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In this paper we propose a test for deciding whether the jump
activity index of a discretely-observed It6 semimartingale of pure-
jump type (i.e., one without a diffusion) varies over a fixed interval of
time. The asymptotic setting is based on observations within a fixed
time interval with mesh of the observation grid shrinking to zero.
The test is derived for semimartingales whose “spot” jump compen-
sator around zero is like that of a stable process, but importantly
the stability index can vary over the time interval. The test is based
on forming a sequence of local estimators of the jump activity over
blocks of shrinking time span and contrasting their variability around
a global activity estimator based on the whole data set. The local and
global jump activity estimates are constructed from the real part of
the empirical characteristic function of the increments of the process
scaled by local power variations. We derive the asymptotic distribu-
tion of the test statistic under the null hypothesis of constant jump
activity and show that the test has asymptotic power of one against
fixed alternatives of processes with time-varying jump activity.

1. Introduction. In this paper we derive a test for deciding whether
the jump activity index of a pure-jump It6 semimartingale X remains con-
stant over a fixed time interval. The jump activity of the process X is mea-
sured by the instantaneous Blumenthal-Getoor (BG) index defined as

(1.1) inf {r >0: /R(|x|7“ A DX (dz) < oo} :

where the jump compensator of X is given by dt ® v;X(dz) for some pre-
dictable random measure ;X (dz) on R. The BG index takes values in the
interval [0, 2], and for general semimartingales it can be random and depend
on time. However, in the important case when X is a Lévy process, the
instantaneous BG index is a non-random constant. Moreover, the BG index
of X continues to be a non-random constant in much more general settings.
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Indeed this is the case when the jump component of X is given by a stochas-
tic integral with respect to a Lévy process or when it is a time-changed Lévy
process with the time change being an absolutely continuous process.

All prior work on estimating the BG index from high-frequency data ([1],
2], [5], [6], [7], [1O], [L1], [13, 14]) has been done in the setting where the
instantaneous BG index is a non-random constant with the additional re-
striction that the driving Lévy process is locally stable, i.e., it is a Lévy
process whose Lévy measure around zero behaves like that of a stable pro-
cess (the local stable assumption can be viewed as the counterpart of the
assumption of regular variation of the tails used typically in extreme value
theory). The goal of this paper is to design a test for deciding whether the
instantaneous BG index is constant or not on a given interval from discrete
observations of the process with mesh of the observation grid shrinking to
Zero.

In particular, we consider the class of pure-jump Itd semimartingales:

(12) dXt = Oltdt + O't_dSt + dY;j,

where S is a pure-jump process with characteristic triplet ([4], Definition
11.2.6) (0,0, dt ® v(dx)) with respect to some truncation function (see defi-
nition in next section) and 14 (dx) is given by

(1.3) v (dx) = Wiﬂdx’

for some A > 0 and § being a stochastic process with caglad paths, and
with f; taking values in the interval (1,2) for every t > 0. Y in (1.2) is a
“residual” jump process, in the sense that its activity is below that of S on
the observed time interval, and it can have dependence with the rest of the
components of X. Finally, @ and ¢ are processes with cadlag paths. In the
setting of (1.2)-(1.3), the instantaneous BG index of X at time ¢ is given by
B¢. Hence, our testing problem reduces to deciding whether the process 5 is
constant or not on the observed time interval.

Designing a test for the process [ being constant is complicated for at
least two reasons. First, the jump activity determines the asymptotic order
of magnitude of the increments at high-frequencies but it is unknown to the
statistician. Hence the test statistic should contain some form of self-scaling
to ensure non-degenerate limit behavior (at least under the null hypothesis).
Second, we want to perform the test while allowing for time-varying process
o of unknown type. The jump compensator (intensity) of X then has two
sources of variation: one is given by the presence of the time-varying process
o and the other one is due to the time-variation of the BG index of X.
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Essentially, our test statistic should separate non-parametrically the two
sources of variation in the jump compensator of X around zero.

The test we develop in this paper makes use of the self-normalized statis-
tics proposed in [10] for efficient estimation of the BG index when the latter
is constant. These statistics are formed from the first differences of the high-
frequency increments of X scaled by local power variations. The local power
variations are formed from blocks of increments, of asymptotically shrink-
ing time span, preceding the ones that are scaled. The scaling serves as
self-normalization since it removes the effect of ¢ on the limit of sample
averages formed from (known) transforms of the scaled increments.

Using the scaled increments, we form two types of estimators for the jump
activity. The first is global, i.e., it makes use of all the high-frequency data.
The second jump activity estimator is local, i.e., it is based on a block of
scaled high-frequency increments with asymptotically shrinking time span.
The blocks for the local power variations, used to scale the high-frequency
increments, and the ones for constructing the local jump activity estimates
from the scaled increments are allowed to be of different size and can overlap.
Finally, both the global and the local jump activity estimates are based on
the real part of the characteristic function of the scaled increments.

When the BG index of X remains constant on the fixed time interval,
then both the local and global estimators are valid, with the former being
obviously much noisier. When the BG index of X varies over the interval,
then the local estimators recover the time-varying BG index while the global
estimator converges to a random variable, taking values in [0, 2], whose value
depends on the trajectory of 5. Given this different behavior of the local
and global jump activity estimators, our test is based on the integrated
squared difference between them. When the BG index of X varies, the latter
integrated squared difference converges to a measure of dispersion of the BG
index on the time interval. When the BG index remains constant on the
interval, then the squared differences need to be centered by an estimate of
their non-random asymptotic variance. In this case of constant BG index,
the partial sums of the centered squared differences between the local and
global estimates behave asymptotically like a discrete martingale. Therefore,
when scaled up appropriately, the sum of the centered squared differences
of the local and global BG index estimates converges to a normal variable.
Thus a feasible test for time-varying BG index can be based on this sum.

Overall, our test builds on: (1) self-normalization to separate the time-
variation in the jump compensator due to o and § and (2) time-aggregation,
i.e., we use statistics formed at different time scales, to form an estimate of
variability of functionals of the process 5 on the observed interval.
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The rest of the paper is organized as follows. In Section 2 we introduce our
setting and state the necessary assumptions. In Section 3 we construct our
statistics for local and global estimation of the jump activity. The asymptotic
properties of these statistics are presented in Section 4. This section also
contains a test based on the derived limit results for deciding whether the
BG index of the observed process varies. Section 5 evaluates the performance
of the test on simulated data. Section 6 contains the proofs.

2. Setting and assumptions. We start with stating the assumptions
that we need for our results. The process X in (1.2) is defined on a filtered
probability space (2, F, (F¢)i>0,P). Below we denote with x a symmetric
truncation function, i.e., x : R — R is some symmetric C? function with
compact support and x(x) = 0 for x in a neighborhood of zero.

We begin with our assumption concerning the jump activity of the pro-
cesses S and Y in (1.2).

Assumption A. (a) S in (1.2) is an Ité6 semimartingale with characteristic
triplet (0,0, dt @ v (dz)) with vy given by (1.3) for some positive constant A
and some process 3 with caglad paths and By € (1+4¢€,2) forVt > 0 and some
€ > 0. We further assume E|B; — Bs|> < K|t — s| for s,t > 0 and a constant
K >0.

(b)Y = f(f Jg xp¥ (ds, dz) where " is an integer-valued measure on Ry x R
with jump compensator dt @ v} (dx). v} satisfies fR(|x|5£ A1) (dr) < oo
for every t > 0 and some nonnegative process 3 with caglad paths satisfying
sup;>o By < 1 for vVt > 0.

Part (a) of Assumption A allows for stochastic time-varying BG index.
The condition on the time-variation in  imposed in part (a) of the assump-
tion is satisfied for a wide range of processes. For example, it holds for the
class of It6 semimartigales. It holds also for processes driven by fractional
Brownian motion. The restriction 5; > 1 is non-trivial and is discussed later
in Section 4.

We note that Assumption A allows Y and S to have dependence. There-
fore, as shown in [12], we can accommodate in our setup time-changed Lévy
models with absolute continuous time-change process, which are widely used
in applied work.

Finally, part (b) of the assumption restricts Y to be of finite variation,
and for the convergence in probability results below we can further relax
this restriction.

We next state our assumption for the dynamics of a and o.
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Assumption B. The processes a and o are Ité semimartingales of the form
t t t N
ap = Qg —|—/ bSds +/ e dWy +/ Ne dWy
0 0 0
E

+ k(6% (s, x))u(ds,dx) + | K'(6%(s,))u(ds,dx),
(2.1) /0 /Et / -

t t
Jtzao—l—/ b‘;ds+/ n‘;dWSJr/ e dWs
0 0 0
t
+ / / (87 (s, 2))fi(ds, d) + / W (67 (s, 7)) u(ds, dz),
0 E - E -

where K'(x) = © — k(x), and

(a) |o¢|~t and |oy_|7! are strictly positive;

(b) W and W are two independent Brownian motions; p is Poisson mea-
sure on Ry X E, having arbitrary dependence with the jump measure
of S, with compensator dt @ A(dx) for some o-finite measure X on E;

(c) 6%(t,x) and §7(t,x) are predictable, left-continuous with right limits
in t with |0%(t,x)| + |07 (t, )| < y(x) for all t < Ty, where yx(x) is a
deterministic function on R with [o(|vk(z)|” A 1)A(dz) < oo for some
0 <r <2 andTy is a sequence of stopping times increasing to +0o;

(d) b*, b7, n®, n%, n* and N° are processes with cadlag paths and further
there exists a sequence of stopping times T}, increasing to infinity and
a sequence of positive numbers Ty such that for s,t < Ty we have
Efng — 2|2 + Efiif — 7|2 < Tylt — s|* for some s > 0.

Assumption B is very general and it is satisfied in the case when the pair
(av, 0) follows a Lévy-driven SDE, which is the typical way of modeling dy-
namics in applications. We note that assumption B significantly generalizes
the analogous assumption in [10] by allowing « and o to contain diffusions
and further leaving their jump activities essentially unrestricted.

3. The statistics. We continue next with the construction of our statis-
tics. The estimation in the paper is based on observations of X at the equidis-
1

tant grid times 0, %, ...y 1 with n — oo, and we denote A, = —.

3.1. Global estimates of jump activity. We start with constructing an
estimator of the jump activity based on all high frequency observations on
the unit interval. This estimator was introduced in [10] and is based on the
real part of the empirical characteristic function of the increments scaled by
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local block-based volatility estimates, which we define as
=
(3.1) V") =1 > IAIX — AV XP, i=ky+3,..m, p>0,
" j=i—kp—1
for some 1 < k,, < n and where A?X = X — Xi-1. The empirical charac-
teristic function of the scaled and differenced increments is given by

N 1 -~ ATX — AT | X
2 " = -4 R,.
(3.2) L"(p, u) n—rk,—2 i:;rg cos <u (‘/in(p>)1/p > y e Ry

Using two different fixed numbers u, v € R, the global estimate of the jump
activity is constructed as

(3.3) ﬁ"(p, w0) = log <— log(L"(p, u)ll?g(;/lzf (— log(L"(p, U))) |

where £"(p,u) = (E”(p, u) A %) Vi

As we will see in the next section, 8" (p, u,v) will be a valid estimator of
the jump activity only when the latter is constant on the unit time interval.

3.2. Block-based estimates of jump activity. We next introduce local,
block-based, estimates of the jump activity. They will estimate the jump
activity locally (in time), even when it varies. These estimators will be
based on blocks of size m,, of scaled and differenced increments of X, where
kn < my < n. They are built from the block analogues of Ln (p,u) given by

APX — A" X

~ 1
3.4) LMp,u)=— cos(u ),UER, i =1,..., by,
( ) ] (p ) mn z; (V;n(p))l/p + ] n
J
where I = Ky, + 1+ {(j —1)(mn +1)+2,...,5(my + 1)} and the num-
ber of blocks over which the local jump activity estimation is performed

is b, = L";Lifj:fj The local estimator of the jump activity is then simply

the counterpart of B”(p, u,v) on the local block:

55 i - EEEE u>l>)g(u/1§ (- 10g(53,)

where u,v € Ry with u # v, and further we use the shorthand E?(p, u) =
7 n—1 1
(ﬁ?(pv“) A mnT) Vi

Y j: 17"'7bn’
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We note that in the construction of our statistics we use two types of
blocks which play separate roles. First, we use local blocks in order to purge
the effect of the time-varying o; on our statistics. Second, we use local blocks
to account for the presence of time-varying jump activity. Our test for time-
varying jump activity will be based on the statistical significance of the dif-
ference between the local estimates B\Jn (p, u,v) and the global one 3” (p, u,v).

3.3. Estimates for feasible inference. We conclude this section with in-

troducing estimates for the asymptotic variance of our test statistic from

. S ATX-AT X\ A
the high frequency data. We denote (/*(u) = cos (UW) — L™(p,u).

We then set é”(p,u,v) = ég(p, u,v) + 2§’f(p,u,v), where

~ 1 ~ /\
(3.6) Epu)= ————a— Y (W), j=0,1

n—k, —2—]1 T

Finally, we denote

(1)

ﬁn(p’ u, ’U) - En(p7 u/,\u) _ n(p’ ’U/,\’U)
(L7 (p,u)log(L™(p,u)))? (ﬁn(p,v)log(ﬁn(pw))y
2" (p, u, v)

L7 (p, u) log(L (p, )L™ (p, v) log(L(p,v))

[1

(3.7)
-2

4. Limit behavior of the statistics and testing for time-varying
jump activity.

4.1. The results. We now derive the limit behavior of our statistics and
use the limit results to construct a test for time-varying jump activity. Hence-
forth all limits are understood to be for n — oco. To define the asymptotic
limits of our statistics we need some notation. For some § € (1,2), we
let S}ﬁ ), Séﬂ ) and Séﬁ ) be random variables corresponding to the values of
three independent Lévy processes at time 1, each of which with characteristic

triplet (0, 0,dt ® M%dm) with respect to some symmetric truncation func-

tion x. Then we denote 1, 3 = (E\Sfﬁ) - Séﬁ)|p)5/p, which does not depend

. ; (B) _o(B)
on x, and we further use the shorthand notation E <e’“(Sl =537)) = e=Asv”

for any u > 0 with Ag being a known function of A and 3. Finally, using the
expression for the p-th moment of a symmetric S-stable random variable,
see e.g., (25.6) in [8], we have

N EICIE

) —B/p
(41) Cpﬂ == - )

E\"@
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which depends only on p and 8 but not on the scale parameter of the stable
random variables Sf ) and Séﬁ ). With this notation, we set

1
(42) L) = [ O ds, ueRy,
0

which will be the probability limits of E”(p, u). The probability limit of
B™(p, u,v) is then given by

log (—log(L(p,u))) — log (—log(L(p,v)))
log(u/v) '

We note that 5(p,u,v) = B when the process 3 remains constant on the

interval [0,1]. Also, it is not difficult to show that B(p,u,v) € (0,2) for

arbitrary continuous process 3 on the interval [0, 1] taking values in (0, 2).
Finally, the probability limits of E =5 (p, u,v) and é’f(p, u,v) are given by

(4.3) Blp,u,v) =

- 1 1
:0(pa u, U) = iﬁ(p’ u + 'U) + §£(p’ u — ’U) - ﬁ(p’ u)ﬁ(p’ U),
1 /1 s s . .
(4.4) Zi(p,u,v) = 5/ o 57 (W o lutol ) g
0

1 1 Cp,Bs s _1LaBs _|Bs
+ 5/ eI ) g - L(p,w)L(p, ).
0

We then define Z(p, u, v) from L(p,u), Eo(p, u,v) and E;(p,u,v) exactly as
we defined above En( ,u,v) from L% (p,u), =¢(p, u,v) and =} (p,u,v). We
note that Z(p, u,v) is finite-valued and strictly positive as soon as u # 0.
The next theorem shows the limit behavior of " (p, u,v) and =" (p,u,v)
as well as that of an integrated measure of divergence between the local and

global jump activity estimates.

THEOREM 1. For the process X assume Assumptions A and B hold.

Let k, < n%® and m, < n? as n — oo, for some 0 < w < o < 1, with
p € (0,1/2). Then we have:

n P - = P =
(4.5) A" (p,u,v) — B(p,u,v), = (p,u,v) — Z(p,u,v),
1 b"
(46) = " (p,u,0) — B (p,u,0))? / B(p,u,v))?ds.

:1

<.
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To derive a test for presence of time-varying jump activity, we need a
higher order asymptotic result for the sum on the left-hand side of (4.6)
when 8 remains constant. To derive such a result, we make use of the
fact that M(B\;‘(p, u,v) — E"(p, u,v)) is approximately normal with mean
zero and variance Z(p, u,v)/(log(u/v))? when f3 is constant on [0, 1]. More-
over mn(B\]" (p,u,v)— B\” (p, u,v))? become asymptotically uncorrelated across
blocks in spite of the dependence generated from the self-normalization.
Therefore, the statistic

(4.7) T"(p,u,v) =

1 bn mn(B;‘l(pvuuv) _/B\n(p’ U,’U))2
—n -1 9
Vo 2= ( =" (pou,v)) (log(u/v))? )

converges in distribution to a standard normal random variable when [ is
constant on [0,1]. The formal result is given in the following theorem in

L—
which —(8>) denotes stable convergence in law (see e.g., definition VIII.5.28

in [1]).

THEOREM 2. For the process X assume Assumptions A and B hold with
the process 3 being constant on [0,1]. Let ky, < n® and m, < n? asn — oo,
for some % <w < % < 0 < 1, and further assume the following holds true

Jor B = Po:

1—p 14+0 4o-—1
4. 1-— — —
(4.8) (l-gV—-<w<— A=)
and
B ;B p p_l-w
(4.9) p<l =, sup i< =, —mM— — = > ———
eoa] - 27 supo B B 2

Then, denoting with Z a standard normal variable, defined on an extension
of the original probability space and independent of F, we have

(4.10) T"(p,u,v) 8 g

We note that both the local and global jump activity estimates contain
asymptotic biases of order O,(1/ky). This is due to the local scale estimation
via V"(p). However, since our statistic 7"(p,u,v) depends only on their
difference, Ejf‘(p, u,v)— B”(p, u, v), we do not need to perform bias correction
to eliminate these biases. This is very convenient for applications.

We further note that the limiting variance Z(p,u,v) does not contain a
term due to the estimation error of the local power variation V;*(p) that is
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used to scale the increments. This is because the first-order effect of V(p)
on the estimation of the jump activity (both locally and globally) is zero.
Nevertheless, as seen from the conditions in (4.8) and (4.9), the power p
restricts the range of growth of the sequences k, and m,,.

The two sequences k, and m, control the asymptotic size of the errors
in estimating locally the scale and the jump activity. To make the biases
due to the variation of o (which are hard to estimate feasibly) negligible, we
need w < 1/2 as well as the bounds from above for w in (4.8). The latter
disappear if the process o is constant, e.g., when X is a Lévy process. On the
other hand, the bounds from below for w in (4.8) ensure the variability in
the local power variation V" (p) is sufficiently small. This is also the reason
for requiring p < 3/4.

One feasible choice for p, @ and p is the following. We can first set p in
the interval (1/5,1/4). For the given choice of p, we can then set w in the
region ((1 —p)/2,2/5). Finally, o can take any values in the relatively wide
interval (1 — w, 1) which in particular contains the fixed interval (5/8,1).

Finally, the highest possible value for p such that p < /3/4 guarantees the
weakest form of the conditions (4.8) and (4.9) for the tuning parameters
w and o as well as the weakest assumption for 8] (but we always need
SUpPyefo,1) B¢ < B/2). Since we do not know j3, we need to set p < 1/4 (recall
from Assumption A that 5 > 1). However, a simple adaptive-type approach
can improve on this choice. In particular, starting with arbitrary small p > 0,
we can estimate consistently 8 using the first block estimator g7 (p,u,v).
We can then set p arbitrary close to, but below, B{‘ (p,u,v)/4 and perform
the test on the rest of the data. Given the consistency of B\{‘(p,u,v) and
by conditioning, the result of Theorem 2 will continue to hold with this
adaptive choice of p.

Combining Theorems 1 and 2, we have the validity of a test for time-
varying jump activity, based on 7" (p,u,v). To state it, we introduce the
two sets:

(4.11) 0° = {w: Bi(w) = Bo(w), VEE[0,1]}, QV=Q\QC.

COROLLARY 1. For the process X assume Assumptions A and B hold.
Let k, < n® and m,, < n® asn%oo,forsome%<w< % < o <1 such
that (4.8) holds true, p < 1/4, and (' satisfies the second condition in (/.9)
if the process [ is constant on [0, 1].

Denote with z, the a-quantile of standard normal distribution. We have

P(T"(p,u,v) > z1-4| Q%) — «a, if P(Q°) >0,

4.12
( ) P(T™(p,u,v) > 21-4| Q") — 1.
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4.2. Discussion. The developed test applies to processes of pure-jump
type, i.e., processes that do not include a diffusion component. We further
restrict attention to pure-jump specifications with BG index above 1 (so
finite variation jump specifications for X are excluded). We briefly discuss
the role of these two assumptions.

As shown in [10] when X contains a diffusive component, then the jump
activity estimators used here converge to the value of 2. Therefore, when
X contains a diffusion and a jump process with time-varying jump activity,
our test will fail to reject the null of constant jump activity. On the other
hand, if on the interval [0, 1], the diffusive component of X is non-zero only
on some part of it (with length less than 1), then our test will reject the null
of constant jump activity. For this reason the test should be performed for
processes for which it is known that there is no diffusion component and a
test for this is easy to construct, see e.g., [ 1] and references therein.

Developing a test for time-varying jump activity in presence of a diffusion
in X will involve different methods than the ones developed here. In such a
case, one first have to account for the role of the diffusion which dominates
the increments at high frequencies to derive jump activity estimates. Then
an approach similar to the one proposed here of comparing global and local
jump activity estimators can be adopted for testing the time-varying jump
activity hypothesis in presence of a diffusion.

The second non-trivial assumption for the process X, that we impose in
our setup, is the requirement 5; > 1. In general, the asymptotic behavior of
estimators for jump activity, when the latter is below 1, worsens, see e.g.,
[1], [2] and [9]. In our particular case, the main source of the problem is the
deterioration in the rate of convergence of the local power variation that we
use to scale the increments with (and in addition the leading terms driving
its asymptotic behavior around its limit become biases that are hard to
quantify). Of course, one can test the null that a (constant) jump activity is
above 1, using e.g., the estimators in [9] and [10], and then proceed with the
test proposed here. For many financial data sets, e.g., volatility derivatives,
this assumption for the jump activity seems to be satisfied, see e.g., [11].

5. Monte Carlo. We now test the performance of our test on simulated
data from models with the following dynamics

(51) dXt = O't_st, dO't = —0030'tdt + dZt,
where L and Z are two independent of each other processes. Z is a Lévy
process with Lévy density given by v (z) = 0.0293% lz>0), and hence o

is a Lévy-driven Ornstein-Uhlenbeck process with a tempered stable driv-
ing Lévy subordinator. The parameters governing the dynamics of ¢ imply
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E(ot) = 1 and half-life of shock in o of around one month (when unit of
time is a day) and are adopted from the Monte Carlo setup in [10].
In all considered scenarios, the process L is a pure-jump process with

no drift and jump compensator dt ® v (dz), for v} (dz) = 211\(22 ﬁét) ] ;tlil dx

where A > 0 is some constant and f; is some deterministic process taking
values in (0, 2). In this specification f; coincides with the instantaneous BG
index of L (and of X). The parametrization of the jump compensator of L
ensures fRa: vl (dx) = 1 for every t, even when the process 3 varies over
time, so that the “instantaneous variance” of L does not change over the
time interval. We note that when the process [ is constant, L is a tempered
stable process used extensively in empirical work.

In all considered cases, we set A = 0.25. We consider two scenarios under
the null: (N1) 8 = 1.2 and (N2) 5; = 1.5, for t € [0,T], where [0,T] is the
fixed time interval over which X is observed. We consider two scenarios under
the alternative hypothesis of time-varying BG index: (A1) 8; = 1.2+0.6 x &,
and (A2) By =1.3+0.4 x &.

To show that the model given by (5.1) satisfies our assumptions A and B,
first note that using the decomposition in Section 1 of the supplementary
appendix of [12] and after appropriately extending the probability space,

we can decompose Ly = Ly + LEI) — L§2) where E, LW and L@ are pro-

. .. , .. -8
cesses with zero first two characteristics and Lévy densities of ’\( ;t) 2] Blt T

A28t 1—_e— Al and A2=Bt 1_e—Alzl
2T (2— ) |m|/3t+1 ’ T'(2—0) |x‘ﬂt+1 ’

the process whose jump at time ¢ is equal to that of the process Zt divided

- 1/8
by (%) ' This process has Lévy density of Wﬁ We thus finally

~ _ 1/8
can represent X via dX; = 0;_dL; + dY;, where oy = (%) ‘ o; and

= fg as,(dLgl) def)). Thus, assumptions A and B hold with 3} = 3;—1.

In the Monte Carlo we set T' = 22 which corresponds approximately to
a time span of one month, given our time convention. We consider A,, =
1/100 and A,, = 1/400, which correspond to sampling approximately every
five minutes and one minute, respectively, in a typical financial setting. We
further set p = 0.24, and k,, = 50 for A,, = 1/100 and k,, = 85 for A,, =
1/400. For the jump activity estimator we use u = 0.2 and v = 0.8. Finally,
we experiment with b, = 7 and b, = 9 for A,, = 1/100 and with b, = 11
and b, = 14 for A,, = 1/400.

On Figure 1, we plot the local (block-based) and global jump activity
estimates on single realizations from scenarios N2 and A2 for frequency A,, =
1/400. The constant jump activity case reveals the statistical uncertainty of

respectively. We further denote with Lt
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measuring locally the jump activity. All local estimates in this scenario are,
however, centered around the true constant value. By contrast, in the case
of time-varying jump activity, the local estimates are centered around the
time-varying level of the jump activity process 5. As a result, the difference
between them and the global estimate 5™ (p, u, v) contains a bias which when
aggregated across the blocks in 7" (p, u, v) makes it explode asymptotically.

) 5 10 15 20 o 5 10 15 20
time time

Fic 1. Local Jump Activity Estimates. The solid line corresponds to the true value of the
jump activity index over the interval of length T = 22; the stars correspond to block-based
estimates of jump activity for the case An, = 1/400 and b, = 14 (and p = 0.24, k,, = 85,
u = 0.2 and v = 0.8); the dashed line corresponds to the global B"(p, u,v). The constant
B corresponds to a simulation from scenario N2 and the time-varying 5 to a simulation
from scenario A2.

The results from the Monte Carlo are reported in Table 1. We notice satis-
factory performance of the test under all scenarios of constant jump activity.
The test is slightly under-sized for the coarser frequency A, = 1/100 at the
5% nominal level. However, as expected from theory, the deviations of the
empirical rejection rates from the nominal levels of the test (under the null
scenarios) shrink when the sampling frequency increases to A,, = 1/400. We
note that there is no significant difference in the performance of the test
for the different block sizes. The test has also satisfactory performance un-
der the two alternative scenarios. Not surprisingly, the power of the test is
higher for scenario A1 which has more dispersion of the jump activity over
the interval than scenario A2. In both A1l and A2 and for the two different
sampling frequencies, the power of the test is slightly higher for the case
with lower b,,, although the differences are not very big. Smaller b, allows
to reduce the sampling error of measuring locally the jump activity via the
block-based estimates and thus better identify the differences in the jump
activity across the blocks. On the other hand, smaller b, means the local
jump activity effectively averages the time-varying activity over longer time
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intervals, thus ignoring the time variation within them. For our alternative
scenarios, the gains are larger than the costs (in terms of power) for the
smaller of the block sizes considered.

TABLE 1
Monte Carlo Results

A, =1/100 A, =1/400
b =7 b, =9 b, =11 b, =14

Scenario Size of Test Size of Test
5% 1% 5% 1% 5% 1% 5% 1%
N1 (8=1.2) 3.88 1.62 4.54 1.62 4.10 1.32 4.70 1.60
N2 (8 =1.5) 3.30 1.08 3.36 0.94 4.54 1.16 4.02 1.08
Al 58.80 42,50 52.40 35.20 99.86 99.44 86.66 85.96
A2 25.10 14.20 22.98 10.94 84.34 72.26 79.62 65.10

6. Proofs. Inthe proofs, we use the shorthand notation E? (-) = E (-|F;a,,)
and P? (-) = P (-|Fia, ). We also set

(6.1) i =kn+1+(—1)(mn+1),

so that I7 = {i] +2,...,i7 +my + 1}

Further, in the proofs we will denote with K a (finite) positive constant
that does not depend on n and might change from line to line. Finally,
to simplify the notation, henceforth we will use Ajn, B" and B instead of

B7(p,u,v), B"(p,u,v) and B(p,u,v), respectively.

6.1. Localization. By standard localization techniques, it suffices to prove
the results in the paper under the following strengthened version of Assump-
tion B:

Assumption SB. We have Assumption B and

(a) |o¢| and |o¢|~t are uniformly bounded;

(b) |0%(t,x)| + |67 (t, )| < ~(x) for all t, where y(x) is a deterministic
bounded function on R with [ |v(x)|"A(dx) < oo for some 0 < r < 2;

(c) b, b7, n™, n%, n“ and n° are bounded;

(d) the process fR(|x]/B£ A 1)) (dz) is bounded and the jumps of Y are
bounded;

(e) Elny —n?|> +Elif —n2|*> < T|t — s|* for some positive constant T and
every s,t > 0;

Henceforth, the proofs will be conducted under Assumption SB.
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6.2. Proof of Theorem 1. We start with the decomposition
(Bp = B")* = (B} = B") + (B} — B})” + 2B} — B")(B} - B}

where B}l = ﬁi;_z A, - Provided we have B” N B, then since the process
has caglad paths, by Riemann integrability, we have

1 &~ 4 P ! 2
—N (-2 — Bs — B) ds.
e 20 | 6.5

Since ]B"] < Klog(my,) (recall the definition of L”(p, u)) and using Taylor
series expansion for the difference ﬁ" ﬁ" it is easy to see that to prove
the theorem it suffices to establish the following for some arbitrarily small
t>0and u,v € Ry

8™

rn _ pAn < 2+

E"(p, u) RN L(p,u) and Z"(p,u,v) LN Z(p,u,v).
To establish the above result we will need some preliminary bounds which
we turn to next.
Upon suitably extending the probability space and using Grigelionis de-
composition (Theorem 2.1.2 of [3]), we can represent S; = S; Wy Sy @) Where

6.3) SV = // (s,2))fi(ds, dz), S© = // 1(ds, dz),

with 8(t,z) = (B|z|)~/Psign(z) and p being a Poisson random measure on
Ry x R with Lévy measure Adt ® dz, and further u(dt,dx) = p(dt,dx) —
Adtdx. We further denote for t € [(i — 2)A,,, i1A,]

SU, 0 /( /R K(3((i — 2) A, 2))i(ds, ),

and we define similarly StF ™ from S,f ). Then using Lemmas 2.1.5 and 2.1.7
of [3] and the smoothness assumption for the process 3, we have

64) SV =

(65)  EfolSi) — S{"P < KAY, Ef,|S(Y| + B[S < KA,
Another application of Lemmas 2.1.5 and 2.1.7 of [3] plus the fact that
SUP;eo,1] B < 1 as well as Assumption SB for o, yields

2

iAn
/ (0u- — 0(i—2)a,)dSV | < KAZ
(i—1)A,

n
1—2
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+ELL[ATY ] < KAy,

iAy
/ (Uu— - 0’(1—2)An)d51(?)
(i_l)An

1Ap
/ (o, — ay—n,, )du
(

i—1)A,

i—2 < KA.

Next, applying second-order Taylor expansion, using the fact that §; takes
values in the interval (1,2) for V¢ > 0, as well as the smoothness assumption
for 5 in Assumption A(a), we have for any ¢ € (0, 1] and for j < i:

6.6)  EpaL" T 1] < K(1j - if1og(n) + | — 128,/ 10g% (),
where we set 8" = f;a, (this shorthand is used for the rest of the proof of

the theorem) and the constant K does not depend on i and j.
Given the above bounds and the smoothness assumption for 5 in Assump-
tion A(a), we have for any ¢ € (0, 1]:

n _1/[3?— n n n n n
|E7 5 cos(Ap HATX =AY X)) fis) - eXP(_Aﬁ§L2 |U(i—2)An fi—2|ﬁ“2)|
(6.7) -
S KAn 1—2 ,
~a/Bfamn | An n /87 v
(6.8) |Anq CE|ATX — AP X7 - |‘7(i72)An|qN3$5gt_;| < KA, ’,
T - /ﬁzn— n— /6?7 en —
By, —sAn " B A X — AT X = o aga, [T

(6.9) .
< K(VFny log(n) V (knAn) AT/ log? (n) v ALY Pika=s),
for f* denoting some bounded random variable adapted to Fia,,.
Using the above bounds, we can now show (6.2). First, using Burkholder-
Davis-Gundy inequality for discrete martingales and the above bounds, we
have

#|22 [ () - (o ()

iEI;-L
< K\/ Mn,

2
2p

i—2
— g " n 1 n n n
A,, ke BEifkn73 Vi (p) — . Z Ei—2|AiX _Ai—lX‘P
n j:i*k‘nfl
< g [n2n) AP Tog? ()] V 1
> kn ’




TESTING FOR TIME-VARYING JUMP ACTIVITY 17

and from here for some sufficiently small ¢ > 0, and taking into account the
restriction on k,, and p, the fact that the process |o| is bounded from below
and (6.6) and (6.9), we have

—p/Bi
s (A7) < o) < KA,
for some sufficiently small ¢ > 0.
Combining the above bounds and using the smoothness assumption for
o, we have for some sufficiently small ¢ > 0

3n

~n _Cpﬁnu ! L
E|L] (p,u) —e J < KA,

which establishes the first part of (6.2). To establish the remaining results
in (6.2) we use the following bound for some sufficiently small ¢ > 0

m ( ( AfX —~ A?_1X> ( Al X — A?_2X>)
i—3| cos | u—————77-—|cos|v —
’ (Vi"(p)M/» (Vs (p)) /P

c, gn c, gn
BT n n n B
— PP (i 0P8 gyt Pi-3) + 67%(1‘

e 2
2

E

n n n
Bims 4 pPi=s 4 |u—v|Pi=3)

< KA,

with the result following from the inequalities above. From here the last
two results in (6.2) follow easily. 0

6.3. Proof of Theorem 2: decompositions and notation. First we denote
the bias term

L (B B_ .8
where we set

B) _ oB)p 2
EP’B:E< %1 1/552 —1>
P,
9K S§B) _ Séﬁ) p L Séﬂ) _ S?()B) p 1
1/8 1/8 ’
P, Pp,p

and we further use the shorthand B = B"/log(u/v).
We also introduce the following three different approximations of the local
power variation V*(p) which will be used in various stages of the proof

V7 (p) = Ef o|AFX — AF_ X
V'(p) | =1 D | lou-2alIALS - A S/
o7 J=i—kn1 lo-2)a. 1"
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Using the decomposition

(B -5 = (B -p-8) "+ (5-5+8)
+2 (B —5-8") (8- B"+B"),

it is clear that (4.10) will follow if we can show for V¢ > 0
(6.10)

{Z?nl(@ﬁén)op("iﬁ), b B o ()

T™(p,u,v) ﬂ_—(i) Z,

= P =
‘:‘n(pv u, U) — ‘:'(pa u, U)

where we denote

~ mn(BJ" — B —B")? B
T"(p,u,v) \/ﬂz (5(]?, u,v)/(log(u/v))? 1) .

Now we decompose the difference E” —

B— B". For some sufficiently small

e > 0, and n sufficiently high so that e > 1/m,,, using Taylor series expansion
we have

B;Z - ,8 o gn _ B](n,l) + B\](n,2) + B‘](n,3) + //8\](-”’4),

s 1 (E”<p,u>—c<p,u> Ey<p,v>—c<p,v>)_ Bn))

log(u/v) \ L(p,u)log(L(p,u))  L(p,v)log(L(p,v)

B(n,g):_ulog@?(p,u)) (L2 (p,u) — L(p,u))?
; 2108 (u/v) (2 (p, ) loaCr(pr ) S

)

)

L+log(Z] (p,v)) (£}(p,v) = L(p.v))?
v)

B

2log(u/v) (L} (p,v)log(L] (p, ))2{ ok

3(n3) _ _pn1) 2(nd) _ (on

B = =B ey BV = (5] - ey
where Z;L(p,u) is between E?(p, u) and L(p,u) and Zj (p,v) is between
E?(p, v) and L(p,v) and we denote the set

cr = {Zy(p,u) €le,1—¢ N Lip,v) € [6,176]}.

We further decompose

Erp,u) — £0p.0) = £ (pyu) + 0 (py0) + £

P, u),
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where Zgnk) (pyu) = mi Y icrn 2F(u) for k = 1,2, 3 with
" J

1y ATX - AT X L .
() = |eos (v=gmese ) TP\ T ATy )| tea e wsa

AguPlo_ &
. su’loGi-2)a, 6
= [exp <_ A (vrerr ) P (=Cop”) | Liazr /v sy
APX — AP X
zf(u) = |:COS <UW> — exp (-Op7ﬁuﬁ):| l{A;p/ﬁVin(p)SEF

with € being the constant used in the definition of the set C}' (a different
e > 0 will work also). With the same ¢, we further decompose

22(w)/(L(p, u) log(L(p,w))) = 22 (u) + 257 (u) + 25 (),

1 % lloia)a,l”

Ao gy,
0w = (o ST ) () log( £ (),

S lonan !’
(e N pﬂ“ﬁ)/w(p,u)log(ﬁ(p,um,

7C ,a 7b
227w = ~E @) + 2 @)y vy <

With this notation, we split further Bj(n’l) into three parts, denoted with
qun’l)(a), B}n’l)(b) and B\](.n’l)(c), and given by

B‘(n,l) (a) . 1 Z(jml) (p7 u) _ ﬁ\(jn,l) (pa U)

J  log(u/v) \ L(p,u)log(L(p,u))  L(p,v)log(L(p,v)) )’
o)1 I I S X N
0= gt <£<p,u>log<.c<p,u>> Lo o) los(Lipo)  © )

B(n,l) (C) o 1 ‘Z"\(jn’:s) (p’ u) _ Zg‘n’s) (pa U)

J ~ log(u/v) \ L(p,u)log(L(p,u))  L(p,v)log(L(p,v))

Finally, denoting 3 = SuPe(o, 1] B; and for arbitrary small ¢ > 0, we set

1
B A(gr-g)

S v

a, = A
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6.4. Auzxiliary results for the proof of Theorem 2. We state the auxiliary
results in a sequence of lemmas whose proofs are given in Section 6.7 and
the Supplemental Appendix.

LEMMA 1. Under the conditions of Theorem 2, we have for some suffi-
ciently small constants € > 0 and ¢ > 0 and u € Ry

(6.11) A;P/PED|[ATX — AL XIP — [og_aa, [PIALS — AL, SP| < Kay,

(6.12)  ALPPEL, ((0ia, — 0-2)a,)|ATX — AP XP) | < KA,

AR,

n

Vi) = V)| + By, s | ATV () - ol

(6.13)
< Kk, "%, x€[2,8/p),
(6.14) P k3 (Aﬁp/ﬁ‘@n(p) < 6) < Kk P+
(6.15) P (E?(p, u)<e U Z;L(p, u) >1— &;) < K(nmy) Y2,

To state the next lemma, we need some more notation. We denote

=k i(p,u,v) =Zi (p uo2)an| v|o(i-2)a,] )
| AP APV (p)) e

for K =0,1, and we set éi(p, u,v) = Zoi(p, u,v) + 2%171(1), u,v). Finally,

_ Ei(p,u,u) n Ei(p,v,v)
" (L(p,u) log(L(p, UN)))Q (L(p,v)log(L(p,v)))?
Zi(p,u,v)

L(p, u)log(L(p,u))L(p,v)log(L(p,v))

LEMMA 2.  Under the conditions of Theorem 2, if we further denote

[

7 (u) % (v)

L(p,u)log(L(p,u))  L(p,v)log(L(p,v))’

we have for j =1,..,b,, u,v € Ry, and some sufficiently small ¢ > 0

T; =

(6.16) (B} 5 (2] (u)] < KA,
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< ZEI" Z'EIJ’F

Pﬂ
8
~—
F|-
g
[l

(6.17)
<K [an Vktv ,/mnA}/”‘} ,
b7L - _
(6.18) Z (i — E(p,u,v)) = (\/ nn\/ >
j=1i€el?
1
( Zm) —SH (p,u,v)
(6.19) i€ly
<K (ozn VETY2V (knAp)Y2 v ml2AL 2y mgl/Z) :
Z 1 1 I
0200 B Y - B )| <K az0
Mn il ’

For the next lemma, we introduce the following additional notation

1 1 2
i (o) =3 (5) G

and note B" = B"(u) — B"(v).

n 1
B (u) = kf EPWB’

LEMMA 3.  Under the conditions of Theorem 2, we have for some suffi-
ciently small © > 0 and v € R4

B 3G (w) — 229 (0) — BY)]

(6.21) N
< Kla?2v -2ty A2y k:_3/2>,
- G“ VE, o

(6.22) |EZ%W%K%ZMQU——BWﬂ»|§}(<anV\/And5w5»

E(Z5 (w) — 259 (v) — B")?
(6.23)

AtV E2Vaik, A,V Vv

(6.24) Bz (u) — B (u))* < K [od v k7],
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n 2,b) 2,b
(6.29 {E B0 SO < Kk, 021

EP o oGPV @) +EP, 2P W) < K(kaAn), g > 2,
(6.26) B < KkpP/eIR g s,

LEMMA 4. Under the conditions of Theorem 2, we have
an a1’ 1/2—¢ On
(6.27) " —B—B,=0, (An \ \/E) , Ye>0.

LEMMA 5. Under the conditions of Theorem 2, for any bounded martin-
gale M and every t € [0, 1], we have
1 [tbn |
_ P
(6.28) i Z Ein X7 (M 1-45(mn+1) = Mip14G-1)ma 1)) — 0,

—n n,l =
where X7 = (mn(B"Y(@))? = 7 i S/ log(u/v))?)
6.5. Proof of Theorem 2 continued. Using the results of Lemma 3, and

imposing the restriction k, =< n® with w € (1/3,1/2), we have for some
sufficiently small ¢ > 0

E - Z ~(2 a %«52@) (’U) _ Bn)

(6.29) " iely
kn | 1 (knAp)3/4 ok o 1
<K — noy AL+
{mn k2 kn V T
4
1 a _
(6.30) E|— Z Ef’ )(u) —B"u) | <K (apVvmy,?),
Mn ielr
q
1
(6.31) El— ST Ew) - 22 w)| < K(kaln), ¢>1,
Mn il
q q q
1 ki kn o\ g kn
(6.32) E|l— Y 22w gK( q\/q>, ¢>2
Mn i€lr mnp " "
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q q
2

(633) E 1 22{2,6) (u) <K <knq kgﬂ/(Qp)+L \/ knqﬁ/(Zp)JrL) . g>2.
m § : q

"iern msp -
Using Lemma 1, we have
(6.34) E}y,_sl2f ()| < Kk, PGP g >0,

and therefore

q [l
2
(6.35) E mi E 2| <K (knk;ﬁ/@p)ﬂ\/k;qﬁ/@p)ﬂ) L g>2

q
: 2
il mn

We are now ready to prove the theorem. We make the decomposition

-~ e S(n 2 an, n n
Wllere we den()te

n _ An,1) A(n,1) A(n,2) 7(n,3) A(n,4)
R} = Bj (0) + Bj (c) + ﬁj + 53' + Bj .
In what follows we set n,, = n* for some arbitrary small + > 0. Combining the
bounds in (6.29), (6.30), (6.32)-(6.35) and using Lemmas 1 and 2, we have
IE]R;LP < K(nmy)~'/27¢, provided p < g, w € (1/3,1/2) and HFAL-5 > 1
and the following conditions hold

ai,/nmn_ﬂ) . k2
n

— 0.
kn, ’ nmn,

=0, 7

i

Similarly, using the bounds in (6.29)-(6.35) and Lemmas 1 and 2 as well as
Holder inequality, we have E|B](-n’1)(a)R?| < K(nmy)~ Y%7 provided p < g,
w e (1/3,1/2) and FAL-§ > 1. and the following conditions hold

n k3n apy/n
S0, gl 0, g,V L,
T et ond " e

Therefore, taking into account the requirements for p, k, and m, in the
theorem, we have altogether

bn

Z;‘bl S (25](”’”(@)3? + (R;L)Q) = 0,(1).
n -1
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Using the bound in (6.18) and the requirements for p, k,, m,,, we have

\/bim Z Z (Zi — E(p, u,v)) = 0p(1).

Next, we can use the bounds in Lemmas 2 and 5, the requirements for p, &k,
and my, in the theorem (which in particular imply a,+/n/m, — 0), together

with E|Z; —Z(p, u,v)| < K(VknApV k:;l/Q) and the boundedness of Z;, and
apply a stable CLT (Theorem IX.7.28 of [1]) to get

1 & (5@ - G Siery i/ (og(u/v)? £
2, & E(p, u,v)/(10g(u/v))”

Z.

~ L—
Combining the last three results, we have 7" (p,u,v) —(8>) Z.

Using the bounds in (6.15), (6.16), (6.21)-(6.26) and (6.34), and since
p < /3, w e (1/3,1/2) and nyan/n/\Vkn — 0, we also have

i (Byn —f- gn) = 0p (n1/2+‘m;1) , Vu>0.

=1

Further from Lemma 4, provided o, (nmy,)/*/v/k, — 0, we have B” - 08—
B = 0p((nmy,)~1/4). Finally, from (6.2) we also have =" (p, u, v) N Z(p,u,v).
Combining the above results we have altogether (6.10) and hence the result
to be proved. a

6.6. Proof of Corollary 1. First, given Theorem 2, we show that we have

%”(p, u,v) L_—(SQ Z in restriction to the set 2¢. Indeed, we can construct a
process X' satisfying X, = X, for all 0 < s <1 on Q¢ and having the same
constant 8 on QU as well. Then we can apply Theorem 2 for X’ and from
the properties of the stable convergence, the result also holds in restriction
to Q¢ (on which set X’ coincides with X'). Hence the claim follows. From
here the result of the corollary is easily shown by using also Theorem 1 and
by applying the Portmanteau lemma. a

6.7. Proof of the auxiliary results in Section 6.4. In this section we pro-
vide the proofs of the auxiliary results stated in Section 6.4.
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6.7.1. Proof of Lemma 1. We start with (6.11). First, similar to the proof
of Theorem 1, we split S; = St(l) —|—St(2) where St(l) = fg Jz &(x)f(ds, dx) and
1t is Poisson random measure with Lévy measure dt ® ‘wl%dx. Then using
Lemmas 2.1.5 and 2.1.7 of [3] and Assumption SB, we have for arbitrary
small : >0 and [ = 0,1

(6.36)
q
< KAYPHaBM= g e (0,2],

n
1—2

(i—14)An )

q

(i—141)iln
637 Bl [ (7 — 0(i2ya, JSP| < KAY, g€ (0.1],

i—240)Ap

q

Ay
(6.38) 2 g / (o, — ay—n,, )du| < KA?L‘]/Q, q € (0,2],
(i—1)An
(6.39) EP JAMY |9 < KAWBIN= g5 0and 8/ = sup B
te(0,1]

Next, we introduce x1 = o(;_9)a, (A7S — A} |S5) and

iAp (i—1)An,
X2 = / (Ou- — (i-2)a,)dSY — / (Ou- = 0(i-2)a, )AS
(i—1)A, (i—=2)An,

1Ay
+ / (g — ay—n,, )du,
(i_l)An

iAp (i—1)An
X3 = / (Cu— — 0i—2)a, )dSH — / (Cu— — 0i—2)a, )dSE?
(i=1)An (i

FATY — AT LY.

We finally use the shorthand y; = Aﬁl/ﬁxi fori = 1,.., 3. With this notation,
using the results in (6.37) and (6.39), we first have

- . . . - ZA1I-E—,
(6.40) Ef olIX1+ X2+ X3P — [x1 + 2P| < KA 7.

So we are left with the difference |x1 + X2[P — [X1|P. For it, we make use of
the following algebraic inequality

X1+ Xal? — [x1/7|
< KX P R 5> 10l<05¢) + [Xe2P(Lizu<a T L{gal>0.5¢})s
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for any € > 0 and p € (0, 1], and where K that does not depend on €. Since
p < 1/ from (4.9), and using the bounds in (6.36) and (6.38) as well as
Hoélder inequality and the fact that E? ,|A, o (A7S — A" |S5)|? is a finite
constant (that depends on ¢ and 8 but not on n) for ¢ € (—1,3) (see e.g.,
(25.6) in [8]), we have

B} o (Ix1 P M X L5 >, (7al<05¢})

n =18 -
(6.41) < (B (%l 7 Lgmse)

< Ke (W8 a2

=
=

(E?M)

1-2 p
- - B . B
E (%P L <) < K(P?_2<rxl\ < e>) (E?_2r><21ﬁ)

< [(61—17/5—LA§;L/2—L7

(6.42)

(6.43) (X2l 1gai>050) < Ke CPA,

where the constant K in (6.41)-(6.43) does not depend on e. Upon setting
1_8

e = A2 in (6.41)-(6.43), and using (6.40), we get the result in (6.11).
We continue with (6.12) for which we introduce the following additional
notation. For s € [(i — 2)A,,iA,], we set

(6.44) 05 = 0(i-9)n, + M)A, (Ws = Wii2)a,) + (o)A, (Ws - W(i—Q)An)‘

Using Assumption SB (the part about 77 and 77) and applying Burkholder-
Davis-Gundy inequality and Corollary 2.1.9 of [3], we have for s € [(i —
2) Ay, 1Ay

(6.45) B 5(0s — 0(i-g)a,)| + B a(0s — 0(ig)a,)” < KAy,
a+as A 4
(6.46) EP o5 — 5,9 < KA2 NN qe ).

With these bounds we can now show (6.12). Using the It6 semimartingale
assumption for o, Holder inequality and the bounds in (6.36)-(6.39) and
(6.46), as well as p < /2 and the fact that W and W are independent of
S, we have for some sufficiently small ¢ > 0

Aﬁp/BE?fzﬂgiAn - U(ifQ)AnHA?X —A X — U(zez)An(A?S — AL, S) ’p)
S }'{'A;l.l/z-‘rL7
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AR (0in, = Tin, IATS — AL SP) < KA/,
E?—z((gmn - U(i—Q)An)’A?S - A?—ls‘p) =0.

Using the above three bounds, we have altogether the result in (6.12).
Next, (6.13) follows directly by using successive application of Burkholder-
Davis-Gundy inequality. We continue with (6.14). Using (6.11) we have

(6.47) APV (p) — il [ol?| < Ko,

Also, given the boundedness from below of the process |o| and provided e is

chosen sufficiently small, we have ,ug/ g |7 > 3¢/2. Combining this with the
bounds in (6.13) and (6.47), we have the result in (6.14).

We are left with showing (6.15). We decompose E?(p, u) = 22:1 Ag-n’p)

where A§n’p) = mi ierm agn’p), for p=1,..,5, with
n J

(n,1) ( A?X — A?_1X> n < < AZ’.LX — A?_1X>)
a; =Ccos\Uu——m——— — &, COS un— N
i (Vi (p))t/p 2 (Vi (p))Y/p

a\™?) — En <COS <UW>> —exp Agilogga, |’
‘ - (Vi (p) VP AN VMp))Te )

(n.3) AguPloi_ga, |’ AguPloi_oya, 1P
a;"" = exp | —— = | —exp | - —— = :
An (V" (p))P/P Ant (Vi (p)P/P

(n4) ABUB‘U(FQ)AAB Cpﬁuﬁ‘a(FZ)An‘ﬁ
CLZ- = exp — 150 — €XpP — —p B/p N
An (VM (p))Prr (o)

a(n75) = exXp — Cpngu6|o-(’b—2)An |B
Z ([=17)87 '

If € > 0 is chosen sufficiently small, given the boundedness of the process
o, we have \A§n’5)\ > 3¢/2 and |A§-n’5)| < 1 —3¢/2. Hence to show (6.15), it
suffices to show for some sufficiently small ¢ > 0

(6.48) P (\A§”’p>| > %) < K(nmp) V2", p=1,..,4

(a) We start with A§~n’1). Using successive application of Burkholder-Davis-
Gundy inequality for discrete martingales as well as the boundedness of the
cosine function, we have

)1 — n,l € _
(6.49) EJAMV | < Kmyo/? = P (1Al > g) < Km; 92, Yg>2.
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(b) We continue with A;n’g). Using first-order Taylor expansion and the

. . AguPlog_ B
boundedness of the derivative of f(z) = exp (—W), we first

have B
a1 < KA |V (p) = Vi (p)

, q>1.

We now can split Ag.n’?’) = mln Zielf E?_kn_3(a§n’3)) + an Zie[ﬂn(agnﬁ) _
E?ﬁkn%(agn"%))). We can further split the last sum into k, + 1 terms each
of which can be viewed as the terminal value of a discrete martingale. From
here, applying (6.13) derived earlier, we have

a/2
6.50 P(1A™)) > S) <K Fn N 12\ f a2 . q>1.
J 8 n n
My,

(¢) We show (6.48) for A;nA). Using first-order Taylor expansion we have

(6.51) 0" < K | APV ) — ol

Then, by applying (6.11), we have for n sufficiently big [P (|A§"’4)| > %) =0.

(d) We show (6.48) for A;n’Q). For arbitrary ¢ > 1, using the algebraic
inequality | cos(x) — cos(y)| < K|z — y|' for any I € [0,1] and z,y € R, the
bounds in (6.36)-(6.39) as well as Assumption SB, we have for V ¢ > 0

(n,2)

LBy ) e}

‘< KA,

n
i—kn—3

al(n,Q)

q j—

(n,3)

From here, using also (6.14) and a similar decomposition as that of A;

above, we have

n c kn Q/2
(6.52) P (‘Ag ’2)’ > g) <K <<m> ’Yn\/%%) ;g2

1_ _B4
where we use the shorthand ~, = A3 VD g

Combining (6.49), (6.50), (6.51) with (6.11) and (6.52), we get (6.15). O
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