) and variance jumps being proportional to
the squared price jumps (Todorov (2009a)).

For the purposes of the analysis in this paper I leave h(·), k(·) and G(·) unspecified.
While the dependence between price and variance jumps is hard to detect with low-
frequency data (see e.g. Eraker (2004), Broadie et al. (2007)), this is not the case
when high-frequency data is used (as illustrated below). Therefore, since we do not
have a clear idea of the dependence structure of the jumps, it is better to leave this
part of the model unspecified and let the data “choose” the right one. This way
potential misspecification problems can be avoided.
Leverage Effect. Although this study is not concerned with the “leverage effect”
(i.e. the (negative) linear relationship between the price and variance innovations),
in order for the model to be empirically realistic it should allow for a flexible way of
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generating it and this is the case here. Since the price and the variance are both driven
by Brownian motions as well as jumps, the “leverage effect” could be generated in two
different ways in this model. One way is through correlating the Brownian motions
and the second way is through linking the jumps in the price and the variance.

1.2 Estimation of the Model under the Physical Measure

I proceed with estimating the model (1)-(4). The estimation is done using high-
frequency data and is based on the following idea. First, I aggregate the high-
frequency data into daily measures of QV and IV. These measures are model-free
and asymptotically (as we sample more and more frequently) they converge to their
unobservable counterparts. Then, I estimate the model using GMM by simply match-
ing sample moments of QV and IV with those implied by the model. Apart from being
easy to implement, the outlined estimation strategy provides a robust way to identify
the parameters controlling the jumps and the stochastic volatility since the inference
is based directly on QV and QV-IV, which separate stochastic volatility from jumps.
Thus, we do not leave deeply structural parameters to do this separation, but rely
solely on the data for this. In addition, the model-free measures of QV and IV will
provide us later in the analysis with an easy and robust way to isolate the effect of
jumps on the temporal variation in the risk premium.

The details are as follows. The unit of measurement in this paper is one business
day. The business day starts from the close of trading of the previous day. It consists
of two parts: the first part is the overnight, which is the time till the opening of the
trading. The second part of the business day is the trading period. The first part
of the business day is a fraction of π and the second is 1 − π. Using high-frequency
observations of the price process during the trading part of the day and applying
results in Barndorff-Nielsen and Shephard (2006) and Barndorff-Nielsen et al. (2005),
I construct model-free measures for IV (t) := IV1−π(t+π) and QV (t) := QV1−π(t+π).3

For QV I use the so-called Realized Variance (hereafter abbreviated as RV) defined
over the trading part of day t as

RVδ(t) =
M∑
i=1

r2
δ(t + π + (i− 1)δ), (6)

where δ is the length of the high-frequency interval (e.g. 5-min.), M = b1/δc is the
number of intra-day observations and rδ(t) := f(t + δ)− f(t) for any t. The estimate
for IV is the so-called Realized Tripower Variation (hereafter abbreviated as TV),
which is defined over the trading part of day t as

TVδ(t) = 1.9358
M∑
i=3

|rδ(t+π+(i−3)δ)|2/3|rδ(t+π+(i−2)δ|2/3|rδ(t+π+(i−1)δ)|2/3.

(7)
Intuitively, the use of consecutive returns in TV “kills” the jumps and therefore
TV measures only the continuous part of QV, i.e. IV. From now on I treat TVδ(t)

3IV (t) and QV (t) are IV and QV respectively over the trading part of the business day t.
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and RVδ(t) as their unobservable counterparts IV (t) and QV (t) respectively. Under
certain regularity conditions, as shown in Todorov (2009b), this has no asymptotic
effect on the estimation results in this paper.

Since our interest here is only in the behavior of QV, I estimate only parameters
controlling it. To avoid identification problems in the estimation, the model is re-

parameterized as follows. I set η := V
c − 1

ρj

∫
R2

0
k(x)G(dx) and σc := σcv

√
V

c

2κc
. η is

the mean of the stochastic variance and σ2
c is the variance of the diffusive variance

component V c(t). In the estimated model I do not parameterize the distribution of
the jumps in the price and the variance. Instead, I treat as parameters only cumulants
which are needed for computing the moment conditions in the GMM. In particular,
I estimate the following cumulants4

∫

Rn
0

h2(x)G(dx),

∫

Rn
0

h4(x)G(dx),

∫

Rn
0

k2(x)G(dx) and

∫

Rn
0

h2(x)k(x)G(dx).

The advantage of estimating only cumulants of the jumps is robustness. The
parameters controlling the jumps are the hardest to estimate and there is no consensus
in the literature about the correct parametric model and even less so about the
jump dependence. Therefore, a wrong parametric specification or unidentified deeply
structural jump parameters can affect the correctness of all estimated moments of
QV. This in turn will lead to a wrong conditional expectation of future QV and its
dependence on the past information, which we are after. Estimating the cumulants
of the jumps avoids all these problems, as it reflects directly what is in the data.

Turning to the moment conditions in the GMM, I match the following statistics:
the ratio of the mean of QV to the mean of squared daily returns; mean, variance and
autocorrelation of IV; mean and variance of QV; mean of Realized Fourth Variation
(hereafter FV), which is defined in (8) below. For the autocorrelation of IV I use lags
1, 3 and 6 as well as the average autocorrelation for lags 11− 20, 21−30 and 31− 40.
The averaging of the higher order autocorrelations is done since these autocorrelations
are estimated with less precision. Altogether I end up with 11 moment conditions.
The Realized Forth Power Variation is defined for a day t as

FVδ(t) =
M∑
i=1

r4
δ(t + π + (i− 1)δ). (8)

FV is a measure of the sum of the price jumps raised to the power four over the
day and its mean helps identify the second order moments of the jumps in the price
and the variance. The moments used in the estimation are calculated using results

4In the estimation of the model I impose the following constraint on the cumulants

0 ≤
∫

Rn
0

h2(x)k(x)G(dx) ≤
√∫

Rn
0

h4(x)G(dx)
∫

Rn
0

k2(x)G(dx),

which guarantees the existence of a two-dimensional Lévy process (for the jumps in the price and
the variance) with cumulants equal to the estimated ones.
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in Todorov (2009a). Further details on the estimation are provided in a separate
appendix.

I conclude this section with some details on the high-frequency data used in the
estimation. The data is on the S&P 500 index futures contract for the period January
2, 1990, to November 29, 2002. There are 80 five-minute return observations in each
day covering the day trading session from 9:30am till 4:15pm. For each of the days
in the sample I calculate RV and TV and their difference JV:=RV-TV, which is a
measure of squared jumps over the day. Figure 1 plots the daily returns as well as TV
and JV series. As seen from the TV series, integrated variance has spikes and this is
suggestive of jumps in the stochastic variance σ2(t). Another interesting observation
from Figure 1 is that most of the days in which TV is high are days in which JV is high
as well. Finally, the two series differ significantly in their persistence, as seen from
their first 100 autocorrelations plotted on Figure 2: IV is a very persistent process
unlike the squared price jumps.

1.3 Estimation Results

The estimation results are reported in Table 1. In what follows I summarize the key
findings from the estimation. First, the test of overidentifying restrictions shows that
the model provides good fit to the high-frequency data. This is further confirmed by
the diagnostic t-statistics associated with each of the moments used in the estimation
reported in Panel B of Table 1. Under correct model specification these statistics
should be approximately standard normal and thus large values signal difficulty in
matching the particular moment condition. The results in Table 1 suggest that the
model has no problem with fitting any particular moment used in the estimation.

The two-factor structure of the stochastic variance σ2(t) yields empirically plau-
sible persistence in IV. Figure 3 plots the fit to the autocorrelation of TV, implied
by the parameter estimates. As seen from the figure, the autocorrelation of TV is
well matched for lags until forty. After lag forty the model-implied autocorrelation
slightly underestimates the empirically observed one. However, it is still well within
the 95% confidence interval. On the other hand more parsimonious one-factor re-
strictions of the current model cannot match the autocorrelation in IV. This holds
regardless of which of the two variance factors is excluded. First I test that the con-
tinuous variance factor is not present, i.e. that V c(t) ≡ 0 which is equivalent to test
σc ≡ 0. Note that under the null hypothesis κc is not identified. I use a criterion
difference test, i.e J(θ̂r) − J(θ̂), where J(θ) = Tm̂T (θ)′ŴmT (θ) is the GMM objec-

tive function and θ̂r and θ̂ are the restricted and unrestricted estimates respectively.
From the results in Andrews (2001), it follows that the criteria different test has a
χ2

1 limiting distribution under the null.5 The value of the test is 96.1582. This shows

5Assumption 3 in Andrews (2001) is easy to be verified in our setting. This assumption is needed
for proving the asymptotic distribution of the criterion difference test. It concerns the convergence of
the first derivative of the GMM objective function, as a function of the nuisance parameter present
only under the alternative κc (the convergence is on the space of continuous functions of κc equipped
with the uniform metric). The first derivative of the vector of moment conditions is a continuous
function of κc and the moment vector does not depend on κc under the null hypothesis. Functional
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that such restriction is implausible. Similarly testing V j(t) ≡ 0 is equivalent to test-
ing

∫
Rn

0
k2(x)G(dx) ≡ ∫

Rn
0
h2(x)k(x)G(dx) ≡ 0. As in the previous test we have a

nuisance parameter identified only under the alternative. In this case this is ρj. I
use again a criterion difference test which is now asymptotically χ2

2. The value of the
test is 140.8002. Note the huge value of the test. By excluding the discontinuous
component we miss not only the autocorrelation in IV, but we also cannot generate
enough volatility of the stochastic volatility to match the observed data. This de-
ficiency of the square-root process is also documented in Eraker et al. (2003) who
use lower frequency stock market data and in Broadie et al. (2007) who use options
data. Thus for the purposes of constructing a correct estimate for the variance risk
premium and identifying its dynamic dependencies we need the two-factor structure
of σ2(t).

The estimated cumulants of the Lévy process show that there is a strong relation-
ship between the jumps in the variance and the jumps in the price, i.e.

∫
Rn

0
h2(x)k(x)G(dx)

is statistically different from zero. Importantly, this finding rejects independence be-
tween price and variance jumps and this fact has important implications for identi-
fying and interpreting the dynamic dependence of the variance risk premium on the
variance factors and price jumps as will become clear later in Sections 2 and 3. This
result is also in line with the observation made at the beginning of the current section
regarding the positive link between JV and TV series. It should be noted that most
popular ways of modeling the dependence between the price and variance jumps that
have been estimated before, see e.g. Eraker et al. (2003), can be rejected. As already
discussed in Section 1 here I do not model parametrically the link between the jumps
in the variance and the jumps in the price. Therefore, the results in the paper are not
driven by a (possibly misspecified) parametric model for the jumps but rather reflect
what is in the data.

Overall, the tests conducted above show that the model (1)-(4) can successfully
match the observed high-frequency data, while any restricted version of it (e.g. by
removing factors of σ2(t) or forcing independence between variance and price jumps)
will miss important features of the stock market index data. In line with many other
studies in the literature (Andersen et al. (2002), Alizadeh et al. (2002), Chernov et al.
(2003)) here I find one of the variance factors to be slowly mean reverting, having a
half-life of approximately twenty (business) days, while the other one to be quickly
mean reverting with a half-life of approximately half a day. Perhaps not surprisingly
the quickly mean-reverting factor is the jump component of the variance, while the
slowly mean-reverting variance factor is the continuous component of the variance.

What is the economic interpretation of these results? The estimation shows that
the market index possesses strong persistence in the variance and occasional jumps.
The occurrence of price jumps has no effect on the future price level, but the es-
timation results show that it leads to an increase of the stochastic volatility. This

convergence of the first derivative of the GMM objective function, as a function of κc then follows
by establishing finite-dimensional convergence (which in turn follows essentially from a standard
CLT theorem for the moment vector) and C-tightness of the sequence, which can be verified using
Theorem 8.3 in Billingsley (1968).
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effect of the price jumps on the volatility is relatively short-lived and is on the top of
the slowly changing level of volatility, which is captured by the continuous volatility
factor.

2 Initial Analysis of the Variance Risk Premium

Given the good fit of the SV model (1)-(4) to the high-frequency data, we are now
ready to start the analysis of the variance risk premium. The variance risk premium
is the compensation for variance risk (which is measured by the quadratic variation)
and is therefore defined as the wedge between (conditional) expectation of the future
quadratic variation (of the index) under the physical and the risk-neutral measure.
Thus, the daily-standardized risk premium for the variance risk over the next a days
is

V Ra(t) =
1

a
EP

(
[f, f ](t,t+a]|Ft

)− 1

a
EQ

(
[f, f ](t,t+a]|Ft

)
, (9)

where EQ(·) denotes expectation under the risk-neutral measure.6

In this Section I construct a measure for the variance risk premium, using VIX
index data and the SV model (1)-(4), and analyze the dynamics of the variance risk
premium.

2.1 Measuring Variance Risk Premium

I start with constructing a measure for the variance risk premium. We can recognize
the first term in (9) as the (daily-standardized) variance swap rate on the S&P 500
index (i.e. the price of a forward contract on the future variance) which we denote as
SWa(t) := 1

a
EQ

(
[f, f ](t,t+a]|Ft

)
. Following Bakshi and Madan (2000), Britten-Jones

and Neuberger (2000), Carr and Wu (2009), its value can be inferred (synthesized)
from the following (static) portfolio of options

2

a

∑
i

ear(t,t+a]
∆Ki

K2
i

O(Ki, a),

where O(Ki, a) is an out-of-the money put or call option price on the S&P 500 contract
(of European style) with time to expiration of a days; r(t,t+a] is the interest rate over
the period (t, t + a]; ∆Ki = Ki − Ki−1 and the summation in the above formula is
over all available strike levels.7 The above portfolio of options has been used in the

6In case a superscript is not put on the expectation operator, the expectation is always assumed
to be under the physical measure.

7As shown in Carr and Wu (2009), when the price contains jumps there is an error in the
replication (in addition to the discretization one). For the model (1)-(4), this error is εt,a =
−2
a

∫ t+a

t

∫
Rn

0

(
eh(x) − 1− h(x)− h2(x)

2

)
νQ(ds, dx), where νQ(·, ·) is the compensator of the jump

measure µ under the risk-neutral measure. The numerical experiments in Carr and Wu (2009)
suggest that the error is not significant for practical purposes. In fact, since in this paper I am
interested only in the time-variation of the variance risk premium, taking into account this error
does not change any of the conclusions.
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calculation of the new VIX index (with a corresponding to one month), which we can
therefore view as a portfolio of short-maturity options. Thus, I use the VIX index to
compute the first term in (9).8

To compute the variance risk premium we are left with estimating the conditional
expectation under P of the future QV. I use the model (1)-(4) for this. For the discon-
tinuous component of the quadratic variation this is easy. Its conditional expectation
is equal to the unconditional one since the price jumps are time-homogenous. Turn-
ing to the continuous part of the quadratic variation, its conditional expectation is
different from the unconditional one since σ2(t) is time-varying. The conditional
expectation of IV is a linear function of its two variance factors. However, this con-
ditional expectation is not available to the econometrician. At the same time, the
model implies an ARMA(2,2) process for the daily IV with coefficients determined
from the structural parameters of the model. This fact could be used to calculate the
linear projection of the integrated variance on the past values of TV and JV (which
in turn are being used as a proxy for IV and QV-IV respectively). The details are
provided in a separate appendix to this paper. I denote this linear projection with
P (IVa(t)|Gt), where Gt = σ(TVδ(t−1), ..., TVδ(1), JVδ(t−1), ..., JVδ(1)), i.e. Gt is the
information created from the past realizations of TV and JV, and we have G ⊂ F .

Thus, a feasible measure for the premium at date t for the variance risk over the
next a days is

RPa(t) =

∫

Rn
0

h2(x)G(dx) +
1

a
P (IVa(t)|Gt)− SWa(t). (10)

Its usefulness comes form the following9

Cov(RPa(t), TVδ(t− j)) = Cov (V Ra(t), IV (t− j)) , (11)

Cov(RPa(t), JVδ(t− j)) = Cov (V Ra(t), QV (t− j)− IV (t− j)) . (12)

Below I illustrate how we can make use of these two sets of covariances to identify
the dynamics of the variance risk premium. The natural starting point is the case of
a constant variance risk premium. In this case we simply have

SW c
a(t) : =

1

a
E

(
IVa(t) +

∫ t+a

t

∫

Rn
0

h2(x)G(dx)

∣∣∣∣Ft

)
+ K,

= K0 +
1− e−κca

aκc

V c(t) +
eρja − 1

aρj

V j(t), (13)

8In the calculation of the VIX index a calendar-counting convention is used. That is, the year
consists of 365 days and in computing the time to expiration for the options, the actual number of
days is being used. However, in this paper I adopted a business-time counting. That is, a unit of
time here is one business day. I continue to use the business-time convention and assume that each
month consists of 22 business days. I use the VIX index to calculate a daily-standardized variance
swap rate with one month horizon (corresponding to 22 business days): SW22(t) = 30

365
1
22V IX2(t).

9(11)-(12) hold if an asymptotic approximation for TV and JV given in the separate appendix
to this paper holds exact; otherwise they hold asymptotically as δ → 0.
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where K is the constant variance risk premium and K0 is some constant. This means
that in the case of a constant variance risk premium the variance swap rate is a linear
combination of the variance risk factors. Importantly, the coefficients in front of the
variance factors in SW c

a(t) are not free and are determined by the persistence of these
factors under the physical measure. A natural generalization is to consider variance
risk premium specification under which the variance swap rate is a linear combination
of the variance factors, but the coefficients in front of them are not restricted. This
corresponds to a variance risk premium which is linear in the variance factors and the
next section provides prices of diffusive and jump risk that support such variance risk
premium specification. Thus, under this generalization of the variance risk premium,
the variance swap rate is

SW v
a (t) := K0 + KcV

c(t) + KjV
j(t), (14)

where K0, Kc and Kj are some constants. The constant K0 in (13) and (14) might
differ of course. All parametrizations of the pricing kernel considered previously in the
literature would imply (14) for the variance swap rate (with some further restrictions
on the coefficients in most cases). The variance swap rate corresponding to constant
variance risk premium can be recovered by constraining Kc ≡ 1−e−κca

aκc
and Kj ≡ eρja−1

aρj

in equation (14).
Can we distinguish these two scenarios for the variance risk premium using RPa(t)?

The answer to this question is positive and the reason for this is that we have access to
IV and QV (measured from the high-frequency data by TV and RV respectively). To
show this I work with the variance swap specification SW v

a (t) in (14), since SW c
a(t)

is a constrained version of it. Then, it is easy to prove that for i = 1, 2, ...

Cov(V Ra(t), IV (t− i)) = 0 ⇔ Kc ≡ 1− e−κca

aκc

and Kj ≡ eρja − 1

aρj

.

In other words, provided there is time-varying risk premium with time-variation de-
termined by the variance factors, V Ra(t) should be correlated with the past values
of IV. Further, we can investigate whether both the jump and diffusion parts of the
stochastic variance σ2(t) determine the time-variation in the variance risk premium.
It is easy to derive that for i = 1, 2, ...

Cov(V Ra(t), QV (t−i)−IV (t−i)) = 0 ⇔ Kj ≡ eρja − 1

aρj

or

∫

Rn
0

h2(x)k(x)G(dx) ≡ 0.

Since the empirical results in Section 1.2 indicate that
∫
Rn

0
h2(x)k(x)G(dx) 6= 0,

V Ra(t) will be correlated with the past squared price jumps provided the variance
risk premium depends on the variance jump factor V j(t). Thus, with the covariance
between RP and TV and RP and JV, we can differentiate constant variance risk
premium from variance risk premium that is linear in the variance factors. Further,
because of the link between the price and variance jumps, using these covariances,
we can also determine which of the variance factors determines the variation in the
variance risk premium.
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2.2 Dynamics of the Variance Risk Premium

From (9) we can easily get

E(V Ra(t)) =
1

a
E([f, f ](t,t+a])− E(SWa(t)),

√
Var (V Ra(t)) ≥

∣∣∣∣
1

a

√
Var

(
E([f, f ](t,t+a]|Ft)

)−
√

Var(SWa(t))

∣∣∣∣ .

Thus, using the parameter estimates of the SV model as well as the variance swap
rate data, we have an estimate for the first two moments of the variance risk premium.
Its estimated mean is −0.4015, while the mean of the variance swap rate is 1.6542
(both in daily variance units). This shows that the variance risk premium is rather
significant, which is consistent with earlier studies of Bakshi and Kapadia (2003) and
Carr and Wu (2009). An estimate for the lower bound of the volatility of the variance
risk premium is 0.4150 and this is to be compared with the estimated volatility of the
variance swap which is 1.1303.

The above evidence suggests that the variance risk premium is not only big but
it also shows significant variation over time. This has important consequences. First,
this implies that the wedge between the physical and risk-neutral measure is pretty
wide. Secondly, this wedge is not constant. Third, the variance risk factors have more
variance under the risk-neutral measure, and this suggests that changes in investors
expectations about the significance of these risk factors account for this wedge. Fi-
nally, from a practical point of view, the nontrivial time-variation in the variance
risk premium means that for the purposes of pricing derivatives on the volatility, like
variance swaps, one can not use directly the voluminous literature on modeling and
forecasting volatility (which is under the P measure). One also needs to know what
drives the variance risk premium.

I finish this section with an analysis of the measure RP (evaluated at the parameter
estimates reported in Table 1). Figure 4 plots the RP series together with TV and
JV. As seen from the Figure, the RP series is quite persistent and is generally below
zero. Figure 4 suggests that the jumps and the level of IV are important factors
determining the variance risk premium. To investigate formally this conjecture I
compute the covariance between RP and past values of TV and JV. In Table 2 I
report the results from Wald tests for zero covariance, which confirm the conjectured
strong dependence between RP and past values of TV and JV. As seen from equations
(11) and (12), this means that the variance risk premium has time-variation which
depends on the level of the variance of the continuous price component σ2(t) but
importantly also on the past price jumps.

3 Modeling and Inference for Time-Varying Vari-

ance Risk Premium

The main question I try to answer in this section is whether we can “rationalize” the
empirical evidence of Section 2 for the time-variation in the variance risk premium.
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Can we find prices for the different risks in the SV model, which are consistent with
no arbitrage and support the empirical findings in Section 2? Are standard prices
of risk used in the literature sufficient for this? I start by deriving a pricing kernel
that nests the ones commonly used. Following that, I compare the dynamics of the
variance risk premium with that implied by the pricing kernel.

3.1 Prices of Risk and Change of Measure

The fundamental theorem of asset pricing implies, under some technical conditions,
that no arbitrage is equivalent to the existence of a risk-neutral measure also referred
to as Equivalent Martingale Measure (hereafter abbreviated as EMM) under which
the discounted gain process associated with an asset is a local martingale. The futures
contract involves no initial payment and as a result, assuming that the contract is
continuously marked to market, the futures price F (t) is a local martingale under
the EMM, see e.g. Duffie (2001).10 Turning to the specification of the EMM, the
presence of jumps in the futures price renders the market essentially incomplete.
That is, we cannot complete it by including in the investor’s portfolio a finite number
of securities11 which means that in general we have infinitely many EMM-s consistent
with no arbitrage. The set of EMM-s is derived in the following theorem.

Theorem 1 Consider the probability space (Ω,F ,P) with filtration F = (Ft)t∈R+ on
which the stochastic volatility model (1)-(4) is defined. Assume that F is generated
by Brownian motions (including B1 and B2) and Lévy jumps (including those in
the price and the variance). Define a probability measure Q on (Ω,F ) such that
B1(t) −

∫ t

0
ψ1(s)ds and B2(t) −

∫ t

0
ψ2(s)ds are two Brownian motions and µ has a

compensator νQ(ω, dt, dx) := Y (t,x)dtG(dx), where ψ1 = (ψ1(t)), ψ2 = (ψ2(t)) are
predictable processes and Y = Y (t,x) is a strictly positive and predictable function
satisfying the following conditions

∫ t

0

ψ2
i (s)ds < ∞ dP⊗ dt-a.s and dQ⊗ dt-a.s, i = 1, 2, (15)

∫ t

0

∫

Rn
0

(√
Y (s,x)− 1

)2

ν(ds, dx) < ∞ dP⊗ dt-a.s and dQ⊗ dt-a.s. (16)

∫ t

0

∫

Rn
0

|(Y (s,x)− 1) h(x)| dsG(dx) < ∞, dP⊗ dt-a.s. (17)

Then the measure Q belongs to the set of equivalent martingale measures iff the fol-
lowing condition holds

b(t) ≡ −1

2
σ2(t)− ρσ(t)ψ1(t)−

√
1− ρ2σ(t)ψ2(t)

−
∫

Rn
0

(
Y (t,x)(eh(x) − 1)− h(x)

)
G(dx), dP⊗ dt-a.s. (18)

10This is subject to a boundedness condition on the interest rate process, but this assumption can
be relaxed; see Pozdnyakov and Steele (2004).

11Except trivial cases, e.g. when the set of possible jump sizes is finite; see Cont and Tankov
(2004).
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The stochastic processes ψ1(t), ψ2(t) and the (stochastic) function Y (t,x) deter-
mine the prices of the different risks in the SV model (1)-(4). ψ1(t) and ψ2(t) are the
prices for the diffusion type risk in the price and the variance, whereas Y (t,x) deter-
mines the compensation for the presence of jumps in the price and the variance. Intu-
itively, going from physical to risk-neutral distribution, the Brownian/diffusive risks
acquire drifts reflecting the compensation for them, while the intensity/compensator
for jumps changes by making some jumps more likely to occur than others. ψ1(t) and
Y (t,x) determine together the variance risk premium, which we are after. ψ1(t) and
ψ2(t) determine the compensation for the diffusive price risk. Since this paper is not
interested in the latter, I leave ψ2(t) unspecified.

The variance risk premium contains compensation for diffusive and jump type
risk, since the model has price jumps and in addition σ2(t) contains both a diffusive
and a jump factor. The pricing of the diffusive risk is well studied, while pricing of
jump risk is less so. Before analyzing different specifications for ψ1(t) and Y (t,x) I
briefly discuss the pricing of jump risk and how it differs from pricing diffusive risk.

The stochastic function Y (t,x) specifies compensation for each possible jump size
x at each point of time t. This is fundamentally different from the pricing of dif-
fusive risk, where at each point of time we have a single price, e.g. ψ1(t) for the
Brownian motion B1(t). This explains why the market is in general incomplete in
the presence of jumps. When there are only diffusive risks we need to include in the
portfolio a finite number of instruments (i.e. assets and different derivatives written
on them) which have sensitivity towards those diffusive risks and this completes the
market. Intuitively, the diffusive risks have a local Gaussian behavior and appro-
priately weighted set of instruments could completely eliminate (hedge) them. The
situation is very different in the presence of jumps where we need a hedging instru-
ment for each possible jump size at each point in time. Thus, provided the jumps
have an infinite number of possible jump sizes, the market cannot be completed by a
finite number of instruments.

I turn now to modeling the variance risk premium, i.e. modeling ψ1(t) and Y (t,x)
in the SV model (1)-(4). The typical way of specifying the prices of risk, mainly for
reasons of tractability, is such that the model is of the same class under both measures
(physical and risk-neutral). For the model here this means that under the risk-neutral
measure the jumps in the price and the variance are again Lévy processes, and the
stochastic variance is a sum of square-root process and jump-driven OU process,
possibly with different parameters. This, however, is too restrictive particularly for
the jumps. Therefore, I consider also measure changes for jumps which go beyond
the “structure-preserving” ones. It is convenient for the subsequent analysis to split
the variance risk premium as follows

V Ra(t) = V Rc
a(t) + V Rj

a(t),

where

V Rc
a(t) =

1

a
EP

(∫ t+a

t

V c(s)ds

∣∣∣∣Ft

)
− 1

a
EQ

(∫ t+a

t

V c(s)ds

∣∣∣∣Ft

)
, (19)
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V Rj
a(t) =

1

a
EP

(∫ t+a

t

∫

Rn
0

h2(x)µ(ds, dx) +

∫ t+a

t

V j(s)ds

∣∣∣∣Ft

)

−1

a
EQ

(∫ t+a

t

∫

Rn
0

h2(x)µ(ds, dx) +

∫ t+a

t

V j(s)ds

∣∣∣∣Ft

)
.

V Rc
a(t) is the part of the variance risk premium which is due to the compensation for

the time-variation in the continuous variance factor V c(t). It is determined by ψ1(t).
The other component of the variance risk premium, V Rj

a(t), is determined only by the
price of jump risk Y (t,x). It consists of compensation for the time-variation in V j(t)
as well as a compensation for the presence of jumps in the price. I refer to V Rc

a(t) as
diffusive variance risk premium and to V Rj

a(t) as jump variance risk premium.

3.1.1 Specification of ψ1(t)

The price of diffusive risk I consider is specified as follows.

D.ψ1(t) = λ0+λ1V c(t)

σcv

√
V c(t)

, where λ0 and λ1 are constants such that λ0 ≥ σ2
cv

2
− κcV

c ≥ 0.

In the appendix I show that this is a valid price of risk, i.e. Theorem 1 holds.
This specification for ψ1(t) is called extended affine price of risk in Cheridito et al.
(2007). It is the most general specification of ψ1(t) under which V c(t) is a square-
root process under both measures. For this specification of ψ1(t) we have V Rc

a(t) =
const0 + const1 × V c(t), i.e. the diffusive variance risk premium is an affine function
of the diffusive variance factor. This specification implies that the only relevant
information at a given time for the diffusive variance risk premium is the level of the
diffusive variance factor itself. This change of measure, with the restriction λ0 ≡ 0
imposed, is one of the most frequently used for empirical finance applications.

3.1.2 Specification of Y (t,x)

The price of jump risk analyzed in the paper is given in the following.
J.Y (t,x) = ϑ0(x) + ϑ1(x)τ(t−), where ϑ0(x) ≥ 0 and ϑ1(x) ≥ 0 and in addition

dτ(t) = ρττ(t)dt +

∫

Rn
0

ζ(x)µ(dt, dx), ζ(x) ≥ 0, ρτ < 0,

∫

Rn
0

ζ(x)G(dx) < ∞ and

∫

Rn
0

ζ4(x)G(dx) < ∞,

∫

Rn
0

(ϑ0(x)− 1)2 G(dx) < ∞,

∫

Rn
0

ϑ2
1(x)G(dx) < ∞ and

∫

Rn
0

ζ(x)ϑ1(x)G(dx) < −ρτ .

The proof that J is a valid price of risk can be found in the appendix. The
specification for the price of jump risk implies V Rj

a(t) = const0 + const1 × τ(t),
i.e. V Rj

a(t) is linear in τ(t). The state variable τ(t) is modelled as a jump-driven
OU process (like V j(t) but with possibly different parameters (and driving jumps)).
There are two special cases of interest. First, if ϑ1 ≡ 0, the price of risk depends only
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on the jump size and therefore there is no time variation in the jump risk premium
in this case. Given the empirical evidence in the previous section such specification
seems implausible. A second special case of the price of risk J is when ρτ ≡ ρj

and ζ(x) ≡ k(x). In this case we have τ(t) ≡ V j(t). The completely general case
generalizes the previous two special cases in two directions. First, by allowing ζ(·) to
differ from k(·) I allow for different information, besides the one contained in the jump
variance factor V j(t), to enter the state variable τ(t). This can be done by setting
ζ(x) to depend on elements in the vector x on which the function k(x), determining
the jumps in the variance, does not depend. The second generalization is to allow
the persistence in the state variable τ(t) to differ from that of the jump variance
component V j(t). That is, τ(t) and V j(t) might have the same information (i.e. the
jumps in the variance) but this information could be synthesized in a different way.
This difference in persistence can be achieved by letting ρτ 6= ρj.

3.2 Inference for Time-Varying Variance Risk Premium

The prices of risk from the previous subsection imply V Ra(t) = const0 + const1 ×
V c(t) + const2 × τ(t), i.e. they determine the time variation in the risk premium.
On the other hand, using the VIX index in Section 2 we estimated the variance risk
premium without assuming anything about the pricing kernel. Here I match the
moments of the estimated variance risk premium with those implied by the pricing
kernel and this links the observed variance risk premium with the pricing kernel that
generated it. Following the analysis in Section 2, the moments of the variance risk
premium that are matched are its mean and its covariance with the past continuous
and discontinuous QV. Given the prices of risk it is easy to compute

E (V Ra(t)) = K0, (20)

Cov

(
V Ra(t),

∫ t−i

t−i−a

σ2(s)ds

)
= Kc

ψe−κci + Kc
τe

ρτ i, (21)

Cov

(
V Ra(t),

∫ t−i

t−i−a

∫

Rn
0

h2(x)µ(ds, dx)

)
= Kj

τe
ρτ i, (22)

where K0, Kc
ψ, Kc

τ and Kj
τ are some constants depending on the magnitude of the

compensation for diffusive risk and jumps of different size and sign; Kc
τ is propor-

tional to
∫
Rn

0
k(x)ζ(x)G(dx) and Kj

τ is proportional to
∫
Rn

0
h2(x)ζ(x)G(dx). Given

our interest in the dynamics of the variance risk premium and the semiparametric
estimation approach adopted here (i.e. I do not specify a parametric distribution for
the jumps) these parameters are all we need. As mentioned in Section 1.2, the main
advantage of being semiparametric is the robustness and generality of our estimation
results.

Our estimate for the variance risk premium in Section 2 contains estimation error,
since it depends on the parameter estimates controlling the SV model, and to avoid
errors-in-variables problem I conduct the estimation in one step. That is, all moments
including the ones used to estimate the SV model are matched together in a GMM.
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Thus, for each value of the parameters I first calculate the linear projection of IVa(t)
on past TV and JV and then construct an estimate for the variance risk premium for
this parameter. Using this estimate of the variance risk premium series I evaluate the
GMM objective function.

The moments used in this joint estimation are: the ratio of the mean of QV to the
mean of the daily squared returns; mean, variance and autocovariance of IV; mean
and variance of QV; mean of FV; mean of VR; covariance between VR and past
IV; covariance between VR and past QV-IV. The autocovariances of IV used in the
estimation are for lags 1, 3 and 6 as well as the average autocovariance for lags 11−20
and 21− 30.12 For the covariance between VR and past IV I use the average one for
lags of TV 1− 10, 11− 20, 21− 30 and 41− 50. The same is done for the covariance
between VR and past values of QV-IV. Thus, overall, I match 20 moments.

The parameters that are estimated are the ones controlling the SV model (given in
Section 1.2) as well as K0, Kc

ψ, Kc
τ , Kj

τ and ρτ defined in (20)-(22), which altogether
makes 14 parameters to be estimated. To help the interpretation of the estimation
results below I briefly elaborate on the implications which different special cases for
the prices of risk have on the value of the coefficients in (21)-(22).

• Constant variance risk premium. In this case Kc
τ ≡ Kj

τ ≡ Kc
ψ ≡ 0. Note that

this scenario is observationally equivalent (when the covariances in (21) and (22)
are used for identification of the time-variation in the variance risk premium)
to the case when ψ(t)

√
V c(t) and τ(t) are time-varying, but are both (at least

linearly) independent from σ2(t) and the squared price jumps.13

• Affine-in-variance factors variance risk premium. This case was already dis-
cussed in Section 2. In this case ρτ ≡ ρj. Therefore, if the variance jump factor
V j(t) has short memory, this will imply that the impact of the jumps on the vari-
ance risk premium dies out quickly as well. Also, since

∫
Rn

0
h2(x)k(x)G(dx) > 0,

such specification for the jump risk implies that we can either have Kc
τ ≡ Kj

τ ≡ 0
or Kc

τ 6= 0 and Kj
τ 6= 0.

• Jump variance risk premium depends only on component of price jumps or-
thogonal to the variance jumps. In this case

∫
Rn

0
h2(x)ζ(x)G(dx) > 0 and∫

Rn
0
k(x)ζ(x)G(dx) = 0. Therefore this scenario implies Kc

τ ≡ 0 and Kj
τ 6= 0.

• Jump variance risk premium depends only on component of variance jumps
that is orthogonal to price jumps. In this case

∫
Rn

0
h2(x)ζ(x)G(dx) = 0 and∫

Rn
0
k(x)ζ(x)G(dx) > 0. The implication of this is Kj

τ ≡ 0 and Kc
τ 6= 0.

12In comparison with the estimation in Section 1.2 I dropped one of the moment conditions
identifying the persistence in σ2(t). This is done to keep the number of overidentifying restrictions
relatively low, following Monte Carlo results in Andersen and Sørensen (1996) on the finite sample
performance of GMM.

13For the diffusive price of risk D this is not possible. For the price of jump risk J this is possible.
Example is the case where x = (x1, x2, x3) > 0 with

∫
Rn

0
1(x1x2x3 6=0)G(dx) = 0 and h(x) = x1,

k(x) = x2 and ζ(x) = x3.
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The estimation results are reported in Table 3. The test for overidentifying restric-
tions shows that the specification of the prices of risk, together with the stochastic
volatility model, provides relatively good fit to the moments used in the estimation.
Comparing the estimation results in Table 1 and Table 3, we can see that the param-
eters determining the evolution of the S&P 500 index under the physical measure do
not change substantially when the additional moments identifying the time-variation
in the variance risk premium are included in the estimation. Also, note that K0 is
very high in magnitude and statistically significant, confirming the observation made
already in Section 2 of a non-trivial variance risk premium. I continue with analysis
of the parameters controlling the temporal dependence in the variance risk premium.
I summarize the findings in the following points.
(1) The parameters determining the covariance between RP and past values of TV
(Kc

ψ and Kc
τ ) are not very accurately estimated, as indicated by their relatively big

standard errors, and are individually statistically insignificant.
(2) I test the hypothesis that the jumps in the price and/or variance do not deter-
mine the time-variation in the variance risk premium. This is equivalent to testing
Kc

τ ≡ Kj
τ ≡ 0. Note that ρτ is present only under the alternative hypothesis and is

not identified under the null hypothesis. I use a criterion difference test, which has
χ2

2 limiting distribution. The value of the test is 15.55 with corresponding p-value
of 0.0004. This indicates that the realized jumps are an important state variable
determining the time-variation in the variance risk premium. In addition the test
provides also very strong evidence against constant compensation for jump risk, i.e.
specification of the form Y (t,x) = ϑ0(x), which has been used in previous work.
(3) Given the strong evidence for the importance of the jumps in determining the time-
variation in the variance risk premium, it is interesting to investigate what component
of the jumps determines this time-variation. If this is a component in the jumps
common for both price and variance we must have Kc

τ 6= 0 and Kj
τ 6= 0. If this is a

component contained only in the price jumps (i.e. orthogonal to the variance jumps)
we should have Kc

τ ≡ 0 and Kj
τ 6= 0. Similarly, if it is a component present only

in the variance jumps we should have Kc
τ 6= 0 and Kj

τ ≡ 0. The coefficient Kj
τ is

statistically different from zero, while Kc
τ is not. Therefore, this could be interpreted

as evidence that the time-variation in the variance risk premium is determined by
component in the price jumps, which is orthogonal to (i.e. independent from) the
variance jumps. How can we explain this intuitively? We can link the price jumps
with a release of information and associate an increased volatility with disagreement
among investors about the effect of this information on the market. Then a price a
jump that does not change volatility can be associated with news whose impact on
the market is uniformly agreed upon among investors. Thus the results suggest that
it is exactly those events that lead to an increase in the risk premia. However, this
hypothesis can be true only if the diffusive variance risk, i.e a risk from a persistent
shift in the volatility, is also priced.14 Thus, overall, I conclude that there are two
possible scenarios. The first is that the diffusive variance factor does not determine

14A Wald test for the hypothesis Kc
ψ = Kc

τ = 0 has a value of 10.99 with a corresponding p-value
of 0.0041. Thus, this hypothesis is strongly rejected.
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the time-variation in the variance risk premium. In this case the time-variation in
the variance risk premium is determined by components of both price and variance
jumps. The second possible scenario is that the diffusive variance factor determines
the variation in the variance risk premium and in addition a jump component only
present in the price jumps determines the variation in the variance risk premium.
(4) The autoregressive coefficients ρj and ρτ differ significantly. I calculate a Wald
test for the hypothesis ρj ≡ ρτ . The value of the test is 33.77 with a corresponding
p-value of 0.0000. In other words the difference between ρj and ρτ is statistically big.
Note that affine-in-variance factors variance risk premium implies ρj ≡ ρτ . Therefore
the estimation results reject strongly such specification.

Overall, the empirical results uncover a non-trivial variance risk premium, whose
time-variation depends strongly on the price jumps and the stochastic variance. How-
ever, the results here are not conclusive which component of σ2(t), the diffusive (i.e.
persistent) or the jump (i.e transient) one, drives the variation in V Ra(t). Further,
we can reconcile the variance risk premium variation, but only with the use of general
(and quite flexible) specification for the price of jump risk.

The empirical finding of the dependence of the risk premium on past market jumps
indicate that investors fear jumps more straight after big stock market shocks and
are willing to pay higher premium to protect from such events. There are at least
two possible economic explanations for this effect. The first is that straight after big
market changes investors view the occurrence of jumps more likely. Such reassessment
of the jump probability can naturally occur in the context of a Bayesian investor. The
reason is that the parameters controlling jumps are hard to estimate precisely and a
single realization of a big jump can tilt the posterior distribution of the parameters
towards values implying more frequent jump activity.

A second explanation for the persistent effect of the jumps on the risk premium
is habit persistence in investor’s fear of jumps. This can be generated in a habit
persistence type equilibrium model (as in Campbell and Cochrane (1999) for example)
in which habits are affected by jumps. In such a model the representative investor
will treat differently the diffusive and jump risk, as in Liu, Pan, and Wang (2005)
and Bates (2008). When a jump occurs investor’s willingness to protect her portfolio
against future big (negative) jumps increases.

On the practical side, the increased fear of future jumps straight after a market
crash means that the protection for them will be more expansive. This means higher
prices for close-to-maturity deep-out-of-the-money options as they form a natural
hedge for jumps. I now explicitly use this observation to provide further support for
the pricing of jump risk.

4 Nonparametric Robustness Checks

In our analysis of the variance risk premium, and in particular its dynamics, we found
that jumps play a crucial role. On one hand, jumps are present in the returns and
the stochastic volatility, where there have short term effect, while on the other hand
jumps have persistent effect on the variance risk premium through increased fear of
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future jumps. In this section I provide nonparametric evidence for both these claims.

4.1 Evidence for Jumps in Returns and Volatility

It is easy to detect the presence of jumps in the returns using the 5-minute high-
frequency S&P 500 index returns data. In Figure 5, I plot the histogram of the jump
test statistic of Ait-Sahalia and Jacod (2009) over all of the days in the sample.15

A value of 1 of the test statistics indicates the presence of jumps and a value of 2
indicates no jumps. As seen from the figure there are a lot of days in the sample
with jumps. Although the results in this paper are derived for an arbitrary jump
measure µ (see equation (1)), the nonparametric evidence in Figure 5 suggests that
µ is more likely of infinite activity, or at least of a very high-intensity finite activity
jump process.16 This is in line with the results in Bakshi et al. (2008), who report
evidence in favor of infinite activity jumps based on a very flexible parametric jump
specification.

Although stochastic volatility is unobserved, I provide nonparametric evidence
for presence of jumps in volatility using the VIX index. Jumps in the stochastic
volatility will imply jumps in the VIX index when the jump volatility factor has some
persistence (like in our semiparametric specification). I apply the procedure of Lee
and Mykland (2008) to test for jumps in the VIX index on each day in the sample.17

Following recommendation in Lee and Mykland (2008), I use window size of 16 days
in computing the local volatility of the differenced VIX index series and select a time
horizon of 22 days in setting up the rejection region (the test applies for a fixed time
horizon). For significance level of 5%, I find a total of 65 days in which the VIX index
jumps. The median absolute value of the jump size is 2.71 (in annualized volatility
units).18 Further, I applied the same test for the daily returns on the S&P 500 index
and found that on 20 of these 65 days there was an associated jump in the S&P 500
index.

To provide further evidence for cojumping in the returns and the stochastic volatil-
ity, following Jacod and Todorov (2009), I calculate “realized” correlations between
squared jumps in the S&P 500 and VIX series over periods of 22 days. The estimated
median correlation is 0.7, while if there was no common jumping this number should
be close to 0. Further, I compute the share in the cojump variation measure of Jacod
and Todorov (2009) due to negative jumps in the returns and positive jumps in the
volatility (which arrive at the same time). I find that 63% of the cojump variation
in the sample is due to this combination of jumps. These findings are in line with

15The test of Ait-Sahalia and Jacod (2009) is derived for arbitrary, finite or infinite activity, jumps.
16There are also a lot of days in the sample where the test statistic takes values somewhere in the

middle of the interval (1, 2) (or even outside this interval). This reflects the statistical uncertainty
associated with the test - for sharper results clearly much higher frequencies are needed, e.g. as the
ones used in Ait-Sahalia and Jacod (2009).

17I would like to thank a referee for suggesting this.
18These results however should be interpreted with some caution for two reasons. First, the

frequency of the VIX data is relatively low and therefore a lot of jumps are probably missed by
the test. Second, the test is designed to estimate Poisson-type jumps, while the model here (1)-(4)
allows for far more active jumps.
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the strong significance of the estimated parameter
∫
Rn

0
h2(x)k(x)G(dx) reported in

Tables 1 and 3. We can further link the nonparametric evidence here with the results
in Bakshi et al. (2008), who find that only the negative jumps in the returns carry
a risk premium. The nonparametric evidence here suggests that in most cases those
jumps are accompanied by positive jumps in volatility and therefore the latter are
also being priced.

In sum, the nonparametric evidence presented in this section strongly supports
the jump structure of the SV model.

4.2 Realized Jumps and Risk Premia

The key implication of the price of jump risk J is that past “realized” jumps should
have an impact on the intensity of the future ones under the risk-neutral measure. To
check this in a completely non-parametric setting, I use a result that follows easily
from Carr and Wu (2003) (see the proof of their Proposition 1). It is based on
the intuitive fact that short maturity deep out-of-the-money put option prices are
mainly determined by the price jumps. More formally, the result is the following. Let
Pt(K,T ) denote the price at time t of a put with strike K expiring at time T and
k = ln(K/Ft) is the moneyness (where Ft is the futures price with expiration at T ).
Then we have

IJt(k) := lim
T↓t

Pt(T, K)

Ft(T − t)
=

∫ k

−∞

∫

Rn
0

el1[h(x)<l]ν
Q
t (dx)dl, k < 0, (23)

where νQt (dx) is the “local” intensity of the jumps under the risk-neutral measure.19

For the price of jump risk J we have

IJt(k) =

∫ k

−∞

∫

Rn
0

el1[h(x)<l](ν0(x) + ν1(x)τ(t))G(dx)dl, k < 0, (24)

which suggests that under J, IJt(k) should be an affine function of the state variable
τ(t) and thus depend on the past “realized” jumps. To investigate this implication
of the price of jump risk, I collected from Option Metrics short maturity put option
prices for the period January 4, 1996 till November 29, 2002 (Option Metrics provides
data for the period after 1996 only). For each day I use the closest to maturity put
option closing mid-quote to proxy IJt(k)20 (options with maturities at least 9 days
were considered only). Following Carr and Wu (2003), I set k = −9.2%21 and linearly
interpolate the put option price for that level of moneyness on each of the days. On
Figure 6 I plot the correlation between IJt(k) and the past squared realized jumps.
As seen from the figure, and consistent with the modeling of jump risk in this paper,
the intensity of the price jumps under the risk-neutral measure depends persistently

19That is, the jump compensator of the jumps under the risk-neutral measure is νQt (dx)dt.
20The simulation results in Carr and Wu (2003) suggest that for maturities less than a month

(which are used here) this is a reasonable approximation.
21Experiments with other levels of moneyness produced similar results and are available upon

request.
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on the past “realized” jumps. Note that a model where jump intensity is linear in
the stochastic volatility as in Bates (2000) and Pan (2002) can generate empirically
realistic dependence between the risk-neutral jump intensity and the past realized
jumps only if the squared jumps were a persistent process under the measure P,
which is not supported by the data (as seen from Figure 2). Thus, the nonparametric
results in this subsection provide strong support for risk-neutral jump specification
in which past jumps affect their future intensity.

5 Conclusion

This paper provides an arbitrage-free explanation of the market variance risk pre-
mium dynamics in the framework of a semiparametric stochastic volatility model.
Jumps play key role in explaining the observed risk premium. On one hand their
occurrence in the market level is documented and it is typically linked with a spike in
the volatility which dies out quickly. On the other hand the occurrence of jumps leads
to a persistent increase in the variance risk premium. These two empirical findings
are rationalized with a price of jump risk that increases after big market moves which
is suggestive of changing attitude of investors towards jumps.

There are several important directions in which the current work can be extended.
First, a natural next step of the analysis is to find an equilibrium explanation for the
estimated dynamics of the pricing kernel. Second, the pricing of jump risk can be
further analyzed using separately deep out-of-the money put and call prices. This
can show whether the effect of extreme events on the market is different for positive
and negative jumps. Third, the analysis here can be performed on individual stock
level and the linkages with the market variance risk premium analyzed.

Appendix: Equivalent Martingale Measures

A Proof of Theorem 1

We start with a Lemma, which is of independent interest.

Lemma 1 Consider the probability space (Ω,F ,P) with filtration F = (Ft)t∈R+.
Suppose that the filtration F is generated by d-dimensional standard Brownian mo-
tion W and n-dimensional homogenous Poisson measure µ with compensator νP (un-
der the measure P). Let ψ be a d × 1 predictable process and Y (ω, t,x) a strictly
positive and predictable function. Denote with Q a probability measure under which
W (t) − ∫ t

0
ψ(s)ds is a standard Brownian motion and the random measure µ has

compensator νQ(ω, dt, dx) = Y (ω, t,x)νP(ω, dt, dx) (assuming that such a measure
exists!). Assume that P0 ∼ Q0 and in addition the following conditions are satisfied

∫ t

0

ψ(s)ψ
′
(s)ds < ∞ dP⊗ dt-a.s and dQ⊗ dt-a.s, (A.1)
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∫ t

0

∫

Rn
0

(√
Y − 1

)2

ν(ds, dx) < ∞ dP⊗ dt-a.s and dQ⊗ dt-a.s. (A.2)

Then we have P loc∼ Q, that is for every finite t > 0 we have Pt ∼ Qt.

Proof. Under the measure P a representation theorem holds and therefore this
measure is unique (note we are in the canonical setting because of the assumption for
the filtration). Furthermore since the characteristics of (W,µ) are constant under P
we have even local uniqueness (definition III.2.37 in Jacod and Shiryaev (2003)) for
this probability measure (this follows from Theorem III.2.40 in Jacod and Shiryaev
(2003)). Define T := inf (t : H(t) = ∞), where

H(t) =

∫ t

0

ψ(s)ψ
′
(s)ds +

∫ t

0

∫

Rn
0

(√
Y − 1

)2

Y
νQ(ds, dx).

Consider the process

Z
′
(t) =





E
(
− ∫ t

0
ψ(s)dWQ(s) +

∫ t

0

∫
Rn

0

(
1
Y
− 1

)
µ̃Q(ds, dx)

)
for t < T

0 for t ≥ T ,

where µ̃Q(ω, dt, dx) := µ(ω, ds, dx) − νQ(ω, dt, dx) and E stands for a stochastic ex-
ponential (see Jacod and Shiryaev (2003) for a definition). Taking into account the
relationship νQ(dt, dx) = Y (ω, t,x)ν(dt, dx) and using the conditions (A.1) and (A.2)
we have H(t) < ∞ dP⊗ dt-a.s.

Combining everything we can apply Theorem III.5.34 in Jacod and Shiryaev
(2003) (adapted to the case when the filtration is generated by a d-dimensional Brow-

nian motion and n-dimensional homogenous Poisson measure) to conclude P
loc¿ Q

with density process Z
′
. Therefore, to prove the (local) equivalence of the two mea-

sures we need only to show that Q(Z
′
(t) = 0) = 0. This is an easy consequence of

the conditions (A.1) and (A.2). As a result we have Q
loc¿ P. Using Theorem III.5.19

(adapted to the case when the filtration is generated by a d-dimensional Brownian mo-
tion and n-dimensional homogenous Poisson measure) in Jacod and Shiryaev (2003)
the density process of Q with respect to P is

Z(t) =





E
(∫ t

0
ψ(s)dWQ(s) +

∫ t

0

∫
Rn

0
(Y − 1) µ̃(ds, dx)

)
for t < T

0 for t ≥ T .

¤
From this Lemma and the conditions in Theorem 1 it follows that P and Q are

locally equivalent. Therefore we are left with showing that F (t) is a local martingale
under Q iff condition (18) holds. The condition in (17) guarantees that the quadratic
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covariation process
[∫ t

0

∫
Rn

0
h(x)µ̃(ds, dx), Z(t)

]
has locally integrable variation under

P and therefore the following is a well defined local martingale under Q
∫ t

0

∫

Rn
0

h(x)µ̃Q(ds, dx) =

∫ t

0

∫

Rn
0

h(x)µ̃(ds, dx)−
∫ t

0

∫

Rn
0

h(x)(Y − 1)ν(ds, dx).

Based on that, f(t) satisfies the following SDE under the measure Q

df(t) =
(
b(t) + ρψ1(t)σ(t) +

√
1− ρ2ψ2(t)σ(t)

)
dt +

∫

Rn
0

(Y (ω, t,x)− 1) h(x)ν(dt, dx)

+σ(t)
(
ρdBQ

1 (t) +
√

1− ρ2dBQ
2 (t)

)
+

∫

Rn
0

h(x)µ̃Q(dt, dx).

Using Ito’s lemma we have for F (t) under the measure Q

dF (t)

F (t−)
=

(
b(t) +

1

2
ρψ1(t)σ(t) +

√
1− ρ2ψ2(t)σ(t)

)
dt

+

∫

Rn
0

(
Y (ω, t,x)(eh(x) − 1)− h(x)

)
ν(ds, dx)

+σ(t)
(
ρdBQ

1 (t) +
√

1− ρ2dBQ
2 (t)

)
+

∫

Rn
0

(
eh(x) − h(x)− 1

)
µ̃Q(dt, dx).

Since F (t) must be a local martingale under the measure Q we need to set the drift
term in the SDE above to zero. From here we get the result in (18). ¤

B Proof for the Diffusive Risk Price ψ1(t)

We need to show that specification D for ψ1(t) generates an equivalent change of
measure (i.e. that condition (A.1) is satisfied). The process V c is a square-root
process under both measures. The dynamics of V c(t) under the measure Q is given
by

dV c(t) =
(
λ0 + κcV

c
+ (λ1 − κc)V

c(t)
)
dt + σcv

√
V c(t)dBQ

1 (t).

If κcV
c ≥ 0 and λ0 ≥ 0 the square-root process (under both measures) satisfies the

Yamada-Watanabe condition and therefore has a unique non-explosive solution under
both measures. This implies that for the equivalence of the measures P and Q we
need only verify that V c(t) > 0 dP ⊗ dt − a.s. and Q ⊗ dt − a.s. To check this
condition we need to analyze the behavior of V c at the boundary 0. The necessary
and sufficient conditions for non-attainment of the boundary under the measure P and
Q respectively, starting from a strictly positive value, are: σ2

cv ≤ 2κcV
c

and σ2
cv ≤

2κcV
c
+2λ0 (see Ikeda and Watanabe (1981) for example, these conditions guarantee

that the boundary is entrance under both measures, i.e. starting from a positive value
it is never reached in finite time and if the process starts from zero it always goes
out). Therefore, for those values of the parameters condition (A.1) is satisfied and
hence we have equivalence of the two measures.
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C Proof for the Jump Price of Risk Y (t,x)

First, it is easy to derive that for the specification of Y (ω, t,x) we have

∫ t

0

∫

Rn
0

(√
Y − 1

)2

ν(ds, dx) ≤ 2t

∫

Rn
0

(ϑ0(x)− 1)2 G(dx) + 2

∫ t

0

τ(s)ds

∫

Rn
0

ϑ2
1(x)G(dx),

therefore it sufficient for condition (A.2) to hold that the following is true

EP
(∫ t

0

τ(s)ds

)
< ∞ and EQ

(∫ t

0

τ(s)ds

)
< ∞ for ∀t > 0.

The condition is trivially satisfied under the measure P. I will show that it holds
under the measure Q as well. Note that

∫

Rn
0

ζ(x)ϑ0(x)G(dx) ≤
√∫

Rn
0

ζ2(x)G(dx)

∫

Rn
0

(ϑ0(x)− 1)2 G(dx) +

∫

Rn
0

ζ(x)G(dx) < ∞,

∫

Rn
0

ζ(x)ϑ1(x)G(dx) ≤
√∫

Rn
0

ζ2(x)G(dx)

∫

Rn
0

ϑ2
1(x)G(dx) < ∞.

Similar inequalities hold true when ζ(x) is replaced with ζ2(x). Therefore, the claim
follows from the following general result.

Lemma 2 (a) There exists probability measure on the canonical probability space
such that the canonical process V is a semimartingale with initial distribution
L(V (0)) = η (with positive support) and satisfies the following equation

dV (t) = ρV (t)dt +

∫

Rn
0

k(x)µ(dt, dx), (C.1)

where k : Rn
0 → R+, µ is integer-valued measure on R+ × Rn

0 with compen-
sator ν(ds, dx) = ds (m(V (s−))G1(dx) + G2(dx)) where m : R+ → R+ is a
continuous function, G1 : Rn

0 → R+, G2 : Rn
0 → R+ and

m(x) ≤ C ∨ x, where C is some constant,

K1 :=

∫

Rn
0

k(x)G1(dx) < ∞, K2 :=

∫

Rn
0

k(x)G2(dx) < ∞,

K ′
1 :=

∫

Rn
0

k2(x)G1(dx) < ∞, K ′
2 :=

∫

Rn
0

k2(x)G2(dx) < ∞.

(b) In addition to the conditions in part (a) assume that −ρ > K1 ≥ 0 and m(x) = x.
Then V (t) is asymptotically covariance stationary.
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Proof.
Part (a) The characteristics of the process V with truncation function h(x) = x

(that is without truncation) are given by

B(t) =

∫ t

0

(K1m(V (s−)) + ρV (s−) + K2) ds,

C̃(t) =

∫ t

0

(K ′
1m(V (s−)) + K ′

2) ds,

ν(ds,A) = ds

∫

Rn
0

1[k(x)∈A)] (m(V (s−))G1(dx) + G2(dx)) , A ∈ R0.

See Jacod and Shiryaev (2003), chapter II.2, for a definition of the characteristics

of a general semimartingale. C̃(t) stands for the second modified characteristic. I

define a sequence of semimartingales (ṼK) with initial distribution η and the following
characteristic triplet (the truncation function is again h(x) = x)

BK(t) =

∫ t

0

(
K1

(
m(ṼK(s−)) ∧K

)
+ ρ

(
ṼK(s−) ∧K

)
+ K2

)
ds,

C̃K(t) =

∫ t

0

(
K ′

1

(
m(ṼK(s−)) ∧K

)
+ K ′

2

)
ds,

νK(ds,A) = ds

∫

Rn
0

1[k(x)∈A)]

((
m(ṼK(s−)) ∧K

)
G1(dx) + G2(dx)

)
, A ∈ R0.

I will show that such processes exist. First, for each K > 0 the characteristics of the
semimartingale ṼK are majorized, i.e.

sup
ω,t
|K1

(
m(ṼK(s−)) ∧K

)
+ ρ

(
ṼK(t−) ∧K

)
+ K2| < ∞,

sup
ω,t
|K ′

1

(
m(ṼK(t−)) ∧K

)
+ K ′

2| < ∞.

Also,
(
K ′

1

(
m(ṼK(s)) ∧K

)
+ K ′

2

)
and

(
K1

(
m(ṼK(s−)) ∧K

)
+ ρ

(
ṼK(s) ∧K

)
+ K2

)

are continuous in ṼK(s). This holds true also for

((
m(ṼK(s)) ∧K

) ∫

Rn
0

g(x)G1(dx) +

∫

Rn
0

g(x)G2(dx)

)
,

for all continuous and bounded functions g(x) vanishing around zero. Finally, since
K1 < ∞ and K2 < ∞, we trivially have

lim
a↑∞

sup
ω

((
m(ṼK(t−)) ∧K

) ∫

Rn
0

1|k(x)|>aG1(dx) +

∫

Rn
0

1|k(x)|>aG2(dx)

)
= 0, for ∀t ≥ 0.
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Therefore, the conditions of Theorem IX.2.31 in Jacod and Shiryaev (2003) are
satisfied. This implies that there exists probability measure (denoted hereafter with

PK) supporting ṼK (the canonical process) as a semimartingale with characteristics

(BK , C̃K , νK) and initial distribution η. I will now show that the sequence of processes

(ṼK) converges weakly (upon taking a subsequence if necessary) to a limiting process
and will identify the limit with the process V . To establish weak convergence I prove
that the sequence (ṼK) is tight. For this I use Theorem VI.4.18 in Jacod and Shiryaev
(2003). It is sufficient to show that

1. For all T > 0 and ε > 0

lim
a↑∞

lim sup
K

PK [νK ([0, T ]× {x : |k(x)| > a}) > ε] = 0. (C.2)

2. The following sequence of processes is C-tight (i.e. the sequence of processes is
tight and all its limit points are continuous processes)

FK(t) =

∫ t

0

(
K1

(
m(ṼK(s−)) ∧K

)
+ |ρ|

(
ṼK(s−) ∧K

)
+ K2

)
ds

+

∫ t

0

(
K ′

1

(
m(ṼK(s−)) ∧K

)
+ K ′

2

)
ds.

First I establish that (FK) is C-tight. For this I make use of Theorem VI.3.26
in Jacod and Shiryaev (2003). Note that FK(t) is absolutely continuous. Therefore

for the C-tightness of FK(t) it suffices to show that the process ṼK(t) satisfies the
following boundedness in probability condition

lim
a↑∞

sup
K
PK

[
sup

0≤s≤t
ṼK(s) > a

]
= 0, for ∀t ≥ 0.

We have ṼK(t) = ṼK(0) + ρ
∫ t

0

(
ṼK(s−) ∧K

)
ds +

∫ t

0

∫
Rn

0
k(x)µ(ds, dx), therefore

ṼK(t) ≤ ṼK(0)+|ρ| ∫ t

0

(
ṼK(s−) ∧K

)
ds+

∫ t

0

∫
Rn

0
k(x)µ(ds, dx), and since

∫ t

0

∫
Rn

0
k(x)µ(ds, dx) ≥

0 as k(x) > 0, and ṼK(0) > 0 as η has a positive support, using Gronwall’s inequality
(see Revuz and Yor (1994) for example) we have

ṼK(s) ≤
(

ṼK(0) +

∫ t

0

∫

Rn
0

k(x)µ(ds, dx)

)
exp(|ρ|t), for 0 ≤ s ≤ t.

Therefore the C-tightness of (FK) will be established if we can show that EK
(
ṼK(t)

)
<

C, where C is a constant that does not depend on K (the compensator for the jumps
is given by νK). We have

EK
(
ṼK(t)

)
= E

(
ṼK(0)

)
+ρ

∫ t

0

EK
(
ṼK(s−) ∧K

)
ds+K1

∫ t

0

EK
(
m(ṼK(s−)) ∧K

)
ds+tK2,
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and since m(x) ≤ x ∨ C for some constant C, for K > C we have

EK
(
ṼK(t)

)
≤ E

(
ṼK(0)

)
+ρ

∫ t

0

EK
(
ṼK(s−) ∧K

)
ds+K1

∫ t

0

EK
(
ṼK(s−) ∧K

)
ds+t(K2+C).

If K1 + ρ ≤ 0 we have EK
(
ṼK(t)

)
≤ E

(
ṼK(0)

)
+ t(K2 + C), and note that the

right hand side of the above inequality does not depend on K. If K1 + ρ > 0 we have

EK
(
ṼK(t)

)
≤ E

(
ṼK(0)

)
+ (K1 + ρ)

∫ t

0

EK
(
ṼK(s)

)
ds + t(K2 + C),

therefore using Gronwall’s inequality we have

EK
(
ṼK(t)

)
≤

(
E

(
ṼK(0)

)
+ T (K2 + C)

)
exp ((K1 + ρ) t) , 0 ≤ t ≤ T,

and note again that the right hand side of the above inequality does not depend on
K.

This proves C-tightness of the sequence of processes (FK). To establish tightness

of the sequence (ṼK) we need only verify that condition (C.2) holds. We have

PK [νK ([0, T ]× {x : |k(x)| > a}) > ε] ≤ EK (νK ([0, T ]× {x : |k(x)| > a}))
ε

≤
∫ T

0
EK

(
m(ṼK(s)) ∧K

)
ds

∫
Rn

0
1|k(x)|>aG1(dx) +

∫
Rn

0
1|k(x)|>aG2(dx)

ε

≤
C

∫
Rn

0
k(x)G1(dx) +

∫
Rn

0
k(x)G2(dx)

aε
,

where C is a constant that does not depend on K. For the last inequality I made use
of the result derived above that EK(ṼK(t)) is bounded by a constant, which does not

depend on K. This proves that the sequence (ṼK) is tight.
Now we are left with identifying the limiting process with the process V . For

this I use Theorem IX.2.22 in Jacod and Shiryaev (2003). It suffices to establish the
following

∫ t

0

|ṼK(s) ∧K − ṼK(s)|ds
p→ 0, for every ∀t > 0, as K ↑ ∞,

∫ t

0

|m(ṼK(s)) ∧K −m(ṼK(s))|ds
p→ 0, for every ∀t > 0, as K ↑ ∞.

The first result follows since for arbitrary s > 0 and ε > 0 we have

PK
(
|ṼK(s) ∧K − ṼK(s)| > ε

)
≤ PK

(
ṼK(s) > K

)
≤
EK

(
ṼK(s)

)

K
,
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and as shown above EK(ṼK(s)) can be bounded by a constant, which does not depend
on K. The second result follows analogously since

PK
(
|m(ṼK(s)) ∧K −m(ṼK(s))| > ε

)
≤ PK

(
m(ṼK(s)) > K

)

≤
EK

(
m(ṼK(s))

)

K
≤
EK

(
ṼK(s)

)
+ C

K
.

Part (b) We can write

E (V (t)|Fs) = eρ(t−s)V (s) + K1

∫ t

s

eρ(t−u)E (V (u)|Fs))du + K2

∫ t

u

eρ(t−u)du, t ≥ s.

Therefore, we have

E (V (t)|F0) = e(K1+ρ)tV (0) + K2

∫ t

0

e(K1+ρ)(t−u)du

= e(K1+ρ)tV (0)− K2

ρ + K1

(
1− e(K1+ρ)t

)
,

and since −ρ−K1 > 0 we have

lim
t→∞

E (V (t)|F0) = − K2

ρ + K1

,

that is we have asymptotic stationarity in the mean. For the second moment we have

E
(
V 2(t)|F0

)
= (E (V (t)|F0))

2 + K ′
1

∫ t

0

e2ρ(t−u)E (V (u)|F0) du + K ′
2

∫ t

0

e2ρ(t−u)du.

Using the expression for E (V (t)|Fs) and after simplifying and taking the limit as
t →∞ we have

lim
t→∞

E
(
V 2(t)|F0

)
=

(
K2

ρ + K1

)2

+
K ′

1

2ρ

K2

ρ + K1

− K ′
2

2ρ
,

and therefore we have asymptotic stationarity in the second moment. ¤

References

Ait-Sahalia, Y. and J. Jacod (2009). Testing for Jumps in a Discretely Observed
Process. Annals of Statistics 37, 184–222.

Alizadeh, S., M. W. Brandt, and F. Diebold (2002). Range-Based Estimation of
Stochastic Volatility Models. Journal of Finance 57, 1047–1091.

Andersen, T., L. Benzoni, and J. Lund (2002). An Empirical Investigation of
Continuous-Time Equity Return Models. Journal of Finance 57, 1239–1284.

31



Andersen, T., T. Bollerslev, and F. Diebold (2005). Parametric and Nonparametric
Measurement of Volatility. In Y. Ait-Sahalia and L. Hansen (Eds.), Handbook of
Financial Econometrics. North-Holland.

Andersen, T. and B. Sørensen (1996). GMM Estimation of a Stochastic Volatility
Model: A Monte Casrlo Study. Journal of Business and Economic Statistics 14,
328–352.

Andrews, D. (2001). Testing when a Parameter is on the Boundary of the Maintained
Hypotheis. Econometrica 69, 683–734.

Bakshi, G., P. Carr, and L. Wu (2008). Stochastic Risk Premiums, Stochastic
Skewness in Currency Options, and Stochastic Discount Factors in International
Economies. Journal of Financial Economics 87, 132–156.

Bakshi, G. and N. Kapadia (2003). Delta-Hedged Gains and the Negative Market
Volatility Risk Premium. Review of Financial Studies 16, 527–566.

Bakshi, G., N. Kapadia, and D. Madan (2003). Stock Return Characteristics, Skew
Laws, and the Differential Pricing of Individual Equity Options. Review of Finan-
cial Studies 16, 101–143.

Bakshi, G. and D. Madan (2000). Spanning and Derivative-Security Valuation. Jour-
nal of Financial Economics 55, 205–238.

Bakshi, G. and D. Madan (2006). A Theory of Volatility Spreads. Management
Science 52, 1945–1956.

Barndorff-Nielsen, O. E., S. Graversen, J. Jacod, M. Podolskij, and N. Shephard
(2005). A Central Limit Theorem for Realised Power and Bipower Variations of
Continuous Semimartingales. In Y. Kabanov and R. Lipster (Eds.), From Stochastic
Analysis to Mathematical Finance, Festschrift for Albert Shiryaev. Springer.

Barndorff-Nielsen, O. E. and N. Shephard (2001). Non- Gaussian Ornstein-Uhlenbeck-
based Models and Some of Their Applicaions in Financial Economics. Journal of
the Royal Statistical Society: Series B 63, 167–241.

Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of Testing for Jumps
in Financial Economics using Bipower Variation. Journal of Financial Economet-
rics 4, 1–30.

Bates, D. (2000). Post-’87 Crash Fears in S&P 500 Future Options. Journal of
Econometrics 94, 181–238.

Bates, D. (2008). The Market for Crash Risk. Journal of Economic Dynamics and
Control 32, 2291–2321.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.

32



Bollerslev, T., R. Engle, and D. Nelson (1994). ARCH Models. In R. Engle and
D. McFadden (Eds.), Handbook of Econometrics, Volume 4. Amsterdam: North-
Holland.

Bollerslev, T., M. Gibson, and H. Zhou (2005). Dynamic Estimation of Volatility Risk
Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities.
Working paper, Duke University.

Brandt, M. and K. Wang (2003). Time-Varying Risk Aversion and Expacted Inflation.
Journal of Monetary Economics 58, 1457–1498.

Britten-Jones, M. and A. Neuberger (2000). Option Prices, Implied Price Processes,
and Stochastic Volatility. Journal of Finance 55, 839–866.

Broadie, M., M. Chernov, and M. Johannes (2007). Model Specification and Risk
Premia: Evidence from Futures Options. Journal of Finance 62, 1453–1490.

Campbell, J. and J. Cochrane (1999). By Force of Habit: A Consumption Based Ex-
planation of Aggregate Stock Market Behavior. Journal of Political Economy 107,
205–251.

Carr, P. and L. Wu (2003). What Type of Process Underlies Options? A Simple
Robust Test. Journal of Finance 58, 2581–2610.

Carr, P. and L. Wu (2009). Variance Risk Premia. Review of Financial Studies ,
forthcoming.
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Table 1: Estimation results for the SV model (1)-(4)

Panel A. Parameter Estimates
Parameter Estimate Standard Error

π 0.2368 0.0175
η 1.0717 0.0750
κc 0.0381 0.0100
σc 1.0549 0.1018
−ρj 1.1760 0.1761∫
Rn

0
k2(x)G(dx) 2.5742 0.4472∫

Rn
0
h2(x)G(dx) 0.1998 0.0209∫

Rn
0
h4(x)G(dx) 0.3431 0.1696∫

Rn
0
h2(x)k(x)G(dx) 0.8555 0.2101

GMM test of overidentifying restrictions

χ2 1.0498
d.o.f (3)
p-value 0.7892

Panel B. Moment Condition Tests

Moment Condition t-statistic

autocorrelation in IV for lag 1 −0.1710
autocorrelation in IV for lag 3 0.2799
autocorrelation in IV for lag 6 0.2754
aver. autocorrelation in IV for lags 10−20 0.6859
aver. autocorrelation in IV for lags 20−30 0.6492
aver. autocorrelation in IV for lags 30−40 0.2316
E(IV (t)) −0.3574
E(IV 2(t)) −0.1222
E(QV (t)− IV (t)) 0.1217
E(QV 2(t)) 0.2436
E(FV 2

δ (t)) 0.7760
1− π 1.1817

Note: The model is estimated using GMM-type estimator with moment conditions
specified in Section 1.2. The asymptotic variance-covariance matrix, used for calculat-
ing the optimal weighting matrix, is computed using Parzen weights with a lag length
of 80. In the estimation the following nonnegativity and stationarity restrictions are
imposed: σc < η, κc > 0 and ρj < 0.
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Table 2: Wald tests for zero covariances between RP and lags of TV and RP and lags
of JV

Covariance between RP and lags of TV Covariance between RP and lags of JV

Lags Wald test P-value Lags Wald test P-value
1 13.6909 0.0002 1 7.7395 0.0054
5 16.4802 0.0056 5 18.8518 0.0021

10 32.2537 0.0004 10 26.8376 0.0028
15 54.2592 0.0000 15 33.6741 0.0038
20 70.5563 0.0000 20 50.7947 0.0002
25 81.9608 0.0000 25 59.6582 0.0001
30 101.353 0.0000 30 71.4084 0.0000

Note: The Wald statistic tests the null hypothesis of zero covariances between RP
and lags of TV (respectively JV) up to the corresponding lag. The RP measure was
constructed, using the SV model (1)-(4) with parameter values the estimated ones
reported in Table 1. For the calculation of the asymptotic variance of the covariances
the error from the estimation of the parameters was taken into account.

36



Table 3: Parameter Estimates from the Joint Estimation

Parameter Estimate Standard Error
π 0.2169 0.0161
η 0.9462 0.1023
κc 0.0300 0.0130
σc 0.8831 0.1636
−ρj 1.4933 0.2595∫
Rn

0
k2(x)G(dx) 2.6087 0.6509∫

Rn
0
h2(x)G(dx) 0.1811 0.0212∫

Rn
0
h4(x)G(dx) 0.3034 0.1128∫

Rn
0
h2(x)k(x)G(dx) 0.7204 0.1976

K0 -0.4378 0.1435
Kc

ψ 1.1683 2.4335
Kc

τ -1.4006 2.4246
Kj

τ -0.0909 0.0349
−ρτ -0.0200 0.0101

GMM test of overidentifying restrictions

χ2 6.3136
d.o.f (6)
p-value 0.3890

Note: The model is estimated using GMM-type estimator with moment conditions
specified in Section 3. The asymptotic variance-covariance matrix, used for calculat-
ing the optimal weighting matrix, is computed using Parzen weights with a lag length
of 80. In the estimation the following nonnegativity and stationarity inequality re-
strictions are imposed: σc < η, κc > 0 and ρj < 0.
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Figure 1: S&P 500 daily measures. The top panel shows daily returns; the middle
panel shows the daily TV and the bottom panel shows the daily difference between
RV and TV. The sample period is from January 2 1990 till November 29 2002 and
includes 3256 daily high-frequency observations on the S&P 500 futures contract.
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Figure 2: S&P 500 sample correlations. The top panel shows the sample autocorre-
lation in TV and the second panel shows the autocorrelation in JV=RV-TV.
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Figure 3: The figure shows the empirical and the fitted autocorrelation for TV. The
empirical autocorrelation of the TV is marked with +. The dashed lines are the 95%
confidence interval for the autocorrelation with GMM-type standard errors. The solid
line is the autocorrelation implied from the SV model given in (1)-(4). The parameters
were set at the estimated values reported in Table 1.
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Figure 4: Estimated Variance Risk Premium. The top panel shows the RP measure
calculated using equation (10). The middle panel shows the daily TV and the bottom
panel shows the daily difference between RV and TV. The sample period is from
January 2 1990 till November 29 2002 and includes 3256 daily observations on the
VIX index as well as 3256 daily high-frequency observations on the S&P 500 futures
contract.
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Figure 5: Robustness check for presence of price jumps. The figure shows the his-
togram of the jump test of Ait-Sahalia and Jacod (2009) computed for each day in
the sample using the 5-minute S&P 500 index returns. A value of 1 indicates presence
of jumps during the day and a value of 2 indicates no jumps.

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

Lags in days

co
rr(

IJ t, J
V t−1

)

Figure 6: Robustness check for the price of jump risk J. The figure shows the esti-
mated correlation between IJ and past JV, where IJ is the measure defined in (24).
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