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This supplement contains proofs of the auxiliary results (Lemmas
2-5) given in Section 6.4 of the main text.

1. Proof of Lemma 2. We start with (6.16). Recalling (6.44), we de-
note

X̃s = X(i−2)∆n
+

∫ s

(i−2)∆n

σ̃udSu, s ∈ [(i− 2)∆n, i∆n],

z̃1
i (u) =

[
cos

(
u

∆n
i X̃ −∆n

i−1X̃

(V n
i (p))1/p

)
− exp

(
−
Aβu

β|σ(i−2)∆n
|β

∆−1
n (V n

i (p))β/p

)]
1{∆−p/βn V ni (p)>ε}.

Using (6.46) and applying Lemmas 2.1.5 and 2.1.7 of [1], we have

∆−1/β
n Eni−2

∣∣∣∣ ∫ i∆n

(i−2)∆n

(σu− − σ̃u)dSu

∣∣∣∣ ≤ K∆1/2+ι
n ,

for some sufficiently small ι > 0. Then using the above bound and (6.38)-
(6.39) (note β′ < β/2 from (4.9)), we have

(A.1) Eni−2

∣∣z1
i (u)− z̃1

i (u)
∣∣ ≤ K∆1/2+ι

n .

Next, by conditioning on the filtration generated by W and W̃ , we have (see
e.g., Proposition 3.1 of [2])

Eni−2

(
cos

(
u

∆n
i X̃ −∆n

i−1X̃

(V n
i (p))1/p

))
= exp

−Aβuβ ∫ i∆n

(i−2)∆n
|σ̃s|βds

2(V n
i (p))β/p

 ,

and from here by Taylor expansion and (6.45), we have

(A.2) |Eni−2

(
z̃1
i (u)

)
| ≤ K∆n.
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Combining (A.1) and (A.2), we have (6.16).
We turn next to (6.17). Using the trigonometric identity cos(a) cos(b) =

1
2 cos(a− b) + 1

2 cos(a+ b) for any a, b ∈ R, the above result, as well as (6.11)
and (6.14) of Lemma 1, we have

(A.3) E|Eni−2

(
z1
i (u)z1

i (v)
)
− Ξ̃0,i(p, u, v)| ≤ K(αn ∨ k−1

n ).

Using similar steps as for the proof of the above inequality, and in addition
the trigonometric identity cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) for a, b ∈
R, E|V̂ n

i (p)− V̂ n
i−1(p)| ≤ K∆

p/β
n /kn as well as successive conditioning:

(A.4) E|Eni−3

(
z1
i (u)z1

i−1(v)
)
− Ξ̃1,i−1(p, u, v)| ≤ K(αn ∨ k−1

n ).

To prove (6.17), we use the decomposition(∑
i∈Inj

xi

)2

=

(∑
i∈Inj

(xi − Eni−2(xi))

)2

+

(∑
i∈Inj

Eni−2(xi)

)2

+ 2

(∑
i∈Inj

(xi − Eni−2(xi))

)(∑
i∈Inj

Eni−2(xi)

)
.

Using the bounds in (6.16) and (A.3)-(A.4), we have

E
∣∣∣∣ 1

mn
Eninj

(∑
i∈Inj

(xi − Eni−2(xi))

)2

− 1

mn

∑
i∈Inj

Ξi

∣∣∣∣ ≤ K(αn ∨ k−1
n ),

1

mn
E
(∑
i∈Inj

Eni−2(xi)

)2

≤ E
(∑
i∈Inj

(Eni−2(xi))
2

)
≤ Kmn∆1+ι

n ,

from which the result in (6.17) follows by an application of Cauchy-Schwarz
inequality.

We turn next to (6.18). Using second-order Taylor expansion, the fact

that E
(

∆
−p/β
n V̂ n

i (p)− |σ|pi
)2
≤ K/kn, we have

bn∑
j=1

∑
i∈Inj

(Ξi − Ξ(p, u, v)) =

bn∑
j=1

∑
i∈Inj

Ξ
′
(

∆
−p/β
n V̂ n

i (p)

|σ(i−2)∆n
|p
− 1

)
+Op

(
n

kn

)
.

where Ξ
′
= −(Ξ

′
u(p, u, v)u+ Ξ

′
v(p, u, v)v)/p. Using the bound E|σt − σs|2 ≤

K|t−s| for s , t ≥ 0 (which follows from assumption SB), E|∆−p/βn V̂ n
i (p)|2 ≤
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K (since p < β/2) and applying Cauchy-Schwarz inequality, we have

E

∣∣∣∣∣∆−p/βn V̂ n
i (p)

|σ(i−2)∆n
|p
− ∆

−p/β
n V̂ n

i (p)

|σ(i−kn−3)∆n
|p

∣∣∣∣∣+ E||σ|pi − |σ(i−kn−3)∆n
|p|

≤ K
√
kn∆n.

Using next the fact that Eni−kn−3(V̂ n
i (p) − |σ|pi ) = 0 as well as Burkholder-

Davis-Gundy inequality, we have

bn∑
j=1

∑
i∈Inj

Ξ
′
(

∆
−p/β
n V̂ n

i (p)

|σ(i−k−n−3)∆n
|p
− 1

)
= Op

(√
n
)
.

Combining the above three results, we have (6.18).
We continue with (6.19). We first decompose

∑
i∈Inj

xi =

inj +mn+1∑
i=inj +2

(xi − Eni−1(xi)) +

inj +mn∑
i=inj +1

Eni (xi+1),

and we further set x̃i = xi − Eni−1(xi) + Eni (xi+1). Using (6.16), we have

(A.5)
∣∣Eni−1 (x̃i)

∣∣ ≤ K∆1/2+ι
n .

Next using the notation

z1
i (u)′ = cos

(
u

∆
−1/β
n (∆n

i S −∆n
i−1S)

µ
1/β
p,β

)
− exp

(
−Cp,βuβ

)
,

and the bounds in (6.11), (6.13), (6.14) and (6.36)-(6.39), as well as the Itô
semimartingale assumption for σ, we have

E|z1
i (u)− z1

i (u)′| ≤ K
(
αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
.

From here, using also the boundedness of x̃i, we have

(A.6) E
∣∣Eni−2(x̃i)

2 − Ξ(p, u, v)
∣∣ ≤ K (αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
,

(A.7) E
∣∣Eni−2(x̃i)

3 −Υ1(p, u, v)
∣∣ ≤ K (αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
,

(A.8) E
∣∣Eni−3(x̃2

i x̃i−1)−Υ2(p, u, v)
∣∣ ≤ K (αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
,
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where

Υ1(p, u, v) = E
(

z0(u)

L(p, u) log(L(p, u))
− z0(v)

L(p, v) log(L(p, v))

)3

,

Υ2(p, u, v) = E
[(

z0(u)

L(p, u) log(L(p, u))
− z0(v)

L(p, v) log(L(p, v))

)2

×
(

z1(u)

L(p, u) log(L(p, u))
− z1(v)

L(p, v) log(L(p, v))

)]
,

and for i = 0, 1 (recall the notation for S
(β)
i in Section 4.1 for i = 1, 2, 3)

zi(u) = cos

(
u
S

(β)
i+1 − S

(β)
i+2

µ
1/β
p,β

)
−
(

cos

(
u
S

(β)
i+2

µ
1/β
p,β

)
−cos

(
u
S

(β)
i+1

µ
1/β
p,β

))
e−

Cp,βu
β

2 −e−Cp,βu
β

.

We set Ĩnj = [(j−1)(mn+1)+kn+3, ..., j(mn+1)+kn] and we further use
the shorthand yi = x̃i−Eni−1(x̃i). We can then use Bukrholder-Davis-Gundy
inequality for discrete martingales to get

1

m2
n

E
(∑
i∈Ĩnj

yi

)4

≤ K,

and further using (A.5), we have

1

m2
n

E
(∑
i∈Ĩnj

Eni−1(x̃i)

)4

≤ K∆2+ι
n m2

n.

Combining these two results, and using Hölder inequality as well as ∆nmn →
0 (which follows from (4.9)), we then have

(A.9)
1

m2
n

E
∣∣∣∣(∑

i∈Ĩnj

x̃i

)4

−
(∑
i∈Ĩnj

yi

)4∣∣∣∣ ≤ K∆1/2+ι
n m1/2

n .

Using the boundedness of the terms x̃i and again ∆nmn → 0, we further
have

(A.10)
1

m2
n

E
∣∣∣∣(∑

i∈Inj

xi

)4

−
(∑
i∈Ĩnj

x̃i

)4∣∣∣∣ ≤ K
√
mn

.
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Thus, we are left with analyzing Eninj
(∑

i∈Ĩnj
yi

)4
. We can split

(∑
i∈Ĩnj

yi

)4
=

Y 1
j + Y 2

j + Y 3
j + Y 4

j + Y 5
j where for s = 1, ..., 5:

(A.11) Y s
j =

∑
(i1,i2,i3,i4)∈As

yi1yi2yi3yi4 , i1, i2, i3, i4 ∈ Ĩnj ,

and A1 = {̃i1 = ĩ2 = ĩ3 = ĩ4 ∪ ĩ1 = ĩ2 = ĩ3 = ĩ4 + 1}, A2 = {̃i1 =
ĩ2 = ĩ3 > ĩ4 + 1}, A3 = {̃i1 = ĩ2 > ĩ3 = ĩ4}, A4 = {̃i1 = ĩ2 > ĩ3 > ĩ4}
and A5 = {̃i1 > ĩ2}, with (̃i1, ĩ2, ĩ3, ĩ4) being the ordered rearrangment
of (i1, i2, i3, i4) (with ĩ1 ≥ ĩ2 ≥ ĩ3 ≥ ĩ4). Using the boundedness of yi,
we have E|Y 1

j | ≤ Kmn. Also, using law of iterated expectations and since

Eni−1(yi) = 0, we easily have Eninj (Y 5
j ) = 0. Using (A.5)-(A.7), we have

(A.12) E|Eninj (Y 2
j )| ≤ K

(
αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
m2
n,

E
∣∣∣∣ 1

m2
n

Eninj (Y 3
j )− 3Ξ

2
(p, u, v)

∣∣∣∣
≤ K

(
αn ∨ k−1/2

n ∨ (kn∆n)1/2 ∨m−1
n

)
.

(A.13)

We are left with Y 4
j . First, we will show

(A.14) Eninj

( ∑
r,l∈Ĩnj : i>r>l

yryl

)2

≤ Km2
n, i ∈ Ĩnj .

This bound follows from the following two estimates

Eninj

( ∑
l∈Ĩnj , l<r

yl

)2

≤ Kmn, r ∈ Ĩnj ,

∣∣∣∣Eninj
[(
yr1

∑
l1∈Ĩnj , l1<r1

yl1

)(
yr2

∑
l2∈Ĩnj , l2<r2

yl2

)]∣∣∣∣ = 0, r1 > r2, r1 , r2 ∈ Ĩnj ,

which in turn follow from applying successive conditioning and Eni−1(yi) = 0.
Therefore, using successive conditioning, the bounds in (A.5), (A.6), (A.8)

and (A.14), we have

(A.15) E|Eninj (Y 4
j )| ≤ K

[(
αn ∨ k−1/2

n ∨ (kn∆n)1/2
)
m2
n ∨mn

]
.

Combining the bounds in (A.9)-(A.15) we get the result in (6.19).
Finally, (6.20) follows by an application of Burkholder-Davis-Gundy and

Jensen’s inequality. 2
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2. Proof of Lemma 3. We start with the bounds involving z̃
(2,a)
i (u).

Using Taylor series expansion, we have the following decomposition

z̃
(2,a)
i (u) = Gni (u, |σ|pi )

(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

)

+Hn
i (u, x̌i)

(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

)2

,

(A.16)

where x̌i is between
∆
−p/β
n V ni (p)

µ
p/β
p,β

and |σ|pi , and for x > 0

Gni (u, x) = −β
p
e
Cp,βu

β

(
1−
|σ(i−2)∆n

|β

xβ/p

)
|σ(i−2)∆n

|β

xβ/p+1
,

Hn
i (u, x) =

1

2

β

p

(
β

p
+ 1

)
e
Cp,βu

β

(
1−
|σ(i−2)∆n

|β

xβ/p

)
|σ(i−2)∆n

|β

xβ/p+2

− 1

2

(
β

p

)2

e
Cp,βu

β

(
1−
|σ(i−2)∆n

|β

xβ/p

)
Cp,βu

β|σ(i−2)∆n
|2β

x2(β/p+1)
.

We further denote with G̃ni (u, x) and H̃n
i (u, x) the counterparts of Gni (u, x)

and Hn
i (u, x), respectively, in which σ(i−2)∆n

is replaced by σ(i−kn−3)∆n
.

Using the Itô semimartingale assumption for σ (from Assumption SB),
we have:

(A.17) Eni−kn−3|Gni (u, |σ|pi )− G̃
n
i (u, |σ(i−kn−3)∆n

|p)|2 ≤ K(kn∆n),

(A.18) Eni−kn−3|Hn
i (u, |σ|pi )− H̃

n
i (u, |σ(i−kn−3)∆n

|p)|2 ≤ K(kn∆n).

Further, using the bounds (6.11) and (6.13), we have

(A.19) Eni−kn−3(∆−p/βn V n
i (p)− µp/βp,β |σ|

p
i )

4 ≤ K(α4
n ∨ k−2

n ).

From here, using Cauchy-Schwarz inequality, we have

(A.20)

∣∣∣∣Eni−kn−3

(
Gni (u, |σ|pi )

(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

))∣∣∣∣ ≤ K(αn ∨
√

∆n).
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Using Gni (u, |σ(i−2)∆n
|p) = Gni (v, |σ(i−2)∆n

|p) and Taylor series expansion
(and the boundedness of the first derivative of Hn

i (u, x) in its second argu-
ment), we also have

Gni (u, |σ|pi )−G
n
i (v, |σ|pi )

= 2(H̃n
i (u, |σ(i−kn−3)∆n

|p)− H̃n
i (v, |σ(i−kn−3)∆n

|p))(|σ|pi − |σ(i−2)∆n
|p) +Rni ,

where Rni is residual term satisfying

|Rni | ≤ K||σ|
p
i − |σ(i−2)∆n

|p|2 +K||σ(i−2)∆n
|p − |σ(i−kn−3)∆n

|p|2.

From here, using successive conditioning, (6.11), (6.12) and (6.13), as well
as the Itô semimartingale assumption for σ, we have for some sufficiently
small ι > 0

∣∣∣∣Eni−kn−3

((
Gni (u, |σ|pi )−G

n
i (v, |σ|pi )

)(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

))∣∣∣∣
≤ K(∆1/2+ι

n ∨ αn
√
kn∆n ∨ kn∆n).

(A.21)

Next, given the boundedness of the first derivative of Hn
i (u, x) in its second

argument, we have (recall the definition of x̌i in (A.16)):

|Hn
i (u, x̌i)−Hn

i (u, |σ|pi )| ≤ K
∣∣∣∆−p/βn V n

i (p)− µp/βp,β |σ|
p
i

∣∣∣ ,
and therefore using (A.19), we have

Eni−kn−3

∣∣∣∣(Hn
i (u, x̌i)−Hn

i (u, |σ|pi ))
∣∣∣∆−p/βn V n

i (p)− µp/βp,β |σ|
p
i

∣∣∣2 ∣∣∣∣
≤ K(α3

n ∨ k−3/2
n ).

(A.22)

Further, using (A.18) and (A.19), we have by Cauchy-Schwarz inequality

Eni−kn−3

∣∣∣∣(Hn
i (u, |σ|pi )− H̃

n
i (u, |σ(i−kn−3)∆n

|p))
∣∣∣∆−p/βn V n

i (p)− µp/βp,β |σ|
p
i

∣∣∣2 ∣∣∣∣
≤ K

√
kn∆n(α2

n ∨ k−1
n ).

(A.23)

We then note that

H̃n
i (u, |σ(i−kn−3)∆n

|p) ≡ knBn(u)

Σp,β

1

|σ(i−kn−3)∆n
|2p
,
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and therefore we need to look at

kn
|σ(i−kn−3)∆n

|2p

(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

)2

− Σp,β.

Using the bounds in (6.11) and (6.13) as well as Cauchy-Schwarz inequality,∣∣∣∣Eni−kn−3

(
∆−p/βn V n

i (p)− µp/βp,β |σ|
p
i

)2

−∆−2p/β
n Eni−kn−3

(
V n
i (p)− Ṽ n

i (p)
)2
∣∣∣∣ ≤ K(α2

n ∨
αn√
kn

)
.

(A.24)

Further, using the Itô semimartingale assumption for σ (from Assumption
SB) and successive conditioning, we have

Eni−kn−3

∣∣∣∣ 1

kn

i−2∑
j=i−kn−1

ξj(|σ(j−2)∆n
|p − |σ(i−kn−3)∆n

|p)
∣∣∣∣2 ≤ K∆n,

where we denote

(A.25) ξi =
∆
−p/β
n (|∆n

i X −∆n
i−1X|p − Eni−2|∆n

i X −∆n
i−1X|p)

|σ(i−2)∆n
|p

,

and from here by using Cauchy-Schwarz inequality and (6.13),
(A.26)

Eni−kn−3

∣∣∣∣∆−2p/β
n (V n

i (p)− Ṽ n
i (p))2

|σ(i−kn−3)∆n
|2p

−

 1

kn

i−2∑
j=i−kn−1

ξj

2 ∣∣∣∣ ≤ K√∆n√
kn

.

With this notation, we can next split
(

1
kn

∑i−2
j=i−kn−1 ξj

)2
into

1

k2
n

∑
r,l:|r−l|≤1

ξrξl +
2

k2
n

∑
r

ξr
∑
r>l+1

ξl,

where in the above summations the indexes r and l take values in the set
[i− kn − 1, ..., i− 2]. Using successive conditioning we trivially have

(A.27) Eni−kn−3

(∑
r

(
ξr
∑
r>l+1

ξl

))
= 0.
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Next, using successive conditioning and similar steps as in the proof of (6.11),
together with kn � n$ with $ > 1/3, we have for some sufficiently small
ι > 0:

(A.28) Eni−kn−3

∣∣∣∣ 1

k2
n

∑
r,l:|r−l|≤1

ξrξl −
µ

2p/β
p,β

kn
Σp,β

∣∣∣∣ ≤ K∆1/2+ι
n .

Combining the bounds in (A.20)-(A.24) and (A.26)-(A.28), we have (6.21)
and (6.22).

We turn next to (6.23). Recalling (A.16) and using Gni (u, |σ(i−2)∆n
|p) =

Gni (v, |σ(i−2)∆n
|p), we have

|z̃(2,a)
i (u)− z̃(2,a)

i (v)|2 ≤ K[(Hn
i (u, x̌i))

2 + (Hn
i (v, x̌i))

2](∆−p/β
n V ni (p)− µp/βp,β |σ|

p
i )

4

+K[(Gni (u, |σ(i−2)∆n
|p)−Gni (u, |σ|pi ))

2 + (Gni (v, |σ(i−2)∆n
|p)−Gni (v, |σ|pi ))

2]

×
(

∆−p/β
n V ni (p)− µp/βp,β |σ|

p
i

)2

.

Using (6.11) and the fact that σ is an Itô semimartingale, we have

E
∣∣∣∣(Gni (u, |σ(i−2)∆n

|p)−Gni (u, |σ|pi ))
2

(
∆−p/βn Ṽ n

i (p)− µp/βp,β |σ|
p
i

)2∣∣∣∣
≤ Kα2

n(kn∆n).

(A.29)

We next bound (Gni (u, |σ(i−2)∆n
|p)−Gni (u, |σ|pi ))2∆

−2p/β
n (V n

i (p)− Ṽ n
i (p))2.

First, we set ξ̃i = ξi|σ(i−2)∆n
|p (recall the definition of ξi in (A.25)). With

this notation we have ∆
−p/β
n (V n

i (p)− Ṽ n
i (p)) = 1

kn

∑i−2
j=i−kn−1 ξ̃j .

Second, we denote for u , x ∈ R+ and y ∈ R:

G(u, x, y) = −β
p
e
Cp,βu

β

(
1− |y|

β

xβ/p

)
|y|β

xβ/p+1
,

and recalling the notation Gni (u, x) and G̃ni (u, x) after (A.16), we have

Gni (u, x) = G(u, x, σ(i−2)∆n
) and G̃ni (u, x) = G(u, x, σ(i−kn−3)∆n

).

Then, for l = i−kn, ..., i−2, we splitGni (u, |σ(i−2)∆n
|p)−G̃ni (u, |σ(i−kn−3)∆n

|p) =

Gn,1i,l +Gn,2i,l +Gn,3i,l , where
Gn,1i,l = G(u, |σ(i−2)∆n

|p, σ(i−2)∆n
)−G(u, |σl∆n |p, σl∆n),

Gn,2i,l = G(u, |σl∆n |p, σl∆n)−G(u, |σ(l−3)∆n
|p, σ(l−3)∆n

),

Gn,3i,l = G(u, |σ(l−3)∆n
|p, σ(l−3)∆n

)−G(u, |σ(i−kn−3)∆n
|p, σ(i−kn−3)∆n

),
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and similarly we split Gni (u, |σ|pi )−G̃ni (u, |σ(i−kn−3)∆n
|p) = G

n,1
i,l +G

n,2
i,l +G

n,3
i,l

for l = i− kn, ..., i− 2, where
G
n,1
i,l = G(u, |σ|pi , σ(i−2)∆n

)−G(u, |σ|pi,l+2, σl∆n),

G
n,2
i,l = G(u, |σ|pi,l+2, σl∆n)−G(u, |σ|pi,l−1, σ(l−3)∆n

),

G
n,3
i,l = G(u, |σ|pi,l−1, σ(l−3)∆n

)−G(u, |σ(i−kn−3)∆n
|p, σ(i−kn−3)∆n

),

with

|σ|pi,l =
1

kn

i−2∑
j=i−kn−1

|σ(j∧l−2)∆n
|p, l = i− kn − 1, ..., i− 2.

Using the fact that σ is an Itô semimartingale, we have
Enl (|Gn,1i,l |

2 + |Gn,1i,l |2) ≤ K(kn∆n),

Enl−3(|Gn,2i,l |
4 + |Gn,2i,l |4) ≤ K∆n,

Eni−kn−3(|Gn,3i,l |
2 + |Gn,3i,l |2) ≤ K(kn∆n).

Then, using the above result, successive conditioning as well as the Cauchy-
Schwarz inequality, we have:

(A.30) E
∣∣∣∣(Gni (u, |σ(i−2)∆n

|p)−Gni (u, |σ|pi ))
2

(
1

k2
n

∑
r,l:|r−l|≤1

ξ̃r ξ̃l

)∣∣∣∣ ≤ K√∆n

kn
.

We turn next to (Gni (u, |σ(i−2)∆n
|p)−Gni (u, |σ|pi ))2

(
1
k2
n

∑
r,l:|r−l|>1 ξ̃r ξ̃l

)
. We

can apply Hölder inequality and use the fact that σ is an Itô semimartingale,
to get

E|T1T2| ≤ K(E|T1|4/3)3/4(E|T2|4)1/4 ≤ K(kn∆n)3/4(E|T2|4)1/4,

where we set T1 = (Gni (u, |σ(i−2)∆n
|p) − Gni (u, |σ|pi ))2 and T2 = 2

k2
n

∑
r ψr

with ψr = ξ̃r
∑

r>l+1 ξ̃l with r and l taking values in [i − kn − 1, ..., i − 2].
Using successive conditioning we have

E
(
ψr|Fnr−2

)
= 0, E (ψr)

4 ≤ Kk2
n, r ∈ [i− kn − 1, ..., i− 2].

Then we can apply the above bounds and Burkholder-Davis-Gundy inequal-
ity for discrete martingales

E
(∑

r

ψr

)4

≤ Kkn
∑
r

E(ψr)
4 ≤ Kk4

n,
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where in the above summations r takes values in [i−kn−1, ..., i−2]. Therefore
E|T2|4 ≤ K

k4
n

and from here

(A.31) E|T1T2| ≤ K
(kn∆n)3/4

kn
.

Combining the bounds in (A.19) and (A.29)-(A.31), we get the result in
(6.23).

Next, the result in (6.24) follows from the first-order Taylor expansion

z̃
(2,a)
i (u) = Gni (u, x̌i)

(
∆
−p/β
n V n

i (p)

µ
p/β
p,β

− |σ|pi

)
,

where x̌i is between
∆
−p/β
n V ni (p)

µ
p/β
p,β

and |σ|pi , the boundedness of the function

Gi(u, x), and the bound in (A.19).
We continue with (6.25). Using Taylor expansion we have

z̃
(2,b)
i (u) = −β

p

(
|σ|pi

|σ(i−2)∆n
|p
− 1

)
+ ri(u),

for some ri(u) satisfying

|ri(u)| ≤ K
∣∣|σ|pi − |σ(i−2)∆n

|p
∣∣2 .

From here the result in (6.25) follows directly from the assumption for σ
being Itô semimartingale in Assumption SB.

Finally, (6.26) follows from the boundedness of z̃
(2,a)
i and z̃

(2,b)
i as well as

the bound in (6.14). 2

3. Proof of Lemma 4. We make the following decomposition for any
u ∈ R+:

L̂n(p, u)− L(p, u) =
1

n− kn − 2

3∑
j=1

Rnj (u),

where Rnj (u) =
∑n

i=kn+3 r
j
i (u) for j = 1, 2, 3 and

r1
i (u) = cos

(
u
σ(i−2)∆n

(∆n
i S −∆n

i−1S)

(V n
i (p))1/p

)
− exp

(
−
Aβu

β|σ(i−2)∆n
|β

∆−1
n (V n

i (p))β/p

)
,

r2
i (u) = cos

(
u

∆n
i X −∆n

i−1X

(V n
i (p))1/p

)
− cos

(
u
σ(i−2)∆n

(∆n
i S −∆n

i−1S)

(V n
i (p))1/p

)
,
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r3
i (u) = exp

(
−
Aβu

β|σ(i−2)∆n
|β

∆−1
n (V n

i (p))β/p

)
− exp

(
−Cp,βuβ

)
.

First, using (6.14) and Eni−2(r1
i (u)) = 0, we easily have

(A.32) Rn1 (u) = Op

(
∆−1/2
n ∨ nk−β/(2p)+ιn

)
, ∀ι > 0.

Similarly, using the bounds in (6.36)-(6.39) and (6.14), we have

(A.33) Rn2 (u) = Op

(
∆−1/2−ι
n ∨ nk−β/(2p)+ιn

)
, ∀ι > 0.

We are left with Rn3 (u). Using Taylor expansion we can write

r3
i (u) = e−Cp,βu

β
Cp,βu

β β

p

∆
−p/β
n (V n

i (p)− Ṽ n
i (p))

µ
p/β
p,β |σ(i−kn−3)∆n

|p
+ r̃3

i (u),

where using the bounds of Lemma 1 and the Itô semimartingale assumption
for the process σ from Assumption SB we have

E|r̃3
i (u)| ≤ K

(√
∆n ∨ αn ∨ k−1

n

)
.

Further, using Burkholder-Davis-Gundy inequality for discrete martingales

1

n− kn − 2

n∑
i=kn+3

(r3
i (u)− r̃3

i (u)) = Op

(√
∆n

)
.

Thus, altogether

(A.34) Rn3 (u) = Op
(
nαn ∨ nk−1

n

)
.

Combining (A.32), (A.33) and (A.34), we have

(A.35) L̂n(p, u)− L(p, u) = Op
(
αn ∨ k−1

n

)
.

Now we turn attention to the difference

L̂n(p, u)− L(p, u)

L(p, u) log(L(p, u))
− L̂

n(p, v)− L(p, v)

L(p, v) log(L(p, v))
.

For the part of the difference involving Rn3 (u) and Rn3 (v) there is cancelation
of a bias term which allows to improve on the bound implied by (A.35).
Henceforth we denote

r3
i =

r3
i (u)

L(p, u) log(L(p, u))
− r3

i (v)

L(p, v) log(L(p, v))
.



SUPPLEMENT TO “TESTING FOR TIME-VARYING JUMP ACTIVITY” 13

Using third-order Taylor expansion, we have

r3
i =

Cp,β
2

(vβ − uβ)

(
β

p

)2 |∆−p/βn V n
i (p)− µp/βp,β |σ(i−2)∆n

|p|2

µ
2p/β
p,β |σ(i−2)∆n

|2p
+ r̃3

i ,

where
|r̃3
i | ≤ K|∆−p/βn V n

i (p)− µp/βp,β |σ(i−2)∆n
|p|3.

We can split

∆−p/βn V n
i (p)− µp/βp,β |σ(i−2)∆n

|p = ∆−p/βn (V n
i (p)− Ṽ n

i (p))

+ (∆−p/βn Ṽ n
i (p)− µp/βp,β |σ|

p
i ) + µ

p/β
p,β (|σ|pi − |σ(i−2)∆n

|p).

Using then Cauchy-Schwarz inequality and the bounds of Lemma 1, as well
as the Itô semimartingale assumption for the process σ, we have

E|(∆−p/βn V n
i (p)− µp/βp,β |σ(i−2)∆n

|p)2 −∆−2p/β
n (V n

i (p)− Ṽ n
i (p))2|

≤ K
(
α2
n

∨ αn√
kn

∨ kn
n

∨√
∆n

)
.

(A.36)

Next, using successive conditioning, we easily have

(A.37) ∆−2p/β
n Eni−kn−3(V n

i (p)− Ṽ n
i (p))2 =

1

k2
n

Eni−kn−3

 ∑
r,l:|r−l|≤1

ξ̃r ξ̃l

 ,

where recall ξ̃r = ∆
−p/β
n (|∆n

rX−∆n
r−1X|p−Enr−2(|∆n

rX−∆n
r−1X|p)). Using

the same steps as in the proof of (A.28) in Lemma 3 as well as the Itô
semimartingale assumption for the process σ, we have (and the bound can
be further improved but suffices for the purposes here):

(A.38)

∣∣∣∣∣ 1

kn
Eni−kn−3

(∑
r,l:|r−l|≤1 ξ̃r ξ̃l

|σ(i−kn−3)∆n
|2p

)
− µ2p/β

p,β Σp,β

∣∣∣∣∣ ≤ K∆1/6
n .

Combining the results in (A.36)-(A.38) and since $ > 1/3, we then have
altogether

(A.39) |Eni−kn−3(r3
i − Bn)| ≤ K

(
α2
n

∨ αn√
kn

∨ kn
n

∨√
∆n

)
.

Next, using second-order Taylor expansion for r3
i , we easily have

(A.40) Eni−kn−3(r3
i )

2 ≤ K(α4
n ∨ k−2

n ∨ kn∆n).
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Combining the above two results, we have

(A.41)
1

n− kn − 2

n∑
i=kn+3

r3
i − Bn = Op

(
α2
n

∨ αn√
kn

∨ kn
n

∨√
∆n

)
.

Hence, using the above bound and the ones in (A.32) and (A.33), as well as
the fact that p < β/3, $ ∈ (1/3, 1/2) and p

β′ ∧ 1− p
β >

1
4 (these conditions

follow from the assumptions of Theorem 2), we have for ∀ι > 0

L̂n(p, u)− L(p, u)

L(p, u) log(L(p, u))
− L̂

n(p, v)− L(p, v)

L(p, v) log(L(p, v))
− Bn = Op

(
∆1/2−ι
n ∨ αn√

kn

)
.

From here, using first-order Taylor series expansion, the bound in (A.35) as
well as $ ∈ (1/3, 1/2) and p

β′ ∧ 1− p
β >

1
4 , we have

log(L̃n(p, u))

log(L(p, u))
− log(L̃n(p, v))

log(L(p, v))
− Bn = Op

(
∆1/2−ι
n ∨ αn√

kn

)
.

Similar arguments lead to

log(− log(L̃n(p, u)))− log(− log(L̃n(p, v)))

− β log(u/v)− Bn = Op

(
∆1/2−ι
n ∨ αn√

kn

)
,

from which the result to be proved follows. 2

4. Proof of Lemma 5. First, when M is a discontinuous martingale,
we can show (6.28) similar to the proof of the corresponding result of The-
orem 1 in [3]. So, we are left with showing (6.28) when M is a continuous
martingale. We denote

X̂s = X(i−2)∆n
+

∫ s

(i−2)∆n

σ(i−2)∆n
dSu, s ∈ [(i− 2)∆n, i∆n],

and

ẑ1
i (u) =

[
cos

(
u

∆n
i X̂ −∆n

i−1X̂

(V n
i (p))1/p

)
− exp

(
−
Aβu

β|σ(i−2)∆n
|β

∆−1
n (V n

i (p))β/p

)]
1{∆−p/βn V ni (p)>ε},

and we further set x̂i = ẑ1
i (u)/(L(p, u) log(L(p, u)))−ẑ1

i (v)/(L(p, v) log(L(p, v))).
Using (6.16) and since Eni−2(ẑ1

i (u)) = 0, we have for some sufficiently small
ι > 0

(A.42) |Eni−2(z1
i (u)− ẑ1

i (u))| ≤ K∆1/2+ι
n .
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With the notation of xi given in the statement of Lemma 2, and using the
above result and the bounds in (6.36)-(6.39), the fact that β′ < β/2 and
since mn/

√
n→∞, we also have for some sufficiently small ι > 0

(A.43) E
(

1

mn

∑
i∈Inj

(xi − x̂i)
)2

≤ K∆1+ι
n .

Then with the notation ynj = 1
mn

∑
i∈Inj

xi and ŷnj = 1
mn

∑
i∈Inj

x̂i, we have

for sufficiently small ι > 0

(A.44) E|(ynj )2 − (ŷnj )2| ≤ K∆
1/2+ι
n√
mn

,

where we made use of Cauchy-Schwarz inequality and E(ŷnj )2 ≤ K/mn. From
here, using the boundedness of the martingale M , we have for sufficiently
small ι > 0

mn√
bn

btbnc∑
j=1

Eninj [((ynj )2 − (ŷnj )2)(Mkn+1+j(mn+1) −Mkn+1+(j−1)(mn+1))]

= op(∆
ι
n).

(A.45)

So we are left with analyzing Eninj [(mn(ŷnj )2− 1
mn

∑
i∈Inj

Ξi)(Mkn+1+j(mn+1)−
Mkn+1+(j−1)(mn+1))]. Using a martingale representation theorem, we have

(A.46) Eni−2(x̂i(Mi∆n −M(i−2)∆n
)) = 0.

Using a martingale representation theorem and (6.11)-(6.14) as well as p <
β/4, we have

(A.47) |Eni−2((ẑ1
i (u)ẑ1

i (v)−Ξ0,i(p, u, v))(Mi∆n−M(i−2)∆n
))| ≤ K(αn∨k−2

n ).

Similarly, a martingale representation theorem plus (6.11)-(6.14) as well as
p < β/4, yields

|Eni−3((ẑ1
i (u)ẑ1

i−1(v)− Ξ1,i−1(p, u, v))(Mi∆n −M(i−3)∆n
))|

≤ K(αn ∨ k−1
n ).

(A.48)

Combining the above three bounds and using successive conditioning, we
get altogether

∣∣Eninj [(mn(ŷnj )2 − 1

mn

∑
i∈Inj

Ξi)(Mkn+1+j(mn+1) −Mkn+1+(j−1)(mn+1))]
∣∣

≤ K(αn ∨ k−1
n ).

(A.49)
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From here, since αn
√
bn → 0 and

√
bn/kn → 0, we have (6.28) for the case

when M is a continuous martingale as well. 2
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