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Abstract

We derive the asymptotic efficiency bound for regular estimates of the slope coefficient in a linear

continuous-time regression model for the continuous martingale parts of two Itô semimartingales

observed on a fixed time interval with asymptotically shrinking mesh of the observation grid. We

further construct an estimator from high-frequency data that achieves this efficiency bound and,

indeed, is adaptive to the presence of infinite-dimensional nuisance components. The estimator

is formed by taking optimal weighted average of local nonparametric volatility estimates that

are constructed over blocks of high-frequency observations. The asymptotic efficiency bound is

derived under a Markov assumption for the bivariate process while the high-frequency estimator

and its asymptotic properties are derived in a general Itô semimartingale setting. To study

the asymptotic behavior of the proposed estimator, we introduce a general spatial localization

procedure which extends known results on the estimation of integrated volatility functionals to

more general classes of functions of volatility. Empirically relevant numerical examples illustrate

that the proposed efficient estimator provides nontrivial improvement over alternatives in the

extant literature.
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1 Introduction

We study the problem of efficient inference for the slope coefficient β in a linear regression of the

form

Y c
t = βᵀZct + εt, t ∈ [0, 1], (1.1)

where Y c and Zc are respectively the continuous local martingale components of two Itô semi-

martingales Y and Z, and ε is the “residual” process which is orthogonal in the martingale sense to

Z. Our asymptotic setup is of infill type: the processes Y and Z are observed on a fixed time interval

with mesh of the equidistant observation grid shrinking asymptotically to zero. The continuous-

time linear regression (1.1) arises in many situations such as linear factor models, where β captures

the factor loadings, as well as in risk management applications, e.g. for determining hedge ratios.

In financial applications estimators for β from high-frequency data have been considered by Boller-

slev and Zhang (2003), Barndorff-Nielsen and Shephard (2004), Andersen et al. (2006), Mykland

and Zhang (2006, 2009), Todorov and Bollerslev (2010), Gobbi and Mancini (2012), Patton and

Verardo (2012), Kalnina (2012) among many others.

In this paper we are interested in deriving an asymptotic semiparametric efficiency bound for

the estimation of the vector β from high frequency data, as well as constructing feasible efficient

estimators that achieve it, in the presence of nuisance components that govern the law of (Y,Zᵀ).

The nuisance components include the unobservable stochastic volatility processes of the two con-

tinuous local martingales Zc and Y c, i.e., their stochastic diffusion coefficients, as well as the jumps

and the drift components of Z and Y . Our main result is the construction of an efficient estimator

for β which is adaptive to the presence of these nuisance components; see Bickel (1982) and Bickel

et al. (1998) for classical results on adaptive estimation.

We establish the adaptive estimation result by first showing the local asymptotic mixed nor-

mality (LAMN) property of a parametric submodel in which the only unknown parameter is β. A

conditional convolution theorem (as in Jeganathan (1982)) allows us to derive a lower efficiency

bound for estimating β among the class of regular estimators. More precisely, we show that the

limit law of every regular estimator of β in the parametric setting can be expressed as a convolution

of a centered mixed Gaussian distribution and another distribution. Importantly, the conditional

covariance matrix of the above mixed Gaussian distribution depends only on the spot covariation

matrix process of the continuous local martingale part of (Y, Zᵀ). Following Clément et al. (2013),

to establish the above efficiency bound, we use sufficient conditions that restrict (nontrivially) the

general semimartingale setup by ruling out jumps in (Y, Zᵀ) and embedding (Y,Zᵀ) in a certain

conditional Markov setting.

In the second part of our analysis we construct a class of regular estimators. We establish

the asymptotic properties of these estimators in a very general semiparametric setting, far more

general than the one needed for deriving the asymptotic efficiency bound discussed in the previous
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paragraph. We show that, despite the presence of various infinite-dimensional nuisance components,

the optimal estimator in this class achieves the aforementioned efficiency bound for estimating β

and, hence, is adaptive. Similar to Jacod and Rosenbaum (2013), our proposed class of estimators

builds on local volatility estimates for the multivariate process (Y,Zᵀ) constructed using high-

frequency data over blocks of asymptotically shrinking time span. Efficient estimation is then

conducted by optimally weighting local estimates of β across time blocks. We note that this is

feasible only due to the stronger form of stable convergence that we establish for our inference

procedures. The efficient estimation problem can be viewed as a continuous-time analogue to

the work of Robinson (1987) on efficient regression estimation in presence of heteroskedasticity of

unknown form, but our high-frequency setting leads to distinct theoretical results.

The construction of our estimators, the optimal one in particular, involves transforming the

local volatility estimates with weight functions that do not have polynomial growth, which thus

violates a key condition used in prior work (Jacod and Protter (2012), Jacod and Rosenbaum

(2013)). For this reason, we extend the limit results of Jacod and Rosenbaum (2013) to a more

general class of volatility functionals. The key insight underlying the derivation of these results

is the uniform convergence of our block volatility estimators toward the average volatility over

the blocks, based on which a spatial localization procedure can be applied to extend the space of

test functions which is considered in prior work. These results are of independent interest and

allow one to carry out efficient (in the sense of Clément et al. (2013) and Renault et al. (2015))

estimation of integrated nonlinear transforms of volatility for univariate transforms such as log(·),
√
· , exp(·) and multivariate transforms such as the correlation coefficient (Kalnina and Xiu (2016)),

the idiosyncratic variance (Li et al. (2016)) and eigenvalues (Aı̈t-Sahalia and Xiu (2015)). The

results in Jacod and Rosenbaum (2013) do not apply in these cases.

By using optimal weighting, our proposed estimator is more efficient than an estimator with

no weighting as studied by Jacod and Rosenbaum (2013). Of course, the results in Jacod and

Rosenbaum (2013) are fully nonparametric while ours are semiparametric due to (1.1). The effi-

ciency gain arises from the parametric restriction imposed by (1.1), which is essentially equivalent

to assuming that β in (1.1) is constant instead of being a general stochastic process. That said, the

semiparametric setup considered here appears in many economic and financial applications (and is

empirically plausible over short samples; see, e.g. Reiss et al. (2015)). Our results provide a useful

starting point for studying the semiparametrically efficient estimation in more complicated models.

We illustrate the efficiency gain of our estimator by comparing it in a bivariate setting with two

alternatives that have been used before. The first is an estimator based on the results in Jacod

and Rosenbaum (2013) discussed above, see also Mykland and Zhang (2009). The second is the

estimator in Barndorff-Nielsen and Shephard (2004), Todorov and Bollerslev (2010) and Gobbi and

Mancini (2012). The latter is simply based on expressing β as the ratio of the continuous covariation

between Y and Z on the fixed interval and the continuous quadratic variation of Z, and forming
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consistent estimates of these two quantities. We show analytically that both alternative estimators

are as efficient as ours only when certain transforms of the multivariate volatility process remain

constant on the time interval. The efficiency gain of our estimator arises when such constancy

condition on the volatility process fails. We show that these gains can be sizable in realistically

calibrated situations. In an empirical application to a stock from the financial sector we illustrate

the efficiency gains of the proposed estimator.

The rest of this paper is organized as follows. In Section 2 we introduce the formal setup and

present an efficiency bound for estimating β. We present generic limit theorems for integrated

volatility functionals in Section 3. Section 4 presents results on the adaptive estimation of beta.

An empirical application is given in Section 5. Section 6 concludes. The appendix contains all

proofs.

2 The regression model

In Section 2.1, we present the setting for the continuous-time regression model of interest. In Section

2.2, we establish an efficiency bound for estimating the model parameter under some additional

assumptions.

We use the following notation throughout. For any matrix A, we denote its transpose by Aᵀ

and its (i, j) element by [A]ij . The partial derivative of the function A 7→ g (A) with respect to

[A]ij is denoted by ∂ijg(A), which has the same dimensionality as g; the second partial derivative

∂2
jk,lmg(A) with respect to [A]jk and [A]lm is understood similarly. We denote byMd the collection

of d × d positive semidefinite real-valued matrices. For A ∈ Md, λmin(A) denotes the smallest

eigenvalue of A. The d-dimensional identity matrix (resp. zero vector) is denoted by Id (resp. 0d).

The d×d zero matrix is denoted by 0d. For two sequences of positive real numbers (an)n≥1 and (bn),

we write an � bn if for some constant c ≥ 1, an/c ≤ bn ≤ can. We use
L−→ to denote convergence

in law and use
P−→ to denote convergence in probability. The Euclidean norm is denoted by ‖·‖.

2.1 The setting

The processes Z and Y in the linear regression (1.1) studied in this paper are assumed to take values

in Rd−1 and R (for d ≥ 2), respectively, and we will denote X = (Zᵀ, Y )ᵀ. With this notation,

we will assume (Xt)t≥0 to be an Rd-valued semimartingale defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). Throughout this paper, all processes are assumed to be càdlàg adapted. Our

basic assumption is that X is an Itô semimartingale so it can be represented as (see, e.g., Jacod

and Protter (2012), Section 2.1.4),

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (2.1)
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where the drift bt takes value in Rd; the volatility process σt takes value inMd; W is a d-dimensional

standard Brownian motion; J is a purely discontinuous process of the form
Jt =

∫ t

0

∫
R
δ (s, x) 1{‖δ(s,x)‖≤1}(µ− ν)(ds, dx)

+

∫ t

0

∫
R
δ (s, x) 1{‖δ(s,x)‖>1}µ (ds, dx) ,

(2.2)

and δ : Ω×R+×R 7→ Rd is a predictable function, µ is a Poisson random measure on R+×R with

its compensator ν (dt, dx) = dt⊗ λ (dx) for some σ-finite measure λ on R.

The linear regression in (1.1) can be equivalently stated as

dY c
t = βᵀdZct + dεt, (2.3)

where β ∈ Rd−1 is the parameter of interest and the disturbance process (εt)t≥0 is a continuous

local martingale that is orthogonal to (Zct )t≥0, i.e., 〈ε, Zc〉 = 0 identically, where 〈·, ·〉 denotes the

quadratic covariation. We can then represent model (2.1) as
Zt = z0 +

∫ t

0
bZ,sds+

∫ t

0
σZ,sdWZ,s + JZ,t

Yt = y0 +

∫ t

0
bY,sds+ βᵀ

∫ t

0
σZ,sdWZ,s +

∫ t

0
σε,sdWε,s + JY,t.

(2.4)

The processes in (2.1) and (2.4) are related by

bt =

(
bZ,t

bY,t

)
, Jt =

(
JZ,t

JY,t

)
,

σt =

(
σZ,t 0d−1

βᵀσZ,t σε,t

)
, Wt =

(
WZ,t

Wε,t

)
, 〈WZ ,Wε〉 = 0d−1.

Turning next to our statistical setting, we assume that the process X is observed at discrete

times ti = i/n, for i = 0, 1, . . . , n, within the fixed time interval [0, 1].1 We denote the increments

of X by

∆n
i X ≡ Xi/n −X(i−1)/n, i = 1, . . . , n.

Asymptotically, the sampling interval goes to zero as n → ∞. The data sequence
(
Xi/n

)
0≤i≤n is

considered as a random variable taking values in a measurable space (En, En) with law PXn ; below,

we write PX,βn to emphasize the dependence of PXn on β. In the continuous-time limit, it is well-

known that the spot covariance matrix process ct ≡ σtσ
ᵀ
t of X can be identified, which we further

1We leave for future work the analysis of the problem of efficient continuous-time regression estimation in the
case when the data is contaminated by noise and the elements of X are asynchronously observed; see, for example,
Hayashi and Yoshida (2011) and Bibinger et al. (2014) for ways to handle such complications in the data in the
context of volatility estimation.
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partition as

ct =

(
cZZ,t cZY,t

cY Z,t cY Y,t

)
=

(
σZ,tσ

ᵀ
Z,t σZ,tσ

ᵀ
Z,tβ

βᵀσZ,tσ
ᵀ
Z,t βᵀσZ,tσ

ᵀ
Z,tβ + σ2

ε,t

)
. (2.5)

We observe that β can be identified as β = c−1
ZZ,tcZY,t provided that cZZ,t is nonsingular. The spot

variance of εt, that is, cεε,t ≡ σ2
ε,t can be written as

cεε,t = cY Y,t − cY Z,tc−1
ZZ,tcZY,t. (2.6)

Equation (2.6) highlights the fact that the process cεε,t is a nonlinear transform of ct. This definition

is valid even when (2.3) is not imposed.

2.2 The efficiency bound for estimating β

We now characterize an efficiency bound for estimating β by using the conditional convolution

theorem of Jeganathan (1982). A key part of the analysis is to establish the LAMN property in

a parametric submodel. This task is done by applying the Malliavin calculus technique developed

by Gobet (2001) and Clément et al. (2013), which is a useful device for studying the asymptotic

behavior of the likelihood ratio. Following Clément et al. (2013), we need some additional structure

on (2.4) as in prior work: 
bZ,t = bZ(Xt), bY,t = bY (Xt),

σZ,t = aZ(Xt, Ft), σε,t = aε (Xt, Ft) ,

JZ,t = 0d−1, JY,t = 0,

(2.7)

where (Ft)t≥0 is a (possibly unobservable) Rq-valued continuous Itô process and bZ(·), bY (·), aZ(·, ·)
and aε(·, ·) are unknown smooth deterministic functions. In the basic case with Ft = t, X is a non-

homogeneous diffusion process. More generally, the process F plays the role of latent stochastic

volatility factors that drive the dynamics of X. Below, we consider F as a random element taking

values in C, the space of Rq-valued continuous processes on [0, 1], and denote its law by PF . The

following regularity condition is used for the calculation of the efficiency bound.

Assumption L. We have (2.4) and (2.7) as well as the following.

(i) The functions bZ(·), bY (·), aZ(·, ·) and aε(·, ·) are three-times continuously differentiable with

bounded derivatives.

(ii) There exists a constant a > 0 such that for all x ∈ Rd and f ∈ C, (aZa
ᵀ
Z)(x, f) ≥ aId−1 and

a2
ε(x, f) ≥ a.

(iii) The process F = (Ft)t≥0 is continuous and is independent of W .

Assumption L(i) ensures regularities of the solution to the stochastic differential equation given

by (2.4) and (2.7), and Assumption L(ii) further ensures the smoothness of the transition density
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of the process X. Assumption L(iii) effectively allows us to conduct analysis conditional on the

process F and, hence, to treat the process X as Markovian.

The estimation of β is apparently complicated by the presence of various infinite-dimensional

nuisance components, including unknown deterministic functions (i.e., aZ(·), aε(·), bZ(·), bY (·))
and the process F . An important question in this semiparametric setting is whether the presence

of these nuisance components affects the efficiency of estimating β.

To answer this question, we now compute the efficiency bound in a parametric submodel, in

which the functions bZ(·), bY (·), aZ(·, ·) and aε(·, ·) are known and the process F is observed, leaving

β as the only unknown parameter. In particular, the original data (Xi/n)0≤i≤n are augmented by

the observation of F . This model is of interest because an efficiency bound derived for this model

holds a fortiori for any estimator based on (Xi/n)0≤i≤n.2 Below, we denote the joint distribution of

((Xi/n)0≤i≤n, F ) by (P βn ;β ∈ Rd−1). We show that this parametric submodel satisfies the LAMN

property (Theorem 1), after recalling its definition (see Jeganathan (1982), Definition 1).

Definition 1 (LAMN). The sequence (P βn ) satisfies the LAMN property at β = β0 if there exists

a sequence ζn of Rd−1-valued random variables and a sequence Γn of (d− 1) × (d− 1) P β0n -a.s.

positive definite random matrices such that under the sequence P β0n of laws, for every h ∈ Rd−1,

log
dP β0+n−1/2h

n

dP β0n
= hᵀΓ1/2

n ζn −
1

2
hᵀΓnh+ op(1), (2.8)

and

(ζn,Γn)
L−→ (ζ,Γ), (2.9)

where Γ is an a.s. positive definite (d− 1)× (d− 1) matrix and ζ is a copy of the standard (d− 1)-

dimensional normal distribution independent of Γ.

We note that in the LAMN setting, the information matrix Γ is generally random, with Γn

being its sample analogue. As a result, ζn
L−→ ζ is not sufficient for the joint convergence (2.9). A

sufficient condition for (2.9) is that ζn converges stably in law towards ζ and Γn
P−→ Γ where Γ is

F-adapted.

Theorem 1. Under Assumption L, (P βn ) satisfies the LAMN property with

Γ ≡
∫ 1

0

(
cZZ,s
cεε,s

)
ds. (2.10)

Remark 1. The expressions of Γn and ζn are given by equations (7.4) and (7.5), respectively, in

the appendix.

2We are grateful to a referee for suggesting this argument.
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Theorem 1 is proved by using the Malliavin calculus technique of Gobet (2001) and Clément

et al. (2013), which transforms the log-likelihood ratio into a sum of conditional expectations and,

hence, facilitates the derivation of the weak convergence required by (2.9).3 We remark that the

results below only rely on the LAMN property, so their scope is likely broader than the sufficient

condition given in Assumption L.

We now turn to the efficiency bound for estimating β. We focus on an efficiency notion in the

sense of the conditional convolution theorem (Jeganathan (1982), Theorem 3) for regular estimates.

A sequence (β̂n)n≥1 of estimates is regular at β = β0 if for any h ∈ Rd−1, under the sequence

P β0+n−1/2h
n of laws, with Γn given in Definition 1,(

n1/2(β̂n − β0 − n−1/2h),Γn

)
L−→ L0, (2.11)

where the limit law L0 does not depend on h. Compared with the usual notion of regularity under

settings with Locally Asymptotic Normality (LAN), (2.11) not only requires the convergence of the

standardized estimator, but also that it converges jointly with the information matrix.

Theorem 1 and the conditional convolution theorem yield the following convolution representa-

tion for the limit distribution of regular estimates.

Corollary 1. Suppose that (P βn ) satisfies the LAMN property and (β̂n)n≥1 is regular at β = β0.

Then under the sequence P β0n of laws, the limit distribution of n1/2(β̂n− β0), conditional on Γ, can

be represented as a convolution between a mixed Gaussian distribution MN
(
0,Γ−1

)
and another

transition kernel.

Corollary 1 provides a natural notion of efficiency for estimating β. A regular estimator β̂n

is efficient in the parametric submodel (P βn : β ∈ Rd−1) if the limit distribution of n1/2(β̂ −
β0) is MN (0,Γ−1). A sequence β̂n of regular estimates is adaptive in the presence of nuisance

components if it is efficient in the parametric submodel (P βn ;β ∈ Rd−1). Generally speaking, an

adaptive estimator may not exist; however, when it exists, it may be the best one can hope for

in the semiparametric setting since it achieves the parametric efficiency bound as if the nuisance

components were known. In Section 4, we construct an adaptive estimator for β, among a class of

regular estimators.

We remark that the efficiency notion above concerns regular estimators. In applications, the

regularity of an estimator needs to be verified. Lemma 1 below is useful for this purpose. Hence-

forth, the symbol
L-s−→ indicates F-stable convergence in law; see Section VIII.5c in Jacod and

Shiryaev (2003) for the definition and basic properties of stable convergence.

Lemma 1. Suppose (i) (P βn ) satisfies the LAMN property at β = β0 with ζn and Γn described in

3We note that the proof of Clément et al. (2013) concerns the LAMN property regarding F , which is different
from our focus here.
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Definition 1; (ii) for an F-measurable positive semidefinite matrix Σ,(
n1/2(β̂n − β0)

Γ
1/2
n ζn

)
L-s−→MN

(
0,

(
Σ Id−1

Id−1 Γ

))
. (2.12)

Then β̂n is regular.

Finally, we note that the optimality of the limit distribution MN
(
0,Γ−1

)
is not limited to

regular estimators. For example, it can be justified among all estimators under a local minimaxity

criterion (see Jeganathan (1983), Theorem 4). This alternative notion of optimality is convenient

to apply since it does not require verifying regularity. The optimality of the adaptive estimator

constructed below can also be interpreted in this sense.

3 Limit theorems for integrated volatility functionals

In this section, we present some generic results for estimating integrated volatility functionals of

the form

S(g) ≡
∫ 1

0
g(cs)ds,

where g is a continuous test function. With g properly chosen, estimators for S(g) are building

blocks for estimators of β that we consider later in Section 4.1.

Since the results about the estimation of S(g) are of independent interest and can be used in

many other applications, we present them in the general setting of (2.1) and (2.2). That is, in this

section we do not impose the regression relationship (2.3) or the “diffusion-like” structure (2.7).

The estimation of S(g) is done via the general block-based method of Jacod and Rosenbaum

(2013), see also Jacod and Protter (2012). Here we extend the result of Jacod and Rosenbaum

(2013) to a wider class of functions g that covers many practically relevant ones, including ones

that are used for our estimator of Section 4.1, and for which the results of Jacod and Rosenbaum

(2013) do not apply.

The regularity conditions on X needed for the results of this section are collected below.

Assumption A. Let r ∈ [0, 2) be a constant. The process X is an Itô semimartingale given by

(2.1) and (2.2). The processes bt and σt are locally bounded. There are a sequence of nonnegative

bounded λ-integrable functions Dm on R and a sequence of stopping times (τm)m≥1 increasing to

∞, such that ‖δ (ω, t, z) ‖r ∧ 1 ≤ Dm (z) for all (ω, t, z) with t ≤ τm (ω).
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Assumption B. The process (σt)t≥0 is an Itô semimartingale with the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′sdW

′
s

+

∫ t

0

∫
R
δ̃ (s, z) (µ− ν) (ds, dz) ,

where b̃, σ̃ and σ̃′ are locally bounded and adapted processes; W ′ is a Brownian motion orthogonal

to W ; δ̃ (·) is a predictable function. Moreover, there are a sequence of nonnegative bounded λ-

integrable functions D̃m on R and a sequence of stopping times (τm)m≥1 increasing to∞, such that

‖δ̃ (ω, t, z) ‖2 ∧ 1 ≤ D̃m (z) for all (ω, t, z) with t ≤ τm (ω).

We now describe the estimators for S(g) and their asymptotic properties. Following Jacod

and Protter (2012) and Jacod and Rosenbaum (2013), we conduct estimation by first forming

an approximation of the volatility trajectory and then constructing an estimator of S(g) from it.

To this end, we pick a sequence kn of integers and a real sequence vn that satisfy the following

assumption.

Assumption C. For some γ ∈ (0, 1) and $ ∈ (0, 1/2), kn � nγ and vn � n−$.

The local approximation for the spot covariance over the time interval [ikn/n, (i + 1)kn/n),

i ∈ In ≡ {0, . . . , [n/kn]− 1}, is given by

ĉni ≡
n

kn

kn∑
j=1

(
∆n
ikn+jX

) (
∆n
ikn+jX

)ᵀ
1{‖∆n

ikn+jX‖≤vn}. (3.1)

Here, kn is the smoothing parameter for local estimation and vn specifies the truncation threshold

(see Mancini (2001)) for “eliminating” jumps in X. We refer to Section 4.3 for guidance on the

choice of these tuning parameters in applications. If X is known to be continuous, the truncation

is not needed. The nonparametric estimation of spot volatility can be dated back to Foster and

Nelson (1996); see also Kristensen (2010) and references therein.

To guide intuition, we note that ĉni provides a uniform (for i ∈ In) approximation to the moving

average of ct within the local window [ikn/n, (i+ 1)kn/n):

c̄ni ≡
n

kn

∫ (i+1)kn/n

ikn/n
csds.

Formally, we have the following lemma, which is crucial for our subsequent analysis.

Lemma 2. Suppose (i) Assumption A for some r ∈ [0, 2); (ii) Assumption C with γ > r/2 and

$ ∈ [(1− γ)/(2− r), 1/2). Then

sup
i∈In
‖ĉni − c̄ni ‖ = op(1). (3.2)
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Remark 2. As an immediate consequence of Lemma 2, we observe that the sequence (ĉni )i∈In also

uniformly approximates (cikn/n)i∈In up to an op(1) term when the process (ct)t≥0 is continuous; but

when (ct)t≥0 contain jumps, the latter uniform approximation does not hold.

We are now ready to describe the estimator for S (g). A natural candidate is the sample

analogue estimator

S̃n(g) ≡ kn
n

∑
i∈In

g(ĉni ). (3.3)

However, as shown in Jacod and Rosenbaum (2013), S̃n(g) does not enjoy a central limit theorem

due to high-order bias terms. We refer to S̃n(g) as the uncorrected estimator. Jacod and Rosenbaum

(2013) proposed a bias-corrected estimator given by

Ŝn(g) ≡ kn
n

∑
i∈In

(
g(ĉni )− 1

kn
Bg(ĉni )

)
, (3.4)

where

Bg(c) ≡ 1

2

d∑
j,k,l,m=1

∂2
jk,lmg(c)

(
[c]jl [c]km + [c]jm [c]kl

)
, c ∈Md, (3.5)

and derived a stable convergence in law for Ŝn(g):

n1/2
(
Ŝn(g)− S (g)

)
L-s−→MN (0, V (g)) ,

where

V (g) ≡
d∑

j,k,l,m=1

∫ 1

0
∂jkg (cs) ∂lmg (cs)

ᵀ
(

[cs]jl [cs]km + [cs]jm [cs]kl

)
ds. (3.6)

The result in Jacod and Rosenbaum (2013) is based on a polynomial growth condition on the test

function g: for some p ≥ 3 and K > 0,

∥∥∂jg(c)
∥∥ ≤ K(1 + ‖c‖p−j), all j ∈ {0, 1, 2, 3} and c ∈Md. (3.7)

However, for the development of adaptive estimators in Section 4.1, it is necessary to consider test

functions that do not satisfy the condition in the above display. Therefore, we extend the theory

of Jacod and Rosenbaum (2013) to all C3 test functions. To do so, we replace condition (3.7) with

a mild condition (Assumptions K or K’) on the pathwise regularity of the process (ct)t≥0.4 Below,

for a compact set K ⊂Md and ε > 0, we denote the “ε-enlargement” about K by

Kε ≡ {M ∈Md : inf
A∈K
‖M −A‖ < ε}.

4We note that Jacod and Rosenbaum (2013) do not need Assumption K or K’ for their result. Hence, the theory
in the current paper is complementary to theirs.
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Assumption K (resp. K’). There exist a localizing sequence of stopping times (τm)m≥1 and a

sequence of convex compact subsets Km ⊆ Md such that ct ∈ Km for t ≤ τm and g is continuous

(resp. C3) on Kεm for some ε > 0.

Remark 3. A simple but useful property of Assumption K (resp. K’) is its stability under smooth

transformations: if two functions g1 and g2 satisfy Assumption K (resp. K’) for (τ1,m,K1,m)m≥1 and

(τ2,m,K2,m)m≥1 respectively, and g (·) = ψ(g1 (·) , g2 (·)) for some continuous (resp. C3) function ψ,

then g satisfies Assumption K (resp. K’) for τm ≡ τ1,m ∧ τ2,m and Km ≡ K1,m ∩ K2,m.

To guide intuition, we note that the convexity requirement on Km in Assumptions K and K’

assures that the moving average c̄ni also belongs to Km up to the stopping time τm. Then in

view of the uniform approximation (3.2), the spot covariance estimates (ĉni )i∈In fall in any fixed

ε-enlargement of Km with probability approaching one. Hence, only the smoothness of g on Kεm is

relevant in the derivation of the limit theorems.

Assumptions K and K’ are easily verified in specific settings. For example, if g(c) = log(c) or
√
c, it holds provided that the processes ct and 1/ct are locally bounded, with Km being a compact

interval on (0,∞). We also observe that these transformations do not satisfy (3.7) because their

derivatives are explosive near zero.

The main result of this subsection is the following theorem. We denote by Cc (resp. C3
c ) the

collection of continuous (resp. C3) functions with compact support.

Theorem 2. Under (3.2), the following statements hold.

(a) If S̃n(h)
P−→ S(h) for all h ∈ Cc, then S̃n(g)

P−→ S(g) for g satisfying Assumption K.

(b) If n1/2(Ŝn(h)− S(h))
L-s−→MN (0, V (h)) for all h ∈ C3

c , then

n1/2(Ŝn(g)− S(g))
L-s−→MN (0, V (g))

for g satisfying Assumption K’.

Theorem 2 is essentially a (spatial) localization procedure which allows one to assume without

loss of generality that the test functions are compactly supported and, hence, verify the polynomial

growth condition (3.7). We can use Theorem 2 to extend known limit theorems to a broader class

of test functions. In this direction, Theorems 3 and 4 extend the scope of Theorem 9.4.1 in Jacod

and Protter (2012) and Theorem 3.2 in Jacod and Rosenbaum (2013), respectively.

Theorem 3. Suppose Assumptions A, C and K hold with γ ∈ (r/2, 1) and $ ∈ [(1−γ)/(2−r), 1/2).

Then S̃n(g)
P−→ S(g).

Theorem 4. Suppose Assumptions A, B, C and K’ hold with

r

2
∨ 1

3
< γ <

1

2
,

1− γ
2− r

≤ $ <
1

2
.
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Then n1/2(Ŝn(g)− S(g))
L-s−→MN (0, V (g)) .

Theorem 4 above can be compared to Theorem 4 of Kristensen (2010). The latter provides a

central limit theorem for integrated twice-continuously differentiable transforms of volatility which

are based on integrating transforms of local spot volatility estimates. The volatility measures of

our paper and that of Kristensen (2010) are conceptually similar. However, unlike our estimator

(and the one of Jacod and Rosenbaum (2013)), Kristensen (2010) does not perform bias correction

and his estimator still enjoys a central limit theorem. The reason for the difference in our results

stems from the stronger smoothness assumptions about the volatility of the latter paper, e.g., unlike

Kristensen (2010), we allow the volatility path to be discontinuous.

Finally, we remark that S̃n(g) and Ŝn(g) are formed using non-overlapping time blocks: ĉni and

ĉnj do not involve the same increment of X when i 6= j. Jacod and Protter (2012) and Jacod

and Rosenbaum (2013) consider the use of overlapping time blocks and the latter shows that this

alternative construction has no effect asymptotically.5 Hence, we restrict attention only to the

non-overlapping versions for brevity.

4 Adaptive estimation

In this section, using the limit theorems derived above, we develop adaptive estimation of β. Section

4.1 presents the adaptive estimator and its asymptotic properties. Section 4.2 provides an analytical

efficiency comparison between the proposed estimator and some known alternatives. A numerical

comparison and a Monte Carlo study of the different estimators are given in Section 4.3.

4.1 An adaptive estimator for β

We now return to the problem of estimating β, so (2.4) is in force. Consider the transform gb :

Md 7→ Rd−1 given by (recall (2.5))

gb(ct) ≡ c−1
ZZ,tcZY,t. (4.1)

Clearly, gb(ct) = β identically under (2.4). Note that gb(ĉ
n
i ) is a spot beta estimator which is quite

noisy but is the best one can do if no assumption for constancy of beta is assumed. However,

by enforcing (2.4), i.e., that beta is constant, on the observed interval (e.g., factor loadings are

constant), then we can significantly improve the efficiency of recovering beta by integrating the

local spot beta estimates over the interval. Thus, it is natural to consider a class of estimators for

β as the weighted average of the sample analogues of gb(ct) over t ∈ [0, 1]. For a weight function

w :Md 7→ Md−1, we set

β̂wn ≡ Ŝn(w)−1Ŝn(wgb). (4.2)

5That being said, estimators constructed using overlapping blocks and non-overlapping blocks may have different
finite-sample performance; see, for example, Zu and Boswijk (2014) for simulation evidence concerning spot volatility
estimation. A higher-order comparison between these approaches may be interesting for future research.
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By convention, w(·) takes values as symmetric matrices; but this is essentially not a restriction

because the optimal weight function will be shown to be symmetric. We also assume the following.

Assumption W. The weight function w satisfies Assumption K’ with g replaced by w.

The asymptotic behavior of β̂wn can be derived by using Theorem 4 and is summarized by

Proposition 1 below, for which the following notations are needed. We set

Ξ (ct) ≡ c−1
ZZ,tcεε,t.

The asymptotic covariance matrix of β̂wn is then given by

Σ (w) ≡ S(w)−1S(wΞw)S(w)−1.

We observe that Σ(w) is minimized in the matrix sense at w∗, where

w∗(ct) ≡ Ξ−1(ct) = cZZ,t/cεε,t. (4.3)

Indeed, it is easy to show that

Σ (w)− Σ (w∗) =

∫ 1

0

[(
S (w)−1w(cs)− S (w∗)−1w∗(cs)

)
Ξ(cs)

(
w(cs)S (w)−1 − w∗(cs)S (w∗)−1

)]
ds,

which is positive semidefinite. We hence refer to w∗ as the optimal weight function. For notational

simplicity, we write β̂∗n in place of β̂w
∗

n .

Proposition 1. Suppose

(i) Assumptions A, B and C hold for r ∈ [0, 1),

r

2
∨ 1

3
< γ <

1

2
,

1− γ
2− r

≤ $ <
1

2
;

(ii) the process
(
λ−1

min (ct)
)
t≥0

is locally bounded.

Then the following statements hold.

(a) n1/2(β̂wn − β0)
L-s−→MN (0,Σ(w)) for any weight function w satisfying Assumption W.

(b) n1/2(β̂∗n − β0)
L-s−→MN

(
0,Γ−1

)
.

(c) S̃n(w∗)−1 P−→ Γ−1.

Remark 4. Under condition (ii) of Proposition 1, the test function gb satisfies Assumption K’

and w∗ satisfies Assumption W. Indeed, let (τm)m≥1 be a sequence of stopping times increasing

to +∞ such that for constants Km > 0, λmin(ct) ≥ K−1
m and ‖ct‖ ≤ Km on {t ≤ τm}. The set
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Km = {A ∈Md : λmin (A) ≥ K−1
m , ‖A‖ ≤ Km} is compact and convex. Observe that gb and w∗ are

C3 on sufficiently small enlargement of Km.

Proposition 1 shows that the F-conditional asymptotic covariance matrix of n1/2(β̂∗n − β0) is

Γ−1, the information bound in the submodel considered in Corollary 1. We stress that Proposition

1 is derived without assuming the additional structure (2.7) of Section 2.2 and is applicable under

quite general settings. Moreover, Γ−1 can be consistently estimated by S̃n(w∗)−1 as shown by

Proposition 1(c). Confidence sets for β can then be constructed using this estimator.

To further conclude that β̂∗n is adaptive, it remains to verify that β̂∗n is a regular estimator in

the parametric submodel of Section 2.2. To this end, Theorem 5 below shows that the family β̂wn

of estimators are regular.

Theorem 5. Under Assumption L and conditions in Proposition 1, β̂wn is regular in the parametric

submodel (P βn ;β ∈ Rd−1).

Finally, we note some useful analytical results. Using the definitions (3.5) and (4.3), it is

elementary (though somewhat tedious) to show that{
Bw∗ = (d+ 1)w∗,

Bw∗gb = (d+ 1)w∗gb.

As a result, we observe the following relationship between bias-corrected and uncorrected estima-

tors: {
Ŝn(w∗) = (1− (d+ 1)/kn) S̃n(w∗),

Ŝn(w∗gb) = (1− (d+ 1)/kn) S̃n(w∗gb).
(4.4)

Consequently,

β̂∗n = S̃n(w∗)−1S̃n(w∗gb).

That is, the adaptive estimator β̂∗n is numerically equal to its uncorrected version

S̃n(w∗)−1S̃n(w∗gb) (4.5)

formed using the uncorrected statistic S̃n (cf. (4.2)). Hence, in practice, one can conveniently

compute the efficient estimator without implementing the bias correction, since the correction

turns out to be automatic when the optimal weight function w∗ is used.

We can draw a parallel between our optimally weighted β̂∗n and the efficient regression estimator

of Robinson (1987) under heteroskedasticity of unknown form in the classical discrete setting.

Indeed, in our setting without jumps and when we do not truncate the increments, β̂∗n is simply a

weighted least squares estimator with weights being the inverses of the estimated variances of the

residual increments over the blocks. This is analogous to the estimator of Robinson (1987). A key

difference between our estimator and that of Robinson (1987) is in the estimates of the time-varying
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variance of the residuals.6 This difference stems from the different asymptotic setups, infill in our

case and long span in the case of Robinson (1987). In our infill asymptotic setup, we smooth locally

in time the squared residual increments to form a consistent estimator of the residual variance. This

is based on a very mild smoothness in expectation assumption for the volatility path (Assumption

B) which is satisfied in most models of interest in economics. In the long span asymptotic setup,

on the other hand, Robinson (1987) specifies the residual variance as an unknown function of the

vector Z and performs smoothing of the squared residual increments as a function of Z.

4.2 Efficiency comparison

In this subsection, we provide some examples to examine the efficiency gain of β̂∗n relative to

alternative estimators. To simplify the discussion, we consider the case when β is a scalar (i.e.,

d = 2). We compare β̂∗n with two estimators that have appeared in previous work:{
β̂1
n = β̂w1

n , where w1(ct) = cZZ,t,

β̂2
n = β̂w2

n , where w2 (ct) = 1.

By Proposition 1(a), n1/2(β̂1
n − β) and n1/2(β̂2

n − β) are asymptotically mixed centered Gaussian

with F-conditional variance respectively given by
Σ (w1) =

∫ 1

0
cZZ,scεε,sds

/(∫ 1

0
cZZ,sds

)2

,

Σ (w2) =

∫ 1

0
Ξ (cs) ds =

∫ 1

0

cεε,s
cZZ,s

ds.

The F-conditional asymptotic variance of β̂∗n is

Σ (w∗) =

(∫ 1

0
Ξ−1 (cs) ds

)−1

=

(∫ 1

0

cZZ,s
cεε,s

ds

)−1

.

It is easy to compare these asymptotic variances using the Cauchy–Schwarz inequality. Indeed,

√
Σ (w1)

Σ (w∗)
=

√∫ 1
0 cZZ,scεε,sds

√∫ 1
0
cZZ,s
cεε,s

ds∫ 1
0

√
cZZ,scεε,s

√
cZZ,s
cεε,s

ds
≥ 1,

and the equality holds if and only if the process cεε,t is constant over time, that is, the residual

process is homoskedastic. Furthermore, we have by Jensen’s inequality Σ (w2) ≥ Σ (w∗), which is

6Another key difference between our estimator and that of Robinson (1987) is that our regression is about the
continuous martingale component of the vector X which is not directly observable due to the presence of drift and
jumps in X. This necessitates, in particular, truncation to separate the jumps from the continuous part of the process,
which has no obvious analogue in the discrete setting.
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also a simple restatement of the fact that the arithmetic average of the process Ξ (ct) is greater

than its harmonic average. We have Σ (w2) = Σ (w∗) if and only if the process Ξ (ct) ≡ cεε,t/cZZ,t

is constant over time, that is, the volatility of the residual process perfectly comoves (in scale) with

the volatility of the regressor. When cεε,t (resp. cεε,t/cZZ,t) is time-varying, the efficiency gain of

β̂∗n relative to β̂1
n (resp. β̂2

n) is strict.

Finally, we note that the three estimators β̂∗n, β̂1
n and β̂2

n have natural nonparametric interpreta-

tions when the regression relationship (2.3) is not imposed. In the general setting of (2.1) and (2.2),

we can still use Theorems 3 and 4 to derive the asymptotics of these estimators. In particular, we

have

β̂∗n
P−→

∫ 1
0
cZY,s
cεε,s

ds∫ 1
0
cZZ,s
cεε,s

ds
, β̂1

n
P−→
∫ 1

0 cZY,sds∫ 1
0 cZZ,sds

, β̂2
n

P−→
∫ 1

0

cZY,s
cZZ,s

ds.

We remark that β̂1
n is, up to negligible boundary terms, a truncated version (in the sense of Mancini

(2001)) of the “realized regression” estimator considered by Barndorff-Nielsen and Shephard (2004).

Indeed, the asymptotic variance Σ (w1) coincides with that in Proposition 1 of Barndorff-Nielsen

and Shephard (2004). The estimator β̂2
n is simply Ŝn(gb); hence, it is closely related to the integrated

volatility estimators of Jacod and Rosenbaum (2013), although the test function gb does not satisfy

the polynomial growth condition (3.7) there.

4.3 Numerical examples

We now provide some numerical illustrations for the comparisons made in Section 4.2 using the

following bivariate model for the continuous martingale components of Y and Z:

dY c
t = dZct + dεt, dZct = σZ,tdWZ,t, dεt = σε,tdWε,t,

σZ,t = eVZ,t/2−1/2, dVZ,t = −0.1VZ,tdt+ dLZ,t,

σε,t = eVε,t/2−1/2, dVε,t = −0.1Vε,tdt+ dLε,t,

(4.6)

where LZ,t and Lε,t are two independent Lévy martingales uniquely defined by the marginal laws

of VZ,t and Vε,t respectively, which in turn have self-decomposable distributions (see Theorem

17.4 of Sato (1999)), both with characteristic triplet (Definition 8.2 of Sato (1999)) of (0, 1, ν)

for ν(dx) = 4.837e−3|x|

|x|1+0.5 1{x>0}dx with respect to the identity truncation function. The volatility

processes in (4.6) are exponentials of Lévy-driven Ornstein-Uhlenbeck processes. These volatility

specifications are quite general, and in particular they allow for both diffusive and jump shocks in

the two volatility processes. Such volatility models have been found to fit well financial asset price

data; see, e.g., Todorov et al. (2014). We refer to Todorov et al. (2014) for analysis of the roles

of the different parameters in these models. We choose the volatility model parameters such that

E(eVZ,t−1) = E(eVε,t−1) = 1 (our unit of time is a trading day and we measure returns in percentage)

and the persistence of a shock in each of the volatility processes has a half-life of approximately 7
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Table 1: Relative efficiency of alternative β estimates in model (4.6)

Horizon Ratio Σ(w1)/Σ(w∗) Ratio Σ(w2)/Σ(w∗)

Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75

1 week 1.1172 1.2224 1.4670 1.2574 1.4677 1.9147
2 weeks 1.2157 1.4017 1.8091 1.5556 2.0204 3.1819
3 weeks 1.3118 1.5693 2.1526 1.8630 2.6589 4.5297
4 weeks 1.4015 1.7131 2.4620 2.2002 3.3555 6.0021

Note: The value of Qα stands for the α quantile. Quantiles are computed based on 5000 Monte
Carlo replications.

days. If Z corresponds to the market portfolio, then the above mean of volatility is close to the one

observed in real data. On the other hand, the level of the idiosyncratic volatility risk will depend

on the particular application, with the above choice being somewhat on the conservative side.

In Table 1, we report the relative efficiency of the three estimators β̂∗n, β̂1
n and β̂2

n in the context

of model (4.6) for various time spans of the regression, ranging from one week (equal to 5 business

days) to 4 weeks (equal to 20 business days). We report the quantiles of the ratios Σ(w1)/Σ(w∗)

and Σ(w2)/Σ(w∗) over 5000 Monte Carlo replications from the volatility specification in (4.6). We

remind the reader that these ratios are random quantities, since the relative efficiency depends

on the realization of the volatility processes.7 As seen from the table, the proposed estimator β̂∗n

provides nontrivial improvements over the alternatives β̂1
n and β̂2

n. The efficiency gain of β̂∗n is more

significant when compared with β̂2
n and it also increases (with respect to both β̂1

n and β̂2
n) with the

length of the estimation horizon. The latter is fairly intuitive as longer estimation horizon allows

for greater variations in the paths of σZ,t and σε,t which in turn increases the efficiency gains from

accounting for the heteroskedasticity in the data.

We next study the finite sample behavior of the three alternative estimates of β in a sampling

setting that mimics that of a typical financial application such as the one performed in the next

section. We continue to use the model (4.6), with Y = Y c and Z = Zc for simplicity. The sampling

scheme in the Monte Carlo is as follows. We consider estimation horizons from one to four weeks,

exactly as for the comparisons of the asymptotic variances in Table 1. With unit time being a

trading day, we consider ∆n = 1/80, ∆n = 1/40 and ∆n = 1/16, corresponding approximately to

5-minute, 10-minute and 25-minute, respectively, sampling in a typical trading day.

The estimators of β depend on the two tuning parameters kn and vn, so we next explain how

we set them. The requirement for the asymptotic order of kn in Theorem 4 is relatively weak (at

least when the jump activity r is not very high) which is suggestive that the estimation procedure

is not very sensitive to the choice of kn. In any application, the choice of kn needs to be guided by

the amount of data in hand. The requirement for kn is to be large enough to expect a reasonable

7The quantities are computed from Euler discretization of the volatility SDE with Euler tick of one minute.
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amount of averaging out of local volatility estimation error, but at the same time not so large as

to generate significant biases. With this in mind, we set kn = 30 for ∆n = 1/80, kn = 20 for

∆n = 1/40 and kn = 12 for ∆n = 1/16.

Turning next to the choice of the truncation parameter, we perform truncation componentwise.8

Following existing work on truncation-based estimators, for a generic univariate process S, we set

vn as

vn = 3∆0.49
n

√
BV n

t , for i = (t− 1)n+ 1, ..., tn and t = 1, 2, ..., (4.7)

where BVt is the Bipower Variation of Barndorff-Nielsen and Shephard (2006) on day t which

consistently estimates the integrated volatility on that day, and is defined as

BV n
t =

π

2

n

n− 1

tn∑
i=(t−1)n+2

|∆n
i S||∆n

i−1S|. (4.8)

Intuitively, this choice of vn “classifies” a high-frequency increment as one with a jump if it is

above three standard deviations in absolute value. Importantly, this choice of vn takes into account

the time-varying volatility, as what is a “big” or a “small” move for the diffusive component of S

depends on the current level of the diffusive volatility.

The results from the Monte Carlo are summarized in Table 2. The three alternative β estimates

are slightly downward biased, with the bias being the smallest for our optimal estimator β̂∗n and

shrinking (in all but one case) with the increase of the sampling frequency. Consistent with the

asymptotic comparisons reported in Table 1, the finite sample precision of β̂∗n is highest among the

three estimators.

Overall the results in Tables 1 and 2 confirm the efficiency gains of our new estimation procedure

in realistic settings.

5 Empirical example

We apply the efficient procedure developed in Section 4 to high frequency data on U.S. Bancorp

(USB) and Walmart (WMT) with the S&P 500 Index ETF (SPY) used as the market. In terms

of capitalization, U.S. Bancorp ranks near the top of the stocks comprising the S&P sector ETF

for Financials (XLF), and the results pertaining to it are representative of financial stocks. On the

other hand, Walmart is a large company in the consumers sector, with risk characteristics quite

different from those of financial stocks. The span of the data set is 2007–2014, and we consider four

sampling frequencies: 3-min, 5-min, 10-min, and 25-min. These frequencies allow us to circumvent

all the issues associated with microstructure noise and thereby focus on questions pertinent to the

paper.

8This is a slight departure from the way ĉni is defined but that difference is asymptotically negligible.
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Table 2: Finite sample performance of alternative β estimates in model (4.6)

Horizon β̂∗n β̂1
n β̂2

n

Q0.25 Q0.50 Q0.75 RMSE Q0.25 Q0.50 Q0.75 RMSE Q0.25 Q0.50 Q0.75 RMSE

Case ∆n = 1/80, kn = 30

1 week 0.957 0.994 1.019 0.099 0.951 0.989 1.018 0.108 0.947 0.999 1.023 0.122
2 weeks 0.969 0.993 1.010 0.059 0.959 0.989 1.010 0.073 0.953 0.988 1.015 0.089
3 weeks 0.974 0.993 1.006 0.046 0.964 0.988 1.006 0.060 0.957 0.986 1.011 0.081
4 weeks 0.977 0.994 1.004 0.034 0.966 0.988 1.003 0.049 0.960 0.986 1.009 0.071

Case ∆n = 1/40, kn = 20

1 week 0.946 0.993 1.033 0.148 0.934 0.987 1.031 0.166 0.928 0.988 1.038 0.193
2 weeks 0.959 0.993 1.016 0.088 0.948 0.987 1.018 0.103 0.940 0.987 1.025 0.130
3 weeks 0.967 0.993 1.011 0.063 0.955 0.988 1.013 0.075 0.945 0.987 1.021 0.104
4 weeks 0.971 0.993 1.009 0.049 0.959 0.987 1.009 0.064 0.947 0.985 1.017 0.092

Case ∆n = 1/16, kn = 12

1 week 0.903 0.988 1.052 0.250 0.898 0.987 1.054 0.278 0.887 0.987 1.067 0.314
2 weeks 0.930 0.989 1.029 0.156 0.924 0.987 1.033 0.170 0.913 0.986 1.046 0.227
3 weeks 0.948 0.990 1.020 0.110 0.934 0.986 1.025 0.124 0.918 0.985 1.042 0.178
4 weeks 0.952 0.990 1.016 0.082 0.941 0.986 1.020 0.107 0.925 0.984 1.037 0.158

Note: The true value of β is 1. The value of Qα stands for the α quantile. Quantiles are computed
based on 5000 Monte Carlo replications.

Following the discussion in Section 4.3, we use kn = 32 as the base value for 3-min data (128

returns per day), which corresponds to four daily sub-periods, early morning, late morning, early

afternoon, and late afternoon; we use kn = 25 as the base value for 5-min data (77 returns per

day), i.e., morning, mid-day, and afternoon; kn = 19 for 10-min data (38 returns per day) for

morning and afternoon, and kn = 12 for 25-min data (15 returns per day) spanning close to one

day. We set the truncation parameter vn exactly as in Section 4.3.9 Inspection of plots (not shown)

revealed considerable month-to-month variation in the β of USB over the sample period, which is

to be expected given the turbulent times for financial stocks. Although to a less degree, this applies

also to WMT. At the same time, plots and previous experience suggested that βs are reasonably

constant over a month, so we conduct estimation monthly over the 96 calendar months of the data

set.

Our two points of focus here are robustness and efficiency. Table 3 shows the quantiles of the

β̂∗n of Proposition 1 computed over months. From the table it is seen that for the base values of

kn the median values of the estimator show little sensitivity to the sampling frequency, while as

to be expected the interquantile ranges are generally wider at coarser sampling frequencies. The

9We also perform a time-of-day adjustment to the truncation level as in Todorov and Tauchen (2012) to account
for the well-known diurnal pattern in volatility.
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Table 3: Summary of β̂∗n estimates for USB and WMT on SPY

Empirical Quantiles

kn = base values kn = modified values

Frequency Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75

Panel A: USB

3-min 0.900 1.090 1.215 0.897 1.075 1.201
5-min 0.912 1.090 1.219 0.912 1.091 1.227
10-min 0.900 1.093 1.265 0.884 1.094 1.272
25-min 0.905 1.076 1.236 0.881 1.074 1.223

Panel B: WMT

3-min 0.466 0.551 0.645 0.451 0.532 0.643
5-min 0.452 0.536 0.636 0.456 0.536 0.643
10-min 0.468 0.543 0.675 0.455 0.518 0.644
25-min 0.431 0.541 0.686 0.438 0.536 0.663

Notes: We estimate β for each calendar month during 2007–2014. The base settings of kn are
32, 25, 19, 12 for sampling frequencies 3-min, 5-min, 10-min and 25-min, and the modified settings
of kn are 27, 20, 14, 10 for the four sampling frequencies. The value of Qα stands for the α quantile.
Quantiles are computed over 96 monthly observations on β̂∗n characterized in Proposition 1 above.

table also shows quantiles of the efficient estimator for modified values of kn, and little sensitivity

is evident. As regards efficiency, the following display shows the quantiles (over 96 months) of

the ratios of the estimated asymptotic standard errors of the (inefficient) estimators β̂1
n and β̂2

n

discussed above to those of β̂∗n
10:

Ratio Σ̂(w1)/Σ̂(w∗) Ratio Σ̂(w2)/Σ̂(w∗)

Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75

USB 1.509 1.652 1.812 1.503 1.578 1.783

WMT 1.547 1.654 1.799 1.546 1.674 1.855

The above empirically-implied efficiency ratios are in line with those expected from the Monte Carlo

work reported in Table 1. The empirical results taken together with the theory and Monte Carlo

suggest that the new estimator of this paper should prove useful for constructing more accurate

betas and hence improved inference in risk analysis and theoretical cross-sectional asset pricing.

6 Conclusion

In a LAMN setting, we derive the semiparametric efficiency bound for estimating the slope coeffi-

cient in a linear regression model for continuous-time Itô semimartingales sampled at asymptotically

10The calculations in the display are based on the 5-minute data.
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increasing frequencies. We construct an adaptive estimator which achieves this efficiency bound.

This estimator is in closed form and easy to compute. We illustrate analytically and numerically

the efficiency gain of the proposed efficient estimator relative to existing alternatives. To analyze

the asymptotic behavior of the proposed estimator, we derive a general limit theory for the estima-

tion of integrated volatility transforms, which extends known results in the literature (Jacod and

Rosenbaum (2013)) to a larger class of volatility functionals.

7 Appendix: Proofs

This section contains all proofs. Below, K denotes a generic constant that may change from line to

line but does not depend on i ∈ In or t ∈ [0, 1]; we sometimes write Ku to indicate the dependence

of this constant on some parameter u. For any matrix A, we denote its ith row (resp. column) by

[A]i· (resp. [A]·i) and its trace by Tr(A). For any vector a, we denote its ith element by a(i). For

p ≥ 1, ‖·‖p denotes the Lp-norm.

7.1 Proofs in Section 2

Proof of Theorem 1. Let P β,fn be the conditional distribution of (Xi/n)0≤i≤n given F = f .

Since the distribution of F does not depend on β, it suffices to derive the LAMN property for the

conditional law P β,fn . Therefore, we shall conditional on F = f below.

The proof follows similar steps as in Section A.1 of Clément et al. (2013), which use the Malli-

avin calculus technique developed in Gobet (2001). We only sketch the main steps, but with the

difference detailed.

Denote

b (x) =

(
bZ(x)

bY (x)

)
, a (β, x, f) =

(
aZ (x, f) 0d−1

βᵀaZ (x, f) aε (x, f)

)
. (7.1)

For 1 ≤ j ≤ d− 1, let ȧj(β, x, f) denote the derivative of a (β, x, f) with respect to β(j). Evidently,

ȧj (β, x, f) =

(
0d−1 0d−1

[aZ (x, f)]j· 0

)
. (7.2)

For h ∈ Rd−1, we denote the log-likelihood ratio by

Ln (h) = log dP β0+h/
√
n

n /dP β0n . (7.3)

We now define Γn and ζn in (2.8). For 0 ≤ i ≤ n − 1 and 1 ≤ j, l ≤ d − 1, we evaluate the
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functions a−1, ȧj and ȧl at (β0, Xi/n, fi/n) and set

[Γn]jl ≡
1

n

n−1∑
i=0

Tr
[(
a−1ȧl

) (
a−1ȧj

)ᵀ
+
(
a−1ȧj

) (
a−1ȧl

)]
,

ζ̃
(j)
n,i+1 ≡ ∆n

i+1W
ᵀ (a−1ȧj

)
∆n
i+1W − n−1Tr

(
a−1ȧj

)
,

ζ̃(j)
n ≡ n1/2

n−1∑
i=0

ζ̃
(j)
n,i+1,

(7.4)

and

ζn ≡ Γ−1/2
n ζ̃n. (7.5)

It is easy to see that (ζ̃n,i,Fi/n) forms an array of martingale differences. Moreover, following the

same steps that lead to eq. (54) in Clément et al. (2013) (by setting h(·) there to be a constant,

but with an extension to allow for multivariate h), we deduce
Ln(h) = hᵀζ̃n −

1

2

n−1∑
i=0

d∑
j,l=1

h(j)h(l)∆n
i+1W

ᵀ
[ (
a−1ȧl

) (
a−1ȧj

)ᵀ
+
(
a−1ȧj

) (
a−1ȧl

) ]
∆n
i+1W + op(1).

(7.6)

We now simplify these expressions by computing a−1ȧj explicitly. Some straightforward algebra

yields (
a−1ȧj

)
(β0, Xi/n, fi/n) =

(
0d−1 0d−1[

σZ,i/n
]
j· /σε,i/n 0

)
.

Hence,

ζ̃
(j)
n,i+1 =

1

σε,i/n
∆n
i+1Wε

[
σZ,i/n

]
j·∆

n
i+1WZ . (7.7)

From here, we observe

E
[
ζ̃

(j)
n,i+1ζ̃

(l)
n,i+1

∣∣∣Fi/n] = n−2
[
cZZ,i/n

]
jl
/cεε,i/n,

E
[
ζ̃

(j)
n,i+1∆n

i+1W
∣∣∣Fi/n] = 0d, E

[
(ζ̃

(j)
n,i+1)4

∣∣∣Fi/n] ≤ Kn−4.

By Theorem IX.7.28 of Jacod and Shiryaev (2003), we derive (recall that Γ ≡
∫ 1

0 cZZ,s/cεε,sds)

ζ̃n
L-s−→MN (0d−1,Γ) . (7.8)
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For the second term on the right-hand side of (7.6), we first observe

E
[
∆n
i+1W

ᵀ [(a−1ȧl
) (
a−1ȧj

)ᵀ
+
(
a−1ȧj

) (
a−1ȧl

)]
∆n
i+1W |Fi/n

]
=

1

n
Tr
[(
a−1ȧl

) (
a−1ȧj

)ᵀ
+
(
a−1ȧj

) (
a−1ȧl

)]
=

[
cZZ,i/n

]
jl

ncεε,i/n
.

By using a law of large numbers, we deduce that

the second term on the right-hand side of (7.6) = −hᵀΓh/2 + op(1). (7.9)

Moreover, by a Riemann approximation, we also observe

Γn = Γ + op(1). (7.10)

By the properties of stable convergence, (7.8), (7.9) and (7.10) hold jointly in the usual sense of

weak convergence. The assertion of the theorem then follows from (7.5) and (7.6). �

Proof of Lemma 1. By the properties of stable convergence, (2.12) also holds jointly with

Γn
P−→ Γ. Recall the notation Ln (h) from (7.3). Under the conditions of Lemma 1, along the

sequence P β0n , (
n1/2(β̂n − β0)

Ln(h)

)
L-s−→MN

((
0

−1
2h
ᵀΓh

)
,

(
Σ h

hᵀ hᵀΓh

))
.

By Le Cam’s third lemma, we have, along the sequence P β0+n−1/2h
n ,

n1/2(β̂n − β0)
L-s−→MN (h,Σ) .

Therefore, along the sequence P β0+n−1/2h
n ,

n1/2(β̂n − β0 − n−1/2h)
L-s−→MN (0,Σ) . (7.11)

Furthermore, the LAMN property implies contiguity between P β0+n−1/2h
n and P β0n (Jeganathan

(1982), Proposition 1). Hence, Γn converges to Γ under P β0+n−1/2h
n too. By the properties of stable

convergence, (7.11) holds jointly with the convergence of Γn towards Γ, where the limit distribution

does not depend on h. Hence, β̂n is regular. �

7.2 Proofs in Section 4

By a standard localization argument (Jacod and Protter (2012), Section 4.4.1), we can replace

Assumption A with the following stronger version without loss of generality.
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Assumption SA. We have Assumption A. The processes (bt)t≥0 and (σt)t≥0 are bounded. More-

over, for a λ-integrable function D, ‖δ(ω, t, z)‖r ≤ D(z) for all ω ∈ Ω, t ∈ [0, 1] and z ∈ R.

Proof of Lemma 2. By localization, we assume that Assumption SA holds. By a polarization

argument, we can assume that X is R-valued without loss of generality. We denote by X ′ the

continuous part of X, that is,

X ′t = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs. (7.12)

We then set

ĉ′ni ≡
n

kn

kn∑
j=1

(
∆n
ikn+jX

′)2 .
By (4.8) of Jacod and Rosenbaum (2013), there exists a sequence an of constants such that an → 0

and ∥∥ĉni − ĉ′ni ∥∥1
≤ Kann−(2−r)$.

By using a maximal inequality, we then derive∥∥∥∥sup
i∈In
|ĉni − ĉ′ni |

∥∥∥∥
1

≤ Kan (n/kn)n−(2−r)$

≤ Kann
1−γ−(2−r)$ → 0, (7.13)

where the convergence follows from condition (ii).

By Itô’s formula,

ĉ′ni − c̄ni =
2n

kn

kn∑
j=1

∫ (ikn+j)/n

(ikn+j−1)/n
(X ′s −X ′(ikn+j−1)/n) (bsds+ σsdWs) .

From here, standard estimates for continuous Itô semimartingales yield, for every q̃ ≥ 1,

∥∥ĉ′ni − c̄ni ∥∥q̃ ≤ Kq̃k
−1/2
n .

By using a maximal inequality and picking q̃ > 2(1− γ)/γ, we deduce∥∥∥∥sup
i∈In
|ĉ′ni − c̄ni |

∥∥∥∥
q̃

≤ Kq̃ (n/kn)1/q̃ k−1/2
n → 0. (7.14)

The assertion of the lemma then follows from (7.13) and (7.14). �

Proof of Theorem 2. We only prove part (b) while noting that the proof for part (a) is

similar and slightly simpler. Let τm and Km be given as in Assumption K’. We denote the closure

of a set A by A. By Assumption K’, ct ∈ Km for all t ∈ [0, τm]. By a standard localization
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argument with respect to the localizing sequence (τm)m≥1, we can assume that ct ∈ K for some

convex compact set K and all t ∈ [0, 1] without loss of generality. Moreover, there exists some

ε > 0 such that g is C3 on Kε. Fix an arbitrary constant η ∈ (0, ε). Observe that Kη is a compact

subset of Kε. Let ψ : Md 7→ [0, 1] be a compactly supported C∞ function such that ψ(c) = 1

when c ∈ Kη and ψ(c) = 0 when c /∈ Kε; the existence of such ψ is due to the C∞ Urysohn lemma

(Folland (1999), Theorem 8.18). We then set h = ψg, so h ∈ C3
c . By assumption of Theorem 2,

n−1/2(Ŝn(h)− S(h))
L-s−→MN (0, V (h)).

Consider a sequence Ωn of events given by Ωn ≡ {ĉni ∈ Kη, all i ∈ In}. Since K is convex,

{c̄ni : i ∈ In} ⊆ K. Under the assumption supi∈In ‖ĉ
n
i − c̄ni ‖ = op(1), we deduce that P (Ωn) → 1.

Note that ∂jg(c) = ∂jh(c) for all j = 0, 1, 2 and c ∈ Kη. Therefore, n−1/2(Ŝn(h) − S(h)) and

V (h) respectively coincide with n−1/2(Ŝn(g)− S(g)) and V (g) on Ωn. Hence, in restriction to Ωn,

n−1/2(Ŝn(g) − S(g))
L-s−→ MN (0, V (g)). Since P (Ωn) → 1, the assertion of the theorem readily

follows. �

Proof of Theorem 3. By Lemma 2, (3.2) holds. Then by Theorem 2(a), we can assume that

g has compact support without loss of generality. The setting is now the same as Theorem 9.4.1(b)

in Jacod and Protter (2012). The proof of Jacod and Protter (2012) can be easily adapted to the

current setting with non-overlapping time blocks, and yields S̃n(g)
P−→ S(g). �

Proof of Theorem 4. By Lemma 2 and Theorem 2(b), we can assume that g ∈ C3
c without loss

of generality. We can then use Theorem 3.2 of Jacod and Rosenbaum (2013) to deduce the asserted

convergence. Since g is compactly supported, the condition of Jacod and Rosenbaum (2013) can

be weakened as $ ∈ [ 1
2(2−r) ,

1
2) after a straightforward adaptation of their proof. This condition on

$ is implied by the condition in Theorem 4. �

Proof of Proposition 1. Observe that the mapping g 7→ Ŝn(g) is linear. Hence,

n1/2
(
β̂wn − β0

)
= Ŝn(w)−1n1/2Ŝn(g), where g ≡ wgb − wβ0. (7.15)

Under (2.4), S(g) = 0. As noted in Remark 4, gb satisfies Assumption K’. Since w satisfies

Assumption W, g satisfies Assumption K’; see Remark 3. By Theorem 4,

n1/2
(
β̂wn − β0

)
L-s−→MN

(
0, S(w)−1V (g)S(w)−1

)
.

Some straightforward (but somewhat tedious) calculation using (3.6) yields V (g) = S (wΞw). From

here, the assertion in part (a) readily follows.

As noted in Remark 4, w∗ satisfies Assumption W under condition (ii). Further observe that

Σ (w∗) = S (w∗)−1 = Γ−1. Part (b) then follows from part (a).

Finally, note that Assumption K is satisfied with w∗ in place of g. The assertion of part (c)

then follows directly from Theorem 3. �
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Proof of Theorem 5. Step 1. In this step, we recall some known results from Jacod and

Rosenbaum (2013) and derive some preliminary estimates. Let h be a R-valued C3 function with

compact support. Let ∂h denote the d × d matrix such that [∂h]jk = ∂jkh. It is shown in Jacod

and Rosenbaum (2013) that (see p. 1482)
n1/2

(
Ŝn (h)− S (h)

)
=

n1/2

[n/kn]−1∑
i=0

kn∑
u=1

d∑
l,m=1

[
∂h
(
cikn/n

)]
lm

[
αnikn+u

]
lm

+ op(1),
(7.16)

where, for X ′ defined by (7.12),

αni ≡
(
∆n
i X
′) (∆n

i X
′)ᵀ − n−1c(i−1)/n.

Denote

α′ni ≡ E
[
αni |F(i−1)/n

]
, α′′ni ≡ αni − α′ni .

By (4.10) in Jacod and Rosenbaum (2013), for any p ≥ 0,

E[ ‖αni ‖
p |F(i−1)/n] ≤ Kn−p,

∥∥α′ni ∥∥ ≤ Kn−3/2. (7.17)

Note that for any 1 ≤ u ≤ kn,

E
∥∥∂h (cikn/n)− ∂h (c(ikn+u−1)/n

)∥∥2 ≤ Kkn/n. (7.18)

Then by the second inequality of (7.17), it is easy to see
n1/2

[n/kn]−1∑
i=0

kn∑
u=1

[
∂h
(
cikn/n

)
− ∂h

(
c(ikn+u−1)/n

)]
lm

[
α′nikn+u

]
lm

= Op(
√
kn/n).

(7.19)

Observe that ∂h
(
cikn/n

)
−∂h

(
c(ikn+u−1)/n

)
is F(ikn+u−1)/n-measurable and

(
α′′ni ,Fi/n

)
is an array

of martingale differences. We then use the first inequality of (7.17) to derive

E

n1/2

[n/kn]−1∑
i=0

kn∑
u=1

[
∂h
(
cikn/n

)
− ∂h

(
c(ikn+u−1)/n

)]
lm

[
α′′nikn+u

]
lm

2
= n

[n/kn]−1∑
i=0

kn∑
u=1

E
[([

∂h
(
cikn/n

)
− ∂h

(
c(ikn+u−1)/n

)]
lm

[
α′′nikn+u

]
lm

)2
]

≤ Kkn/n.

(7.20)
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Since kn/n→ 0, the terms in (7.19) and (7.20) are op(1). Hence, (7.16) further implies

n1/2
(
Ŝn (h)− S (h)

)
= n1/2

[n/kn]kn−1∑
i=0

d∑
l,m=1

[
∂h
(
ci/n

)]
lm

[
αni+1

]
lm

+ op(1)

= n1/2
n−1∑
i=0

d∑
l,m=1

[
∂h
(
ci/n

)]
lm

[
αni+1

]
lm

+ op(1),

= n1/2
n−1∑
i=0

Tr
[
∂h
(
ci/n

)
αni+1

]
+ op(1)

= n1/2
n−1∑
i=0

((
∆n
i+1X

′)ᵀ ∂h (ci/n)∆n
i+1X

′ − n−1Tr
[
∂h
(
ci/n

)
ci/n

])
+op(1),

where the second equality is obtained by using (7.17) and kn/n
1/2 → 0. By routine manipulation

using Itô calculus, we can further approximate ∆n
i+1X

′ with σi/n∆n
i+1W , yielding

n1/2
(
Ŝn (h)− S (h)

)
= n1/2

n−1∑
i=0

(
ξ (h)n,i+1 − E

[
ξ (h)n,i+1 |Fi/n

])
+ op(1),

(7.21)

where  ξ (h)n,i+1 ≡ ∆n
i+1W

ᵀσᵀi/n∂h
(
ci/n

)
σi/n∆n

i+1W,

E
[
ξ (h)n,i+1 |Fi/n

]
= n−1Tr

[
∂h
(
ci/n

)
ci/n

]
.

Step 2. In this step, we derive an asymptotic linear representation for n1/2(β̂wn − β0). Let

g(·) ≡ w(·) (gb(·)− β0). Following the argument as in the proof of Theorem 2, we can find a C3
c

function h, a compact set K and η > 0 such that (i) {ct : t ∈ [0, 1]} ⊆ K (ii) {ĉni : i ∈ In} ⊆ Kη

with probability approaching one (iii) h (·) coincides with g (·) on Kη.
Since h is C3 with compact support, by applying (7.21) to each component of h (recall that

the kth component is denoted by h(k)), we obtain the same representation but now with ξ (h)n,i+1

being a (d− 1)-vector with its kth element given by

ξ (h)
(k)
n,i+1 = ∆n

i+1W
ᵀσᵀi/n∂h

(k)
(
ci/n

)
σi/n∆n

i+1W. (7.22)

Since h (·) and g (·) coincide on Kη and S (g) = 0, we also have

n1/2Ŝn (g) = n1/2
n−1∑
i=0

(
ξ (g)n,i+1 − E

[
ξ (g)n,i+1 |Fi/n

])
+ op(1). (7.23)
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Now, we compute ∂g(k)(ci/n) explicitly. Note that, under (2.4), gb(ci/n) = β0. Hence, for

1 ≤ l,m ≤ d, ∂lmg
(k)
(
ci/n

)
=
[
w(ci/n)

]
k· ∂lmgb

(
ci/n

)
. Some elementary calculation yields

∂g(k)
(
ci/n

)
=

 − [c−1
ZZ,i/nw

(
ci/n

)]
·k
βᵀ0

[
c−1
ZZw

(
ci/n

)]
·k

0ᵀd−1 0

 .

Plugging this into (7.22), we deduce

ξ (g)
(k)
n,i+1 = ∆n

i+1W
ᵀ
Zσ
ᵀ
Z,i/n

[
c−1
ZZ,i/nw

(
ci/n

)]
·k
σε,i/n∆n

i+1Wε. (7.24)

It is then easy to see that E[ξ (g)n,i+1 |Fi/n] = 0d−1. From (7.15) and (7.23), we deduce

n1/2(β̂wn − β0) = S(w)−1n1/2
n−1∑
i=0

ξ (g)n,i+1 + op(1). (7.25)

Step 3. We complete the proof of Theorem 5 by using Lemma 1. It suffices to show (2.12).

The marginal stable convergence of Γ
1/2
n ζn and n1/2(β̂wn − β0) has been shown in Theorem 1 and

Proposition 1. The joint convergence can be similarly derived by using Theorem IX.7.28 of Jacod

and Shiryaev (2003). The additional step needed here is to verify that the asymptotic covariance

between Γ
1/2
n ζn and n1/2(β̂wn −β0) is Id−1. In view of (7.25), it suffices to verify that the asymptotic

covariance between Γ
1/2
n ζn and n1/2

∑n−1
i=0 ξ (g)n,i+1 is S (w). Recall from the proof of Theorem 1

that

Γ1/2
n ζn = ζ̃n = n1/2

n−1∑
i=0

ζ̃n,i+1,

ζ̃
(j)
n,i+1 =

1

σε,i/n
∆n
i+1Wε

[
σZ,i/n

]
j·∆

n
i+1WZ .

Then, from (7.24), for 1 ≤ j, k ≤ d− 1,

n

n−1∑
i=0

E
[
ζ̃

(j)
n,i+1ξ (g)

(k)
n,i+1

∣∣∣Fi/n]
=

1

n

n−1∑
i=0

[
σZ,i/n

]
j· σ
ᵀ
Z,i/n

[
c−1
ZZ,i/nw

(
ci/n

)]
·k

=
1

n

n−1∑
i=0

[
w
(
ci/n

)]
jk
→ [S (w)]jk,

as wanted. The proof is now complete. �
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Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge, UK: Cambridge University

Press.

Todorov, V. and T. Bollerslev (2010). Jumps and Betas: A New Theoretical Framework for Disentangling

and Estimating Systematic Risks. Journal of Econometrics 157, 220–235.

31



Todorov, V. and G. Tauchen (2012). The Realized Laplace Transform of Volatility. Economtrica 80, 1105–

1127.

Todorov, V., G. Tauchen, and I. Grynkiv (2014). Volatility Activity: Specification and Estimation. Journal

of Econometrics 178, 180–193.

Zu, Y. and P. Boswijk (2014). Estimating spot volatility with high-frequency financial data. Journal of

Econometrics 181, 117–135.

32


