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Abstract
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1 Introduction

The recent financial crises has spurred a renewed interest in the estimation of tail events. We

add to the currently available tools for assessing tail behavior in financial markets by devel-

oping a new and flexible non-parametric framework for the estimation of the jump tails of Itô

semimartingales. These processes, which are ubiquitous in continuous-time economic modeling

and modern asset pricing finance in particular, portray the dynamic evolution in the form of a

drift term and a combination of continuous and dis-continuous martingale increments driven by

separate stochastic volatility and jump compensators, respectively. While both of the martingale

components can account for non-Gaussian behavior, the tails associated with the jumps manifest

themselves very differently from a formal statistical perspective.1 Exploiting these differences,

we develop a new robust methodology for estimating the jump tails. The approach is based on a

relatively simple-to-implement set of estimating equations associated with the compensator for

the jump measure, or its intensity, that only utilize the weak assumption of regular variation

in the jump tails, along with in-fill asymptotic arguments for directly estimating the “large”

jumps from the data. The procedure assumes that the “large” sized jumps are identically dis-

tributed, but otherwise allows for very general dynamic dependencies in jump occurrences, and

importantly puts no restrictions on the behavior of the “small” jumps. Nor does it restrict

the dynamic dependencies in the continuous part of the process and the form of the stochastic

volatility.

The existing empirical evidence pertaining to the behavior of jump tails in asset prices comes

almost exclusively from tightly parameterized jump-diffusion models. In particular, following

Merton (1976), most empirical studies to date have relied on relatively simple and tractable

finite activity jump processes, with normally distributed jump sizes coupled with a constant

jump intensity, or a jump intensity process that is affine in the diffusive stochastic variance.

Although such a formulation is very convenient from an analytical perspective, anticipating our

empirical findings, the data clearly suggests the existence of more complex dependencies and

typically larger jump tails that are formally outside this framework.

To illustrate this point, and the inability of the standard modeling framework to adequately

describe the data, Figure 1 shows the unconditional empirical jump tails estimated directly from

a sample of one-minute high-frequency futures data for the S&P 500 aggregate market portfolio

1The two types of risks are also very different from an economic perspective. Stochastic volatility in effect
induces temporal variation in the investment opportunity set and a corresponding hedging component; see, e.g.,
Merton (1973). This additional risk may be spanned by an asset with payoff dependent on the stochastic volatility,
e.g., an option. By contrast, the presence of jumps require a different derivative instrument for each possible jump
size to completely span the corresponding risk. Along these lines, the seemingly high prices for close-to-expiration
out-of-the-money puts observed in many options markets may also be seen as indirect evidence that investors
demand a separate risk premium for jump tail events; see, e.g., Broadie et al. (2009).
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Figure 1: Empirical and Normal Jump Tails

−3 −2 −1 0 1
−30

−25

−20

−15

−10

−5

0

log
(

∫

u
>

ln
(x

+1
)E

(ν t
(u)

)du
)

log(100x)
−3 −2 −1 0 1

−30

−25

−20

−15

−10

−5

0

log
(

∫

u
<
−

ln
(x

+1
)
E

(ν t
(u)

)du
)

log(100x)

Note: The dotted lines in the two separate panels report the left and right empirical jump tail intensities based

on one-minute S&P 500 futures prices from 1990 to 2008. The dashed lines give the corresponding best fit by

a Merton type model with normally distributed jump sizes. The results are reported on a double logarithmic

scale.

spanning the period from January 1990 to December 2008.2 In addition to the raw empirical

jump intensities, we also include in the figure the jump tails implied by a model with normally

distributed jump sizes estimated with the same high-frequency prices.3 As the figure clearly

shows, this now standard approach to jump modeling tends to overestimate the “medium-sized”

jumps, while severely underestimating the likelihood of “large” jumps.

This points to a more fundamental problem with a fully parametric estimation of the jump

tails. Parametric models generally link the behavior of the “small” and “large” jumps in a highly

model-specific fashion. Statistically, however, the “small” and “large” jumps are fundamentally

different, and the requisite techniques for studying the relevant aspects of the jump compensator,

or the Lévy measure, reflect those differences. The behavior of the Lévy measure around 0

primarily captures the pathwise properties of the jump process; e.g., finite or infinite activity,

finite or infinite variation. These features can only be reliably estimated using high-frequency

data and corresponding in-fill asymptotic arguments. On the other hand, the properties of the

jump tails and the behavior of the Lévy measure at infinity cannot be reliably estimated from

2This same data also underlies our empirical illustration in Section 6, and we provide a more detailed description
of the data there.

3The parameter estimates are based on a simple method-of-moments type procedure. When the jump intensity
is constant this estimation strategy corresponds directly to maximum likelihood, and it may be formalized more
generally along the lines of the theoretical analysis in Todorov (2009).
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a single realization over a fixed short time-interval, but instead must be inferred using standard

asymptotic arguments and the notion of an increasing sample over longer calendar time spans.

Our estimation of the jump tails purposely avoids any link between “small” and “large” jumps by

utilizing fill-in asymptotic arguments to directly isolate the “large” jumps, while at the same time

relying on standard asymptotic arguments for reliably estimating the population characteristics.

By focusing directly on the jumps, our procedure works both for the case where the jump

intensity is constant, i.e., pure Lévy type jumps, but importantly also in the practically more

relevant case with time-varying jump tail intensities. Intuitively, while the jumps may cluster in

time, the relative importance of differently sized jumps remains the same, leaving the ratios of

the tail jump intensities constant across jump sizes. By contrast, if one were to base the inference

on the price increments over fixed time-intervals, any clustering of the jumps would invariably

impact the size of the tails and would have to be somehow accounted for in the estimation.4

The basic ideas behind the new estimation approach developed in the paper may be summa-

rized in terms of the following steps: (i) estimate the local volatility of the continuous part of the

process based on fill-in asymptotic arguments; (ii) using this estimate for the diffusive volatility

define a dynamically varying threshold to directly estimate the “large” jumps from the actually

observed discrete-time high-frequency price increments; (iii) apply essentially model-free extreme

value theory type approximations for the jump intensities to infer empirically relevant extremal

features, and the behavior of the jump tails in particular; (iv) based on conventional long-span

asymptotic arguments define a simple-to-implement method of moments type estimator involv-

ing the observed and theoretically implied jump tail intensities to learn more generally about

the dynamic tail dependencies and extreme quantiles of the empirical distribution. Steps (i)

and (ii) have direct precedents in the recent literature on non-parametric jump robust volatility

estimation from high-frequency data, introduced by Mancini (2001) and Barndorff-Nielsen and

Shephard (2004, 2006).5 Steps (iii) and (iv), however, and the corresponding non-parametric

approximations, are to the best of our knowledge, new.6

The importance of using high-frequency data for effectively estimating the “large” jumps,

and the power-law decay for the intensities, is clearly illustrated by Figure 2, which compares

the empirical jump tails for the S&P 500 market portfolio estimated with one- and ten-minutes

returns, respectively. While the estimates coincide for the larger jump sizes, as they should,

4Another advantage of working directly with the jumps is that our estimator does not depend upon the form
of the stochastic volatility, and in particular is robust to the presence of jumps in the volatility, as explored
parametrically by Barndorff-Nielsen and Shephard (2001) and more recently using non-parametric procedures by,
e.g., Jacod and Todorov (2010) and Todorov and Tauchen (2010).

5Shimizu (2006) and Shimizu and Yoshida (2006) have also previously relied on similar methods in the para-
metric estimation of jump-diffusion models.

6They imply, among other things, that the jump tail intensities should obey a power-law for sufficiently large
jump sizes. Formally, this result builds on the so-called peaks-over-threshold method together with the assumption
of regular variation in the tails, as originally developed by Smith (1987) in the context of i.i.d. random variables.
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Figure 2: Empirical Jump Tails and Sampling Frequency
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Note: The two separate panels report the left and right empirical jump tail intensities based on one-minute

(dotted line) and ten-minutes (dashed line) S&P 500 futures prices from 1990 to 2008. The results are reported

on a double logarithmic scale.

our ability to meaningfully extract the more moderate-sized jumps obviously becomes more

limited at the ten-minute frequency. Intuitively, the coarser the sampling frequency, the more

the continuous variation will obscure the jumps, and the greater cutoff values will need to be

used in the jump-tail inference, in turn resulting in a loss of jump-observations and efficiency of

the estimation.7

Figures 1 and 2 both corroborate the empirical validity of the assumed power-law decay un-

derlying our asymptotic approximations. Importantly, however, our estimates of the jump tails

go beyond the simple case of jumps with independent increments, i.e., Lévy type jumps, by ex-

plicitly incorporating dynamic dependencies in the jump tail intensities. Specifically, utilizing the

assumption of regular variation in the tails, we show how appropriately rescaled and transformed

versions of the tails of the jump compensators should be approximately equal to the cumulative

distribution function of a Generalized Pareto distribution, even for dynamically dependent jump

tails. Going one step further, we show how this in turn implies that appropriately transformed -

by the scores from a Generalized Pareto distribution - “large” jumps when integrated over time

become approximate martingales, thus setting the stage for the construction of a moment type

estimator for the jump tail parameters through the judicious choice of instruments.8

7Of course, the use of coarser daily frequency returns, as commonly done in the estimation of parametric
jump-diffusion models, would even further exaggerate these same effects and handicap the detection of jumps.

8Even though our procedure is distinctly non-parametric in nature, it has the appealing feature that it corre-
sponds directly to parametric maximum likelihood when the tail decay obeys an exact power-law.
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In practice, of course, our use of discretely sampled high-frequency data for inferring the

“large” jumps invariably introduces a discretization error, the size of which is directly related to

the mesh of the observation grid. In the last step of our theoretical analysis we provide formal

conditions under which this error has no first-order asymptotic effect on the estimation. We

further investigate the accuracy of these asymptotic based approximations through a series of

Monte Carlo simulations, confirming the applicability of the feasible version of the new jump tail

estimation procedure.

On actually implementing the estimators with the same high-frequency S&P 500 data un-

derlying the average jump tail intensities depicted in the figures discussed above, we find strong

evidence for temporal variation in the jump intensities and much richer and more complex dy-

namic dependencies in the resulting jump tails than hitherto entertained in the literature. As

such, our new econometric modeling framework developed in the paper has the potential of allow-

ing for jump tail forecasting, and in turn can be used to provide a deeper economic understanding

of the tail events of the types observed during the recent financial crises.

The rest of the paper is organized as follows. Section 2 introduces the basic notation and

key assumptions. Section 3 describes the main idea behind the new estimation method and

the relevant asymptotic results when continuous price records are available. Section 4 extends

the analysis to the practically relevant situation of discretely sampled prices. The practical

applicability of the new estimator is confirmed through a series of Monte Carlo simulations

presented in Section 5. Section 6 discusses the empirical estimation results for the S&P 500

market index, and our findings related to the rich dynamic dependencies inherent in the jump

tails of that portfolio. Section 7 concludes. All proofs are deferred to Section 8.

2 Setup and Assumptions

To set up the notation, let pt := ln (Pt) denote the logarithmic price of a financial asset. We

will assume that the log-price follows an Itô semimartingale defined on some filtered probability

space, i.e.,

dpt = αtdt+ σtdWt +

∫
R
κ(x)µ̃(dt, dx) +

∫
R
κ′(x)µ(dt, dx), (2.1)

where αt and σt are both locally bounded processes; Wt denotes a Brownian motion; µ is a one-

dimensional measure on [0,∞)×R that counts the number of jumps of given size x over a given

time-interval; the compensator of the jump measure is denoted by νt(x)dxdt, where µ̃(dt, dx) :=

µ(dt, dx) − νt(x)dxdt refers to the corresponding compensated measure; κ(x) is a continuous

function with bounded support equal to x around the origin, with κ′(x) = x − κ(x).9 We will

9The two separate integrals on the right-hand-side of equation (2.1) reflect the different statistical properties
of “small” and “large” jumps. In general, “small” jumps may be of infinite variation and the corresponding
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also assume throughout that νt(dx) is absolutely continuous with respect to Lebesgue measure,

i.e., νt(dx) = νt(x)dx. The main contribution of the paper is to provide a new, essentially model-

free, robust framework for the estimation of the tail behavior of νt(x), leaving other aspects of

the data generating process in equation (2.1), including the drift term αt and the stochastic

volatility σt, as well as the activity level of the jumps, unspecified and free to instantly vary.

We do assume, however, that conditionally on past information the “large” sized jumps are

identically distributed.

Finance theory, under mild regularity conditions, implies that all asset prices should be semi-

martingales. Formally, the only additional assumption imposed by the representation in equation

(2.1) is that the characteristics of the semimartingale, i.e., the drift term, the quadratic variation

of the diffusion, and the compensator for the jump measure, are all absolutely continuous in

time processes. This assumption is satisfied by virtually all of the processes hitherto used in the

asset pricing literature. It does, however, rule out certain processes where the Brownian motion

is time-changed by a separate discontinuous process.10

As noted in the introduction, the existing evidence concerning the empirical features of νt(x)

for large values of the jump sizes x come almost exclusively from tightly parameterized jump-

diffusion models. In particular, following Merton (1976), most empirical studies to date have

relied on relatively simple and tractable compound Poisson jump processes with normally dis-

tributed jump sizes. Under this specification the Lévy measure in equation (2.1) may be expressed

as νt(x) = λte
−(x−µ)2/(2σ2)(2πσ2)−1/2, where λt denotes some predictable stochastic process in-

tended to capture the time-varying probability of jump arrivals, typically postulated to be a

linear function of the stochastic volatility σ2
t−. While such a formulation is very convenient

from an analytical perspective, Figure 1 above clearly shows that such a specification doesn’t

necessarily fit the tails very well.

As also noted in the introduction, another problem with fully parametric approaches to

estimating the jump tails, is that they generally link the behavior of the “small” and the “large”

jumps in a highly model-specific fashion. Statistically, however, the “small” and the “large”

jumps are very different. The behavior of the Lévy measure around 0, and the corresponding

first integral on the right-hand-side of equation (2.1), captures mainly the pathwise properties of

the jump process; e.g., finite or infinite activity, finite or infinite variation. By contrast, the last

term in equation (2.1) and the jump tails only depend on the “large” jumps. Indeed, our basic

integration is defined in a stochastic sense with respect to the martingale measure µ̃. This directly mirrors the
integral that naturally arise for the diffusive increments with respect to the Brownian motion, which is similarly
an infinite variation process. By contrast, there is only a finite number of “large” jumps over a given finite
time-interval, and the second integration is consequently defined in the usual Riemann–Stieltjes sense.

10In practice, a host of market microstructure frictions also prevent us from directly observing the efficient
price. As discussed in more detail below, our empirical strategy for dealing with this is to rely an appropriately
chosen discrete sampling frequency, so that the effect of the measurement error in the actually observed price
process vis-a-vis the one defined by equation (2.1) is negligible.
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minimal assumptions related to νt(x), as stated in A1 and A2 immediately below, only concern

the behavior of the “large” jumps, and put no restrictions on the jump activity per se.

Assumption A1. The jump compensator νt(x) satisfies,

νt(x) = (φ+
t 1{x>0} + φ−

t 1{x<0})ν(x), (2.2)

where φ±
t are nonegative-valued stochastic processes with càdlàg paths, and ν(x) is a positive

measure on R with
∫
R(|x|

2 ∧ 1)ν(x)dx <∞.

Assumption A1 factors the dependence in the jump compensator on time (t) and jump size

(x) into two separate functions. This implies that differently sized jumps will have the same

dynamic properties. Intuitively, in the case of finite activity jumps, the assumption implies that

we allow for a different time change for the positive and negative jumps, but otherwise leave the

distribution the same. Most parametric jump specifications used to date, e.g., time-changed Lévy

processes, trivially satisfy this assumption. Still, the assumption is slightly stronger than what

we actually need, and it would be possible to relax A1 to hold only for sufficiently large values

of |x|. However, to avoid the unnecessary additional complications that arise in this situation,

we will maintain A1 in its current form.

Our interest center on the tail behavior of the Lévy density ν(x), which in turn determines

the tail behavior of the jumps in the price process. Our next assumption concerns the variation

in the tails of ν(x), and is directly motivated by the apparent power tail decay seen in Figure 1

discussed in the Introduction. To facilitate our analysis and the notation, define the functions

ψ(x) := e|x| − 1, and

ψ+(x) :=

{
ψ(x) x > 0,

0 x ≤ 0
ψ−(x) :=

{
0 x > 0,

ψ(x) x ≤ 0.

These functions allow us to switch from jumps in the log-price to jumps in levels. Also, de-

note ν+ψ (y) = ν(ln(y+1))
y+1

and ν−ψ (y) = ν(− ln(y+1))
y+1

for y ∈ (0,∞). Then for every measur-

able set A in (0,∞),
∫
(0,∞)

1{x∈A}ν
+
ψ (x)dx =

∫
R+

1{ex−1∈A}ν(x)dx and
∫
(0,∞)

1{x∈A}ν
−
ψ (x)dx =∫

R−
1{e−x−1∈A}ν(x)dx. Moreover, denote the tails of the measures by ν±ψ (x) :=

∫∞
x
ν±ψ (u)du, for

some x > 0. The function ψ(x) maps the positive and negative jumps to (0,∞), with the Lévy

densities for the transformed jumps given by the ν±ψ measures. Assumption A2 imposes regular

variation for the tails of the latter.

Assumption A2.

(a) ν±ψ (x) are regularly varying at infinity functions, i.e., ν±ψ (x) = x−α
±
L±(x), where α± > 0,

and L±(x) are slowly varying at infinity.11

11A function L(x) is said to be slowly varying at infinity if lim
x→∞

L(tx)
L(x) = 1 for every t > 0.
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(b) L±(x) satisfy the condition L±(tx)/L±(x) = 1 + O(τ±(x)) as x ↑ ∞ for t > 0, where

τ±(x) > 0, τ±(x) → 0 as x ↑ ∞, and τ±(x) are nonincreasing.

Assumption A2 is key to our analysis and several comments are in order. First, the close to

linear behavior of the empirical jump tail estimates for the “large” jumps depicted in Figure 1

is directly in line with A2(a). Second, A2(a) rules out Lévy measures with light tails, i.e.,

Merton-type jumps, whose tails belong in the maximum domain of attraction of the Gumbel

distribution; see e.g., Embrechts et al. (2001).12 Third, the decay of the tail measures ν±ψ (x)

is directly linked to the fat-tailedness of the transformed jumps ψ(∆pt). In particular, the

integrability of
∫ t+a
t

∫
R |ψ(x)|

pµ(ds, dx) depends on whether p ≷ α±. A2(a) therefore implies

that all powers of the jumps in the logarithmic price exist. Alternatively, one could assume that

A2(a) holds for ν±(x) instead of ν±ψ (x), where ν
+(x) =

∫∞
x
ν(u)du and ν−(x) =

∫ −x
−∞ ν(u)du

for x > 0. Or equivalently, that the continuously-compounded returns ln
(

pt
pt−

)
, instead of the

“discrete” returns Pt−Pt−
Pt−

, should be modeled with Lévy densities with power decay in their tails.

We think the former is less appealing from an economic perspective.13

The second part A2(b) of the assumption is taken directly from Smith (1987); see also Goldie

and Smith (1987). It essentially limits the deviation of the tail measures ν±ψ (x) from the power

law. We will use this assumption in determining the rate of convergence and establishing asymp-

totic normality of the estimates for the jump-tail probabilities.

Our next assumption imposes minimal stationarity and integrability conditions on φ±
t . This

assumption is needed to ensure that the standard long-span asymptotics works in conjunction

with the other assumptions for consistently inferring the jump tails.

Assumption A3. φ±
t are stationary processes satisfying 0 < E |φ±

t |1+ϵ < K, for some K > 0

and ϵ > 0.

Our final assumption restricts φ±
t to be an Itô semimartingale. It also imposes some weak

additional integrability conditions on the stochastic processes that appear in the definition of the

price process in equation (2.1). We need this assumption in the empirically realistic situation

when the price is only observed at discrete points in time.

Assumption A4.

12Although the new estimation method could be adopted to cover this case as well, parts of the proof would
require slightly different techniques. Since this case arguably isn’t empirically relevant, we will not consider it
here.

13Assuming a heavy-tailed distribution for the continuously-compounded returns would imply an infinite con-
ditional variance for the price level, which in turn can result in infinite option prices, and as conjectured by
Merton (1976) might also result in infinite equilibrium interest rates. In practice, of course, it is impossible to

differentiate whether assumption A2(a) holds for ν±ψ (x) or ν
±(x), as the difference between ln

(
pt
pt−

)
and Pt−Pt−

Pt−

is numerically very small for the jump sizes that we actually observe.
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(a) φ±
t are Itô semimartingales satisfying,

φ±
t =φ±

0 +

∫ t

0

α±′

u du+

∫ t

0

σ±′

u dWu +

∫ t

0

σ±′′

u dBu +

∫ t

0

∫
R2

κ(δ±(u−,x))µ̃′(du, dx)

+

∫ t

0

∫
R2

κ′(δ±(u−,x)), µ′(du, dx),

(2.3)

where Bt is a Brownian motion orthogonal to Wt, the processes α±′

t , σ±′

t and σ±′′

t , and the

functions δ± in their first argument, all have càdlàg paths, and µ′ is a Poisson measure on

R2 with independent marginals, the first of which counts the price jumps, with compensator

νt(x1)dx1 ⊗ ν ′(x2)dx2, for ν
′(·) a valid Lévy density.

(b) For every p > 0 and every t > 0,

E
∣∣∣∣∫ t

0
(|αs|+ σ2s + |α±′

s |+ (σ±
′

s )2 + (σ±
′′

s )2)ds+

∫ t

0

∫
R2

(δ±(s−,x))2µ′(ds, dx)
∣∣∣∣p < Kp, (2.4)

where Kp > 0.

Assumption A4(a) is very weak. It is easily satisfied for virtually all parametric jump specifi-

cations used in the literature to date, including the most commonly applied affine jump-diffusions.

The assumption also allows for so-called self-exciting jump processes in which φ±
t depend directly

on the jump measure µ, as in, e.g., Todorov (2010).

This completes our discussion of the basic setup and assumptions underlying the new jump

tail estimation procedures. We begin in the next section with a discussion of the infeasible case

in which continuously recorded prices are available for the estimation. This obviously facilitates

the estimation, as it allows us to perfectly separate the continuous from the discontinuous price

moves. We subsequently extend the analysis in Section 4 to the empirically realistic case when

prices are only observed at discrete points in time.

3 Estimation of Jump Tails: Continuous Price Records

The basic idea behind our estimation scheme builds on the three assumptions in A1-A3 and the

relevant extreme value theory type approximations for appropriately transformed versions of the

jump tails. The common approach for assessing tail behavior in extreme value theory relies on

discretely sampled prices, or returns, and a corresponding estimate of the tail index; see, e.g.,

Embrechts et al. (2001) and the references therein. Importantly, however, we are after the tail

behavior of the jump measure µ itself, as opposed to that of the discrete returns.14

14Under fairly general conditions, the tail of discrete increments from a Lévy process is proportional to the tail
of its Lévy measure; see e.g., Rosinski and Samorodnitsky (1993), Theorem 2.1. Intuitively, since the continuous
part of any Lévy increment is normal, its contribution becomes negligible “deep” in the tail.
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In general, there is not a direct link between the tails of the discrete returns and the Lévy

measure of the price process. For one, time-varying volatility in the continuous part of the price

process, as determined by σt, invariably impacts the tails of the discrete returns.15 Secondly,

temporal dependencies in the jump intensity itself, i.e., the dependence of νt(x) on t, also affects

the tails. While, it would be possible to circumvent the first problem in the continuous-record

case by looking only at the jump increments, any time-variation in the jump intensity would still

blur the link between the tails of the latter and the tails of ν(x) in the decomposition in A1.

Instead, we base our inference directly on the jumps, or in the case of discretely observed

prices estimates thereof, and a set of moment conditions for the jump intensity νt(x) derived

from assumptions A1 and A2. Using the fact that the random jump measure µ differs from

its compensator by a martingale, we translate the moment conditions for νt(x) to a set of mo-

ment conditions for µ that involve the estimated in-sample jumps. To conserve space, we focus

our discussion on the estimation of the right tail only; the estimation of the left tail proceeds

completely analogous.

We begin by approximating the distribution of 1− ν+ψ (y)

ν+ψ (x)
for y ≥ x > 0, using A1 and A2. We

then rely on the scores from this approximating distribution to define a set of feasible estimating

equations based on the observed “large” jumps. This idea originates in the so-called peaks-

over-thresholds method for estimating the tails, and the tail decay, of i.i.d. random variables,

originally developed by Smith (1987). Specifically, it follows from assumption A2 that

ν+ψ (u+ x)

ν+ψ (x)
=
(
1 +

u

x

)−α+

+
(
1 +

u

x

)−α+
(
L+(x+ u)

L+(x)
− 1

)
, (3.1)

where u > 0, and x > 0. Since L+(·) is a slowly varying at infinity function, the second term

becomes negligible for large x. Thus,

1−
ν+ψ (u+ x)

ν+ψ (x)

appr∼ G(u;σ+, ξ+) = 1−
(
1 + ξ+u/σ+

)−1/ξ+
, ξ+ ̸= 0, σ+ > 0, (3.2)

where G(u;σ+, ξ+) denotes the cdf of a Generalized Pareto distribution with parameters σ+ = x
α+

and ξ+ = 1
α+ , and the tail decay parameter α+ is determined by A2(a). Let the scores associated

with the log-likelihood function of the generalized Pareto distribution be denoted by,

ϕ+
1 (u, σ

+, ξ+) = 1
ξ+

−
(
1 + 1

ξ+

)(
1 + ξ+u

σ+

)−1

,

ϕ+
2 (u, σ

+, ξ+) = 1
(ξ+)2

log
(
1 + ξ+u

σ+

)
− 1

ξ+

(
1 + 1

ξ+

)
+ 1

ξ+

(
1 + 1

ξ+

)(
1 + ξ+u

σ+

)−1

,
(3.3)

where i = 1, 2 refer to the derivatives with respect to σ+ and ξ+, respectively.

15As shown by Leadbetter and Rootzen (1988), the extremes of two sequences of discrete returns with the same
marginal law, one with and the other without any temporal dependencies, is generally different.
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The idea is then to pick a “large” threshold ϱT , and fit the scores to the jumps above this

threshold. Doing so results in the following set of moment conditions involving the realized

“large” jumps,

gT (θ, ϱT ) =
1

M+
T

T−1∑
t=1

( ∫ t+1

t

∫
R ϕ

+
1 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)∫ t+1

t

∫
R ϕ

+
2 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)

)
, (3.4)

where θ denotes the 2× 1 vector of unknown parameters, and M+
T equals the number of positive

in-sample jumps which, upon transformation by ψ(·), exceed the threshold ϱT , that is,
16

M+
T =

T−1∑
t=1

∫ t+1

t

∫
R
1{ψ+(x)>ϱT }µ(ds, dx). (3.5)

In theory, of course, ϱT will have to grow to infinity with the sample size T . Denote the true

parameter values implicitly defined by the moment conditions θ0T =
(
σ+
T , ξ

+
)′
, where σ+

T = ϱT
α+

increases with the sample size T . We then have the following theorem.17

Theorem 1 For the process pt defined in (2.1), assume that A1-A3 hold. Let the sequence of

truncation levels satisfy

ϱT → ∞, T ν+ψ (ϱT ) → ∞, and
√
Tν+ψ (ϱT )τ

+(ϱT ) → 0, as T → ∞, (3.6)

where τ+(·) is defined in A2(b). Then, for T → ∞, with probability approaching one gT (θ, ϱT ) = 0

has a solution θ̂T :=
(
σ̂+
T , ξ̂

+
)′
, which satisfies

√
M+

T

(
σ̂+
T /σ

+
T − 1

ξ̂+ − ξ+

)
L→ Σ−1/2Z, Σ =

1

(α+ + 1)(α+ + 2)

(
α+(α+ + 1) (α+)2

(α+)2 2(α+)2

)
, (3.7)

where Z denotes a standard bivariate normal distribution.

The scaling factor for the difference between the estimated and true parameters that control

the tails is given by the random numberM+
T . Of course,M+

T /(Tν
+
ψ (ϱT ))

P→ E(φ+
t ), and Tν

+
ψ (ϱT )

is non-random. However, since ν+ψ (ϱT ) converges to 0, the rate of convergence is in general slower

than the standard
√
T rate. In particular, it follows from the conditions for the truncation level

in (3.6), that the larger the deviations of the tail from the power-law decay, i.e., the slower the

rate at which τ+(x) goes to zero as x ↑ ∞, the slower the rate of convergence of the estimator.

16M+
T provides an estimate for Tν+ψ (ϱT )E(φ

+
t ).

17Alternatively, we could have used the score based on the approximation
ν+
ψ (u+x)

ν+
ψ (x)

appr∼
(
1 + u

x

)−1/ξ+

, ξ+ ̸= 0,

obtained by substituting the true value of σ+ = x
α+ in equation (3.2). This would involve only a single parameter,

and it could be seen as an analogue of Hill (1975)’s estimator in the jump tail setting. However, such an
estimator would not be scale free, and the analysis in Smith (1987) also suggests that it would be less robust than
the estimator advocated in Theorem 1.
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Intuitively, the further are the tails from the eventual power-law decay, the larger the required

truncation level, which in turn slows down the rate of convergence as fewer observations are

employed in the estimation.

To further appreciate this result, suppose that τ+(x) = |x|−k for some k > 0. In this situation,

the required rate condition in (3.6) stipulates that ϱT = O
(
T

1
α++2k

)
, so that for k → ∞, i.e.,

L+(x) in A2 converging to unity and diminishing deviations from the power-law, it is possible to

get arbitrarily close to the standard parametric
√
T rate of convergence for optimally chosen ϱT .

In practice, of course, we do not know a-priori the form of the slowly-varying function L+(x)

that dictates the optimal choice of the truncation level, and we are faced with a tradeoff in

terms of robustness versus efficiency in the estimation. A low value of ϱT would entail the use of

more observations, i.e., more jumps, and hence a more efficient estimator. On the other hand,

by choosing ϱT too small, we run the risk of larger deviations from the eventual power-law tail

decay and non-robustness of the estimation. We will explore these tradeoffs more fully in the

Monte Carlo simulations reported in Section 5 below.

Importantly, the estimating equations in (3.4) correctly identify the tail behavior of ν(x),

even in the presence of time-varying jump intensities. Intuitively, temporal dependence in the

jump intensity does not affect the distribution of the “large” jumps, and as such the presence

of more jumps in certain periods does not systematically bias the estimator. By contrast, any

estimator based on the jump increments over fixed intervals of time, e.g., days, would invariably

be affected by jump clustering and a failure to properly account for that effect would result in

biased tail index estimates.

Even though Theorem 1 allows for jump clustering, it doesn’t fully exploit the dynamic

structure of the jump tails implied by assumptions A1-A2. Going one step further, it follows

from the proofs in the Appendix that for t, s ≥ 0,18

Et
(∫ t+s

t

∫
R
ϕ+i (ψ(x)− ϱT , θ

(1), θ(2))µ(du, dx)

)
= Et

(∫ t+s

t

∫
R
ϕ+i (ψ(x)− ϱT , θ

(1), θ(2))µ̃(du, dx)

)
+

∫
R
ϕ+i (ψ(x)− ϱT , θ

(1), θ(2))ν(x)dxEt
(∫ t+1

t
φ+
u du

)
=

∫
R
ϕ+i (ψ(x)− ϱT , θ

(1), θ(2))ν(x)dxEt
(∫ t+s

t
φ+
u du

)
≈ 0,

where we have used the shorthand notation Et(·) = E(·|Ft). In particular, for any instrument

xt adapted to Ft,

E
(
xt

∫ t+1

t

∫
R
ϕ+
i (ψ(x)− ϱT , θ

(1), θ(2))µ(ds, dx)

)
≈ 0.

This in turn suggests the following extension of Theorem 1.

18Recall that the counting jump measure µ is not a martingale, but that its compensation version, µ̃(ds, dx) =
µ(ds, dx)− νt(x)dxdt, is.
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Theorem 2 For the process pt defined in (2.1), assume that A1-A3 hold. Let the sequence of

truncation levels satisfy the growth condition (3.6) of Theorem 1. Define the vector of moment

conditions

gT (θ, ϱT ) =
1

M+
T

T−1∑
t=1

xt ⊗

( ∫ t+1

t

∫
R ϕ

+
1 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)∫ t+1

t

∫
R ϕ

+
2 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)

)
, (3.8)

where xt is a q×1 Ft-adapted stationary vector process that satisfy E||xt||2+ϵ <∞ for some ϵ > 0,

such that a law of large numbers holds for 1
T

∑T−1
t=1 xt

∫ t+1

t
φ+
s ds and 1

T

∑T−1
t=1 xtx

′
t

∫ t+1

t
φ+
s ds with

E
(
xt
∫ t+1

t
φ+
s ds
)
̸= 0 as T → ∞. Further, let ŴT denote a sequence of symmetric positive semi-

definite 2q×2q matrices, such that ŴT
P→ W , where W is a 2q×2q positive definite matrix. De-

note θ̂T = argminθ∈ΘlT gT (θ, ϱT )
′ŴTgT (θ, ϱT ), where Θl

T =
{
θ : αlθ

0(i)
T ≤ θ(i) ≤ αhθ

0(i)
T , i = 1, 2

}
for some constants 0 < αl < 1 < αh. Then, for T → ∞, θ̂T exists with probability approaching

one, and√
M+

T

(
σ̂+
T /σ

+
T − 1

ξ̂+ − ξ+

)
L→
√
E(φ±

t )Ξ
1/2Z, Ξ = (Π′WΠ)

−1
(Π′WVWΠ) (Π′WΠ)

−1
, (3.9)

where Z is a standard bivariate normal distribution,

Π = E
(
xt

∫ t+1

t

φ+
s ds

)
⊗ Σ, V = E

(
xtx

′
t

∫ t+1

t

φ+
s ds

)
⊗ Σ, (3.10)

and Σ is defined in (3.7).

The use of additional instruments in the estimation of the tail parameters afforded by The-

orem 2 provides a general and convenient framework for testing the dynamic structure of the

jumps. In the semiparametric example discussed in the next subsection we will provide a practi-

cally attractive choice for the instrument vector process xt. A consistent estimate of the variance-

covariance matrix for the resulting parameter estimates is readily obtained by replacing each of

the relevant matrices in the expression for Ξ in equation (3.9) with

Π̂T =
T−1∑
t=1

xt

∫ t+1

t

∫
ψ+(x)>ϱT

µ(ds, dx)⊗ Σ̂T , V̂T =
T−1∑
t=1

xtx
′
t

∫ t+1

t

∫
ψ+(x)>ϱT

µ(ds, dx)⊗ Σ̂T ,

and Σ̂T defined from Σ in equation (3.7) with α+ estimated by 1/ξ̂+.

Thus far our focus has centered on recovering the tail properties of ν(x). In most practical

applications, however, one would be interested in the tails of νt(x). Building on the decomposition

for νt(x) in assumption A1 into its time-varying components φ±
t , it follows that for the “large”

jumps, the difference∫ t

0

∫
R
ϕ(s−, x)µ(ds, dx)−

∫ t

0

∫
R
ϕ(s−, x)φ+

s dsν(x)dx,

13



must be a martingale for any function ϕ(s, x) with càdlàg paths, and ϕ(s, x) = 0 for x < K,

where K > 0 denotes some constant. In parallel to the discussion above, this therefore allows

for the construction of a set of unconditional estimating equations through the appropriate

choice of instrument(s) xt. In general, of course, the resulting moments will depend on the

exact specification of the φ±
t processes. To illustrate, we next consider the special case in which

the time-varying part of the right jump intensity is assumed to be an affine function of the

spot variance, i.e., φ+
t = k+0 + k+1 σ

2
t . This same basic assumption also underlies our empirical

illustration in Section 6 below.

3.1 Affine Jump Intensities

The assumption that the temporal dependencies in the jump intensities are affine in the spot

volatility nests virtually all parametric jump-diffusion models hitherto considered in the liter-

ature, including the affine jump-diffusion class of models popularized by Duffie et al. (2000).

Importantly, however, by making no parametric assumptions about the volatility process itself,

the semi-parametric setup adopted here is much more flexible, allowing for the possibility of

so-called self-exciting jumps and models in which σt depends on the jump measure µ.

The maintained assumption of continuous price records underlying all of the results in this

section and our ability to perfectly identify the “large” jumps, similarly allows us to perfectly

infer the integrated variation
∫ t
t−1

σ2
sds. In practice, as discussed further below, with discretely

observed prices, estimates of the integrated variation will invariably involve some estimation

error. Nonetheless, this naturally suggests using that measure to help identify the dependence

of φ+
t on σ2

t . The following corollary extends the results above to cover this situation.

Corollary 1 For the process pt defined in (2.1), assume that A1-A3 hold, and that φ+
t = k+0 +

k+1 σ
2
t . Denote θ = (σ+, ξ+, k+0 ν

+
ψ (ϱT ), k

+
1 ν

+
ψ (ϱT )), and define the vector of moment conditions,

gT (θ, ϱT ) =
1

M+
T

T−1∑
t=1

xt ⊗


∫ t+1

t

∫
R ϕ

+
1 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)∫ t+1

t

∫
R ϕ

+
2 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)∫ t+1

t

∫
ψ+(x)>ϱT

µ(ds, dx)− θ(3) − θ(4)
∫ t+1

t
σ2
sds

 , (3.11)

with xt =
(
1
∫ t
t−1

σ2
sds
)′
. Assume that the growth condition for ϱT in (3.6) is satisfied and that

a law of large numbers holds for 1
T

∑T−1
t=1

∫ t
t−1

σ2
sds
∫ t+1

t
σ2
sds and

1
T

∑T−1
t=1

(∫ t
t−1

σ2
sds
)2 ∫ t+1

t
σ2
sds,

as T → ∞, with E|σt|6+ϵ < ∞ for some ϵ > 0. Finally, let ŴT denote a sequence of symmetric

positive semi-definite 6× 6 matrices, such that ŴT
P→ W , where W is a 6× 6 positive definite

matrix, and denote θ̂T = argminθ∈ΘlT gT (θ, ϱT )
′ŴTgT (θ, ϱT ).
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(a) Then for T → ∞, the estimator θ̂T exists with probability approaching one, and

√
M+

T


σ̂+
T /σ

+
T − 1

ξ̂+ − ξ+

̂k+0 ν+ψ (ϱT )/ν
+
ψ (ϱT )− k+0

̂k+1 ν+ψ (ϱT )/ν
+
ψ (ϱT )− k+1

 L→
√

E(φ±
t )Ξ̃

1/2Z,

where Z is a standard multivariate normal, Ξ̃ =
(
Π̃′W Π̃

)−1 (
Π̃′WṼW Π̃

)(
Π̃′W Π̃

)−1

with

Π̃ =


Π 04×2

02×2

 1 Eσ2t
Eσ2t E

(∫ t
t−1 σ

2
sds

∫ t+1
t σ2sds

) 
 , Ṽ =

 V 02×2

02×2 E
(
xtx

′
t

∫ t+1
t (k+0 + k+1 σ

2
s)ds

)  ,

and Π and V defined in (3.10).

(b) Further, let zT = ηϱT for some constant η ≥ 1, and denote

̂k+i ν
+
ψ (zT ) =

̂k+i ν
+
ψ (ϱT )

(
1 +

ξ̂+

σ̂+
T

(zT − ϱT )

)−1/ξ̂+

, i = 0, 1. (3.12)

Then, for T → ∞,√
M+

T

( ̂k+0 ν+ψ (zT )/ν
+
ψ (zT )− k+0

̂k+1 ν+ψ (zT )/ν
+
ψ (zT )− k+1

)
L→
(
ΦΞ̃Φ′

)1/2
Z, (3.13)

where

Φ =

(
k+0 α

+η−α
+−1(η − 1) k+0 (α

+)2η−α
+
(log(η)− 1 + 1/η) η−α

+
0

k+1 α
+η−α

+−1(η − 1) k+1 (α
+)2η−α

+
(log(η)− 1 + 1/η) 0 η−α

+

)
, (3.14)

and Z refers to the standard normal vector from part (a).

The last two moment conditions effectively serve to disentangle the constant and time-varying

parts, i.e., k+0 ν
+
ψ (ϱT ) and k

+
1 ν

+
ψ (ϱT ), respectively. They may be interpreted as linear projections

of the counts of “large” jumps on a constant and the integrated variation over the previous

period. As such, these two moment conditions only require that the affine structure holds for the

“large” jumps. Part (b) of the corollary shows how the estimation framework may be extended

to meaningfully characterize the behavior of the jump-tails at levels for which we (invariably)

have few in-sample observations. These, of course, are also the levels of interest in many risk

management situations involving extreme value-at-risk type quantities. We further illustrate this

important new dimension of our result in the empirical application discussion in Section 6 below.

Our formal analysis up until now has been based on the assumption of continuously recorded

prices. We next discuss how this empirically unrealistic assumption may be relaxed and the

results extended to the case when prices are only observed at discrete points in time.
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4 Estimation of Jump Tails: Discretely Sampled Prices

The results in the previous section relied on our ability to directly identify the jumps in a

continuously observed realization of the underlying process. The theoretical notion of continuous

price records is, of course, practically infeasible. Instead, we will now assume that over each

unit time-interval [t, t + 1], the price process pt is “only” observed at the discrete points in

time t, t + ∆n, ..., t + n∆n, for some ∆n > 0. We will refer to n = [1/∆n] as the number of

high-frequency price observation over the “day.” To facilitate the exposition, we will use the

shorthand notation ∆n,t
i p := pt+i∆n − pt+(i−1)∆n to refer to the corresponding price increments.

In order to adapt the same basic estimation strategies to the case of high-frequency data, we

will assume that the length of the sampling interval goes to zero, i.e., ∆n → 0.19 This will allow

us at least in some limiting sense to estimate the “large” jumps, and in turn for the construction

of feasible estimates of the same integrals with respect to the jump measures and corresponding

moment conditions analyzed above, say ĝT (θ, ϱT ). These high-frequency based estimates will,

of course, contain discretization errors, but we will show that under appropriate conditions, the

errors shrink to zero and do not affect the estimates.

In particular, our estimates for the integrals
∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
i (ψ(x) − ϱT , θ

(1), θ(2))µ(ds, dx),

i = 1, 2, may simply be expressed as,20

n∑
j=1

ϕ+
i (ψ(∆

n,t
j p)− ϱT , θ

(1), θ(2))1
(
ψ+(∆n,t

j p) > ϱT
)

i = 1, 2.

These expressions rely on the fact that for the estimation of the tails we only need to evaluate

the score functions ϕ+
i for values of |x| outside a neighborhood of zero. More formally, using

the modulus of continuity of càdlàg functions, all, but the high-frequency intervals containing

the “large” jumps, can be made arbitrary small uniformly over a given fixed time-interval, and

those increments therefore won’t matter in the estimation of the integrals with respect to the

jump measure. This argument, of course, is only pathwise, and in our analysis the time span T

will also increase as ∆n goes to zero. This requires somewhat different arguments in the formal

proof, but the intuition remains the same.21

Altogether this implies that the feasible estimation with discretely sampled high-frequency

prices will be subject to three distinct types of errors, namely: (i) the sampling error associated

with the empirical processes employed in the moment vector, controlled by the span of the data

19The assumption of equally spaced observations is not critical, but the assumption that the largest mesh size
goes to zero, or ∆n → 0 in the case of equidistant observations, is.

20In actually implementing the estimating equations below, we further normalize the truncation level by an
estimate of the local continuous variation.

21An additional complication arises from the fact that our integrands with respect to µ are discontinuous at
the point x for which ψ+(x) = ϱT , and this point of discontinuity changes with the time span. At the point of
discontinuity, however, νt(x) is absolutely continuous, at least asymptotically for increasing values of |x|.
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T ; (ii) approximation error for the jump tail, controlled by the truncation size ϱT ; and (iii)

discretization error from “filtering” the jumps from the high-frequency data, controlled by the

length of the high-frequency interval ∆n, or equivalently the number of high-frequency observa-

tions per unit time-interval n. The following theorem provides rate conditions for the relative

speeds with which T , ϱT and n increase that are sufficient to ensure that the feasible estimation

remains asymptotically equivalent to the infeasible procedures discussed in the previous section.

Theorem 3 For the process pt defined in (2.1) sampled at times 0,∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, ..., assume that A1-A4 hold, and that ν(x) is nondecreasing for x sufficiently large. If in

the moment vector gT (θ, ϱT ) defined in (3.8),
∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
i (ψ(x) − ϱT , θ

(1), θ(2))µ(ds, dx) is

replaced by
∑n

j=1 ϕ
+
i (ψ(∆

n,t
j p)− ϱT , θ

(1), θ(2))1
(
ψ+(∆n,t

j p) > ϱT
)
for i = 1, 2 and t = 0, ..., T − 1,

then the conclusions of of Theorem 2 continue to hold, provided the growth conditions for ϱT in

(3.6) are satisfied, and√
Tν+ψ (ϱT )∆

1−ϵ
n

(
1
∨ √

∆n

ν+ψ (ϱT )

)
→ 0, as T ↑ ∞ and ∆n ↓ 0, (4.1)

where ϵ > 0 is arbitrary small.

The conditions in Theorem 3 guarantees that the feasible estimator has the same asymptotic

normal distribution as the infeasible estimator defined in Theorem 2. Meanwhile, consistency

of the feasible estimator only requires the much weaker rate condition ∆1−ϵ
n

ν+ψ (ϱT )
→ 0. In the

“parametric limiting case,” where ϱT does not change with T , this condition is trivially satisfied

for ∆n ↓ 0. Hence, in this situation, we only need T ↑ ∞ and ∆n ↓ 0 to ensure consistency of

the tail estimation.

The more general results in Theorem 3 effectively balances off two types of discretization

errors. The first arises from the diffusive component and the presence of “small” jumps, both

of which add “noise” to the estimating equations. The second type of discretization error stems

from misclassifying “large” jumps. On the one hand, the possibility of having several “medium”

sized jumps within a single high-frequency time interval, each of which are below the truncation

level but when aggregated over the interval exceeds it, could falsely result in the identification of a

“large” jump. On the other hand, a “large” jump above the truncation level might get “canceled”

by the presence of one or more “medium” sized jumps of the opposite sign within the same high-

frequency interval. The effect of the first of these two types of discretization errors is naturally

controlled by the choice of the truncation level. For simplicity, consider a setting in which we

have either “small” jumps below ∆α
n, for some α > 0, or “large” jumps above the truncation

level ϱT .
22 The relatively weak rate condition Tν+ψ (ϱT )∆

1−ϵ
n → 0 then suffices to control the first

22Note, this implicitly assumes that the underlying jump process changes with T and ∆n. This is akin to the
arguments used in the local-to-unity analysis of unit-roots in the time series literature.
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discretization error. This therefore suggests that for a sufficiently large truncation ϱT , this error

is likely to have only minor effects, as confirmed by our Monte Carlo simulation study discussed

below. By contrast, the second type of discretization error cannot simply be eliminated by the

choice of a high truncation level. Intuitively, this also means that our approach is likely to work

less well for jump processes which can have more than one nontrivially sized jump within a single

high-frequency time-interval.23

To help further understand the rate condition in (4.1) behind the asymptotic equivalence

result, it is instructive to consider the situation in which τ+(x) = |x|−k for some k > 0. In that

case Theorem 2 dictates the optimal truncation level to be ϱT = T
1

α+2k
+ϵ, which translates into

the rate condition T
2k∨(α++k)

α++2k ∆1+ϵ
n → 0. Recall that k → ∞ implies ever diminishing deviations

from the power-decay law for the jump tails, in turn allowing for the use of lower truncation

levels. That is, k → ∞ may be interpreted as the “parametric limit case” of our estimation, with

the corresponding rate condition implied by the theorem equal to T∆1+ϵ
n → 0. That condition is

also essentially equivalent to the well-known condition for the estimation of diffusion processes

with discretely sampled data; see e.g., Prakasa Rao (1988). Conversely, when the tail decay

doesn’t perfectly adhere to a power law, i.e., for finite k, we need to resort to higher truncation

levels and larger sized jumps, in turn affecting the rate condition in (4.1).

The result in Theorem 3 is general and pertains to any discretely sampled Itô semimartingale

process. We next discuss how to make the estimation for the special case of affine jump intensities,

previously analyzed in Section 3.1 for the continuous record case, practically feasible.

4.1 Affine Jump Intensities

Given the feasible estimates for the integrals with respect to the jump measures discussed above,

the primary obstacle in implementing the estimator in Corollary 1 stems from the need to quantify

the integrated variation
∫ t+1

t
σ2
sds. We will base our estimates for this quantity on the so-called

Truncated Variation (TV) measure originally proposed by Mancini (2001),24,25

TV n
t =

n∑
j=1

(
∆n,t
j p
)2

1{|∆n,tj p|≤α∆ϖn }, α > 0, ϖ ∈
(
0,

1

2

)
. (4.2)

23Further along these lines, let λ denote the average intensity of “medium” to “large” sized jumps. Then, the
probability of having two or more such jumps within a single high-frequency time-interval is bounded by λ2∆2

n,
so that the relative rate condition associated with this discretization error is more appropriately expressed as

λ2
√
T∆1−ϵ

n√
ν+
ψ (ϱT )

→ 0.

24For additional results along these lines, see also Jacod (2008) and Mancini (2009). The key idea of using
truncation and high-frequency data to separate the jumps from the diffusion component has also previously
been used by Shimizu and Yoshida (2006) and Shimizu (2010) in the construction of contrast functions for the
estimation of certain Markov jump-diffusion processes.

25Alternatively, we could have used the bipower variation estimator developed by Barndorff-Nielsen and Shep-
hard (2004, 2006).
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As the formula shows, the truncated variation is simply constructed by summing the “continuous”

squared price increments obtained by purging the price process of jumps, i.e., all of the price

increments above the threshold α∆ϖ
n . Asymptotically, of course, ∆n → 0 so that the threshold

∆ϖ
n ↓ 0.26

In order to formally state our feasible analogue to Corollary 1 based on the TV estimator we

need some minor additional regularity type conditions related to the “vibrancy” of the jumps.

These are stated in terms of the generalized version of the Blumenthal-Getoor index recently

proposed by Aı̈t-Sahalia and Jacod (2009),

β := inf

{
p :

∫ T

0

∫
R
(|x|p ∧ 1)µ(ds, dx) <∞

}
∈ [0, 2]. (4.3)

The index depends directly on the sample path of the jump process over [0, T ], with more

“vibrant” trajectories resulting in higher values close to 2, as would be implied by a Brownian

motion. Importantly, however, the actual value of β is determined solely by the “small” jumps.

Moreover, it follows that under assumption A1 β ≡ inf
{
p :
∫
R(|x|

p ∧ 1)ν(x)dx <∞
}
, so that

the index is deterministic.

Corollary 2 For the process pt defined in (2.1) sampled at times 0,∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, ..., assume that A1-A4 hold, with ν(x) nondecreasing for x sufficiently large. If in the mo-

ment vector gT (θ, ϱT ) defined in (3.11),
∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
i (ψ(x)−ϱT , θ(1), θ(2))µ(ds, dx) is replaced

by
∑n

j=1 ϕ
+
i (ψ(∆

n,t
j p) − ϱT , θ

(1), θ(2))1
(
ψ+(∆n,t

j p) > ϱT
)
for i = 1, 2 and t = 0, ..., T − 1, and∫ t

t−1
σ2
sds is replaced by TV n

t defined in (4.2) for t = 1, ..., T , then the conclusions of Corollary 1

continue to hold true, provided condition (3.6) of Theorem 1 and condition (4.1) of Theorem 3

are satisfied, and in addition√
Tν+ψ (ϱT )∆

1−ϵ
n ∆((2−β)ϖ−1)∧0

n → 0, as T ↑ ∞ and ∆n ↓ 0, (4.4)

where ϵ > 0 denotes an arbitrary small constant.

In contrast to the general rate condition given by equation (4.1) in Theorem 3, the condition

in (4.4) does depend on the behavior of the “small” jumps, as manifest by the presence of the

Blumenthal-Getoor index β. This additional requirement arises from the need to control the size

of the discretization error in estimating the integrated variation. Intuitively, the more active the

jumps, the more difficult it is to separate the continuous and the jump components of the price

process, and in turn the more difficult it is to estimate the integrated variation.

26To be consistent, in our numerical implementations of the integrated jump measures, we similarly truncated
the price increments from below by α∆ϖ

n . As previously noted, we also normalize by an estimate of the local
continuous variation. This obviously doesn’t change anything asymptotically, as all of the estimators are based
on the “large” jumps, and ∆ϖ

n ↓ 0.
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In the numerical implementations reported on below, we systematically fix the tuning param-

eter ϖ to be very close to its upper bound of 1
2
. Hence, for values of the Blumenthal-Getoor index

less than 1, i.e., jumps of finite variation, the condition in (4.4) will automatically be satisfied

by (4.1).

The feasible results in Theorem 3 and Corollary 2 are, of course, still based on asymptotic

approximations. To gauge the accuracy of these approximations and the practical applicability

of the new jump tail estimation procedures, we next present the results from a series of Monte

Carlo simulations.

5 Monte Carlo Simulations

The Monte Carlo simulation is designed to mimic the actual data analyzed in the next section.

To facilitate interpretation of the results, all of the model parameters are calibrated so that the

unit time interval corresponds to a “day.”

Guided by the empirical findings reported in the extensive stochastic volatility literature,

we will assume that the continuous spot volatility process is determined by a two-factor affine

diffusion model, i.e., σ2
t = V1,t + V2,t, where

dV1,t = 0.0128(0.4068− V1,t)dt+ 0.0954
√
V1,tdB1,t,

dV2,t = 0.6930(0.4068− V2,t)dt+ 0.7023
√
V2,tdB2,t,

(5.1)

and B1,t and B2,t denote independent Brownian motions; see, e.g., Chernov et al. (2003) and

the many references therein. The specific parameter values in equation (5.1) imply that the first

volatility factor is highly persistent with a half-life of “two-and-a-half months,” while the second

factor is quickly mean-reverting with a half-life of just one “day.” The unconditional means are

identical and the contributions of the two volatility factors to the overall unconditional variation

of the process are the same.

The Lévy measure νt(x) for the jumps in the log-price process satisfies assumption A1 with

φ±
t = k±0 + k±1 σ

2
t , and Lévy density,

ν(x) =

{
c0

e|x|

(e|x| − 1)
β0+1

+ c1
e|x|

(e|x| − 1)
β1+1

}
1{|x|≥0.4}. (5.2)

This density represents a mixture of two measures with tail decay parameters β0 and β1, respec-

tively. In all of the simulations β0 < β1, so that the tail decay of the simulated price jumps is

always determined by β0.

We experimented with several different jump parameter configurations, the details of which

are given in Table 1. The values of β0 were chosen to cover the range of values for the tail decay

for financial returns typically reported in the literature; see e.g., Embrechts et al. (2001) and the
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Table 1: Jump Parameters

Case Parameters

β0 c0 β1 c1 k+0 = k−0 k+1 = k−1

T1 2.0 0.0077 6.0 1.4746× 10−4 0.5 0.6146

T2 3.0 0.0046 9.0 1.4156× 10−5 0.5 0.6146

T3 4.0 0.0025 12.0 1.2080× 10−6 0.5 0.6146

Note: The table reports the values of the jump parameters used in the Monte Carlo simulations. All of the values

are reported in units of daily continuously-compounded percentage returns.

references therein. The value for β1 is set to be three times that of β0. It essentially controls the

behavior of the residual functions L± in A2(b). The two scale parameters c0 and c1 were chosen

to satisfy the following two criteria. First, we restrict the “daily” ν(|x| > 0.4) = 0.06, where the

jump size x is measured in percentages. This value approximately matches our estimate for the

actual financial data reported in the next section. Second, we fix the proportion of ν(x > 0.4) due

to the second measure in (5.2) to be 20%. The values of k±0 and k±1 were chosen to ensure that

the time-varying and the time-homogenous part of the jump measures are equally important, i.e.,

k±0 = k±1 E(σ2
t ).

27 Lastly, the sampling frequency n = 400 and time span of the data T = 5, 000,

corresponding to roughly 20 years of one-minute intraday prices over a 6.5 hours trading day,

were both chosen to match the data used in the actual empirical estimation.

Our estimates of the truncated variation in (4.2) were based on ϖ = 0.49 and α equal to

4 ×
√
BVt ∧RVt, where BVt denotes the bipower variation of Barndorff-Nielsen and Shephard

(2004, 2006) and RVt refers to the realized variation, both calculated over that particular “day.”28

To gauge the sensitivity of the estimation results to the choice of truncation level, we report the

results for three different values of ϱT , corresponding to jump tails equal to 0.025, 0.015, and

0.010, respectively. In parallel to the theoretical analysis, we focus on the right tail only.

To facilitate interpretation of the results, we consider three distinct aspects of the new es-

timation procedure, namely its ability to accurately assess the tail decay, differentiate between

the constant and time-varying parts of the tails, and the extreme tail behavior. For each of the

relevant statistics, we report in Table 2 the median values and the corresponding interquartile

range (IQR) obtained across a total of 1,000 simulations.

The true tail decay for all of the three models is determined by the value of β0. Our non-

27Altogether the parameters imply that the contribution of jumps to the total quadratic variation of the price is
around 5− 15%. This is directly in line with the recent non-parametric empirical evidence reported in Barndorff-
Nielsen and Shephard (2004, 2006), Huang and Tauchen (2005), and Andersen et al. (2007), among others.

28Theoretically any fixed value of α will work. However, we follow the recent literature on jump estimation,
e.g., Jacod and Todorov (2010), and adaptively set α as a multiple of an estimate of the current “daily” volatility;
see also Shimizu (2010) for results on data-driven threshold selection in the estimation of Lévy jump measures
from discretely observed data.
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Table 2: Monte Carlo Simulation Results

Case True Value Truncation Level

ν+ψ (ϱT ) = 0.025 ν+ψ (ϱT ) = 0.015 ν+ψ (ϱT ) = 0.010

Median IQR Median IQR Median IQR

Tail Index 1/ξ̂+

T1 2.0 2.096 [1.762 2.593] 1.972 [1.592 2.579] 2.133 [1.586 3.041]

T2 3.0 3.711 [2.911 5.215] 2.929 [2.298 4.328] 3.126 [2.191 5.192]

T3 4.0 6.440 [4.419 13.13] 4.296 [3.093 7.559] 4.421 [2.845 10.06]

Constant Jump Intensity ̂k+0 ν+ψ (ϱT )/ν
+
ψ (ϱT )

T1 0.5 0.516 [0.310 0.713] 0.479 [0.192 0.735] 0.500 [0.195 0.797]

T2 0.5 0.540 [0.343 0.728] 0.511 [0.258 0.764] 0.497 [0.173 0.792]

T3 0.5 0.516 [0.332 0.710] 0.510 [0.226 0.778] 0.465 [0.113 0.765]

Time-Varying Jump Intensity ̂k+1 ν+ψ (ϱT )/ν
+
ψ (ϱT )

T1 0.6146 0.575 [0.339 0.807] 0.681 [0.346 1.011] 0.626 [0.259 1.025]

T2 0.6146 0.504 [0.282 0.746] 0.683 [0.354 0.988] 0.691 [0.336 1.089]

T3 0.6146 0.502 [0.272 0.746] 0.713 [0.375 1.079] 0.800 [0.394 1.251]

Tail Precision ν̂+ψ (2.0)/ν
+
ψ (2.0)

T1 1.0 0.938 [0.682 1.203] 0.962 [0.701 1.217] 0.953 [0.685 1.220]

T2 1.0 0.709 [0.363 1.190] 0.904 [0.464 1.462] 0.887 [0.420 1.469]

T3 1.0 0.403 [0.070 0.996] 0.753 [0.185 1.684] 0.716 [0.140 1.944]

Note: The table reports the median tail estimates and corresponding interquartile range (IQR) across a total

of 1,000 replications for each of the three models defined in Table 1 obtained by using the estimating equations

defined in Section 4.

parametric estimate for the tail decay is given by the inverse of ξ̂+. The results reported in the

first panel of the table show that the new estimation procedure generally permits fairly accurate

estimation of the tail decay. The choice of truncation level does matter, however. On the one

hand, choosing a low truncation level, results in the use of more observations, and hence every-

thing else equal, reduces the sampling error. On the other hand, choosing too low a truncation

level increases the deviation from the eventual power-law decay and the error associated with the

presence of the slowly varying function L+(x) in assumption A2. Too low a truncation level also

renders the impact of the discretization error, and the ability to separate jumps from continuous

moves, relatively more important.

Turning to the next two panels, we report the estimates for ̂k+0 ν+ψ (ϱT ) and ̂k+1 ν+ψ (ϱT ), re-
spectively, relative to the true value ν+ψ (ϱT ). These ratios in effect summarize the estimation
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procedure’s ability to disentangle the time-varying from the time-homogenous parts of the jump

tails. The results indicate the same tradeoff in terms of the choice of truncation level: the use

of lower truncation levels reduces sampling error, but at the same time increases the impact of

the discretization error. Comparing the resulting slight biases observed across the three sets of

results generally point to the middle truncation level of 0.015 as the preferred choice.

A distinct advantage of the new estimation procedure is that it allows us to meaningfully

extrapolate the behavior of the jump tails to “extreme” levels for which inference based on

historical sample averages is bound to be unreliable. To illustrate this important point, the third

panel in the table reports the estimates for the jump tail intensities for jump sizes in excess of 2%,

a very “large” value with typical daily financial returns. To allow for a direct comparison across

the different models, we report the estimates relative to their true values; i.e., ν̂+ψ (2.0)/ν
+
ψ (2.0).

Further, corroborating the accuracy of the underlying approximations, most of the estimated

ratios are indeed quite close to unity. Of course, the same bias-variance type tradeoff as before

pertains to the choice of truncation level, again pointing to the middle value as the most reliable.

All-in-all, the simulation results clearly indicate that the new estimation procedure works

well, and that it gives rise to reasonably accurate estimates of the jump tail features of interest

in practical applications. To further illustrate the applicability, we turn next to an empirical

application involving actual high-frequency data for the S&P 500 aggregate market portfolio.

6 S&P 500 Jump Tails

Our estimates for the aggregate market jump tails are based on high-frequency intraday data

for the S&P 500 futures contract spanning the period from January 1, 1990 to December 31,

2008. The theory underlying the new estimator builds on the idea of increasingly finer sampled

observations over fixed time intervals, or ∆n → 0. In practice, of course, market microstructure

frictions prevent us from sampling too finely, while at the same time maintaining the basic Itô

semimartingale assumption in equation (2.1); see, e.g., the discussion in Andersen et al. (2001),

Zhang et al. (2005), and Barndorff-Nielsen et al. (2008). In lieu of this tradeoff, we choose to

sample the prices at a one-minute frequency, resulting in a total of 400 observations per day for

each of the 4, 750 trading days in the sample.29

Turning to the results, Table 3 reports the parameter estimates based on the assumption of

affine in σ2
t time-varying jump intensities, without otherwise restricting the volatility dynamics,

following the practical implementation strategy in Corollary 2.30 The validity of the underlying

29For simplicity, we have ignored the overnight returns in all of the calculations reported on below. The resulting
one-minute returns are approximately serially uncorrelated, with first and second order autocorrelation coefficients
equal to −0.0016 and 0.0015, respectively. We also experimented with the use of coarser five- and ten-minutes
sampling, resulting in very similar, albeit somewhat less precise, estimates for the tail decay parameters to the
ones for the one-minute returns discussed below; see also Figure 2 in the Introduction.

30Guided by the simulation results in the previous section, we set the truncation level at νψ(ϱT ) = 0.03, or
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Table 3: S&P Jump Tail Estimates

Parameter Estimate St.error Parameter Estimate St.error

Left Tail Right Tail

ξ− 0.2664 0.1153 ξ+ 0.2059 0.1301

σ−
T 0.2566 0.0536 σ+

T 0.2435 0.0487

k−0 νψ(ϱT ) −0.0004 0.0057 k+0 νψ(ϱT ) 0.0023 0.0052

k−1 νψ(ϱT ) 0.0161 0.0065 k+1 νψ(ϱT ) 0.0129 0.0057

J-test 4.1606 J-test 1.8256

Note: The table reports the estimates for the jump tail parameters based on one-minute S&P 500 futures prices

from January 1, 1990 to December 31, 2008. The estimates solve the moment conditions in Corollary 1 and the

practical implementation thereof in Corollary 2. The truncation level is set at ϱT = 0.5124, corresponding to

ν±ψ (ϱT ) = 0.015 for each of the tails. The J-test involves two over-identifying restrictions.

modeling assumptions is corroborated by the J-tests for the two over-identifying moment restric-

tions reported in the last row of the table. Consistent with the idea of a power law decay, the

estimates for ξ± are both statistically different from zero. Interestingly, the pairwise estimates

for the left and right tail parameters are generally fairly close, implying that the tails are approx-

imately symmetric. Importantly, the results also point to the existence of strong dynamic tail

dependencies. Indeed, it appears that the tail jump intensities are almost exclusively determined

by the time-varying parts of νt.

In order to more clearly illustrate these dynamic dependencies, we plot in Figure 3 the

actual in-sample “large” jump realizations, together with the estimated jump tail intensities,

i.e., ν±t (x).
31 It is evident that the “large” jumps tend to cluster in time, with most of the

realizations during the early 1990-91 part of the sample, the 1999-2002 time period associated

with the Russian default, LTCM debacle, and the burst of the “tech bubble,” as well as the recent

2008 financial crises. These tendencies for the jumps to cluster in time is also directly manifest

in the estimated jump intensities depicted in the two lower panels in the figure. Reported on

a relative logarithmic scale, the estimates imply large variations in the jump intensities, with

tenfold changes within a few years not at all uncommon.

Rather than focussing on the jump intensities, from a risk management perspective it is often

approximately 0.015 for each of the tails, corresponding to ϱT = 0.5124 in percentage terms. Similarly, we
set α equal to 4 ×

√
BVt ∧RVt and ϖ = 0.49 in our calculation of TV nt , with the “large” jumps based on

ψ−1(ϱT ) ∧ α∆ϖ
n . In addition, we adjust for the well-known diurnal pattern in volatility, by scaling α with an

estimate of the time-of-day continuous variation as in Bollerslev and Todorov (2010).
31The estimate for the spot variance used in the calculation of the jump intensities depicted in the figure is based

on the summation of the previous 200 truncated from above by α∆ϖ
n squared one-minute returns, as formally

justified by Jacod and Todorov (2010).
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Figure 3: Tail Jump Events
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Note: The two top panels show the daily realized “large” jumps in the one-minute S&P 500 futures prices from

January 1, 1990 to December 31, 2008, based on a truncation level of ϱT = 0.5124, or νψ(ϱT ) = 0.03. The two

bottom panels show the estimated logarithmic time-varying jump tail intensities ν±t (x).

Figure 4: Jump Quantiles
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Note: The figure shows the one-minute S&P 500 futures returns from January 1, 1990 to December 31, 2008,

together with the estimated jump sizes corresponding to a jump intensity of one positive, respectively negative,

jump every two calendar years, as formally defined by the “jump quantiles” q±t,α.
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more informative to consider the likely size of a jump. In particular, keeping the jump intensity

constant, the intrinsic time-dependence in the jump sizes may be formally revealed through,

q−t,α = sup{x < 0 : ν−t (x) ≤ α}, ν−t (x) =

∫ x

−∞
νt(z)dz,

q+t,α = inf{x > 0 : ν+t (x) ≤ α}, ν+t (x) =

∫ ∞

x

νt(z)dz,

(6.3)

which define the time-varying jump sizes corresponding to a time t jump intensity of α > 0

for negative and positive jumps exceeding those values. The q±t,α may also be interpreted as

the inverse of the maps x → ν±t (x), and we will refer to them correspondingly as the “jump

quantiles.” Such quantities would generally be very difficult to accurately estimate empirically.

However, the key approximation in (3.2), together with the assumption of affine jump intensities

underlying our jump tail estimation, permits us to readily evaluate the jump quantiles in a

non-parametric fashion. Specifically, for the right tail we have the following approximation,

q̂+t,α = ψ−1

ϱT +


 ̂k+0 ν+ψ (ϱT ) + ̂k+1 ν+ψ (ϱT )σ̂2

t

α

ξ̂+

− 1

 σ̂+
T

ξ̂+

 , (6.4)

where σ̂2
t denotes a consistent estimator for the spot volatility, as discussed above. The left tail

estimator q̂−t,α may, of course, be defined analogously.32

Figure 4 shows the resulting estimated jump sizes corresponding to one positive, respectively

negative, jump larger, respectively smaller, than that value every two calendar year, i.e., one

jump of that absolute size per calendar year. The estimates again reveal surprisingly close to

symmetric tail behavior, albeit slightly larger variations in the negative jump quantiles due to the

slightly larger estimated value for k−1 νψ(ϱT ). The figure also shows that the size of the “large”

jumps vary quite dramatically over time, with jumps in excess of one percent highly unlikely for

most of the sample, while such jumps are fairly common during the recent financial crises.

To further highlight these important dependencies, we plot in Figure 5 the estimated left

jump quantiles for 2005, a relatively quiet year, together with the quantiles for 2008. In addition

to the two-year quantiles shown in the previous figure, we also include the extreme jump sizes

corresponding to a negative jump every twenty years, i.e., once in the sample. These latter

extreme quantiles would be impossible to meaningfully estimate by extrapolating from standard

parametric procedures and coarser frequency, e.g., daily data. Looking at the figure, 2005 was

obviously an “easy” year from a risk management perspective. The two and twenty year jump

quantiles are both approximately constant, and hover around less than negative one and two

percent, respectively. In sharp contrast, the jump quantiles for 2008 vary quite dramatically

throughout the year, reaching their peak in October in the aftermath of the Lehman bankruptcy

and the government TARP bailout program, gradually stabilizing towards the end of the year.

32To formally justify these estimators for q±t,α we need αT ∝ ϱT .
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Figure 5: Left Tail Jump Quantiles
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Note: The figure shows the negative one-minute S&P 500 futures returns for 2005 (top panel) and 2008 (bottom

panel), together with the estimated left tail “jump quantiles” corresponding to a jump intensity of one negative

jump every two calendar years and one negative jump every twentieth calendar years, respectively, as formally

defined by q±t,α.

7 Conclusion

The availability of high-frequency intraday asset prices has spurred a large and rapidly grow-

ing literature. This paper further expands on our ability to extract useful information about

important economic phenomena from this new rich source of data through the development of

a flexible non-parametric estimation procedure for the jump tails. The method allows for very

general dynamic dependencies in the tails and imposes essentially no restrictions on the contin-

uous part of the price process. The basic idea is based on the assumption of regular variation

in the jump tails, and how that assumption translates into certain functionals of the “large”

jumps being approximate martingales. We confirm the reliability of the new estimation proce-

dure through a series of Monte Carlo simulation experiments, and illustrate its applicability with

actual high-frequency data for the S&P 500 market portfolio.

Looking ahead, the new estimation framework should be of use in many situations of practical

import. In particular, the most important and difficult to manage financial market risks are

invariably associated with tail events. Hence, the ability to more accurately measure and possibly

forecast the jump tails, holds the promise of improved risk management techniques better geared

toward controlling large risks, leaving aside the smaller approximately “continuous” price moves.

By enhancing our understanding of the type of economic “news” that induce large price moves,

or tail events, empirical implementations of the new estimation procedure could also help shed
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new light on the fundamental linkages between asset markets and the real economy.

The lack of investor confidence and fear of tail events are often singled out as one of the main

culprits behind the massive losses in market values in the advent of the Fall 2008 financial crises,

and the idea that rare disasters may help explain apparent mis-pricing has spurred a rapidly

growing recent literature. The arguments put forth in that literature often hinge on probabilities

of severe events that exceed those materialized in sample, or probabilities calibrated to reflect a

much broader set of assets and/or countries; e.g., Barro (2006) and Gabaix (2010). Instead, as

discussed in Bollerslev and Todorov (2010), the new econometric procedures developed here hold

the promise of reliably estimating the likely occurrence of tail events based on actually observed

high-frequency data, without having to resort to “peso” type explanations or the use of otherwise

tightly parameterized “structural” models.

8 Proofs

8.1 Proofs of Theorem 1

Follows from the proof of Theorem 2 below. �

8.2 Proof of Theorem 2

In what follows we will denote with zt the set of jumps x in the time-interval [t, t+ 1] such that

ψ+(x) > ϱT (note, this is always a finite number), together with the vector xt. For notational

convenience, denote for θ = (σ, ξ),

g(θ, zt, ϱT ) =

( ∫ t+1

t

∫
R ϕ

+
1 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)∫ t+1

t

∫
R ϕ

+
2 (ψ(x)− ϱT , θ

(1), θ(2))1{ψ+(x)>ϱT }µ(ds, dx)

)
,

G(θ, zt, ϱT ) =
(
G(ij)(θ, zt, ϱT )

)
i=1,...,2q, j=1,2

, G(ij)(θ, zt, ϱT ) =
∂g(i)

∂θ(j)
(θ, zt, ϱT ),

and define GT (θ, ϱT ) =
1
M+
T

∑T−1
t=1 G(θ, zt, ϱT ). Further, set

Hi(θ, zt, ϱT ) =
(
H

(kl)
i (θ, zt, ϱT )

)
k,l=1,2

, H
(kl)
i (θ, zt, ϱT ) =

∂g(i)

∂θ(k)∂θ(l)
(θ, zt, ϱT ).

We begin by showing some preliminary results, which we will make use of later in the proof.

First, by a change of variable it follows that for any function ϕ(u),∫
R
ϕ(ψ+(x)− ϱT )1{ψ+(x)>ϱT }ν(x)dx =

∫ ∞

0

ϕ(u)ν+ψ (ϱT + u)du (8.1)

= ν+ψ (ϱT )

∫ ∞

0

ϕ(u)

(
1−

ν+ψ (u+ ϱT )

ν+ψ (ϱT )

)′

du.
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Next, using assumption A2 for the slowly varying function L+(x), integration by parts, and the
results of Goldie and Smith (1987) for slowly varying functions with residuals (see also Smith
(1987), Proposition 3.1), we have for some β > 0 and r > 0,

∫ ∞

0

(
1 + β

u

ϱT

)−r
(
1−

ν+ψ (u+ ϱT )

ν+ψ (ϱT )

)′

du = κ(β, r, α+) +Kτ+(βϱT ) + o(τ+(βϱT )), (8.2)

where K denotes some constant, and the function κ is continuous in its first argument with
κ(1, r, α+) = α+

α++r
. Similarly, for β > 0 and an integer s,

∫ ∞

0

(
− ln

(
1 + β

u

ϱT

))s(
1−

ν+ψ (u+ ϱT )

ν+ψ (ϱT )

)′

du = κ̃(β, s, α+) +Kτ+(βϱT ) + o(τ+(βϱT )), (8.3)

where K denotes some constant (generally different from the constant in the previous equation),
and the function κ̃ is continuous in its first argument with κ̃(1, s, α+) = (−α+)−sΓ(s+1). Finally,

∫ ∞

0

(
1 +

u

ϱT

)−r
ln

(
1 +

u

ϱT

)(
1−

ν+ψ (u+ ϱT )

ν+ψ (ϱT )

)′

du =
α+

(α+ + 1)2
+Kτ+(ϱT ) + o(τ+(ϱT )), (8.4)

where again K denotes some constant.

The proof proceeds in two steps by first showing consistency and then asymptotic normality.

Part 1. Consistency. First, from the definition of the random measure µ and since Tν+ψ (ϱT ) →
∞, it follows that

M+
T

Tν+ψ (ϱT )

P→ E(φ+
t ). (8.5)

Then, using (8.2)-(8.3) and by a standard law of large numbers, for any fixed ξ ∈ (0,∞) and

β ∈ (0,∞) with σ = ξϱT/β, we have

1
M+
T

∑T−1
t=1 xt

∫ t+1

t

∫
ψ+(x)>ϱT

1
1+ξ(ψ+(x)−ϱT )/σ

µ(ds, dx)
P→ κ (β, 1, α+)

E(xt
∫ t+1
t φ+

s ds)
E(φ+

t )
,

1
M+
T

∑T−1
t=1 xt

∫ t+1

t

∫
ψ+(x)>ϱT

log(1 + ξ(ψ+(x)− ϱT )/σ)µ(ds, dx)
P→ κ̃ (β, 1, α+)

E(xt
∫ t+1
t φ+

s ds)
E(φ+

t )
.

(8.6)

Moreover, since log(1+x) and 1/(1+x) are monotone in x, the above convergence can be trivially

extended to uniform over the sets ξ ∈ [0, Kξ] and β ∈ (Kβ,∞] for any Kξ > 0, Kβ > 0.

Next, let θ̃ = (ϱ−1
t 1)′ • θ, and define hT (θ̃) = gT (θ, ϱT ) for θ ∈ Θl

T . It follows that
̂̃
θT =

(ϱ−1
t 1)′•θ̂T for

̂̃
θT = argminθ̃∈Θ̃lhT (θ̃)

′ŴThT (θ̃), where Θ̃
l =
{
θ̃ : αl/α

+ ≤ θ̃(i) ≤ αh/α
+, i = 1, 2

}
.

Then, from (8.6) we have supθ̃∈Θ̃l ||hT (θ̃)− h(θ̃)|| P→ 0, where

h(θ̃) =
E
(
xt
∫ t+1

t
φ+
s ds
)

E(φ+
t )

⊗

 1

θ̃(2)
−
(
1 + 1

θ̃(2)

)
κ
(
θ̃(2)

θ̃(1)
, 1, α+

)
− 1

(θ̃(2))2
κ̃
(
θ̃(2)

θ̃(1)
, 1, α+

)
− 1

θ̃(2)

(
1 + 1

θ̃(2)

)(
1− κ

(
θ̃(2)

θ̃(1)
, 1, α+

))  .
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Thus, h(θ̃) = 0, for θ̃ = (ϱ−1
t 1)′•θ0T . Further, the derivative of h(θ̃) with respect to the parameter

θ̃, when evaluated at the true value is nonsingular. Therefore, h(θ̃) = 0 is solved uniquely by

θ̃ = (ϱ−1
t 1)′ • θ0T in a local neighborhood, and this is consequently also the unique minimizer of

h(θ̃)′Wh(θ̃). This completes the proof of consistency as argmin is a continuous transformation

on the space of continuous functions equipped with the uniform topology.

Part 2. Asymptotic Normality.

Let θ = θ0T + r̃, where r̃ =
√
Tν+ψ (ϱT )E(φ

+
t )r •

(
ϱT

α+Tν+ψ (ϱT )E(φ
+
t )

1
Tν+ψ (ϱT )E(φ

+
t )

)′

, for some r ∈ R2.

Then, by a second-order Taylor expansion,√
M+

T gT (θ, ϱT ) =
√
M+

T gT (θ
0
T , ϱT ) +

√
M+

T GT (θ
0
T , ϱT )r̃+RT (r),

RT (r) =
1

2

1√
M+

T

T−1∑
t=1


r̃′H1(θ, zt, ϱT )r̃

...

r̃′H2q(θ, zt, ϱT )r̃

 =
1

2

1√
M+

T

T−1∑
t=1


r′H̃1(θ, zt, ϱT )r

...

r′H̃2q(θ, zt, ϱT )r

 ,

where θ denotes some value between θ and θ0T , and H̃i(θ, zt, ϱT ) are rescaled versions ofHi(θ, zt, ϱT )

defined from the above equality (extended to arbitrary θ). The proof proceeds in several steps.

Step 1. We will prove 1√
M+
T

∑T−1
t=1 g(θ

0
T , zt, ϱT )

L→ 1√
E(φ+

t )
dZ, where d is a matrix of constants

such that dd′ = V for V defined in (3.10) and Z is the standard normal random vector of the

theorem. To facilitate the proof, we decompose the moment vector into the two components,

g1(θ, zt, ϱT ) = xt ⊗

( ∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
1 (ψ(x)− ϱT , θ

(1), θ(2))µ̃(ds, dx)∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
2 (ψ(x)− ϱT , θ

(1), θ(2))µ̃(ds, dx)

)
,

g2(θ, zt, ϱT ) = xt ⊗

( ∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
1 (ψ(x)− ϱT , θ

(1), θ(2))ν(ds, dx)∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
2 (ψ(x)− ϱT , θ

(1), θ(2))ν(ds, dx)

)
,

so that by definition g(θ0T , zt, ϱT ) = g1(θ
0
T , zt, ϱT ) + g2(θ

0
T , zt, ϱT ).

We start by proving 1√
M+
T

∑T−1
t=1 g2(θ

0
T , zt, ϱT )

P→ 0. Using the fact that for the true parameter

value, θ0T , the ratio θ(2)

θ(1)
= ϱT , together with the definition of the score functions ϕ+

1 and ϕ+
2 in

(3.3), and the results in (8.1)-(8.4), the two elements of g(2)(θ0T , zt, ϱT ) may be expressed as

Cν+ψ (ϱT )
(
τ+(ϱT ) + o(τ+(ϱT ))

) ∫ t+1

t

φ+
s ds,

for some constant C which differ for each of the two elements. Since
√
Tν+ψ (ϱT )τ

+(ϱT ) → 0

and assumption A3 implies that the process φ+
t is stationary and integrable, it follows that

1√
Tν+ψ (ϱT )

∑T−1
t=1 E||g2(θ0T , zt, ϱT )||

P→ 0. Combining this result with (8.5), we have

1√
M+

T

T−1∑
t=1

g2(θ
0
T , zt, ϱT )

P→ 0.

30



We are left with showing that 1√
M+
T

∑T−1
t=1 g1(θ

0
T , zt, ϱT )

L→ 1√
E(φ+

t )
dZ. In lieu of (8.5), this

convergence will follow from a Central Limit Theorem for a triangular array; see, e.g., Jacod and

Shiryaev (2003), Theorem VIII.2.29. Thus, it suffices to prove that
1

Tν+ψ (ϱT )

∑T−1
t=1 Etg1(θ0T , zt, ϱT )

P→ 0,

1
Tν+ψ (ϱT )

∑T−1
t=1 Et[g1(θ0T , zt, ϱT )g1(θ0T , zt, ϱT )′]

P→ dd′,

1
(Tν+ψ (ϱT ))

1+α/2

∑T−1
t=1 Et||g(i)1 (θ0T , zt, ϱT )||2+α

P→ 0, for some α > 0 and i = 1, 2.

(8.7)

The first condition in (8.7) is trivially satisfied, as {g1(θ0T , zt, ϱT )}t=1,2,... is a martingale difference

sequence. To show the second convergence in (8.7), note that for i, j = 1, ..., 2q,

Et
(
g
(i)
1 (θ0T , zt, ϱT )g

(j)
1 (θ0T , zt, ϱT )

)
= x

(⌈i/2⌉)
t x

(⌈j/2⌉)
t Et

[∫ t+1

t

∫
ψ+(x)>ϱT

ζ1(x)µ̃(ds, dx)

∫ t+1

t

∫
ψ+(x)>ϱT

ζ2(x)µ̃(ds, dx)

]
= x

(⌈i/2⌉)
t x

(⌈j/2⌉)
t

∫
ψ+(x)>ϱT

ζ1(x)ζ2(x)ν(x)dx Et
[∫ t+1

t

φ+
s ds

]
,

where ⌈x⌉ denotes the least integer higher or equal to x, ζ1(x) and ζ2(x) are one of the functions
that appear as integrands of µ̃ in the definition of g1(θ, zt, ϱT ), and the second equality follows

from Itô ’s lemma. Now, using the results in (8.1)-(8.4), we can may∫
ψ+(x)>ϱT

ζ1(x)ζ2(x)ν(x)dx = ν+ψ (ϱT )
(
K + τ+(ϱT ) + o(τ+(ϱT ))

)
,

where the constant K is the corresponding element of Σ in (3.7). Also, by assumption A3 the

process φ+
t is stationary and integrable and by the additional assumptions of the theorem we get

1

T

T−1∑
t=1

xtx
′
tEt
(∫ t+1

t

φ+
s ds

)
P→ E

(
xtx

′
t

∫ t+1

t

φ+
s ds

)
,

To prove the third part of (8.7), let α ≤ 2 such that E|φ+
t |1+α < ∞. The existence of α is

guaranteed by assumption A3. Using the Burkholder-Davis-Gundy inequality,

Et
[∫ t+1

t

∫
ψ+(x)>ϱT

ζ(x)µ̃(ds, dx)

]2+α
≤ Et

(∫ t+1

t

∫
ψ+(x)>ϱT

ζ2(x)µ(ds, dx)

)1+α/2

,

where ζ(x) is one of the integrands of µ̃ in g1(θ, zt, ϱT ). Further,

Et

(∫ t+1

t

∫
ψ+(x)>ϱT

ζ2(x)µ(ds, dx)

)1+α/2

≤ KEt

∣∣∣∣∣
∫ t+1

t

∫
ψ+(x)>ϱT

ζ2(x)µ̃(ds, dx)

∣∣∣∣∣
1+α/2

+K

(∫
ψ+(x)>ϱT

ζ2(x)ν(x)dx

)1+α/2

Et
(∫ t+1

t
φ+
s ds

)1+α/2

,
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for some constant K > 0. For the first term on the right hand side above, applying again the

Burkholder-Davis-Gundy inequality, then the inequality (
∑

i |ai|)p ≤
∑

i |ai|p for 0 < p ≤ 1, and

the fact that α ≤ 2, together with the definition of the jump compensator, we have

Et

∣∣∣∣∣
∫ t+1

t

∫
ψ+(x)>ϱT

ζ2(x)µ̃(ds, dx)

∣∣∣∣∣
1+α/2

≤ K

∫ t+1

t

∫
ψ+(x)>ϱT

|ζ(x)|2+αν(x)dx Et
(∫ t+1

t
φ+
s ds

)
.

The third result of (8.7) now follows directly.

Step 2. We next show
√
M+

T GT (θ
0
T , ϱT )r̃

P→ 1
E(φ+

t )
Πr locally uniformly in r where Π is

defined in (3.10). We denote with G1(θ, zt, ϱT ) the 2q× 2 matrix with the following elements for

i = 1, ..., 2q,

G
(ij)
1 (θ, zt, ϱT ) = x

(⌈i/2⌉)
t

 ϱT
α+

∫ t+1

t

∫
ψ+(x)>ϱT

∂ϕ+iq
∂θ(1)

(ψ(x)− ϱT , θ
(1), θ(2))µ̃(ds, dx), j = 1,∫ t+1

t

∫
ψ+(x)>ϱT

∂ϕ+iq
∂θ(2)

(ψ(x)− ϱT , θ
(1), θ(2))µ̃(ds, dx), j = 2,

where iq = 1 for i odd and iq = 2 for i even. As in the previous step, it is possible to show
1√
M+
T

∑T−1
t=1 G1(θ

0
T , zt, ϱT )

L→ bZ̃, where b is some vector of constants and Z̃ is a standard normal

vector. Therefore 1√
M+
T

∑T−1
t=1 G̃1(θ

0
T , zt, ϱT )

P→ 0, for G̃1(θ
0
T , zt, ϱT ) =

1√
Tν+ψ (ϱT )E(φ

+
t )
G1(θ

0
T , zt, ϱT ).

Next, define the G2(θ, zt, ϱT ) matrix such that G2(θ, zt, ϱT )r = G(θ, zt, ϱT )r̃ − G̃1(θ, zt, ϱT )r

for every r. We are then left with showing 1√
M+
T

∑T−1
t=1 G2(θ

0
T , zt, ϱT )

P→ 1
E(φ+

t )
Π. Using the

results in (8.1)-(8.5) it is possible to show that the above matrix sequence is equal to

1

E(φ+
t )

(
1

T

T−1∑
t=1

xt

∫ t+1

t

φ+
s ds

)
⊗ (−Σ +KT ) + op(1),

where KT is a 2 × 2 matrix with ||KT || = Cτ+(ϱT ) + o(τ+(ϱT )) for C some constant. Since√
Tν+ψ (ϱT )τ

+(ϱT ) → 0, using the assumption in the theorem for 1
T

∑T−1
t=1 x

(i)
t

∫ t+1

t
φ+
s ds, it

follows that it converges in probability. But Π is of full column rank by our assumption

E
(
xt
∫ t+1

t
φ+
s ds
)
̸= 0, thus proving the claim of this step.

Step 3. We show that supθ∈ΘlT ||
∑T−1

t=1 H̃i(θ, zt, ϱT )|| is bounded in probability for i = 1, ..., 2q.

Since θ ∈ Θl
T , it is easy to see that each element of

∑T−1
t=1 H̃i(θ, zt, ϱT ) is bounded by

1√
Tν+ψ (ϱT )

T−1∑
t=1

||xt||
∫ t+1

t

∫
ψ+(x)>ϱT

ϕ(ψ(x)− ϱT )µ(ds, dx),

for some positive valued function ϕ(x) that does not depend on θ and further
∫
ψ+(x)>ϱT

ϕ(ψ(x)−
ϱT )ν(x)dx ≤ Cν+ψ (ϱT ) for C > 0 a constant. This then implies the result of the step.

Combining steps 1-3, we have θ̂T is
√
Tν+ψ (ϱT )-consistent (for the first parameter the ratio of

the estimate to the limit) and for θ = θ0T + r̃,
√
M+

T gT (θ, ϱT ) converges uniformly in r (restricted
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such that corresponding θ ∈ Θl
T ) to

1√
E(φ+

t )
dZ+ 1

E(φ+
t )
Πr. The result in (3.9) then readily follows

(see e.g., Theorem 5.56 of van der Vaart (1999)). �

8.3 Proofs of Corollary 1

(a) Part 1. Consistency. Define θ̃ = (ϱ−1
t 1 1/ν+ψ (ϱT ) 1/ν

+
ψ (ϱT ))

′ • θ and hT (θ̃) from gT (θ, ϱT )

as in the proof of Theorem 2. Then, using the proof of Theorem 2, as well as the assumption for

φ+
t in Corollary 1, we have supθ̃∈Θ̃l ||hT (θ̃) − h(θ̃)|| P→ 0, where the first four elements of h(θ̃)

are the same as in that theorem, and the last two elements are given by

E
{
xt ⊗

[
(θ̃(3) − k+0 ) + (θ̃(4) − k+1 )

∫ t+1

t
σ2
sds
]}

k+0 + k+1 E(σ2
t )

. (8.8)

From here the consistency follows by the same reasoning as in the proof of Theorem 2.

Part 2. Asymptotic Normality. The proof essentially goes through the same steps as the

proof of asymptotic normality in Theorem 2, and we only point the differences. Define θ = θ0T+ r̃,

where now r̃ =
√
Tν+ψ (ϱT )E(φ

+
t )r •

(
ϱT

α+Tν+ψ (ϱT )E(φ
+
t )

1
Tν+ψ (ϱT )E(φ

+
t )

k+0
TE(φ+

t )

k+1
TE(φ+

t )

)′

, for some

r ∈ R4. Step 1 of the proof then follows directly from the corresponding step of the proof of

Theorem 2 upon recognizing that under the assumption of Corollary 1,
∫ t+1

t

∫
ψ+(x)>ϱT

µ(ds, dx)−
k+0 − k+1

∫ t+1

t
σ2
sds is a martingale increment. For step 2, we note that GT (θ, ϱT )i,j = 0 for

i = 1, ..., 4 and j = 3, 4, as well as for i = 5, 6 and j = 1, 2, and further GT (θ, ϱT )i=5,6, j=3,4 =

−
(

1
M+
T

∑T−1
t=1 xt

1
M+
T

∑T−1
t=1 xt

∫ t+1

t
σ2
sds
)
. From here step 2 of the proof follows by analogy to the

proof of Theorem 2 and a Law of Large numbers. Finally, for step 3 we note that Hk(θ, zt, ϱT )i,j =

0 for k = 1, ..., 4, i = 3, 4, and j = 3, 4, as well as for k = 5, 6 and all i, j = 1, ..., 6, so that this

step follows directly from the corresponding step in the proof of Theorem 2.

(b) By assumption A2(b),
√
M+

T

(
k+i ν

+
ψ (ϱT )η

−α+

ν+ψ (zT )
− k+i

)
=
√
M+

T

(
L+(ϱT )
L+(ηϱT )

− 1
)
k+i =

√
M+

T O(τ
+(ϱT ))

for i = 0, 1. Using condition (3.6) and the result in (8.5), it follows that this term is asymptotically

negligible. We are therefore left with the difference
√
M+

T

(
̂k+i ν

+
ψ (zT )/ν

+
ψ (zT ) −

k+i ν
+
ψ (ϱT )η

−α+

ν+ψ (zT )

)
,

for which we may use part (a) and a delta method. �

8.4 Proofs of Theorem 3 and Corollary 2

We start by establishing several preliminary lemmas. In what follows we will use the short-hand

notation Eni for E (·|Fi∆n), and Pni for P (·|Fi∆n). For notational convenience, we will also use C

to denote a positive constant (independent from T and ∆n), where its value might change from

line to line.
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Lemma 1 Suppose we observe the process pt at the discrete times 0,∆n, 2∆n, ..., [T/∆n]∆n, and

assume that A1 and A4 hold. Then for some α > 0 and ϖ ∈
(
0, 1

2

)
, we have

√
NT

T

[T/∆n]∑
i=1

(∆n
i p)

2 1{|∆ni p|≤α∆ϖn } −
∫ T

0

σ2
sds

 P→ 0, as T ↑ ∞, ∆n ↓ 0, (8.9)

where ∆n
i p = pi∆n − p(i−1)∆n, and NT → ∞ denotes some deterministic sequence of T with the

property that
√
NT∆

(2−β)ϖ∧1/2−ϵ
n → 0 for ϵ > 0 arbitrary small.

Proof: By definition we have(
(∆n

i p)
2 1{|∆ni p|≤α∆ϖn } −

∫ i∆n

(i−1)∆n

σ2
sds

)
=

7∑
j=1

aji , a1i =

(
(∆n

i Z)
2 −

∫ i∆n

(i−1)∆n

σ2
sds

)
,

a2i = − (∆n
i Z)

2 1{|∆ni p|>α∆ϖn } a3i = (∆n
i Y )2 1{|∆ni p|≤α∆ϖn }, a4i = 2∆n

i Ẑ∆
n
i Ỹ ,

a5i = 2∆n
i Ẑ∆

n
i Ŷ , a6i = −2∆n

i Ẑ∆
n
i Y 1{|∆ni p|>α∆ϖn }, a7i = 2∆n

i Z̃∆
n
i Y 1{|∆ni p|≤α∆ϖn },

where,

Zt =

∫ t

0

σsdWs +

∫ t

0

α̃sds, α̃t = αt − 1{β<1}

∫
R
κ(x)dsνt(dx),

Z̃n
i =

∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n)dWs +

∫ i∆n

(i−1)∆n

α̃sds, Ẑn
i = σ(i−1)∆n∆

n
iW,

Yt =

∫ t

0

∫
R
κ(x)µ̃(ds, dx) +

∫ t

0

∫
R
κ′(x)µ(ds, dx) + 1{β<1}

∫ t

0

∫
R
κ(x)dsνs(dx),

Ŷt =

∫ t

0

∫
R
κ′(x)dsνs(dx) + 1{β<1}

∫ t

0

∫
R
κ(x)dsνs(dx), Ỹt = Yt − Ŷt.

We need an alternative representation of the jumps, which we define on an extension (if needed)

of the original probability space. In this representation jumps are defined from a homogenous

Poisson measure via thinning, i.e.,

Y
(1)
t =


∫ t
0

∫
R+

∫
R κ (x) (1{x<0, u<φ−

(i−1)∆n−} + 1{x>0, u<φ+
(i−1)∆n−})µ̃(ds, du, dx)

+
∫ t
0

∫
R+

∫
R κ

′ (x) (1{x<0, u<φ−
(i−1)∆n−} + 1{x>0,u<φ+

(i−1)∆n−})µ(ds, du, dx), if β ≥ 1,∫ t
0

∫
R+

∫
R x(1{x<0, u<φ−

(i−1)∆n−} + 1{x>0, u<φ+
(i−1)∆n−})µ(ds, du, dx), if β < 1,

Y
(2)
t =



∫ t
0

∫
R+

∫
R κ(x)

(
1{x<0, u<φ−

s−} − 1{x<0, u<φ−
(i−1)∆n−}

)
µ̃(ds, du, dx)

+
∫ t
0

∫
R+

∫
R κ(x)

(
1{x>0, u<φ+

s−} − 1{x>0, u<φ+
(i−1)∆n−}

)
µ̃(ds, du, dx)

+
∫ t
0

∫
R+

∫
R κ

′(x)
(
1{x<0, u<φ−

s−} − 1{x<0, u<φ−
(i−1)∆n−}

)
µ(ds, du, dx),

+
∫ t
0

∫
R+

∫
R κ

′(x)
(
1{x>0, u<φ+

s−} − 1{x>0, u<φ+
(i−1)∆n−}

)
µ(ds, du, dx), if β ≥ 1,∫ t

0

∫
R+

∫
R x
(
1{x<0, u<φ−

s−} − 1{x<0, u<φ−
(i−1)∆n−}

)
µ(ds, du, dx)

+
∫ t
0

∫
R+

∫
R x
(
1{x>0, u<φ+

s−} − 1{x>0, u<φ+
(i−1)∆n−}

)
µ(ds, du, dx), if β < 1,
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where µ denotes a Poisson measure with compensator ds ⊗ du ⊗ ν(x)dx. The rest of the proof

consists in showing the asymptotic negligibility of the scaled sums of the terms aji , j = 1, ..., 7,

and their respective subcomponents. We will use convergence in L1 or L2 norm for proving this.

We begin with the term a1i . Application of Itô ’s lemma yields the decomposition a1i = ã1i + â
1
i ,

ã1i = 2

∫ i∆n

(i−1)∆n

Zn
s α̃sds, â1i = 2

∫ i∆n

(i−1)∆n

Zn
s σsdWs, Zn

s = Zs − Z(i−1)∆n .

We have for q ≥ 1

E|ã1i |q ≤ C∆3q/2
n .

Also, for q ≥ 2 using Doob’s inequality and the Cauchy-Schwartz inequality,

Eni−1â
1
i = 0, E|â1i |q ≤ CE

(∫ i∆n

(i−1)∆n

(Zn
s σs)

2 ds

)q/2
≤ C∆q/2−1

n

∫ i∆n

(i−1)∆n

E|Zn
s σs|qds ≤ C∆q

n.

Using Holder’s inequality for any 1 ≤ q < p/2,

E|a2i |q ≤ (E|∆n
i Z|p)

2q/p (P (|∆n
i p| ≥ α∆ϖ

n ))
1−2q/p ≤ C∆q+(1−2q/p)(1−βω)−ϵ

n , ϵ > 0.

We proceed with a3i and the following decomposition, |a3i | ≤ |a3i |+ |ã3i |+ |â3i |, for

a3i = (∆n
i Y )2 1{|∆ni Y |≤1.5α∆ϖn }, ã

3
i = (∆n

i Y )2 1{|Z̃ni |≥0.25α∆ϖn }, â
3
i = (∆n

i Y )2 1{|Ẑni |≥0.25α∆ϖn }.

Then, for any ϵ > 0 and q ≥ β/2,

E|a3i |q ≤ C∆(2q−β−ϵ)ϖ
n E|∆n

i Y |β+ϵ ≤ C∆(2q−β)ϖ+1−ϵ
n .

For ã3i and p > 2q ∨ β, we can write

E|ã3i |q ≤ CE
(
|∆n

i Y |2q1{|Z̃ni |≥0.25α∆ϖn }

)
≤ C (E|∆n

i Y |p)2q/p
(
P
(
|Z̃n

i | ≥ 0.25α∆ϖ
n

))1−2q/p

≤ C∆
2q
p
+( 1

2
−ϖ)(p−2q)

n .

Further we can bound E|â3i |q ≤ C (E|â3i (1)|q + E|â3i (2)|q) for

â3i (1) =
(
∆n
i Y

(1)
)2

1{|Ẑni |≥0.25α∆ϖn }, â3i (2) =
(
∆n
i Y

(2)
)2

1{|Ẑni |≥0.25α∆ϖn },

where Ẑn
i is defined on the probability space of Y

(1)
t , and Y

(2)
t is the same process on the original

probability space, and for simplicity we have kept the same notation. Then, for 1 ≤ q < p/2,

E|â3i (1)|q ≤ E
(
Eni−1|∆n

i Y
(1)|2qEni−1

(
1{|Ẑni |≥0.25α∆ϖn }

))
≤ C∆

1+( 1
2
−ϖ)(p−2)

n .

Using Holder’s inequality, it follows that for every x > 1,

E|â3i (2)|q ≤
(
E|∆n

i Y
(2)|2qx

)1/x (P(|Ẑn
i | ≥ 0.25α∆ϖ

n

))1−1/x

≤ C∆
3
2

1
x
+(1− 1

x
)( 1

2
−ϖ)p

n .
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Next, note that Eni−1a
4
i = 0, and 2 ≤ q < p,

E|a4i |q ≤ C
(
E|∆n

i Ẑ|p
)q/p (

E|∆n
i Ỹ |

qp
p−q

)1−q/p
≤ C∆1+q(1/2−1/p)

n .

The a5i term may be decomposed as a5i = ã5i + â5i ,

ã5i = ∆n(C
+φ+

(i−1)∆n− + C−φ−
(i−1)∆n−)∆

n
i Ẑ,

â5i = ∆n
i Ẑ

∫ i∆n

(i−1)∆n

(C+(φ+
s − φ+

(i−1)∆n−) + C−(φ−
s − φ−

(i−1)∆n−))ds,

where C+ and C− are some constants. Thus for q ≥ 2,

Eni−1ã
5
i = 0, E|ã5i |q ≤ C∆3q/2

n .

Application of Holder’s inequality for q ≥ 1 and arbitrary small ϵ > 0 implies that

E|â5i |q ≤ C∆3q/2+q/2∧1−ϵ
n .

We turn now to a6i , which may be bounded by |a6i | ≤ |a6ai |+ |a6bi |+ |a6ci | where

a6ai = 2Ẑn
i ∆

n
i Y 1{|Z̃ni |>0.25α∆ϖn }, a6bi = 2Ẑn

i ∆
n
i Y 1{|∆ni Y |>0.5α∆ϖn }, a6ci = 2Ẑn

i ∆
n
i Y 1{|Ẑni |>0.25α∆ϖn }.

For a6ai and p > q∨β, we can apply Holder’s inequality twice together with the fact that moments

of all powers of the normal distribution exist, to conclude that for some small ϵ > 0,

E|a6ai |q ≤ C (E|∆n
i Y |p)q/p

(
E
(
|σ(i−1)∆n|

qp
p−q |∆n

iW |
qp
p−q 1{|Z̃ni |>0.25α∆ϖn }

))1−q/p
≤ C∆

q
p
+q/2

n

(
E
(
|σ(i−1)∆n|

(1+ϵ) qp
p−q 1{|Z̃ni |>0.25α∆ϖn }

)) 1−q/p
1+ϵ

≤ C∆
q
p
+q/2

n

(
E
(
|σ(i−1)∆n|

(1+ϵ) qp
p−qPni−1

(
|Z̃n

i | > 0.25α∆ϖ
n

))) 1−q/p
1+ϵ

≤ C∆
q
p
+q/2

n ∆
( 1
2
−ϖ)

(p−q)
(1+ϵ)

n .

Next for a6bi we have E|a6bi |q ≤ C
(
E|a6bi (1)|q + E|a6bi (2)|q + E|a6bi (3)|q

)
, where

a6bi (1) = 2Ẑn
i ∆

n
i Y

(1)1{|∆ni Y (1)|>0.25α∆ϖn },

a6bi (2) = 2Ẑn
i ∆

n
i Y

(1)1{|∆ni Y (2)|>0.25α∆ϖn }, a6bi (3) = 2Ẑn
i ∆

n
i Y

(2)1{|∆ni Y |>0.5α∆ϖn }.

Now, Eni−1a
6b
i (1) = 0 and for some arbitrary small ϵ > 0,

E|a6bi (1)|q ≤ CE
(
Eni−1|Ẑn

i |qEni−1{|∆n
i Y

(1)|q1{|∆ni Y (1)|>0.25α∆ϖn }}

)
≤ C∆1+q/2−((β−q)∨0)ϖ−ϵ

n .

For p > q ∨ β and any ϵ > 0,

E|a6bi (2)|q ≤ C
(
E|Ẑn

i ∆
n
i Y

(1)|p
)q/p (

E
(
1{|∆ni Y (2)|>0.25α∆ϖn }

))1−q/p
≤ C∆

q
2
+ q
p
+(1− q

p
)( 3

2
−βϖ)−ϵ

n .
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By Holder’s inequality for any ϵ > 0 and q < p,

E|a6bi (3)|q ≤ C
(
E|Ẑn

i |p
)q/p (

E|∆n
i Y

(2)|qp/(p−q)
)1−q/p ≤ C∆

q
2
+ 3

2(
1
β
∧ p−q
pq )q−ϵ

n .

Next, note that E|a6ci |q ≤ C (E|a6ci (1)|q + E|a6ci (2)|q), where

a6ci (1) = 2Ẑn
i ∆

n
i Y

(1)1{|Ẑni |>0.25α∆ϖn }, a6ci (2) = 2Ẑn
i ∆

n
i Y

(2)1{|Ẑni |>0.25α∆ϖn }.

It follows that for q < p,

E|a6ci (1)|q ≤ CE
(
Eni−1

(
|Ẑn

i |q1{|Ẑni |>0.25α∆ϖn }

)
Eni−1|∆n

i Y
(1)|q

)
≤ C∆

q
2
+ q
β
∧1+( 1

2
−ϖ)(p−q)

n .

For a6ci (2), we can proceed the same way as for â6bi (3) to show that for any ϵ > 0 and q < p,

E|a6ci (2)|q ≤ C
(
E|Ẑn

i |p
)q/p (

E|∆n
i Y

(2)|qp/(p−q)
)1−q/p ≤ C∆

q
2
+ 3

2(
1
β
∧ p−q
pq )q−ϵ

n .

Using the integrability conditions on αs and σs, and Holder’s inequality, we have

E|a7i |q ≤ CE
(
|∆n

i Z̃∆
n
i Y |q1{|∆ni Y |≤α∆ϖn }

)
≤ ∆q/2+1+(q−β)ϖ∨0−ϵ

n , ϵ > 0.

�

Lemma 2 Suppose we observe the process pt at the discrete times 0,∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, .... Assume that A1-A4 hold, and let either Xt =
∫ t+1

t
σ2
sds, or Xt =

∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
i (ψ(x)−

ϱT , θ
(1), θ(2))µ(ds, dx), for i = 1, 2 and θ ∈ Θl

T . Then for some α > 0 and ϖ ∈
(
0, 1

2

)
,

√
NT

T

T−1∑
t=1

Xt

(
TV n

t−1 −
∫ t

t−1

σ2
sds

)
P→ 0, as T ↑ ∞, ∆n ↓ 0, (8.10)

provided that
√
NT∆

(2−β)ϖ∧1/2−ϵ
n → 0, for the deterministic sequence NT ↑ ∞ as T ↑ ∞ and

ϵ > 0 arbitrary small.

Proof: We make the identical decomposition of the difference((
∆n,t−1
i p

)2
1{|∆n,t−1

i p|≤α∆ϖn } −
∫ t−1+i∆n

t−1+(i−1)∆n

σ2
sds

)
as in Lemma 1. We denote the corresponding components in this decomposition for the high-

frequency interval [t+(i−1)∆n, t+i∆n] by a
j
t,i, with each of the components denoted analogously.

Then, using Holder’s inequality for some a > 1,

1

T − 1

T−1∑
t=1

XtLt ≤

(
1

T − 1

T−1∑
t=1

|Xt|a
)1/a(

1

T − 1

T−1∑
t=1

|Lt|a/(a−1)

)1−1/a

,
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where Lt =
∑n

i=1 a
j
t,i, or the identical sum over their subcomponents. For the terms involving

â1t,i, a
4
t,i, ã

5
t,i and a

6b
t,i(1), we can use a = 2, and show convergence to zero of NT

T

∑T
t=1 |Lt|2. The

latter follows from the bounds on the second moments of â1t,i, a
4
t,i, ã

5
t,i and a

6b
t,i(1) derived in the

previous Lemma, and the fact that these terms form martingale difference sequences.

For the rest of the terms we can set set a arbitrarily large. 1
T−1

∑T−1
t=1 |Xt|a will be bounded in

L1 by the integrability assumptions on the processes σs and φ
±
s in A4. Asymptotic negligibility

of
N

0.5a/(a−1)
T

T−1

∑T−1
t=1 |Lt|a/(a−1) follows from the basic inequality

(∑N
i=1 |ai|

)q
≤ N q−1

∑N
i=1 |ai|q for

any q > 1, and the bounds derived in the previous Lemma for a sufficiently large. �

Lemma 3 Suppose we observe the process pt at the discrete times 0,∆n, 2∆n, ..., [T/∆n]. Let

ϱT > 1 be a deterministic sequence as a function of the time span T , such that ϱT ↑ ∞ as T ↑ ∞.

Also, let fT (x) denote a function in x (changing with T ) with the properties:

(a) fT (x) = 0 for x < log(ϱT ),

(b) |fT (x)| ≤ C(x− log(ϱT )) and |f ′
T (x)| ≤ C for x ≥ log(ϱT ),

and f ′
T (x) denotes the right derivative for x = log(ϱT ). Then under assumption A1, with ν(x)

nondecreasing for x sufficiently large, and assumption A4, we have

1√
NT

[T/∆n]∑
i=1

fT (∆
n
i p)−

∑
s≤T

fT (∆ps)

 P→ 0, as T ↑ ∞, ∆n ↓ 0, (8.11)

for NT = Tν+(log(ϱT )) and ν
+(z) =

∫∞
z
xν(x)dx, provided that for ϵ > 0 arbitrary small

√
NT∆1−ϵ

n

(
1
∨ √

∆n

ν+(log(ϱT ))

)
→ 0, as T ↑ ∞, ∆n ↓ 0. (8.12)

Proof: For the constant K > 0, denote

pt(K) =

∫ t

0

αsds+

∫ t

0

σsdWs +

∫ t

0

∫
|x|<K

κ(x)µ̃(ds, dx) +

∫ t

0

∫
|x|<K

κ′(x)µ(ds, dx).

The proof goes through several steps.

Step 1. We start by showing that for any s < t and K → ∞,

P
(

sup
s≤u≤t

φ−
u + sup

s≤u≤t
φ+
u ≥ K

)
≤ CK−q, ∀q > 0.

Using the assumed dynamics for φ±
u , we may write φ±

u−φ±
s =

∫ u
s
α±′
v dv+

∫ u
s
σ±′
v dWv+

∫ u
s
σ±′′
v dBv+∫ u

s

∫
R2 κ(δ

±(v−,x))µ̃′(ds, dx) +
∫ u
s

∫
R2 κ

′(δ±(v−,x))µ′(ds, dx). The result then follows by using

the basic inequality |φ±
u | ≤ |φ±

s |+|φ±
u−φ±

s |, the Burkholder-Davis-Gundy inequality, Chebychev’s

inequality, and finally the integrability assumption on the process φ±
t .
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Step 2. We next show that for some constants K0, K1 > 0 and α < 1/β,

P
(∫ i∆n

(i−1)∆n

∫
|x|≥K0∆αn

µ(ds, dx) ≥ K1

)
≤ C∆(1−αβ−ϵ)⌊K1⌋

n , ∀ϵ > 0.

We start by introducing the following sets that we will rely on later in the proof,

Rn = {x : |x| ≥ K0∆
α
n} , Sn = {x : |x| ≤ K0∆

α
n} , Tn = {x : K0∆

α
n ≤ |x| ≤ K0} .

Using the representation of the jumps with the homogenous measure µ introduced in Lemma 1,

P
(∫ i∆n

(i−1)∆n

∫
|x|≥K0∆αn

µ(ds, dx) ≥ K1

)
= P

(∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Rn

(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ(ds, du, dx) ≥ K1

)
≤ P

(∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Rn

1{u<∆−ϵ
n }µ(ds, du, dx) ≥ K1

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

φ−
s ≥ ∆−ϵ

n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

φ+
s ≥ ∆−ϵ

n

)
,

where ϵ > 0 is arbitrary small. For the second probability we can apply the result of Step 1.

For the first probability, we can use the fact that
∫ i∆n
(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈Rn µ(ds, du, dx) has a Poisson

distribution with intensity ∆1−ϵ
n

∫
|x|≥K0∆αn

ν(x)dx. Therefore,

P

(∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈Rn

µ(ds, du, dx) ≥ K1

)
≤C∆(1−ϵ)⌊K1⌋

n

(∫
|x|≥K0∆αn

ν(x)dx

)⌊K1⌋

≤C∆(1−βα−2ϵ)⌊K1⌋
n ,

where we made use of the fact that
∫
R(|x|

β+ς ∧ 1)ν(x)dx <∞ for ς arbitrary small.

Step 3. We will prove

P
(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫
|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)
≤ C∆⌊K1/K0⌋−ϵ

n ,

for ϵ > 0 sufficiently small. Again, relying on the representation of the jumps by the homogenous

Poisson measure µ on an extended space with the extra dimension used for thinning, we have

for ∆n sufficiently small (κ′(x) is zero for |x| in some neighborhood of 0) and 0 < α < 1/β,

P
(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
|x|≤K0

κ(x)µ̃(ds, dx) +

∫ i∆n

(i−1)∆n

∫
|x|≤K0

κ′(x)µ(ds, dx)

∣∣∣∣ ≥ K1

)
≤ P

(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Tn

κ(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

+

∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Tn

κ′(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ(ds, du, dx)

∣∣∣∣ ≥ ρK1

)
+ P

(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Sn

κ(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

∣∣∣∣ ≥ (1− ρ)K1

)
,
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for any ρ ∈ (0, 1). For the second probability successive applications of the Burkholder-Davis-

Gundy inequality and/or the elementary inequality |
∑

i |ai||p ≤
∑

i |ai|p for some 0 < p ≤ 1,

together with the fact that
∫
|x|≤K0∆αn

|κ(x)|qν(x)dx ≤ C∆
(q−β)α−ς
n for q > β and ς > 0 arbitrary

small, imply that for any q > β,

P
(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Sn

κ(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

∣∣∣∣ ≥ (1− ρ)K1

)
≤ C∆n

∫
|x|≤K0∆αn

|κ(x)|qν(x)dx+ C∆qα+(1−βα)z−ς
n ≤ C∆(q−β)α−ς

n , ς > 0,

and some z ∈ [0, 1). For the first probability, following Step 3 we can split the integral with

respect to the compensated measure into two parts, to conclude for ∆n small,

P
(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Tn

κ(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

+

∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Tn

κ′(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ(ds, du, dx)

∣∣∣∣ ≥ ρK1

)
≤ P

(∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R+

∫
x∈Tn

x
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ(ds, du, dx)

∣∣∣∣
≥ ρK1 − C∆

α(1−β−ς)1{β≥1}
n

∫ i∆n

(i−1)∆n

(φ−
s + φ+

s )ds

)
≤ P

(∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈Tn

|x|µ(ds, du, dx) ≥ ρK1 − C∆
1−α(β−1+ς)1{β≥1}−ϵ
n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

φ−
s ≥ ∆−ϵ

n

)
+ P

(
sup

s∈[(i−1)∆n,i∆n]

φ+
s ≥ ∆−ϵ

n

)

≤ CP

(∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈Rn

µ(ds, du, dx) ≥ ρK1 − C∆
1−α(β−1+ς)1{β≥1}−ϵ
n

K0

)
≤ C∆(1−αβ−ϵ)⌊ρK1/K0⌋

n ,

where ς > 0 is arbitrary small, and we made use of the result of Steps 1 and 2. The final part

of the proof for this step then follows by applying the above two inequalities with ρ sufficiently

close to 1, and α close to 0.

Step 4. Using the integrability assumptions on the processes αt and σt, we have

P
(∣∣∣∣ ∫ i∆n

(i−1)∆n

αsds+

∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣ ≥ K1

)
≤ C∆q

n, ∀q > 0.

Step 5. Combining the results of Steps 1-5, it follows that for any ⌊K1/K0⌋ > q,

P (|∆n
i p(K0)| > K1) ≤ C∆q−ϵ

n , ∀ϵ > 0.

Step 6. For δ ∈ (0, 1) with δ > 1/ϱT , let K > 0 satisfy K < | log(δ)|/3 ∧ log(δϱT ). Then,

E

[T/∆n]∑
i=1

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Ai}
 ≤ CT∆1−ϵ

n , ∀ϵ > 0,
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where Ai =
{
ω :
∫ i∆n
(i−1)∆n

∫
|x|≥K µ(ds, dx) ≥ 2

}
. To prove this result, we first use the fact that

fT (∆
n
i p) ≤ C|∆n

i p|, E

 ∑
(i−1)∆n≤s≤i∆n

|fT (∆ps)|

q

≤ C∆nν
+(log(ϱT )), q ≥ 1.

The result of this step then follows readily from Holder’s inequality and the result of Step 2.

Step 7. For the same choices of δ andK used in Step 6, denote the setBi = {ω : |∆n
i p(K)| ≥ | log(δ)|}.

Then as in Step 6, using the result of Step 5, we get

E

[T/∆n]∑
i=1

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bi}
 ≤ CT∆n.

Step 8. Let Ci = {ω : ∃s ∈ [(i− 1)∆n, i∆n] : ∆ps ≥ log(ϱT )} and Di = {ω : ∆n
i p ≥ log(ϱT )}. We

will show that for some arbitrary small ϵ > 0

E

[T/∆n]∑
i=1

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Cci , Di}
 ≤ C∆1/2−ϵ

n T (ν+(log(ϱT )))
1−ϵ.

On the set Aci ∩Bc
i ∩Cc

i ∩Di, there is exactly one jump of size above K in absolute value, and its

size must be in the interval [log(δϱT ), log(ϱT )] (recall δ > 1/ϱT ). Therefore, using the fact that

|fT (x)− fT (log(ϱT ))| ≤ C|x− log(ϱT )| for x ≥ log(ϱT ) and fT (log(ϱT )) ≤ C, we have∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Cci , Di}
≤ C|∆n

i p(K)|
∫ i∆n

(i−1)∆n

∫
R
1{x∈[log(δϱT ),log(ϱT )]}µ(ds, dx)

+ C

∫ i∆n

(i−1)∆n

∫
R
1 (|∆n

i p(K)| ≥ log(ϱT )− x, x ∈ [log(δϱT ), log(ϱT )])µ(ds, dx).

(8.13)

Note that in the last integral, the integrand is not adapted, but this does not matter as the integral

with respect to µ is defined in the usual Riemann-Stieltjes sense. Now, using the representation

of the jumps with respect to µ, we have for the first term on the right-hand side of (8.13),

E
(
|∆n

i p(K)|
∫ i∆n

(i−1)∆n

∫
R
1{x∈[log(δϱT ),log(ϱT )]}µ(ds, dx)

)
≤ A1 + A2 + A3 + C∆q

n, (8.14)

A1 = E
(∣∣∣∣∫ i∆n

(i−1)∆n

αsds+

∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R
1{x∈[log(δϱT ),log(ϱT )]}µ(ds, dx)

)
,

A2 = E
( ∣∣∣∣∫ i∆n

(i−1)∆n

∫
R+

∫
|x|≤K

κ(x)
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

∣∣∣∣
×
∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈[log(δϱT ),log(ϱT )]

µ(ds, du, dx)

)
,
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A3 = E

(∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
|x|≤K

|κ′(x)|µ(ds, du, dx)
∫ i∆n

(i−1)∆n

∫ ∆−ϵ
n

0

∫
x∈[log(δϱT ),log(ϱT )]

µ(ds, du, dx)

)
,

for some arbitrary small ϵ > 0 and arbitrary big q > 0. Then for A1 we can use Holder’s inequal-

ity. For A2 we condition first on the filtration generated by µ(R+,R+, x ∈ [log(δϱT ), log(ϱT )])

and then apply Burkholder-Davis-Gundy inequality and Holder’s inequality. For A3 we use

the independence of the filtration generated by µ(R+,R+, x ∈ [log(δϱT ), log(ϱT )]) from that of

µ(R+,R+, |x| ≤ K) (note that K < log(δϱT )). Altogether we get for ρ > 0 arbitrary small,

E
(
|∆n

i p(K)|
∫ i∆n

(i−1)∆n

∫
R
1{x∈[log(δϱT ),log(ϱT )]}µ(ds, dx)

)
≤ C∆3/2−ρ

n ν+(log(δϱT ))
1−ρ. (8.15)

Now, for the second term on the right hand-side of (8.13)∫ i∆n

(i−1)∆n

∫
R
1 (|∆n

i p(K)| ≥ log(ϱT )− x, x ∈ [log(δϱT ), log(ϱT )])µ(ds, dx)

≤ C|∆n
i p(K)|1−ρ

∫ i∆n

(i−1)∆n

∫
R

1

| log(ϱT )− x|1−ρ
1 (x ∈ [log(δϱT ), log(ϱT )])µ(ds, dx),

for arbitrary small ρ > 0. From here we can proceed exactly as in (8.15) upon using the following

bound for any 1 ≤ α < 1/(1− ρ),

E
(∫ i∆n

(i−1)∆n

∫
R

1

| log(ϱT )− x|1−ρ
1 (x ∈ [log(δϱT ), log(ϱT )])µ(ds, dx)

)α
≤ C∆n

∫
x∈[log(δϱT ),log(ϱT )]

1

| log(ϱT )− x|α(1−ρ)
ν(x)dx

+ C∆α
n

(∫
x∈[log(δϱT ),log(ϱT )]

1

| log(ϱT )− x|1−ρ
ν(x)dx

)α
,

≤ C∆nν
+(log(δϱT )),

where for the first inequality we made use of the Burkholder-Davis-Gundy inequality, and for

the second the restriction that α < 1/(1− ρ) together with the fact that ν(x) is non-increasing

in the tails.

Step 9. In this step we show for some arbitrary small ϵ > 0

E

[T/∆n]∑
i=1

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Ci, Dci }
 ≤ C∆1/2−ϵ

n T (ν+(log(ϱT )))
1−ϵ,

On the set Aci ∩ Bc
i ∩ Ci ∩Dc

i , there is exactly one jump of size above K in absolute value and

its size must be in the interval [log(ϱT ), log(ϱT )− log(δ)]. Then, using the fact that |fT (x)| ≤ C

for x ∈ [log(ϱT ), log(ϱT )− log(δ)] (C depends on δ), we have∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Ci, Dci }
≤ C

∫ i∆n

(i−1)∆n

∫
R
1 (|∆n

i p(K)| ≥ x− log(ϱT ), x ∈ [log(ϱT ), log(ϱT )− log(δ)])µ(ds, dx).
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From here the result follows exactly as in Step 8.

Step 10. In the final step we show for arbitrary small ϵ > 0

E

[T/∆n]∑
i=1

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Ci, Di}
 ≤ CT∆1/2−ϵ

n

(
ν+(log(ϱT ))

)1−ϵ
,

On the set Aci ∩ Bc
i ∩ Ci ∩ Di, we have only one jump of p above log(ϱT ). Therefore, since the

function fT is differentiable for values of the argument exceeding log(ϱT ), a first-order Taylor

expansion together with the boundedness of the first derivative of fT yields∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Ci, Di} ≤ C|∆n
i p(log(ϱT )|1{Aci , Bci , Ci, Di}.

To continue further we introduce the following two sets,

RT = {x : |x| ≥ log(ϱT )} and ST = {x : |x| ≤ log(ϱT )} .

Using the alternative representation of the jumps with respect to µ, we have

E

∣∣∣∣∣∣fT (∆n
i p)−

∑
(i−1)∆n≤s≤i∆n

fT (∆ps)

∣∣∣∣∣∣ 1{Aci , Bci , Ci, Di}


≤ CE

(
1{Aci , Bci , Ci, Di}|∆

n
i p(log(ϱT )|

∫ i∆n

(i−1)∆n

∫
u<φ+

s−

∫
x∈RT

µ(ds, du, dx)

)

≤ CE

(
|∆n

i p(log(ϱT )|
∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

)
+ CE

(
|∆n

i p(log(ϱT )|1{sups∈[(i−1)∆n,i∆n] φ
+
s ≥∆−ϵ

n }

)
.

Furthermore,

E
(
|∆n

i p(log(ϱT )|
∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

)
≤ B1 +B2,

where

B1 = CE
[(∫ i∆n

(i−1)∆n

(|αs|+ φ+
s− + φ−

s−)ds+

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣
)∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

]
,

B2 = CE
[ ∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫
R+

∫
x∈ST

x
(
1{x<0, u<φ−

s−} + 1{x>0, u<φ+
s−}

)
µ̃(ds, du, dx)

∣∣∣∣∣
×
∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

]
.

By Holder’s inequality and the integrability conditions for some arbitrary small ς > 0,

B1 ≤ C∆3/2−ς
n

(
ν+(log(ϱT ))

)1−ς
.
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For the term B2, we can condition on the filtration generated by the measure µ(R+,R+, x ∈ RT ),
denoted with F ∗, and use the fact that the Poisson measure creates independent filtration on
disjoint sets, see e.g., Sato (1999), to get by an application of the Burkholder-Davis-Gundy
inequality, that

B2 ≤CE
[√∫ i∆n

(i−1)∆n

E((φ+
s + φ−

s )|F ∗
i∆n

∨ F(i−1)∆n)ds

∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

]
≤C∆1+1/2−2ϵ

n ν+(log(ϱT )) +B3,

where

B3 =CE
(√√√√√E

∫ i∆n

(i−1)∆n

(φ+
s + φ−

s )ds

(∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

)2 ∣∣∣∣F ∗
i∆n

∨ F(i−1)∆n


× 1{sups∈[(i−1)∆n,i∆n] φ

+
s ≥∆−ϵ

n }

)
.

It then follows by the Cauchy-Schwartz inequality that for any q > 0,

B3 ≤ C∆q/2
n

√√√√√E

∫ i∆n

(i−1)∆n

(φ+
s + φ−

s )ds

(∫ i∆n

(i−1)∆n

∫
u<∆−ϵ

n

∫
x∈RT

µ(ds, du, dx)

)2
 ≤ C∆q/2

n .

Step 11. Combining the results of Steps 6-10, we get (8.11) provided condition (8.12) holds. �

Lemma 4 Suppose we observe the process pt at the discrete times 0,∆n, ..., n∆n, ..., t, t+∆n, ..., t+

n∆n, ..., and assume that assumptions A1, with ν(x) nondecreasing for x sufficiently large, and

A4 hold. Then, for ϱT and the function fT defined in Lemma 3, and provided (8.12) holds,

1√
NT

T−1∑
t=1

(
n∑
i=1

fT (∆
n,t
i p)−

t+1∑
s=t

fT (∆ps)

)
TV n

t−1
P→ 0, as T ↑ ∞, ∆n ↓ 0. (8.16)

Proof: We can proceed exactly as in the proof of Lemma 2, using the result in Lemma 3. We only

need that E|TV n
t−1|q < ∞ for arbitrary q > 0. But, this follows from the fact that by successive

conditioning and application of Holder’s inequality, E
(
|∆n,t−1

i1
p|q1 ...|∆n,t−1

ik
p|qk
)
≤ C∆k−ϵ

n , for k

an integer, ϵ > 0 arbitrary small, distinct ij for j = 1, ..., k, and qj ≥ 2 for j = 1, ..., k. �
Proofs of Theorem 3 and Corollary 2. The proofs will follow from the proof of Theorem 1

and Corollary 1 if we can show

sup
θ∈ΘlT

√
M+

T ||ĝT (θ, ϱT )− gT (θ, ϱT )||
P→ 0,

where ĝT (θ, ϱT ) is defined by substituting
∫ t+1

t

∫
ψ+(x)>ϱT

ϕ+
i (ψ(x)−ϱT , θ(1), θ(2))µ(ds, dx) in place

of
∑n

j=1 ϕ
+
i (ψ(∆

n,t
j p)−ϱT , θ(1), θ(2))1

(
ψ+(∆n,t

j p) > ϱT
)
in gT (θ, ϱT ) for i = 1, 2 and t = 0, ..., T−1,

and in the case of Corollary 1,
∫ t
t−1

σ2
sds is also replaced by TV n

t for t = 1, ..., T . But, this result

follows directly from Lemmas 2 and 4, as the conditions on the function fT are satisfied by the

score functions ϕ+
i when evaluated at the large jumps on the set θ ∈ Θl

T . �
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