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Abstract

We develop new methods for the estimation of time-varying risk-neutral jump tails in
asset returns. In contrast to existing procedures based on tightly parameterized mod-
els, our approach imposes much fewer structural assumptions, relying on extreme-value
theory approximations together with short-maturity options. The new estimation ap-
proach explicitly allows the parameters characterizing the shape of the right and the
left tails to differ, and importantly for the tail shape parameters to change over time.
On implementing the procedures with a panel of S&P 500 options, our estimates clearly
suggest the existence of highly statistically significant temporal variation in both of the
tails. We further relate this temporal variation in the shape and the magnitude of the
jump tails to the underlying return variation through the formulation of simple time
series models for the tail parameters.
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1 Introduction

Financial asset returns are not conditionally normally distributed, but instead exhibit more

slowly decaying, and often asymmetric, tails. This is true even over short horizons, as most

easily seen from the presence of very pronounced volatility smiles for short maturity op-

tions.1 These fatter than normal tails are directly attributable to occasionally large absolute

price changes, or “jumps.” The recent financial crises has further underscored the empirical

relevance of tail events, and in turn econometric techniques for more accurately estimating

and modeling such risks. We add to this literature through the development of new more

flexible estimation procedures that explicitly allow for the possibility of time-varying tails

for the large jump moves. In comparison to the existing literature, our approach imposes

much fewer structural assumption, relying on extreme-value theory approximations together

with short-maturity S&P 500 options. By focussing on the risk-neutral distributions implied

from options data, our estimates speak directly to the jump tail risk that is priced by the

market. Consistent with the existing literature, we find that the magnitude of the left jump

tail associated with dramatic market declines far exceeds that of the right jump tail corre-

sponding to large market appreciations.2 Our new estimation procedures also clearly point

to the existence of non-trivial predictable temporal dependencies in the tail index parameters

characterizing the decay in both tails.

A number of previous studies have argued that the values of the parameters for the power

laws governing the tails of return distributions may be subject to structural changes; see, e.g.,

the studies by Quintos et al. (2001) and Galbraith and Zernov (2004) based on the traditional

Hill-estimator and daily aggregate equity index returns.3 Relying on a large cross-section

of stock returns, the more recent study by Kelly (2012) reinforces the idea of time-varying

tail risks, and further argues that the temporal variation in the tail parameters may help

understand aggregate market returns as well as cross-sectional differences in average returns.

1The failure of the traditional Black-Scholes model and the presence of volatility smiles after the market
crash of 1987 is well documented in the asset pricing literature. The impact of this failure for economet-
ric analysis in a corporate finance setting related to executive compensation has recently been studied by
Bhargava (2013).

2The observation that the left tail inferred from aggregate equity index options dominates the right tail
dates back at least to Rubinstein (1994), who attributed this to evidence of “crash-o-phobia.”

3Fat tailed marginal daily return distributions may arise through stochastic volatility and leverage effects
and/or or “jumps” possibly with time-varying intensity. As such, these earlier empirical studies are merely
suggestive about the presence of temporal variation in the jump tail index.
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Similarly, the study by Bollerslev and Todorov (2011a) demonstrates how high-frequency

intraday data may be used in more accurately estimating dynamically evolving tails, and how

these estimates may be used in more effective risk measurement and management decisions.

All of these studies are based on directly observed return data, and in turn pertain to the

objective, or statistical, return distributions. By contrast, the new estimation procedures

developed here pertain to the risk-neutral distribution, explicitly reflecting the way in which

the market perceives and prices tail risks. The method builds on the insight that out-of-

the-money short-maturity options effectively isolate the pricing of jump risk. Formally, in

the limit for decreasing times-to-maturity and fixed moneyness, the diffusive risk will not

affect the price of an out-of-the-money option. Regular variation in the jump tail measure,

or compensator, therefore implies a one-to-one mapping between the shape of the jump tail

measure and the slope of the option price surface in the strike dimension. Consequently, the

tail index parameter may be uniquely identified, and in turn estimated, from a cross-section

of deep out-of-the-money short-maturity options at a given point in time without making

any assumptions about the temporal variation in the overall jump intensity process.4

The basic idea of inferring the risk-neutral jump tails from options is related to an earlier

literature that seek to better explain option prices through jump risk; see, e.g., Bates (1996,

2000), Andersen et al. (2002), Pan (2002), Eraker (2004), Broadie et al. (2007), along with

the more recent work by Christoffersen et al. (2012). All of these studies are based on

specific, typically affine, parametric stochastic volatility jump diffusion models. Moreover,

following Merton (1976), they postulate that conditionally on a jump occurring the size of

the jump is normally distributed. Our approach is distinctly different in relying on a flexible

nonparametric procedure that is able to accommodate complex dynamic tail dependencies

and larger jump tails outside this classical Merton-framework.5

Our new estimation procedure is also related to the earlier work by Aı̈t-Sahalia and

Lo (1998), who non-parametrically estimate the entire risk-neutral state price density from

options data. Their approach, however, explicitly assumes that the pricing kernel is time-

4A related estimation strategy has also been proposed in independent work by Hamidieh (2011).
5There is also a literature on Lévy-based option pricing outside the Merton-framework, in which the

underlying price is modeled as an exponential-Lévy process (see, e.g., Cont and Tankov, 2004, and the
references therein), or as a time-changed Lévy process (see, e.g., Carr et al., 2003). However, these studies
generally impose tight parametric structures on the volatility process and the distributions of the jumps.
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invariant. On the other hand, Rosenberg and Engle (2002) do allow the pricing kernel to

change over time, but rely on tightly parameterized GARCH type models for describing the

dynamic dependencies. Alternatively, Metaxoglou and Smith (2012) resort to the use of

conditional quantile regression techniques for estimating time-varying pricing kernels. The

recent study by Song and Xiu (2013) also explicitly relates the temporal variation in the

risk-neutral distribution and the pricing kernel to the VIX index and the volatility of the

aggregate market. Meanwhile, none of these estimation procedures are directly geared to

the tails of the distribution. By contrast, our approach explicitly focusses on the tails and

the tail decay parameters, in particular, ignoring other parts of the distribution.

The current paper is related to our earlier work, Bollerslev and Todorov (2011b), in which

short-maturity option data is used to estimate semiparametrically risk-neutral jump tails.

From an econometric point of view, however, there are two fundamental differences. First,

unlike Bollerslev and Todorov (2011b) we explicitly allow the shape of the jump tails to vary

over time. Second, the estimation in the present paper is based on a fixed time span and the

entire cross-section of short maturity deep out-of-the-money options, whereas the estimation

in Bollerslev and Todorov (2011b) rely on long time span asymptotics and only a limited

number of strikes.

At a more general level, our empirical results are also related to the recent literature

by Barro (2006) and others emphasizing the importance of incorporating rare disasters in

macro-finance models. The idea that rare disasters, or tail events, may help explain the

equity premium and other empirical puzzles in asset pricing dates back at least to Rietz

(1988). Further building on these ideas, Gabaix (2012) and Wachter (2013) have recently

shown that allowing for time-varying tail risks in otherwise standard equilibrium based asset

pricing models may help explain the apparent excess volatility of aggregate equity index

returns. Similarly, Bollerslev and Todorov (2011b) and Aı̈t-Sahalia et al. (2013) suggest

that much of the variance risk premium is directly attributable to disaster, or jump tail risk.

The plan for the rest of the paper is as follows. We begin in the next section with a

discussion of the basic setup and assumptions, including our very general time-varying jump

tail formulation. Section 3 discusses how options may be used for effectively separating jumps

and continuous price variation, and outlines our new estimation procedures for the jump tail

parameters. Section 4 summarizes the S&P 500 options data that we use in the estimation.
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Our main empirical findings related to the tail risk parameters and the temporal variation

therein are discussed in Section 5. Section 6 concludes. The proof of the key asymptotic

approximation underlying our new estimation procedures is deferred to a technical Appendix.

2 Jump Tails

The continuous-time no-arbitrage framework that underly our new estimation procedure is

very general. It includes all parametric models previously analyzed and estimated in the

literature as special cases. We begin with a discussion of the basic setup and notation.

2.1 Setup and Assumptions

The underlying asset price Xt is defined on the filtered probability space (Ω,F ,P), where

(Ft)t≥0 denotes the filtration. We assume the following general dynamic specification for Xt,

dXt

Xt−
= αtdt+ σtdWt +

∫
R
(ex − 1)µ̃(dt, dx), (2.1)

whereWt is a Brownian motion, µ is a counting measure for the jumps inX with compensator

dt ⊗ νt(dx), so that µ̃(dt, dx) = µ(dt, dx) − dtνt(dx) denotes the corresponding martingale

measure under P.67 The drift and volatility processes, αt and σt, respectively, are both

assumed to have càdlàg paths, but otherwise left unspecified.

We will assume the existence of the alternative risk-neutral measure Q under which Xt

follows the dynamics,

dXt

Xt−
= (rt − δt)dt+ σtdW

Q
t +

∫
R
(ex − 1)µ̃Q(ds, dx), (2.2)

where rt and δt denote the instantaneous risk-free rate and dividend yield of Xt, respectively,

WQ
t is a Brownian motion under Q, and µ̃Q(dt, dx) = µ(dt, dx)−dtνQt (dx) where dt⊗νQt (dx)

is the compensator of the jumps under Q. The existence of Q follows directly from the lack

of arbitrage under mild technical conditions (see, e.g., the discussion in Duffie, 2001). Of

course, when the market is not complete, the risk-neutral measure is not unique. In the

6Recall µ([0, t], A) =
∑

s≤t 1{log(∆Xs)∈A} for any measurable A ∈ R \ {0} and ∆Xs = Xs −Xs−. Specific
examples of jump compensators are given later in equations (2.7), (2.12) and (5.1).

7We have implicitly assumed that Xt does not have fixed times of discontinuities. This assumption is
satisfied by virtually all asset pricing models hitherto used in the literature. Note also that µ is the counting
measure for the jumps in log(Xt).

4



present analysis, however, we are only interested in the tail part of νQt (dx). As explained

further in Section 2.2 below, we will assume that this part of the distribution satisfies certain

properties that allow for its unique identification from a set of short maturity options.

Our main interest centers on the tail component of the jump compensator, or the intensity

of the jumps under Q, and, in particular, the temporal variation therein. To be a valid jump

compensator νQt (dx) must satisfy (see, e.g., Proposition II.2.9 on p.77 of Jacod and Shiryaev,

2003), ∫
R
(x2 ∧ 1)νQt (dx) <∞, ∀t ∈ R+, (2.3)

which in terms of behavior in the tails is the same restriction as for a probability distribution.

Before proceeding with our analysis concerning the temporal variation in νQt , we introduce

some additional notation. In particular, define the two functions,

ψ+(x) =

{
ex, x > 0
0, x ≤ 0

ψ−(x) =

{
e−x, x < 0
0, x ≥ 0

. (2.4)

The transforms ψ+ and ψ− convert the jumps in the log-price into jumps in the price level.

That is,

∆Xt

Xt−
+ 1 = ψ+ (∆ log(Xt)) 1{∆log(Xt)>0} + [ψ− (∆ log(Xt))]

−11{∆log(Xt)<0},

where ∆Xt = Xt − Xt− and ∆ log(Xt) = log(Xt) − log(Xt−). Note also that the images

of the measure νQt under the mappings x → ψ+(x) and x → ψ−(x), respectively, may be

expressed as,

νQ,+t,ψ (x) =
νQt (log(x))

x
, νQ,−t,ψ (x) =

νQt (− log(x))

x
, ∀x > 1. (2.5)

Finally, to further simplify the notation, let

η+(x) =

∫ ∞

x

η(du), ∀x > 0, η−(x) =

∫ x

−∞
η(du), ∀x < 0. (2.6)

denote the tail integrals for the arbitrary measure η on R.

2.2 Time-Varying Jump Tails

Most of the models used in the asset pricing literature to date postulate the distribution of

jumps to be time invariant. When temporal variation is allowed for, it is typically assumed

that the dynamics in the risk-neutral tails may be characterized as,

νQt (dx) = ϕ+
t × λ+(dx)1{x>0} + ϕ−

t × λ−(dx)1{x<0}, (2.7)
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where λ± are Lévy measures and ϕ±
t some predictable processes.8 For example, the double

jump model of Duffie et al. (2000) employed in most of the empirical option pricing literature,

or the time-changed tempered stable models of Carr et al. (2003), both satisfy (2.7). In these

models, it is also typically assumed that the temporal variation in the left and the right tails

may be described by the same process, so that ϕ+
t = ϕ−

t . Moreover the temporal variation

is typically assumed to be an affine function of the diffusive volatility σ2
t .

The standard modeling assumption for the jump intensity in (2.7) severely constrains

the behavior of the jump tails. In particular, recalling the notation in (2.6), it is easy to see

that (2.7) implies,

νQ,+t (x)

νQ,+t (y)
=
λ
+
(x)

λ
+
(y)

, ∀ x > y > 0, and
νQ,−t (x)

νQ,−t (y)
=
λ
−
(x)

λ
−
(y)

, ∀ x < y < 0, (2.8)

so that the relative importance of differently sized jumps is time invariant. As such, the only

way for the intensity of large sized jumps to increase (decrease) over time is for the intensity

of all sized jumps to simultaneously increase (decrease) over time.

This implication of the standard approach to jump modeling is further illustrated in

Figure 1, which plots the left and right jump tails for two different values of the ϕ+
t and ϕ−

t

“parameters.” Since the shape of the tails remain constant, only proportional changes in the

intensities are allowed for over time.

The traditional modeling assumption in (2.7) also implies that the behavior of the jump

tails depends exclusively on the tail behavior of the time-invariant measure λ. Even though

λ isn’t formally a probability measure, and may explode around zero, the restriction in

(2.3) ensures that the measure behaves like a probability measure outside of zero. Following

Bollerslev and Todorov (2011a), we will assume that the corresponding tail measures λ
±
ψ

belong to the maximum domain of attraction of an extreme value distribution, where the

two measures λ+ψ (x) and λ−ψ (x) are naturally defined from λ± as in (2.5). We will restrict

our attention to the empirically relevant case, when the extreme value distribution is of the

Frechet type (see, e.g., Theorem 3.3.7 in Embrechts et al., 2001),

λ
±
ψ (x) = x−α

±
L±(x), α± > 0, (2.9)

8Let X
(d)
t denote the jump component of Xt. The model in (2.7) is then equivalent to X

(d)
t having a

representation of a sum of time-changed Lévy processes (see Theorem 10.27 in Jacod, 1979). That is, there

exist Lévy processes L+
t and L−

t with Lévy measures λ+ and λ− such that for X
(d)
t with compensator defined

in (2.7), X
(d)
t = L+

T+
t

+ L−
T−
t

for T+
t =

∫ t

0
ϕ+
s ds and T−

t =
∫ t

0
ϕ−
s ds.
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where L±(x) are slow-varying at infinity functions.9 It is then possible to show that,

λ
±
ψ (u+ x)

λ
±
ψ (x)

≈
(
x+ u

x

)−α±

, x > 0, u > 0, (2.10)

where the approximation arises from the presence of the slowly-varying function in (2.9) (see

Bollerslev and Todorov, 2011a, and the references therein for more details). Combining the

model for the jump intensity in (2.7) with the tail approximation for λ
±
in (2.10), it follows

that
νQ,±t,ψ (x)

νQ,±t,ψ (y)
≈
(
x

y

)−α±

, x > y > 1. (2.11)

Hence, this ratio of the jump tail intensities is also time-invariant, with a power low decay

determined by the maximum domain of attraction of λ
±
.

To help fix ideas, consider the double-exponential jump model applied by Kou (2002)

and Kou and Wang (2002) among others,

λ+(x) = c+e−α
+x1{x>0}, λ−(x) = c−e−α

−|x|1{x<0}, α± > 0, c± ≥ 0. (2.12)

It follows readily that for this model,

λ
+

ψ (x) =
c+

α+
x−α

+

, λ
−
ψ (x) =

c−

α−x
−α−

, ∀x > 1. (2.13)

Hence, equation (2.9) holds with L±(x) = c±

α± being constant, and therefore all of the sub-

sequent approximations hold exactly for the double-exponential model. Of course, for most

other jump models of the form (2.7), the corresponding expressions will only hold approxi-

mately with λ
±
ψ in the domain of attraction of a Frechet extreme value distribution.10

Even though (2.7) encompasses most jump models hitherto employed in the literature,

and in empirical finance in particular, as the discussion above illustrates, this specification

does entail some rather stringent assumptions in regards to the temporal variation, or the

lack thereof, in the jump tails. In particular, there is no apriori reason to expect that the

shape of the tails stays constant over time. On the contrary, with financial data one might

9Recall that a function L(x) is said to be slowly varying at infinity if limx→∞
L(vx)
L(x) = 1, ∀v > 0.

10An example is the tempered stable jump process with λ±(x) in (2.7) given by λ+(x) = c+ e−α+x

x1+β+ 1{x>0}

and λ−(x) = c− e−α−|x|

|x|1+β− 1{x<0} for β± < 2. It is easy to check that for this process, (2.9) continues to hold,

albeit with some more complicated functions L±(x).
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naturally expect that the magnitude and the shape of the tails, and in turn the tail decay

parameters, respond to economic conditions and change over time.

In an effort to accommodate richer tail behaviors, we therefore consider the following

generalization of the standard jump intensity process,11

νQt (dx) =
(
ϕ+
t × e−α

+
t x1{x>0} + ϕ−

t × e−α
−
t |x|1{x<0}

)
dx. (2.14)

This generalization of (2.7) explicitly allows for two separate sources of variation in the jump

tails, in the form of level shifts of the intensity governed by ϕ±
t , and shifts in the rate of decay

of the tails governed by α±
t . Correspondingly, the expression for λ

±
ψ in (2.9) generalizes to,

λ
±
t,ψ(x) ∝ x−α

±
t , α±

t > 0, x→ ∞. (2.15)

This in turn implies that the ratio of the jump intensities on the left-hand-side of equation

(2.11) is no longer constant,

νQ,±t,ψ (x)

νQ,±t,ψ (y)
=

(
x

y

)−α±
t

, x > y > 1, (2.16)

but instead depends on the values of the possibly time-varying α±
t processes.

To illustrate, consider Figure 2, which plots the left and right jump tails for a repre-

sentative jump process of the form (2.14) for identical values of ϕ±
t , but different values

of α±
t . In comparison to the previous Figure 1, which restricts the shape of the tails to

be time-invariant, allowing for different values of α±
t clearly affords an added flexibility for

empirically modeling time-varying jump tail risks.

3 Risk-neutral jump tail estimation

Option prices explicitly incorporate the risk-neutral expectations of tail events. Deep out-

of-the-money close-to-maturity options, in particular, effectively render key features of the

risk-neutral jump intensity process estimable. This greatly facilitates tail estimation by

avoiding the need for large numbers of actual tail realizations.12 We begin our discussion of

the estimation procedures by considering the case of time-invariant jump tails.

11Similar results to the ones derived below could be obtained at the cost of additional technical complica-
tions by only requiring the tail component of νQt (dx) to adhere to the structure in (2.14).

12As previously noted, the expectations inherent in options data also pertain directly to the risk-neutral
distribution of practical relevance from a pricing perspective.
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To set the notation, let Ot,τ (k) denote the time t price of an out-of-the-money option

on Xt with time to expiration τ and log-moneyness k = log(K/Ft−,τ ), where Ft,τ refers

to the futures price of Xt, and K denotes the strike of the option.13 Following Bollerslev

and Todorov (2011b) it is possible to show that for the baseline jump intensity process in

equation (2.7),

ert,τOt,τ (k)

Ft−,τ
≈
{ ∫ t+τ

t

∫
R(e

x − ek)+EQ
t (ν

Q
s (dx))ds, if k > 0,∫ t+τ

t

∫
R(e

k − ex)+EQ
t (ν

Q
s (dx))ds, if k < 0,

(3.1)

where ert,τ = EQ
t

(
e
∫ t+τ
t rsds

)
denotes the risk-free interest rate over the [t, t+τ ] time-interval.

This approximation formally relies on τ ↓ 0 and k → ±∞. However, the approximation error

is quite small for the maturity times and moneyness employed in the empirical analysis below,

and we will consequently ignore this error in the sequel.14

Combining (3.1) with the extreme value approximations for the baseline jump intensity

process, it follows that

ert,τOt,τ (k)

τFt−,τ
≈ (ϕ+

t 1{k>0} + ϕ−
t 1{k<0})Φ(α

±, tr, k), (3.2)

where

Φ(α±, tr, k) =


λ
+
ψ (tr)

α+−1

(ek)
1−α+

tr−α+
, ek ≥ tr > 1,

λ
−
ψ (tr)

α−+1

(e−k)
−1−α−

tr−α−
, e−k ≥ tr > 1,

(3.3)

for some threshold tr > 1. Going one step further, this implies that the time-varying ϕ±
t

processes are purged from the ratio of the logarithmic prices for the same maturity options

with different strikes. Specifically, consider two options with the same maturity τ , but

different moneyness k1 < k2,

log

(
Ot,τ (k2)

Ot,τ (k1)

)
=

{
(1− α+) (k2 − k1), ek2 > ek1 > tr,
(1 + α−) (k2 − k1), e−k2 > e−k1 > tr.

(3.4)

Consequently, the time-invariant tail index parameters α± may be consistently estimated

in a nonparametric fashion from an ever increasing number of short-maturity options with

13By definition Ot,τ (k) represents a call (put) option for k > 0 (k < 0).
14There are several sources of the approximation error. One is the time variation in the risk-neutral jump

measure as well as the time variation in the diffusive stochastic volatility. Second is the occurrence of more
than one large jump before the expiration of the option. Finally, there is an error due to the sole presence
of a diffusive component. The first two errors are quite negligible for the models typically estimated in
the literature. Footnote 22 below explains how it is possible to directly incorporate the source of the third
approximation error; i.e., the presence of a diffusion in the price with constant volatility at the current
spot level. Further discussion and Monte Carlo simulation-based evidence pertaining to the size of these
approximation errors are reported in Bollerslev and Todorov (2011b).
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deeper strikes, or an ever increasing number of options over an increasing sample span T , or

both.

In the first set of results reported on below, we rely on the following simple estimators,

α̂+ = argminα+
1∑T

t=1N
+
t

∑T
t=1

∑N+
t

i=2 g

(
log

(
Ot,τt

(kt,i)

Ot,τ (kt,i−1)

)
kt,i−kt,i−1

− (1− α+)

)
,

α̂− = argminα−
1∑T

t=1N
−
t

∑T
t=1

∑N−
t

i=2 g

(
log

(
Ot,τt

(kt,i)

Ot,τ (kt,i−1)

)
kt,i−kt,i−1

− (1 + α−)

)
,

(3.5)

where N+
t (N−

t ) denotes the total number of calls (puts) on day t with moneyness 0 < kt,1 <

... < kt,N+
t
(0 < −kt,1 < ... < −kt,N−

t
) used in the estimation of α̂+ (α̂−). The choice of the

function g : R → R+, with the property that g(x) = 0 iff x = 0, is naturally dictated by

the assumption about the log-option pricing errors. In particular, assuming that the errors

have a median of zero conditional on the filtration of the original probability space suggests

a Least Absolute Deviation (LAD) type estimator and g(x) = |x|.

Two alternative asymptotic schemes naturally suggest themselves for characterizing the

distributions of α̂±. First, consider the case in which T → ∞ and N±
t is fixed.15 In this

situation, ignoring the approximation error in (3.2), consistency and asymptotic normality

for α̂± follows readily under standard ergodicity and mixing conditions about the temporal

dependencies in the option errors. Alternatively, consider the asymptotic setting in which

T is fixed and N±
t → ∞. This setup mirrors the one analyzed in Andersen et al. (2013) for

the estimation of specific parametric pricing models based on a panel of options over a fixed

time span. In this situation, the estimator in (3.5) will require that the errors are averaged

out spatially, so that we will need for the option-errors to be at most weakly dependent

across strikes.16 Then, again ignoring the approximation error in (3.2), consistency and

asymptotic normality follow readily from the results in Andersen et al. (2013), with the

limiting distribution of the parameter estimates now mixed Gaussian.

15In fact, N±
t = 2 suffice as there is only one parameter to be estimated for each of the two tails.

16Earlier work allowing for option price errors have typically relied on strong parametric assumptions
regarding the errors. Adopting the spatial averaging approach of Andersen et al. (2013) allows us to be
nonparametric about the option errors, while accommodating possible dependence between the errors and
the price process as well as any underlying latent state variables driving volatility and jump intensity. A
restriction, however, is that the option errors have limited dependence in the cross-section. If out-of-the-
money close-to-maturity options had a common error component in the cross-section, spatial averaging would
not help to eliminate the effect of the errors, and the errors would need to be explicitly incorporated into
the pricing model; Bates (2000) also refers to such errors as “model specification errors.”
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The flexibility of our estimator in (3.5) with respect to the observation scheme, i.e., its

ability to work both in settings with increasing time span and/or increasing cross-sections

of options, stems from the use of the moment conditions in (3.4), which conveniently avoid

inference about ϕ±
t . By contrast, the approach developed in Bollerslev and Todorov (2011b)

works only for increasing time span, or T → ∞.17

The approximations underlying (3.5) are based on the standard jump specification in

(2.7) and the assumption that the tail index parameters do nor change over time. Instead,

consider the more general jump intensity process in (2.14) explicitly allowing α±
t to be time-

varying. In this situation, it follows from Lemma 1 shown in the Appendix that

ert,τOt,τ (k)

Ft−,τ
≈


τϕ+t e

k(1−α+t )

α+
t (α

+
t −1)

, if k > 0,

τϕ−t e
k(1+α−t )

α−
t (α−

t +1)
, if k < 0,

(3.6)

for τ ↓ 0. Note that for α±
s = α±

t and ϕ±
s = ϕ±

t for all s ∈ [t, t + τ ], the right-hand side of

(3.6) trivially equals the right-hand side of (3.1). In general, however, the right hand-side of

(3.6), and in turn the ratio in (3.4) forming the basis for the estimator in (3.5), will depend

on the time-varying jump tail parameters.

However, assuming that the time-variation in the tail index parameters are of smaller

order of magnitude than the variation in the right-hand side of (3.6), the ratio of the loga-

rithmic option prices may still be used in estimating α±
t . In particular, by similar arguments

to the ones underling (3.5), it follows that

α̂+
t = argminα+

t

1
N+
t

∑N+
t

i=2 g

(
log

(
Ot,τt

(kt,i)

Ot,τ (kt,i−1)

)
kt,i−kt,i−1

−
(
1− α+

t

))
,

α̂−
t = argminα−

t

1
N−
t

∑N−
t

i=2 g

(
log

(
Ot,τt

(kt,i)

Ot,τ (kt,i−1)

)
kt,i−kt,i−1

−
(
1 + α−

t

))
,

(3.7)

consistently estimates α±
t for t = 1, 2, ..., T when N±

t → ∞ (with an associated CLT exactly

as before). Importantly, these estimates for the time-varying tail shape parameters put no

17The alternative GMM estimator for α± in Bollerslev and Todorov (2011b) is based on the moment
conditions,

m(µ±, α±,k) =
1

T

T∑
t=1

ert,τtOt,τt(k)

Ft−,τ
− µ± × Φ(α±, tr,k),

where µ± = E
(
ϕ±
t

)
, and Φ(α±, tr,k) denotes the vector with elements Φ(α±, tr, ki) for different strikes

(ki)i=1,...,d.
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restrictions on the scale parameters ϕ±
t that shift the whole Lévy density through time.

Obviously, due to the time-variation in our parameters of interest, α±
t , the above estimators

in (3.7) will not work in the long span setting with N±
t fixed.18

In practice, of course, we do not have an infinite number of options with different strikes

at each point in time. Thus, as a compromise, for the empirical results reported on below we

estimate time-varying annual, monthly, and weekly tail shape parameters by summing the

right-hand-side of the objective function in (3.7) over the relevant horizons. This inevitably

limits our ability to recover any temporal variation in α±
t at higher frequencies. More for-

mally, this “pooling” of the option data also means that we are recovering an average of the

tail shape parameters over the relevant time-intervals.19 We turn next to a discussion of the

actual options data that we use in implementing these estimators.

4 Data

The options data that we use in our analysis is obtained from OptionMetrics. The raw data

consists of closing bid and ask quotes for all S&P 500 options traded on the Chicago Board

of Options Exchange (CBOE). The data span the period from January 1996 to December

2011, for a total of 4, 027 trading days.

Following standard procedures in the option pricing literature our “cleaning” of the data

is comprised of several steps. To begin, we keep only out-of-the-money options with positive

bid prices. Further, to rule out arbitrage, starting with the closest at-the-money options

we only keep the subsequent (in the strike dimension) out-of-the-money puts and calls with

lower midquotes.20 If this monotonicity condition is violated for a given pair of midquotes,

we retain the option with the highest volume, and in the event of identical volume the option

that is closest to being at-the-money. Lastly, to alleviate potential market microstructure

complications, we only consider options with at least eight calendar days to expiration. The

resulting sample underlying our empirical analysis is summarized in Table 1 in terms of the

average number of options available per trading day as a function of moneyness.

18Similarly, the standard GMM estimator of Bollerslev and Todorov (2011b) based on T → ∞ would, of
course, no longer be applicable in the case when α±

t varies over time.
19For least squares, i.e., g(x) = x2, the estimates would be interpretable as a simple average.
20That is, the no-arbitrage condition that we enforce for the observed midquotes is the monotonicity of

the option price in the strike dimension.
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In our parametric modeling, we also rely on so-called realized variation measures, first

popularized by Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen

and Shephard (2002). Our construction of these measures is based on intraday S&P 500

returns calculated from futures prices obtained from Tick Data Inc. The prices are recorded

at five-minute intervals, with the first price of the day at 8:35 (CST) until the last price of

the day at 15:15, for a total of 81 intraday price observations per trading day.

5 Empirical modeling of jump tails

Our estimators for the tail index parameters in (3.5) and (3.7) both rely on the use of close-

to-maturity out-of-the-money options to assess the jump tail risk. In practice, of course, the

price of the options will invariably reflect some diffusive risk as well. Intuitively, the larger

the diffusive volatility, the larger the impact of the diffusive price component, especially

when the (priced) jump risk does not increase with the volatility. In order to help mitigating

this effect, for the estimation of the left (right) tail parameters reported on below we only

use put (call) options with log-moneyness below (above) −2.5× σATMt

√
τ (1.0× σATMt

√
τ),

where σATMt denotes the at-the-money Black-Scholes implied volatility. By explicitly relating

the threshold of the moneyness for the options used in the estimation to the overall level of

the volatility, we screen out more relatively close to at-the-money options in periods of high

volatility, thereby effectively minimizing the impact of the on average larger diffusive price

component when the volatility is high.21

5.1 Are the shapes of the jump tails time-invariant?

We begin our empirical analysis by estimating the tail index parameters under the assump-

tion that the jump tails are time invariant over annual, monthly, and weekly horizons.

Figures 3 and 4 show confidence bounds for the resulting non-overlapping estimates for the

left and right tail index parameters, α̂+
t and α̂−

t , respectively. In addition, we also include

the estimates for α± obtained by assuming that the shapes of the jump tails remain constant

21The result in (3.2), as shown in Lemma 1 in the Appendix, formally holds for a fixed strike, as opposed to
a strike that shrinks asymptotically with τ ↓ 0. Our choice of threshold for the moneyness jointly depending
on τ and σATM

t is merely a convenient way of empirically accounting for time-varying volatility, and should
not be interpreted asymptotically. In the empirical application, of course, we also work with (approximately)
the same τ > 0 throughout.
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throughout the whole sample, as indicated by the horizontal lines in Figures 3 and 4.

The estimates obtained by pooling the options over annually frequencies, reported in the

top two panels, are naturally very smooth. Even at that low frequency, however, there are

still clearly discernable patterns in the estimates, with fatter tails during the recent 2008-09

financial crises, and to a lesser extend 2001-02. Also, both of the tails appear thinner in the

relatively quiet 2004-07 period. Of course, the magnitude of the estimates for the left tail

parameters far exceed the right tail estimates.

Turning to the monthly estimates reported in the middle panel in the two figures, these

same general patterns stand out more clearly. In particular, allowing for the shape of the

jump tails to change on a monthly as opposed to an annual basis appears especially important

for capturing large changes in the tail parameters during the 2008-09 financial crisis, as well

as the more turbulent 1998-99 and 2001-02 time periods. Allowing for the left and right

tail parameters to change at weekly frequency further reinforces and magnifies this temporal

variation in the shapes of the jump tails. Of course, the use of only weekly data also results

in more “noisy” point estimates. In the next section we explore the use of simple parametric

time series models as a way to help “smooth” out this estimation error and further understand

the driving forces behind the dynamic dependencies in the weekly α±
t tail parameters.

In order to further highlight the importance of allowing for time-varying jump tails, it

is instructive to consider the implications for correctly pricing the options across different

strikes. To this end, we plot in Figure 5 the relative fit for log(Ot,τt(kt,1)/Ot,τt(kt,N±
t
)) aver-

aged over weeks based on our annual, monthly, and weekly estimates for α±
t . This particular

ratio of option prices represents the rate of decay from the closest to at-the-money to the

deepest out-of-the-money short-maturity options used in the estimation.

As seen from Figure 5, ignoring the time variation in the tails can have a rather detrimen-

tal effect in terms of the ability to account for the time-varying slope of the short-maturity

option surface. Forcing the tail index to be constant over the entire sample or annual fre-

quencies can result in severe over-estimation of the observed option decay in periods of

market distress, as most clearly seen during the 2008-09 financial crises. By contrast, the

estimation errors associated with the monthly tail estimates appear homogenous throughout

the sample. The weekly tail estimates even further improve the fit, as seen by the drop in

the magnitude of the errors as well as their persistence over time. Most remarkably, the
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errors associated with fitting the option surface slope in 1998-99 and 2008-09 are of the same

magnitude as the errors in other time periods.

A closer look at the weekly errors in Figure 5 also shows that whereas the model in (2.14)

affords an approximately unbiased fit to the slope of the out-of-the-money put decay, the

errors in fitting the slope of the out-of-the-money call decay are slightly downward biased.

This slight over-estimation of the actual call option decay may be attributed to the impact

of the diffusive price component. In particular, from the summary numbers in Table 1 the

general availability of options necessitates the use of relatively closer to at-the money calls

than puts, thereby “contaminating” the identification of the true right jump tail.22 Of course,

as previously noted, the left jump tail is also orders of magnitude larger than the right tail.

As a final gauge for the improvements afforded by the more flexible jump specification

in (2.14), we also compare the fit with that of the standard finite activity jump model

with normally distributed jump sizes pioneered by Merton (1976). The Lévy density for

the generalized Merton jump model, used extensively in the empirical and theoretical asset

pricing literature, may be expressed as,23

νQt (dx) = ϕt ×
e−

(x−µ)2

2σ2

√
2πσ2

dx. (5.1)

It follows readily that for this model,

ert,τOt,τ (k)

τFt−,τ
≈ ϕtΨ(k, µ, σ2), (5.2)

22Relating the truncation levels for the options used in the estimation to the overall level of the volatility
helps alleviate this effect. In addition, we also experimented with explicitly adjusting for the diffusive price
component through the refined approximation,

ert,τOt,τ (k)

τFt−,τ
≈

 ϕ+
t

∫
R
∫
R

(
ex+zσt

√
τ − ek

)+
e−α+

t |x| e−z2/2
√
2π

dxdz, k > 0,

ϕ−
t

∫
R
∫
R

(
ek − ex+zσt

√
τ
)+

e−α−
t |x| e−z2/2

√
2π

dxdz, k < 0,

with σt approximated by QV c
(t−1,t] (see equation (5.6) in the next subsection and the discussion afterwards

for its measurement from high-frequency data). The estimation results for the left tails and the weekly α−
t

were essentially unaltered compared to the estimates shown in the bottom panel in Figure 3. For the right
tails this refinement did result in slightly lower estimates for α+

t compared to ones shown in the bottom
panel in Figure 4. Further details concerning these results are available upon request.

23The original Merton jump-diffusion model, of course, postulates that ϕt is constant. Also, the fact that
the model in (2.14) allows the left and right jump tail intensities to differ, plays no role in our comparisons
of the two models which focuses on the jump distribution, or rather the tail part of it, and the fit of the
option decay in the moneyness dimension for short maturity options.
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where

Ψ(k, µ, σ2) =

 ekΦ
(
k−µ
σ

)
− eµ+σ

2/2Φ
(
k−µ−σ2

σ

)
, k < 0,

eµ+σ
2/2
(
1− Φ

(
k−µ−σ2

σ

))
− ek

(
1− Φ

(
k−µ
σ

))
, k > 0.

(5.3)

This in turn implies that the rate of decay in the jump tails “accelerates” the deeper out of the

money the options get. Consequently, the slope defined by 1
k2−k1 log (Ot,τ (k2)/Ot,τ (k1)), will

depend on the strikes of the options, or k1 and k2. By contrast, for the jump specification

in (2.14) this ratio remains the same for all strikes, and only depends on the tail shape

parameters α±
t .

To help directly illustrate this, we estimate the Merton jump model on a weekly basis,24

(
µ̂t, σ̂t

2
)
= argmin(µt,σ2

t )

{
1

N+
t

N+
t∑

i=2

g

(
log

(
Ot,τt(kt,i)

Ot,τ (kt,i−1)

)
− log

(
Ψ(kt,i, µt, σ

2
t )

Ψ(kt,i−1, µt, σ2
t )

))
,

+
1

N−
t

N−
t∑

i=2

g

(
log

(
Ot,τt(kt,i)

Ot,τ (kt,i−1)

)
− log

(
Ψ(kt,i, µt, σ

2
t )

Ψ(kt,i−1, µt, σ2
t )

))}
,

(5.4)

where in parallel to our time-varying estimates of α±
t based on (3.7) discussed above, we

rely on all of the options within a week. Figure 6 plots the resulting weekly fits to the slope

of the short-maturity option surface, as given by log(Ot,τt(kt,1)/Ot,τt(kt,N±
t
)). Comparing

the magnitude of these errors to the weekly errors in the bottom two panels in Figure 5,

the alternative jump specification in (2.14) clearly provides the superior fit.25 Moreover,

the errors from fitting the option tail decay by the light-tailed Merton jump model are also

serially correlated, further highlighting the inadequacy of that traditional approach.

We conclude that both the shape and the temporal variation in the shape parameters

are important for satisfactorily describing the risk-neutral distributions and the dynamics in

the options-implied jump tails. We turn next to a simple parametric model for describing

these dynamic dependencies as embodied in our time-varying α̂±
t parameter estimates.

24Of course, the Merton model as traditionally implemented in the literature restricts the parameters to
be constant for the whole sample.

25Note, the Merton model and the jump specification in (2.14) both involve two parameters for describing
the shape of the tails. Both jump specifications also allow for asymmetric jump distributions; in the Merton
model this is controlled by the mean parameter µt.
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5.2 Parametric modeling

Our nonparametric estimation procedures entail very minimal assumptions. Not surprisingly,

the resulting parameter estimates for α±
t reported in Figures 3 and 4 also appear somewhat

“noisy,” especially at the higher weekly frequency. Parametric modeling of the time-variation

in the tail index parameters provides a way to “regularize” the sample path by imposing

more structure on the variation in the estimates. For concreteness, we will focus on the

weekly frequency, but the same ideas could be applied to any discrete-time horizon.

The nonparametric weekly estimates, shown in the bottom two panels in Figures 3 and 4,

clearly point to important own serial dependencies. As such, this naturally suggests the use of

an autoregressive type model structure.26 In addition, existing empirical findings pertaining

to the parametric affine jump-diffusion class of models indirectly suggest that the shape of

the jump tails might be related to the level of the volatility, or the quadratic variation of the

underlying price process. To empirically explore the strength of these relations, we postulate

the following simple specification,

α±
j = β±

0 + β±
1 α

±
j−1 + β±

2 log(1 +QV c
(τj−1,τj ]

) + β±
3 log(1 +QV d

(τj−1,τj ]
) + ϵ±j , (5.5)

where j = 1, ..., J refers to the different weeks in the sample, and

QV c
(τj−1,τj ]

=

∫ τj

τj−1

σ2
sds, QV d

(τj−1,τj ]
=

∫ τj

τj−1

∫
R
x2µ(ds, dx), (5.6)

denotes the quadratic variation due to continuous and discontinuous price moves, respec-

tively, for week j spanning the (τj−1, τj) time-interval. This split of the quadratic variation

is directly motivated by the extensive recent literature on so-called realized volatility mea-

sures, which have documented very different dynamic dependencies in the two components;

see, e.g., the empirical analysis in Andersen et al. (2007) building on the decompositions

original developed by Barndorff-Nielsen and Shephard (2004, 2006). In the results reported

on below, we follow Bollerslev and Todorov (2011b) in the use of five-minute S&P 500 futures

prices and so-called truncated variation measures for empirically quantifying QV c
(τj−1,τj ]

and

QV d
(τj−1,τj ]

. The ϵ±j error term in (5.5) essentially reflects information in the tail index not

26The use of AR(1) type models for characterizing the dynamic dependencies in the tail index parameters
has previously been explored from a very different perspective by Wagner (2005).
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contained in the linear span of log(1 +QV c
(τj−1,τj ]

) and log(1 +QV d
(τj−1,τj ]

).27

In order to estimate the parameters of the model, we will further assume that the ϵ±j error

terms are conditionally median unbiased; i.e., medτj−1
(ϵ±j ) = 0. All of the β parameters, say

β±, may then be estimated by combining the previous nonparametric weekly tail index esti-

mates with the corresponding full-sample objective function and specific parametric model

structure in (5.5). Specifically,

β̂
±
= argminβ±

J∑
j=1

τj∑
t=τj−1

1

N±
t

N±
t∑

i=2

g

( log
(

Ot,τt (kt,i)
Ot,τ (kt,i−1)

)
kt,i − kt,i−1

−
(
1− β±

0 − β±
1 α̂

±
j−1 − β±

2 log(1 +QV c
(τj−1,τj ]

)− β±
3 log(1 +QV d

(τj−1,τj ]
)
))

,

(5.7)

where {α̂±
j }j refers to the weekly nonparametric estimates defined by (3.7). This objective

function for the estimation of β± mirrors the full-sample objective function for α± in (3.5)

obtained by replacing time-varying weekly α±
j s with their conditional median values implied

by the model in (5.5).28

We begin by estimating the model in its most general form. We then sequentially omit

any coefficients that are insignificant at the usual 5% level when judged by their individual

t-statistics, starting with the numerically smallest. The resulting parameter estimates for

the full and preferred models for each of the two tails are reported in Table 2. Focussing on

the preferred specification, both of the autoregressive β±
1 parameters are highly statistically

significant, with the right tail showing the strongest own serial correlation. Accounting for

the influence of the past tail index parameters and the past continuous variation, the past

variation associated with jumps does not help explain the temporal variation in α±
j for either

of the two tails. Interestingly, for the right tail the past continuous variation and the β+
2

27Assuming |β±
1 | < 1, the parametric model in (5.5) may alternatively be expressed as,

α±
j − β±

0

1− β±
1

− β±
2

1− β±
1 L

log(1 +QV c
(τj−1,τj ]

)− β±
3

1− β±
1 L

log(1 +QV d
(τj−1,τj ]

) =
1

1− β±
1 L

ϵ±j ,

where L denotes the discrete time-shift (lag) operator. This allows for a direct test for the significance of the
error term, by testing for serial correlation in the sample analogue of the expression on the left-hand-side.
We will not pursue this idea any further here.

28A more complicated instrumental variable type LAD estimator could possibly be developed to help
alleviate the potential errors-in-variables problem associated with the use of α̂±

j−1 and the high-frequency

based estimates for QV c
(τj−1,τj ]

and QV d
(τj−1,τj ]

in place of their true values. We leave this for future research.
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parameter also becomes insignificant once β+
3 is fixed at zero, so that the preferred model

reduces to a simple AR(1) structure. By contrast, β̂−
2 is significantly negative, implying that

an increase in the continuous price variation for the S&P 500 market portfolio results in a

fattening of the corresponding risk-neutral left jump tail.

The resulting weekly time series estimates for 1/α±
j are plotted in Figure 7. Although

the model-based estimates are “smother” than the “raw” nonparametric weekly estimates

implied by the confidence bounds in Figures 3 and 4, the estimates for the left jump tail,

in particular, still exhibit substantial temporal variation, with dramatically higher values

during periods of market distress. Of course, as previously noted, the overall magnitude of

the risk-neutral left jump tail also far exceed that of the the right jump tail. Even though

the autoregressive β+
1 parameter for the right tail is highly significant, the fitted values of

1/α+
j remain within a fairly narrow range between 0.01 and 0.03 over the whole sample. By

contrast, the fitted values of 1/α−
j for the left tail range from a low of 0.05 during “quiet”

times to a high of 0.23 at the height of the 2008-09 financial crisis.29

6 Conclusion

We provide a new framework for estimating the shape of the risk-neutral jump tails, and

the time-variation therein, based on a cross-section of short-maturity options. Our empirical

results for the S&P 500 market portfolio point to nontrivial temporal dependencies in both

of the tails, but especially so for the left tail, which fattens considerably during periods

of market distress and financial crisis. Accounting for these changes in the shape of the

jump tails is crucially important for satisfactorily explaining the observed dynamics of the

short-maturity option surface. Our explicit modeling of the time-varying tail shapes further

suggests that the higher the diffusive volatility of the market, the fatter the risk-neutral left

jump tail. However, our parametric modeling also suggests that for neither of the tails is

the temporal variation fully explained by the underlying market risks.

All of our results relate to the risk-neutral jump tails implied from the prices of options.

29Direct comparisons of the estimates obtained by the parametric models with the corresponding nonpara-
metric estimates for the left and right tail indexes reveal a slight deterioration in the quality of the model
fits during the recent financial crises, suggesting the scope for further improvements by incorporating other
explanatory variables in addition to the quadratic variation of the jumps. Further details concerning these
results are available on request.
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It would be interesting to investigate whether similar dynamic dependencies carry over to

the actually observed jump tails. In particular, could the option-implied tail estimates

derived here be used for predicting rare tail events in the underlying market index? Or, does

the apparent variation in the risk-neutral jump tails primarily stem from time-varying risk

premia and/or changes in sentiment and attitude towards risk? Further along these lines,

it would also be interesting to explore whether the new more flexible risk-neutral tail index

estimates developed here could be used for actually predicting aggregate market returns. All

of these questions seem worthy of future research.

Appendix

Lemma 1 Suppose that the process Xt follows the dynamics in (2.2) under the risk-neutral

measure Q, where rt and δt are deterministic, and the risk-neutral jump compensator is given

by,

νQt (dx) =
(
ϕ+
t e

−α+
t x1{x>0} + ϕ−

t e
−α−

t |x|1{x<0}

)
dx. (A.1)

For ϕ±
t and α±

t assume that for some t > t, we have

EQ
(
|ϕ±
s − ϕ±

t |2
∣∣∣∣Ft

)
≤ Kt|s− t|, EQ

(
|α±
s − α±

t |2
∣∣∣∣Ft

)
≤ Kt|s− t|, ∀ s ∈ [t, t], (A.2)

where Kt is a Ft-adapted finite-valued random variable. Further for some ι > 0,30

inf
s∈[t,t]

α−
s > ι, inf

s∈[t,t]
α+
s > 3 + ι, sup

s∈[t,t]
EQ (|ϕ±

s |3/2
)
+ sup

s∈[t,t]
EQ
(
Fs
Ft

)3+ι

<∞. (A.3)

Then for τ ↓ 0,

ert,τOt,τ (k)

τFt−,τ

P−→


ϕ+t e

k(1−α+t )

α+
t (α

+
t −1)

, if k > 0,

ϕ−t e
k(1+α−t )

α−
t (α−

t +1)
, if k < 0,

, t = 1, ...., T, (A.4)

with the above convergence holding uniformly in k over compact subsets of (−∞, 0)∪(0,+∞).

Proof of Lemma 1. We will only show the first part of (A.4), the second being shown in

exactly the same way. We first collect some preliminary results and decompositions needed

30The condition on α+
t for the right tail ensures that the third moment of the arithmetic returns are finite.

The left tail and the value of the α−
t parameter play no role in the moment conditions.
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for the proof of the Lemma. Since the limit in (A.4) is for τ ↓ 0, we will henceforth assume

that τ < t, for t the constant appearing in (A.2) and (A.3).

Preliminary results and decompositions. Using the fact that by standard no-arbitrage

pricing, Ft−,τ = Xt−e
∫ t+τ
t (rs−δs)ds, and recalling the assumption that rt and δt are determin-

istic, we have

ert,τCt,τ (k)

τFt−,τ
=
ert,τEQ

t

(
e−

∫ t+τ
t rsds(Xt+τ −K)

)+
τFt−,τ

=
1

τ
EQ
t

(
eft+τ−ft − ek

)+
, (A.5)

where ft = log(Ft) for Ft the futures price for Xt expiring at some future date not before

τ (since we are interested in the increment ft+τ − ft, the expiration of the futures does not

matter as long as it is at or after τ), and Ct,τ (k) denotes the call price on Xt at time t with

time-to-maturity τ and strike K = Ft−,τe
k. From the risk-neutral dynamics of Xt in (2.2),

it follows by Itô ’s formula that

dft = −1

2
σ2
t dt−

∫
R
(ex − 1) νQt (dx)dt+ σt−dW

Q
t +

∫
R
xµ̃Q(dt, dx). (A.6)

The jumps may be split into,

J+
t =

∫ t

0

∫
x>0

xµQ(ds, dx) J−
t =

∫ t

0

∫
x<0

xµQ(ds, dx). (A.7)

Using the Grigelionis representation theorem (Theorem 2.1.2 in Jacod and Protter, 2012),

J+
t and J−

t may alternatively be represented as,

J+
t =

∫ t
0

∫
R

log(ϕ+s /α
+
s )−log(y)

α+
s

1{0<y<ϕ+s /α+
s }µ

+(ds, dy),

J−
t =

∫ t
0

∫
R

log(α−
s /ϕ

−
s )+log(y)

α−
s

1{0<y<ϕ−s /α−
s }µ

−(ds, dy),
(A.8)

where µ+ and µ− are independent homogenous Poisson measures with compensators ν+(dt, dy) =

dt⊗ dy and ν−(dt, dy) = dt⊗ dy, respectively. We further denote,

J̃+
t,τ =

∫ t+τ
t

∫
R

log(ϕ+t /α
+
t )−log(y)

α+
t

1{0<y<ϕ+t /α+
t }
µ+(ds, dy),

J̃−
t,τ =

∫ t+τ
t

∫
R

log(α−
t /ϕ

−
t )+log(y)

α−
t

1{0<y<ϕ−t /α−
t }µ

−(ds, dy).
(A.9)

Note that conditional on Ft, J̃
+
t,τ and J̃−

t,τ are the increments of Lévy processes with Lévy

measures ϕ+
t e

−α+
t |x|1{x>0}ds ⊗ dx and ϕ−

t e
−α−

t |x|1{x<0}ds ⊗ dx. Using this notation, further

define,

zt,τ = J̃+
t,τ + J̃−

t,τ , rt,τ = ft+τ − ft − zt,τ . (A.10)
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Note that conditional on Ft, zt,τ is the increment of a double exponential Lévy process with

characteristics that depend on Ft. Lastly, decompose the “residual” rt,τ as rt,τ (1)+ rt,τ (2)+

rt,τ (3), where

rt,τ (1) = −
∫ t+τ

t

1

2
σ2
sds−

∫ t+τ

t

∫
R
(ex − 1 + x) νQs (dx)ds, rt,τ (2) =

∫ t+τ

t

σs−dW
Q
s , (A.11)

rt,τ (3) = J+
t+τ − J+

t + J−
t+τ − J−

t − J̃+
t,τ − J̃−

t,τ . (A.12)

Proof of Lemma 1 (continued). In the proof we will let Kt denote some Ft-adapted

finite-valued random variable. We start with rt,τ (1) that does not depend on τ . Direct

integration implies∫ t+τ

t

∫
R
(ex − 1) νQs (dx)ds =

∫ t+τ

t

ϕ+
s

(
1

α+
s − 1

− 1

α+
s

+
1

(α+
s )

2

)
ds

+

∫ t+τ

t

ϕ−
s

(
1

α−
s + 1

− 1

α−
s

− 1

(α−
s )

2

)
ds.

(A.13)

Since α+
t > 3, α−

t > 0, and EQ(|ϕ±
t |3/2) <∞ by assumption (A.3), it follows that

Q
(
|rt,τ (1)| >

1

3
τ ι
∣∣∣∣Ft

)
≤ Ktτ

3/2−ι, ∀ι > 0. (A.14)

Further, using the Burkholder-Davis-Gundy inequality (see e.g., Protter, 2004) and EQ(|σt|3/2) <

∞, we have

Q
(
|rt,τ (2)| >

1

3
τ ι
∣∣∣∣Ft

)
≤ Ktτ

3/2−ι, ∀ι > 0. (A.15)

We turn next to rt,τ (3). Since α
+
t > 1, we may write

EQ
t |J

+
t+τ − J+

t − J̃+
t,τ | ≤ Kt

∫ t+τ

t
EQ
t

{∫ ϕ+s ∧ϕ+t

0

[
| log(ϕ+

s /α
+
s )− log(ϕ+

t /α
+
t )|+ | log(y)||α+

t − α+
s |
]
dy

}
ds

+Kt

∫ t+τ

t
EQ
t


∫ ϕ+t

α+t

∨ ϕ
+
s

α+s

ϕ+t

α+t

∧ ϕ
+
s

α+s

[
| log(ϕ+

t /α
+
t )|+ | log(ϕ+

s /α
+
s )|+ | log(y)|

]
dy

 ds.

(A.16)

From here it follows by (A.2) (and similar analysis for J−
t+τ − J−

t − J̃−
t,τ ) that

Q
(
|rt,τ (3)| >

1

3
τ ι
∣∣∣∣Ft

)
≤ Ktτ

3/2−ι, ∀ι > 0. (A.17)

Using the fact that conditional on Ft, µ
± are homogenous Poisson measures, we have

Q
((

µ+

(
[t, t+ τ ], [0,

ϕ+
t

α+
t

]

)
+ µ−

(
[t, t+ τ ], [0,

ϕ−
t

α−
t

]

))
> 1

∣∣∣∣Ft

)
≤ Ktτ

2

(
ϕ+
t

α+
t

+
ϕ−
t

α−
t

)2

.

(A.18)
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Denoting the set,

Ωt,τ =

{
ω : |rt,τ | < τ ι

∩ (
µ+

(
[t, t+ τ ], [0,

ϕ+
t

α+
t

]

)
+ µ−

(
[t, t+ τ ], [0,

ϕ−
t

α−
t

]

))
≤ 1

}
,

(A.19)

for arbitrary small ι > 0 and combining the above results, we have altogether

Q
(
Ωc
t,τ |Ft

)
≤ Ktτ

3/2−ι, ∀ι > 0. (A.20)

Next, by the Hölder inequality,

EQ
t

{
eft+τ−ft1{Ωct,τ}

}
≤
(
EQ
t

(
e(ft+τ−ft)

3−2ι
1−3ι

)) 1−3ι
3−2ι (Q (Ωc

t,τ |Ft

)) 2+ι
3−2ι , (A.21)

EQ
t

{
ezt,τ1{Ωct,τ}

}
≤
(
EQ
t

(
ezt,τ

3−2ι
1−3ι

)) 1−3ι
3−2ι (Q (Ωc

t,τ |Ft

)) 2+ι
3−2ι . (A.22)

From here, taking into account the bound on Q
(
Ωc
t,τ |Ft

)
in (A.20), and the integrability

condition in the Lemma, it follows that for every ϵ > 0 and some sufficiently small ι > 0,

P

(∣∣∣∣∣EQ
t

{(
1

τ

(
eft+τ−ft − ek

)+ − ϕ+
t

ek(1−α
+
t )

α+
t (1− α+

t )

)
1{Ωct,τ}

}∣∣∣∣∣ ≥ ϵ

)
≤ Kt

τ ι

ϵ
, (A.23)

P

(∣∣∣∣∣EQ
t

{(
1

τ

(
ezt,τ±τ

ι − ek
)+ − ϕ+

t

ek(1−α
+
t )

α+
t (1− α+

t )

)
1{Ωct,τ}

}∣∣∣∣∣ ≥ ϵ

)
≤ Kt

τ ι

ϵ
. (A.24)

Using the definition of the set Ωt,τ ,

EQ
t

{(
eft+τ−ft − ek

)+
1{Ωt,τ}

}
≥ EQ

t

{(
ezt,τ−τ

ι − ek
)+

1{Ωt,τ}

}
,

EQ
t

{(
eft+τ−ft − ek

)+
1{Ωt,τ}

}
≤ EQ

t

{(
ezt,τ+τ

ι − ek
)+

1{Ωt,τ}

}
.

(A.25)

Therefore, in view of (A.23)-(A.24), it suffices to show that

1

τ
EQ
t

{(
ezt,τ±τ

ι − ek
)+

1{Ωt,τ}

}
P−→ ϕ+

t e
k(1−α+

t )

α+
t (α

+
t − 1)

, t = 1, ..., T, (A.26)

uniformly in k. Using the fact that on the set Ωt,τ there is at most one jump, and further
this jump should be positive for ezt,τ±τ

ι − ek to be positive (provided τ is sufficiently small),
it follows that

EQ
t

{(
ezt,τ±τ

ι − ek
)+

1{Ωt,τ}

}

= EQ
t


∫ t+τ

t

∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
µ+(dy, ds)1{Ωt,τ}

 .

(A.27)
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By the Burkholder-Davis-Gundy inequality as well as the Hölder inequality, (A.20), and the
fact that α+

t > 1,

EQ
t


∫ t+τ

t

∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
µ+(dy, ds)1{Ωct,τ}


≤ Kt

EQ
t

∫ t+τ

t

∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
µ+(dy, ds)

α+
t −ι


1/(α+
t −ι)

×
(
Q
(
Ωct,τ |Ft

))1−1/(α+
t −ι)

≤ Ktτ
1+(1/2−ι)(1−1/(α+

t −ι)).

(A.28)

Therefore, to prove (A.26), we need to show that

EQ
t

∫ t+τ

t

∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
µ+(dy, ds)


P−→ ϕ+

t e
k(1−α+

t )

α+
t (α

+
t − 1)

, t = 1, ..., T.

(A.29)

However, by direct calculations,

EQ
t


∫ t+τ

t

∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
µ+(dy, ds)


= τEQ

t


∫ ϕ+t

α+t

e−α
+
t (k∓τι)

0

[
exp

(
log(ϕ+

t /α
+
t )− log(y)

α+
t

± τ ι
)
− ek

]
dy


= τϕ+

t e
±α+

t τ
ι

[
ek(1−α

+
t )

(α+
t − 1)

− ek(1−α
+
t )

α+
t

]
,

(A.30)

from which the result in (A.29), and hence (A.4), trivially follows. �
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Tables and Figures

Table 1: Available Options as a Function of Moneyness

K
Ft

< 0.9 (0.9, 0.9125) (0.9125, 0.925) (1.05, 1.0625) (1.0625, 1.075) > 1.075

18.21 1.88 1.97 1.84 1.48 5.51

log(K/Ft)

σATMt

√
τt

< −3.0 (−2.5,−3) (−2.0,−2.5) (1.0, 1.25) (1.25, 1.5) > 1.5

15.51 2.69 2.95 2.03 1.94 5.67

Note: The table reports the average number of options available per trading day for different
moneyness categories. σATMt refers to the day t at-the-money Black-Scholes implied volatility.

Table 2: Model Parameter Estimates

β−
0 β−

1 β−
2 β−

3

α−
j 12.783 (0.327) 0.350 (0.015) −2.110 (0.099) −0.001 (0.194)

12.784 (0.323) 0.350 (0.014) −2.110 (0.099) −

β+
0 β+

1 β+
2 β+

3

α+
j −1.519 (1.385) 0.861 (0.015) 4.277 (0.420) −0.631 (0.611)

23.191 (0.683) 0.562 (0.011) − −

Note: The table reports the parameter estimates for model in equation (5.5) for the weekly
tail shape parameters α±

j , with asymptotic standard errors in parentheses. Separate model
estimates are reported for the left tails (top panel) and right tails (bottom panel).
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Jump Tail

Figure 1: Jump Tail Intensity for Different Level Shift Parameters. The figure plots the jump
tail intensity νQt (dx) defined in equation (2.7) for different values of the ϕ±

t parameters.

Jump Tail

Figure 2: Jump Tail Intensity for Different Shape Parameters. The figure plots the jump tail
intensity νQt (dx) defined in equation (2.14) for different values of the tail decay parameter
α±
t .
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Figure 3: Left Jump Tail Index Estimates. The figure plots 95% confidence bands for the
estimates of 1/α−

t under the assumption that the shape of the left jump tails are constant over
annual (top), monthly (middle), and weekly (bottom) horizons, respectively. The calculation
of the confidence bounds explicitly adjust for the presence of first-order spatial dependence
in the estimates.
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Figure 4: Right Jump Tail Index Estimates. The figure plots 95% confidence bands for
the estimates of 1/α+

t under the assumption that the shape of the right jump tails are
constant over annual (top), monthly (middle), and weekly (bottom) horizons, respectively.
The calculation of the confidence bounds explicitly adjust for the presence of first-order
spatial dependence in the estimates.
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Figure 5: Relative Option Tail Estimation Errors. The figure plots the relative fit of the
log(Ot,τt(kt,1)/Ot,τt(kt,N±

t
)) ratio averaged over weeks, under the assumption that the tail

index parameters are constant over the whole sample, annual, monthly, and weekly horizons,
respectively. The left (right) panels report the fits for the puts (calls) and the left (right)
tails.
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Figure 6: Relative Option Tail Estimation Errors for the Merton Jump Model. The figure
plots the relative fit of the log(Ot,τt(kt,1)/Ot,τt(kt,N±

t
)) ratio from the Merton jump model

estimated on a weekly basis. The left (right) panel reports the fits for the puts (calls) and
the left (right) tails.
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Figure 7: Model-based Jump Tail Index Estimates. The figure plots the fitted values of
the left (top) and right (bottom) tail indexes, 1/α−

j and 1/α+
j , respectively, based on the

parametric model in equation (5.5).

30



References

Aı̈t-Sahalia, Y., M. Karaman, and L. Mancini (2013). The Term Structure of Variance Swaps, Risk
Premia and the Expectations Hypothesis. Princeton University, Working paper.

Aı̈t-Sahalia, Y. and A. Lo (1998). Nonparametric Estimation of State-Price Densities Implicit in
Financial Asset Prices. Journal of Finance 53, 499–548.

Andersen, T. G., L. Benzoni, and J. Lund (2002). An Empirical Investigation of Continuous-Time
Equity Return Models. Journal of Finance 57, 1239–1284.

Andersen, T. G. and T. Bollerslev (1998). Answering the Skeptics: Yes, Standard Volatility Models
do Provide Accurate Forecasts. International Economic Review 39, 885–905.

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing It Up: Including Jump
Components in the Measurement, Modeling, and Forecasting of Return Volatility. Review of
Economics and Statistcis 89, 701–720.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and L. P. (2001). The Distribution of Realized
Exchange Rate Volatility. Journal of the American Statistical Association 42, 42–55.

Andersen, T. G., N. Fusari, and V. Todorov (2013). Parametric Inference and Dynamic State
Recovery from Option Panels. Working paper, Northwstern University.

Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric Analysis of Realised Volatility and
its use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society, Series
B 64, 253–280.

Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and Bipower Variation with Stochastic
Volatility and Jumps. Journal of Financial Econometrics 2, 1–37.

Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of Testing for Jumps in Financial
Economics using Bipower Variation. Journal of Financial Econometrics 4, 1–30.

Barro, R. J. (2006). Rare Disasters and Asset Markets in the Twentieth Century. Quarterly Journal
of Economics 121, 823–866.

Bates, D. S. (1996). Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche
Mark Options. Review of Financial Studies 9, 69–107.

Bates, D. S. (2000). Post-’87 Crash Fears in S&P 500 Future Options. Journal of Econometrics 94,
181–238.

Bhargava, A. (2013). Executive Compensation, Share Repurchases and Investment Expenditures:
Econometric Evidence from US Firms. Review of Quantitative Finance and Accounting 40,
403–422.

Bollerslev, T. and V. Todorov (2011a). Estimation of Jump Tails. Econometrica 79, 1727–1783.

Bollerslev, T. and V. Todorov (2011b). Tails, Fears and Risk Premia. Journal of Finance 66,
2165–2211.

Broadie, M., M. Chernov, and M. Johannes (2007). Specification and Risk Premiums: The Infor-
mation in S&P 500 Futures Options. Journal of Finance 62, 1453–1490.

31



Carr, P., H. Geman, D. Madan, and M. Yor (2003). Stochastic Volatility for Lévy Processes.
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Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales. Lecture notes in Mathemtatics
714. Berlin: Springer-Verlag.

Jacod, J. and P. Protter (2012). Discretization of Processes. Berlin: Springer-Verlag.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems For Stochastic Processes (2nd ed.). Berlin:
Springer-Verlag.

Kelly, B. (2012). Tail Risk and Asset Prices. University of Chicago, Working paper.

Kou, S. (2002). A Jump Diffusion Model for Option Pricing. Management Science 48, 1086–1101.

Kou, S. and H. Wang (2002). Option Pricing under a Double Exponential Jump Diffusion Model.
Management Science 50, 1178–1192.

Merton, R. (1976). Option Pricing when Underlying Asset Returns are Discontinuous. Journal of
Financial Economics 3, 125–144.

Metaxoglou, K. and A. Smith (2012). State Prices of Conditional Quantiles: New Evidence on
Time Variation in the Pricing Kernel. University of California, Davis, Working paper.

Pan, J. (2002). The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-
Series Study. Journal of Financial Economics 63, 3–50.

32



Protter, P. (2004). Stochastic Integration and Differential Equations (2nd ed.). Berlin: Springer-
Verlag.

Quintos, C., Z. Fan, and P. C. B. Phillips (2001). Structural Change Tests in Tail Behavior and
the Asian Crisis. Review of Economic Studies 68, 633–663.

Rietz, T. (1988). The Equity Risk Premium: A Solution. Journal of Monetary Economics 22,
117–131.

Rosenberg, J. and R. Engle (2002). Empirical Pricing Kernels. Journal of Financial Economics 64,
342–372.

Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance 69, 771–817.

Song, Z. and D. Xiu (2013). A Tale of Two Option Markets: Pricing Kernels and Volatility Risk.
University of Chicago, Working paper.

Wachter, J. A. (2013). Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market
Volatility? Journal of Finance. forthcoming.

Wagner, N. (2005). Autoregressive Conditional Tail Behavior and Results on Government Bond
Yield Spreads. International Review of Financial Analysis 14, 247–261.

33


