SUPPLEMENT TO “TESTING FOR TIME-VARYING
JUMP ACTIVITY FOR PURE JUMP
SEMIMARTINGALES’

By VIKTOR TODOROV

Northwestern University

This supplement contains proofs of the auxiliary results (Lemmas
2-5) given in Section 6.4 of the main text.

1. Proof of Lemma 2. We start with (6.16). Recalling (6.44), we de-

note
~ S

Xs = X(i—?)An +/ 5ud5u, S € [(’l/ — 2)An,ZAn],
(i—2)An,

o ATX — A7 X Asw’loaa,l”\ | |
KA il N V7 T e N e T B U

Using (6.46) and applying Lemmas 2.1.5 and 2.1.7 of [1], we have

1Ay
A;WE?—Q’ / (Ou— — Gu)dSu| < KA,
(i—2)A,

for some sufficiently small ¢ > 0. Then using the above bound and (6.38)-
(6.39) (note 8/ < 3/2 from (4.9)), we have

Al E? |21 (u) — 22 (u)| < KAY/2T
i—2 |~ 7 n

Next, by conditioning on the filtration generated by W and VIN/, we have (see
e.g., Proposition 3.1 of [2])

: IND NI Aguf [(24 (5.7 ds
4 s| u——————— =ex — )
=2\ (V7 (p)) /e P (Vi (p)) Bl

and from here by Taylor expansion and (6.45), we have

(A.2) B, ((u) | < KA.
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Combining (A.1) and (A.2), we have (6.16).

We turn next to (6.17). Using the trigonometric identity cos(a) cos(b) =
$cos(a—b)+ 5 cos(a+b) for any a,b € R, the above result, as well as (6.11
and (6.14) of Lemma 1, we have

)

(A.3) E[E!, (2 (u)z] (v)) — Eo,i(p, u,v)| < K(an Vi, b).

Using similar steps as for the proof of the above inequality, and in addition
the trigonometric identity cos(a + b) = cos(a) cos(b) — sin(a) sin(b) for a,b €
R, E\‘Z"(p) - ‘7[11(]9)] < KAV/P /kyn as well as successive conditioning:
(A.4) E[B}; (2 (w)2)1(v) = Sri-1(p,u,0)] < K(an V k).

To prove (6.17), we use the decomposition

(Zf )2 (T~ E?_2<xi>>)2 HZ E?_2<xi>)2

iGIJn ZEI;-'L
n 2( S (i wai))) ( 3 Eh(sci)).
iGI;‘ iGIJT.‘

Using the bounds in (6.16) and (A.3)-(A.4), we have

) Ly (S ) - = <

; n
1€Ij

(S mrate) < B X Ea?) < Kmaat

ZEI" iEI;L

from which the result in (6.17) follows by an application of Cauchy-Schwarz
inequality.
We turn next to (6.18). Using second-order Taylor expansion, the fact

~ 2
that E (A;p/BVi"(p) - |E\f) < K/ky, we have

ZZ i = E(p,u,v)) ZZ'(MV?}]J) 1)+Op<];).

j= 116]" j=14el™

where Z = —(E;(p, u,v)u + E;(p, u,v)v)/p. Using the bound E|o; — o4|?

<
K|t—s| for s,t > 0 (which follows from assumption SB), E\A;p/BVin( )2 <
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Anp/ﬂ‘/;n( )

[oi—2)A, [P

K (since p < 8/2) and applying Cauchy-Schwarz inequality, we have
—p/BY; A, p/Bin
. 7r(p)

|0 (i—kn—3)An

| Bl ~ Ik, -a,
knAn

Using next the fact that EI"

Davis-Gundy inequality, we have

(V:(p) — |&|’) = 0 as well as Burkholder-
iZﬁ( AV (p)
L7 \ o
j=1 ZGIJ”

—1) =0, (Vn).
(i—k—n—3)A, [P ) » (Vi)
Combining the above three results, we have (6.18)

We continue with (6.19). We first decompose

T tmn+1 i tmy
Dom= D, (@-EL@)+ > Ew)
il i=i"+2 i=in+1
and we further set ; = z; — E' | (z;
(A.5)

(i) + EM(x;41). Using (6.16), we have
(%
Next using the notation

B, (3)| < KAy
, <A;W(Ms A" S)
zi (u)" = cos (u

SAT) (o)
Py
and the bounds in (6.11), (6.13), (6.14) and (6.36)-(6.39), as well as the Ito
semimartingale assumption for o, we have
Elz (u) - 2

()| < K (an VEY2V (kA )1/2)
From here, using also the boundedness of x;, we have
(A.6)

(A7)

E B} o(Z:)* — E(p, u,v)| < K(omvk,;l/2 (knA )1/2>
(@) -1
(A.8)

E B} o(Z:)° — Ti(p,u,v)| < K (0471\/1@21/2 (knA )1/2)

E‘EZ 3 (@27 1) — T(p,u,v)‘ﬁK(an\/kgl/z (kA)1/2>

3
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where

_ - Zo(u) - Zo(v) ’
Tu(pyev) ‘E<z<p,u> log(L(p.w))  L(p.v) 1og<,c<p,v>>> |

Ta(p,u,v) =E [(E(p, u)zlg(ng)ﬁ(p,u)) B E(p,v)zllggé)ﬁ(l%v))>2
Z1(u) Z1(v) ﬂ

X
<E(p, u)log(L(p,u))  L(p,v)log(L(p,v))
and for i = 0,1 (recall the notation for S in Section 4.1 for i = 1,2,3)

)

S(ﬁ) - S(ﬁ) S(ﬁ) S(ﬁ) c, 5uP
Zi(u) = cos (uW) - (cos (u ’J;) —Cos <u ;7;))65 _ e~ Cppu®
Fp,p Hp,p P,

We set f]" =[(7—1)(mp+1)+k,+3,...,j(mn+1)+k,] and we further use
the shorthand y; = Z; —EI" ;(Z;). We can then use Bukrholder-Davis-Gundy
inequality for discrete martingales to get

1 4
m%E< Z yi) <K,
iel?
and further using (A.5), we have
1 4
m2E< > E?_l(:z,-)> < KAZom2,
" Nieln

Combining these two results, and using Holder inequality as well as A,m,, —
0 (which follows from (4.9)), we then have

4 4
(A.9) 21&3’(2%) _ <Zy> ’ < KAYZ+L/2,
mTL

; ~TL ; ~’l’l
zGIj zEIj

Using the boundedness of the terms z; and again A,m, — 0, we further

(5 (59

el ieTn

2
mp

(A.10) E‘
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4 4
Thus, we are left with analyzing E7, <Zl T yz) . We can split (Ziefn yl> =
J J J
le + Yf + Yj3 + Yj4 + Yj5 where for s =1, ..., 5:

(All) Y;‘S - Z Yi1 YiaYisYiy,s i17i27i37i4 € j;n7

(41,i2,i3,i4) EAS

andAl—{21—22—13—z4 U 21—12—23—24—}-1} A2:{11—
12—13>24+1} A3—{11:’52>13—Z4} At —{11212>23>Z4}
and A° = {11 > 12} with (21,12,13,24) being the ordered rearrangment
of (iy,i9,13,14) (with o> iy > iy > 14) Using the boundedness of y;,
we have ]E\Y]l| < Km,,. Also, using law of iterated expectations and since
E? ((yi) = 0, we easily have E%l (Y]5) = 0. Using (A.5)-(A.7), we have

(AIQ) E|E?H(Y']2)‘ <K (an V, k;l/? (k‘ A )1/2) m2,

'E” Y3 — 38 (p,u,v)

(A.13)
<K (an VET2V (kyAp)Y? v m;1> .

We are left with Y}4. First, we will show

2
(A.14) Ein > yryz) < Km;, i€lf.

J
r,lel;l: i>r>l

This bound follows from the following two estimates

2
) y) < Ky, re T,
lelr, I<r

E?? [(y” Z yll) (ym Z yl'z)] ’ =0, r1>re, r1,12€ TJT'L,

llefn, li<ry @eﬁ, lo<ra

which in turn follow from applying successive conditioning and E ;(y;) =
Therefore, using successive conditioning, the bounds in (A.5), (A.6), (A. )
and (A.14), we have

(A.15) EEL (V)| < K [(an VY2 (knAn)1/2> m2 v mn} .

Combining the bounds in (A.9)-(A.15) we get the result in (6.19).
Finally, (6.20) follows by an application of Burkholder-Davis-Gundy and
Jensen’s inequality. O
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2. Proof of Lemma 3. We start with the bounds involving 51(2’(1)(
Using Taylor series expansion, we have the following decomposition

a - Agl’/ﬁv‘@n P B
09w) = Gt folf) (2 o)

It
(A.16) PP
A;p/ﬁvn(p) 2
+ i) (S o)
Fp,p
. APV (p) —p
where Z; is between ="—4—~ and |7|;, and for z > 0
Fp,5
Oy pu? (1= 1702801 E
G™M(u,z) = *ée n . 1928, 17
v P B/p+1
728,
Hr(uz) = 25 (2 44 eCP’BU6<1 20 )'C’(i—?)&b'ﬁ
) 3 2 »\p xﬁ/p+2
lo(i—2)an !
— 1 é ’ eCPwBuﬂ (1_ z;/p > Cp’ﬂu5|g(i_2)An’2ﬁ
2 P x2(/3/p+1) ’

We further denote with é;‘(u, x) and ﬁ[‘(u, x) the counterparts of G} (u, x)
and H'(u, ), respectively, in which o(;_9)a, is replaced by o(;_i,_3)a,,-

Using the It6 semimartingale assumption for o (from Assumption SB),
we have:

(A.17) E} 1, _3|GP(u, o) — G (w, |0k, —5)a,1")” < K (knAn),

(A18)  EPy _slH (u,[517) = HP (u, |0k, —)a, [P)* < K (kaln).
Further, using the bounds (6.11) and (6.13), we have
(A.19) Fks (AP 0) — o1 < K (e v ).

From here, using Cauchy-Schwarz inequality, we have

(820) [B7 4, G2 1) (MW ~io) )| < Klan v V)

p/B
Hop.
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Using G7(u,|0(i—2)a, ") = G} (v,|o(i—2)a,|P) and Taylor series expansion
(and the boundedness of the first derivative of H]'(u,x) in its second argu-
ment), we also have

Gi(u, [o17) — G} (v, [o17)
= 2(H" (u, |0 (i—k,-3)a, ) = H}' (v, 0(—k,, 32, ) (O] = o i-2)a, ") + B,

where R} is residual term satisfying
IR} < K|[of — |og_oya, IP1? + Kllog—aya, [P = 10—k, —3)a, 1

From here, using successive conditioning, (6.11), (6.12) and (6.13), as well
as the It6 semimartingale assumption for o, we have for some sufficiently
small ¢ > 0

(A.21)
A;P/ﬂvn(p)
EL, _3<(G?<u, o) — G, ra|f-’>) ( - |a\?)) \
2 n 3 7 p/g )
'upﬁ
< K(AY2 v apkn An V knAy).

Next, given the boundedness of the first derivative of H*(u, ) in its second
argument, we have (recall the definition of &; in (A.16)):

[ (1, 51) = HY (u,[51])] < K [A70V7 (p) = ol

)

and therefore using (A.19), we have

E?—k‘n—?) —Hpp

(HP (uy ) = HY (s [o17) | APV () = i o

|
(A.22)
< K(ad v E;/?).

Further, using (A.18) and (A.19), we have by Cauchy-Schwarz inequality

|

(A.23)

(P (u, [317) = HI (u, 01—, —3ya, IP)) | ARPPV (p) — /] [P

n
i—kn—3
< K\EnAn(a2 V).
We then note that

knB" (u) 1
Y5 |0(cka—3)a, P’

H(u, |0(i—py—3ya, [P) =
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and therefore we need to look at

kn A*p/ﬁvn(p) - 2
‘2]3 < - |U‘f) - Ep,ﬁ-

O(i g _ p/ﬁ
|0 (i—kn—3)A s

Using the bounds in (6.11) and (6.13) as well as Cauchy-Schwarz inequality,
E7 s (800 (0) — pal?)

- n n n 2 Qn
- An2p/ﬁEi7kn73 (‘/z (p) - V; (p)> ’ < K<ai v \/kf> .

Further, using the It6 semimartingale assumption for o (from Assumption
SB) and successive conditioning, we have

(A.24)

1 1—2 2
k-3 . E §illog—2)a, P = 0G—kn—3)a, )| < KAy,
mn . .
Jj=i—kn—1

where we denote

A;p/ﬂ(]A?X*A? | X|P—EP L|ATX — AT X|P)

lo(i—2)A, |p

(A.25) ¢ =

)

and from here by using Cauchy-Schwarz inequality and (6.13),

(A.26) 2

B N A A ) B VA1) ) A (N e VA,
i—kn—3 % | % Z &5 <K .
|0 (i—k—3) A | e Vkn

With this notation, we can next split ( Zj k1 5]) into
Z &&+ k‘2 Zgr Z &
K rl:r—1|<1 T r>l4+1

where in the above summations the indexes r and [ take values in the set
[i — kn —1,...,7 — 2]. Using successive conditioning we trivially have

(A.27) ?kn:}(Z <§r Z §l>> = 0.

T r>04+1
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Next, using successive conditioning and similar steps as in the proof of (6.11),
together with k&, =< n® with @ > 1/3, we have for some sufficiently small
¢ > 0

2p/6
Z &8 — PB E < KA}L/Q—H.

n rl:r—1|<1

(A.28) i kn—3| 72

Combining the bounds in (A.20)-(A.24) and (A.26)-(A.28), we have (6.21)

and (6.22).
We turn next to (6.23). Recalling (A.16) and using G} (u, |0(;—2)a, |P) =
G} (v,]0(i—2)a,|P), we have

|*“><> 22 ()2 < K[(H (u,2:))? + (H (v, 3:)) (AP PV (p) — 6 F1a?)
K[(G} (u, |og-2)a, [P) — G (u, [719)? + (GF(v, |0 -2)a, P) — GT(v,[7]))?]
( p/ﬁvn) P/ﬁ|0|p)

Using (6.11) and the fact that o is an It6 semimartingale, we have

2
E\(G:-L(u, oy, IP) — Gl (u, [312))? (AWW( ) - W\op)

(A.29)
< Ko (ko Ay).

We next bound (G} (u, [o;—9)a, [P) — G} (u, |E|f))2A;2p/ﬁ(Vi"(p) — 171”(]9))2
First, we set & = &iloi—2)a, P (recall the definition of 51 in (A.25)). With

this notation we have A;p/ﬁ(‘/;"(p) — Vi (p)) = ﬁ i ka1 5]
Second, we denote for v,z € Ry and y € R:

Gu,z,y) = —

8
éecpﬂuﬁ (17;?/17) |y’ﬁ
p xﬂ/p‘f'l ’
and recalling the notation G7'(u,z) and éf(u,x) after (A.16), we have
GMu,z) = G(u,x,a(i_2)An) and G}(u,x) = G(ujx,a(i_kn_g)An).

Then, for | = i—ky, ...,i—2, we split G} (u, |o(;—2)a,, [P) =G} (W [0(i—k,—3)a,|7) =
G:Lll + G” + G” , where

GZ}I = G(u,|og—2)a, I, 0i—2)a,,) — G(u,|oia, P, 01, ),
n,2
Gij?): (u,|oia, [P, 01a,) — G(us lo—3)a, [P, 71=3)A, )
Gy = G(u,log-s)a, P, 00-3)a,) = G(Us [0k, —3)A, 1P Tk —3)A,):
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and similarly we split G} (u, |E|f) —é?(u, ’U(i_kn_g)An P) = 62}1 +§Z}2 —i—éZ}g
forl =i —ky,,...,i — 2, where
1 _ _
Gy = Gu, [, 0i-2)a,) — Gu, [7F 5, 01a,),
—n,2 _ o
Gi,l = G(u, ’0’21-&-27 UZAn) - G(u7 |UVZ1_17 0(173)An)7

—n,3 _
Gy =G [}, 1 00-3)a,) = G |0k, —3)20 P i kn—3)A, )

with
1 i—2
o, = P S logreanl’s 1=i—ky 1,02
j=i—kn—1

Using the fact that o is an [t6 semimartingale, we have

1

EP(IG; 2 + G [2) < K (k).
72 ek

E?—?)(‘G?,z |4+ €y 1) < KAy,

n n, —n,3
Ez’fknfg(’Gi,zgp +1Gi 1) < K(knAy).

)

Then, using the above result, successive conditioning as well as the Cauchy-
Schwarz inequality, we have:

n n — 1 c An
(A.30) B|(G2(u, [0z, ")~ G <u,rarf>>2(,€2 )3 @@)\ <K Vo
o lr—1|<1 "

We turn next to (G7'(u, [o(i—2)a, [P) — G} (u, 7l}))? <kl% Zr,z;\r_l\>1 5{7) We

can apply Holder inequality and use the fact that o is an It6 semimartingale,
to get

E|T1To| < K (BITa| %)/ (BIT|") !/ < K (ko) (B|T2|*)',

where we set Ty = (G} (u,|o(i—2)a, ") — G} (u,|7])))* and Tp = é > Ur

with ¢, = 5Zr>l+1 & with r and [ taking values in [i —kn—1,..,1—2].
Using successive conditioning we have

E (4r|Fy) =0, E(Wn)! < Kk2, 7€ i —ky—1,.pi— 2.

Then we can apply the above bounds and Burkholder-Davis-Gundy inequal-
ity for discrete martingales

4
E(zwr) < Kk S E()! < KL,
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where in the above summations r takes values in [i—k,,—1, ..., i—2]. Therefore

E|Ty|* < % and from here

(knAn)3/4
kn, '

Combining the bounds in (A.19) and (A.29)-(A.31), we get the result in
(6.23).
Next, the result in (6.24) follows from the first-order Taylor expansion

a A;p/ﬂ n
0w) = Gt (S o),

(A.31) EIT\ T < K

p/B
Hp,p
. AP BV (p) _p .
where #; is between —*— 2=~ and [7];, the boundedness of the function
w

p,8
Gi(u,x), and the bound in (A.19).
We continue with (6.25). Using Taylor expansion we have

~25), 5( ik )
zi(u) = ——| ———— — 1) +ri(u),
() p \loi—2)a, P S
for some r;(u) satisfying

_ 2
ri(u)] < K [[717 = lo-2)a, "]

From here the result in (6.25) follows directly from the assumption for o
being [t6 semimartingale in Assumption SB.
Finally, (6.26) follows from the boundedness of 552"1) and Ef’b) as well as

the bound in (6.14). O
3. Proof of Lemma 4. We make the following decomposition for any
u € ]R+Z
N 1 3
L"(p,u) = L(p,u) = n—Fk,—2 Z:l R?(U),
J:

where R} (u) =377, 37](u) for j =1,2,3 and

%

O(i-2)a, (A1S — A?ﬁ)) ~exp (_ Aﬁ“ﬁ|‘7(z‘—2)An|ﬁ>

rL(u) = cos (u

(V" (p))HP ALV (p))B/p
2(0) = cos [ 2EX ZAAXY | (0604, (A7S — AL, S)
() ( (V" (p))V/p > ( (V7 (p) /P )
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AguPloG_ga, |’
r3(u) =exp [ — & (=2)4n —exp (=C,gu?) .
ALV (p)P (~Cosn?)

First, using (6.14) and E? ,(r}(u)) = 0, we easily have

(A.32) R'(u) = O, (A;l/z v nk;ﬁ/@p)ﬂ) )
Similarly, using the bounds in (6.36)-(6.39) and (6.14), we have
(A.33) Ri(u) = O, <A;1/2‘L v nk;ﬁ/@p)ﬂ) 7N}
We are left with R%(u). Using Taylor expansion we can write

BV ) = V()

B p/B

rf’(u) — ¢~ O’ Cp
PS5 loi-k,—3)a, P

+ 77 (w),

where using the bounds of Lemma 1 and the It6 semimartingale assumption
for the process o from Assumption SB we have

E[73(u)| < K (@v an V k,;l) :

Further, using Burkholder-Davis-Gundy inequality for discrete martingales

n

s 2w -7w) =0, (VA,).
" T iskat3

Thus, altogether
(A.34) RE(u) = Oy (nan vV nk‘gl) .
Combining (A.32), (A.33) and (A.34), we have

-~

(A.35) L™(p,u) — L(p,u) = Oy (an V k).
Now we turn attention to the difference

En(p’ u) B ‘C(p’ u) - En(p’ U) B ‘C(pa ’U)
L(p,u)log(L(p,u))  L(p,v)log(L(p,v))

For the part of the difference involving R (u) and R%(v) there is cancelation
of a bias term which allows to improve on the bound implied by (A.35).
Henceforth we denote

G )

" L(p,u)log(L(p,u))  L(p,v)log(L(p,v))
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Using third-order Taylor expansion, we have

—p/By n p/B 2
3 Cp,/p’(vﬁiug) (5)2 ’An V ( ) /Lp/3|a-(z 2An|p| +~3

/r‘.
2p/B PR
“ppﬂ/ |0 -2)a, [

where

73] < KIAPPVE(p) — 12 1o -aya, 1P

We can split

APV (p) — i Doy a, IP = ALPP (VI (p) — Vi (p))
+ (APPV (p) — WS 1) + 15 (5! — lo—aya, P)-

Using then Cauchy-Schwarz inequality and the bounds of Lemma 1, as well
as the It6 semimartingale assumption for the process o, we have

E|(A7/ AV () — i/ oi—aya, PP = ARV (p) = V()]

(vpv VA,

Next, using successive conditioning, we easily have

(A.36)

(A7) AZPIPEL, (VP - Vi) = —F, .| Y &&).

k2
n rl:r—1<1

where recall £, = A;p/ﬂﬂAﬁX — A XP-E" ,(|JAT’X — AT, X|P)). Using
the same steps as in the proof of (A.28) in Lemma 3 as well as the Ito6
semimartingale assumption for the process o, we have (and the bound can
be further improved but suffices for the purposes here):

iEn Zrl [r—1|<1 &r&i 2;10/5E
ko i—kn—3 ’0(Z — An‘Zp —Hpp

Combining the results in (A.36)-(A.38) and since w > 1/3, we then have
altogether

(A.38) < KALS,

(A.39) B, (= B,)| < K( \/

L5V VA

Next, using second-order Taylor expansion for rf’, we easily have

(A.40) P (P2 < K(0A VE2V kWA,
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Combining the above two results, we have

1 i 3 9 Qp, kn,
i) ey 3 =0, (2 SE V2V VE,).

i=kp+3

Hence, using the above bound and the ones in (A.32) and (A.33), as well as
the fact that p < 8/3, w € (1/3,1/2) and 5 A1 —§ > 1 (these conditions
follow from the assumptions of Theorem 2), we have for V¢ > 0

En(p,u)—ﬁ(p,u) _ Zn(p,’l))—[,(p,’l)) _ — 1/2— &
Cp.uw)log(L(p.u)  L(p,v)log(L(p.) "= O (A" v \/l?>

From here, using first-order Taylor series expansion, the bound in (A.35) as
well as w € (1/3,1/2) and fF A1 —§ > 1. we have

log(L"(p,w)) log(L"(p,v)) , 12—, Qn_
log(L(p.uw)  log(L(p,o) om0 <A" Vm)‘

Similar arguments lead to
log(—log(L" (p, u))) — log(—log(L" (p,v)))

~ Blog(u/v) — By = O, (Ai/?ﬂ v &%) ,

from which the result to be proved follows. O

4. Proof of Lemma 5. First, when M is a discontinuous martingale,
we can show (6.28) similar to the proof of the corresponding result of The-
orem 1 in [3]. So, we are left with showing (6.28) when M is a continuous
martingale. We denote

s

Ro=Xma [ onndSe seli-2)ani0)
i—2)Ap,

and

L ATX — AP X Aguflo_oya, |? ,
Z; (u) = | COS UW —exXp | — AEI(V;n(p))B/p {A;p/BVin(p)>e}’

and we further set 7; = 2} (u)/(L(p, w) log(L(p, u)))—2} (v) /(L(p, v) log(L(p, v))).
Using (6.16) and since E ,(Z}(u)) = 0, we have for some sufficiently small
t>0

(A.42) (B} 5(2) (u) = 2} ()] < KA/
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With the notation of z; given in the statement of Lemma 2, and using the
above result and the bounds in (6.36)-(6.39), the fact that 8’ < /2 and

since my,/v/n — 0o, we also have for some sufficiently small ¢ > 0

(A.43) E<1§:@r—@02gzagﬁa

m.
n ielr

Then with the notation y = L3 and yr = L3 T, we have
j n i

n

for sufficiently small ¢ > 0

A1/2+L
A4 E|(y?")? — (71)? < K—
(A.44) (W7)” = (57)°] < N
where we made use of Cauchy-Schwarz inequality and E@;")Q < K/my,. From
here, using the boundedness of the martingale M, we have for sufficiently
small ¢ > 0

(A.45)

[tbn |
\/bi > E%L[((y?)Q — @) (Mo 4145 (mnt1) — Mty 114 G—1)(mn+1))]
n iy
= 0p(Ay,).

So we are left with analyzing E?? [(my, @?)2 — m%l ZZ-GIJ,L Zi) (M, 4145 (mn+1) —

My, +14(j=1)(mn+1))]- Using a martingale representation theorem, we have
(A.46) B o(Zi(Mia, — M(i—2)a,)) = 0.

Using a martingale representation theorem and (6.11)-(6.14) as well as p <
B/4, we have
(A47) [EL5((Z (w)Z] (v) = Z04(p, u,v)) (Mia, =M -9)a,))| < K (anVk?).
Similarly, a martingale representation theorem plus (6.11)-(6.14) as well as
p < /4, yields
(A.48) Ef 5((Z (w)Z1(0) = Eri-1(p, w,0))(Mia, — Mi_3)a,,))]

' < K(ap VED.

Combining the above three bounds and using successive conditioning, we
get altogether

(A.49)
1

\E%[(mn@?f - D E) (M, s14j(mnt1) — Myt 14G—1) (mat1)]]
"iern

< K(ap VED.
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From here, since ay,/b,, — 0 and /b, /k, — 0, we have (6.28) for the case
when M is a continuous martingale as well. a
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