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Abstract
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1 Introduction

Modeling the evolution of a financial price series as forced by a stochastic volatility

process has a long history in financial econometrics. In most models, the underlying

driving process(es) are locally Gaussian — or possibly locally Gaussian with occasional

rare jumps — and positivity of the volatility process is ensured by the functional form

assumptions. Recently, Barndorff-Nielsen and Shephard (2001a,b) suggest a completely

new class of models, termed non-Gaussian OU Models, where the driving process for

a volatility factor is a pure-jump Lévy process with nonnegative increments; simple

parametric sign restrictions ensure positivity. Brockwell (2001a,b) and Brockwell and

Marquardt (2005) introduce a generalization to the Lévy-driven CARMA (continuous

time autoregressive moving average) class of volatility models. These newer classes of

models based on more general Lévy processes can be expected to supplant traditional

Brownian-based processes in serious efforts to model the movements of financial price

data at the very high frequency. Tauchen (2004) reviews the older classes of models

and discusses some of the issues related to data and estimation methods for the newer

classes of models.

Regardless of the estimation technique, it is clear that simulation will play a crucial

role in the implementation of these newer classes of processes. With Bayesian methods,

for example, simulation is used as part of the scheme to integrate out unobserved

variables, including the unobserved values of the process between the sampling points.

In frequentist likelihood-based approaches, simulation in conjunction with a cleverly

chosen importance function, can, in certain problems, make evaluation of the likelihood

practicable. In method-of-moments-based approaches, simulation is used to evaluate

predicted moments under the model that are compared to sample moments via a chi-

squared criterion.

In this paper, we develop and assess practical schemes to simulate from Lévy-driven

models for financial price dynamics. In the models considered below, the volatility

dynamics are governed by the Brockwell-style CARMA extension of the Barndorff-

Nielsen and Shephard non-Gaussian OU setup. The returns process also contains a

jump component, which is correlated with the jump innovations in volatility in order to

accommodate the so-called leverage effect. We use simulation schemes based on series

expansions that turn out to be considerably simpler to implement than schemes based

on the tail mass function. The convenience of the series expansion is especially apparent

in a bivariate (or multivariate) situation, because the need to determine the tail mass
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functions and copula function is completely circumvented. Below, we introduce a

two-dimensional mixture of gammas Lévy process that is extremely flexible while at

the same time preserving positivity for the volatility Lévy increments and generating

leverage type correlations between the volatility increments and price jump increments.

The remainder of the paper is organized as follows. Section 2 sets forth some nota-

tion and recalls some basic properties of the Lévy process. Section 3 sets out the series

approximations to Lévy processes; it also shows how to adapt the series approximations

to simulate Lévy-driven processes and assesses accuracy. Section 4 develops the flexible

mixture of gammas process. Section 5 casts the material into a stochastic volatility

framework. Section 6 contains examples that illustrate the flexibility of the simulation

schemes and the realistic financial price dynamics that can be generated with judicious

choice of the parameters; it also discusses challenges in estimation with such processes

on very high frequency data. Section 7 contains the concluding remarks.

2 Lévy processes

In this section we review some basic facts associated with the Lévy processes, that will

be used in the paper. For more details see Sato (1999) or Bertoin (1996).

Intuitively the Lévy process could be described as continuous time analogue to the

random walk in discrete time. The following definition of Lévy process is taken from

Sato (1999): A stochastic process {Lt : t ≥ 0} on (Ω,F ,P), taking values in Rd is a

Lévy process if the following conditions are satisfied

1. It has independent increments.

2. L0 = 0 a.s.

3. The increments of the process are strictly stationary.

4. It is stochastically continuous.

5. There is Ω0 ∈ F with P (Ω0) = 1, such that that for every ω ∈ Ω0 Lt(ω) is càdlàg

(i.e it is right continuous with left limits).

The last condition says that the Lévy process has càdlàg version and it will be this

version of the process which will be used throughout. If this condition is dropped the

resulting process is the Lévy process in law.

There is an intimate link between the infinite divisible distributions and the Lévy

processes in law. If {Lt : t ≥ 0} is a Lévy process in law, then the distribution of

Lt for every t ≥ 0 is infinitely divisible. The converse is also true for every infinitely
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divisible distribution µ there exists Lévy process in law L(t), such that the distribu-

tion of L(1) is equal to µ. Therefore using the Lévy-Khintchine representation of the

characteristic function of infinitely divisible distribution we can write the following for

the characteristic function of a d-dimensional Lévy process L(t)

E[eiε
′L(t)] = et`(ε), (1)

where

`(ε) = −
1

2
ε′Aε+ iε′a+

∫

Rd
0

(

eiε
′y − 1− iε′y1[|y|≤1]

)

ν(dy), (2)

and A is a symmetric positive semi-definite matrix. The measure ν, called the Lévy

measure, on Rd
0 (Rd

0 := Rd \ {0}), satisfies
∫

Rd
0

(|y|2 ∧ 1)ν(dy) <∞. (3)

The characteristic triplet (A,a, ν) of the measure µ completely determines the Lévy

process L. The representation in (2) is not unique. There are many truncation func-

tions which could be used besides y1[|y|≤1] employed here; see Sato (1999) (p.38) for

details.

Two specific cases of the Lévy process are:

1. ν = 0. In this case the process reduces to Brownian motion and therefore has a

continuous version.

2. A = 0. In this case the process is pure jump.

Every other Lévy process is a combination of these two. The continuous part of every

Lévy process is the Brownian motion, which has unbounded variation and quadratic

variation proportional to time. The pure jump part of every Lévy process is of finite

activity when ν(Rd
0) < ∞, and it is of infinite activity when ν(Rd

0) = ∞. The finitely

active pure jump Lévy processes (also known as compound Poisson) jump at most a

finite number of times in every finite interval almost surely, while the infinitely active

jump processes jump an infinite number of times on finite intervals. Further, the set of

infinitely active pure jump processes can be subdivided into those with finite variation

or infinite variation. For a pure jump process to be of finite variation it is necessary and

sufficient that
∫

|y|≤1 |y|ν(dy) <∞; see Sato (1999) (th.21.9). Intuitively, the pure jump

processes of finite variation are characterized by the property that their trajectories

are of finite length over finite intervals, almost surely, unlike those of infinite variation.

Since we use Lévy processes for modelling directly the stochastic volatility, we are

interested in those that are increasing; i.e., for d = 1, Lt(ω) is an increasing function
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of t. Such Lévy processes are called Lévy subordinators. For all Lévy subordinators

ν[(−∞, 0)] = 0, and
∫

0<y≤1 yν(dy) <∞; see Sato (1999) (th.21.5).

3 Series Representation of Lévy Processes and

Their Simulation

In this section we introduce the series representation of pure jump Lévy processes,

which offers a convenient way for simulation of integrals with respect to them. In only

certain cases is the transition density of the Lévy-process known in closed form (see for

example Li, Wells, and Yu (2004) and references therein). The series representation of

Lévy processes offers a particularly useful way of simulating Lévy processes, given the

fact that in most cases the law of the increments of the Lévy process is not known in

closed form. For its implementation, one needs to know only a shot noise decomposition

of the Lévy measure of the process (to be explained below), without employing the

transition density which will be often not known explicitly and rather expensive to

evaluate numerically. Furthermore, working with the Lévy measure and its series

representation is particularly useful for modeling and simulating dependence across

multiple processes flexibly without imposing the extreme cases of perfectly dependent

or independent arrival times. [Cont and Tankov (2004), Chapter 5, note the importance

of working directly with the Lévy measure in the multivariate case.] Thus, the series-

based methods developed here provide a way of exploring a much wider variety of

interesting Lévy processes for financial applications.

3.1 General Theory

The fundamental result, which we make use of throughout the paper, is the generalized

shot noise method for series representation of infinitely divisible distributions, intro-

duced in Rosiński (2001). Here we state in a theorem, the implications for the series

representation of Lévy processes. For the proof of this theorem, the reader is referred

to Rosiński (2001).

Theorem 1 Let {Γi}i≥1 be a sequence of arrival times of a standard (unit intensity)

Poisson process; i.e., {Γi}i≥1 is the sequence of partial sums of standard exponential

random variables. Also let {Vi}i≥1 be a sequence of i.i.d. random variables with dis-

tribution F in a measurable space S and {Ui}i≥1 be a sequence of i.i.d. uniform on

[0,1] random variables such that {Γi}i≥1, {Vi}i≥1 and {Ui}i≥1 are independent of each

other. Let H(r, v) be a measurable function H : (0,∞)× S → Rd.
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In addition make the following notation

ψ(r,B) = P[H(r, Vi) ∈ B], r > 0, B ∈ B(Rd),

A(s) =

∫ s

0

∫

|x|≤1
xψ(r, dx)dr, for ∀s ≥ 0,

and assume the measure ν can be decomposed as

ν(B) =

∫ ∞

0
ψ(r,B)dr, r > 0, B ∈ B(Rd). (4)

(a) If a := lim
s→∞

A(s) exists in Rd and ν is a valid Lévy measure, then

∞
∑

i=1

H(Γi, Vi)1(Ui≤t) (5)

converges almost surely, uniformly in t on [0, 1] to a Lévy process with character-

istic triplet (0,a, ν).

(b) If ν is a valid Lévy measure, |H(r, v)| is a nonincreasing in r and ci = A(i) −

A(i− 1), then
∞
∑

i=1

(H(Γi, Vi)1(Ui≤t) − tci) (6)

converges almost surely, uniformly in t on the interval [0,1] to a Lévy process with

characteristic triplet (0, 0, ν).

The theorem gives a way to represent pure jump Lévy processes and integrals

with respect to them. All we need to do is find a shot noise decomposition of the

corresponding Lévy measure. Many of the existing methods for simulation of Lévy

processes, such as the Inverse Lévy Measure method of Khintchine (Ferguson and

Klass (1972)) and the standard way of simulating compound Poisson processes, are

special cases of shot noise decomposition with particular choice for H(r, v) and v.

More examples are in Rosiński (2001). Every Lévy process can have different shot

noise decompositions of its Lévy measure. The convenience of every method will be

determined by how easy it is to simulate from the distribution F and how fast we

can evaluate H(r, v). When the process is of finite variation the first condition in (a)

is automatically satisfied. However notice that this condition could be also satisfied

for processes of infinite variation: when their Lévy measure is symmetric (which is

the case for type G Lévy processes-processes that could be presented as Brownian

motions subordinated by nonnegative Lévy processes, see Rosiński (1991) for their
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series representation). In case the first condition in part (a) of the Theorem fails it is

still possible to derive series representation for the Lévy process, but in this case the

sum needs to be centered appropriately as it is shown in part (b).

The shot noise decomposition of the Lévy measure in Theorem 1 could be used for

deriving the series representation of integrals with respect to Lévy processes. In this

paper we will be interested in the following integrals

X(t) =

∫ t

0
f(s−)dL(s), (7)

where f : R+ → R is a predictable and bounded deterministic function and L(t) is a one

dimensional Lévy process of finite variation with the following characteristic function

E(eiεL(t)) = exp

(

t

∫

R0

(eiεy − 1)ν(dy)

)

, (8)

where ν satisfies equation (4). Using Theorem 1 we define the following approximations

of the Lévy process L(t) and the integral with respect to it X(t)

Lτ (t) =
∑

Γi≤τ

H(Γi, Vi)1(Ui≤t), (9)

Xτ (t) =
∑

Γi≤τ

f(Ui)H(Γi, Vi)1(Ui≤t). (10)

Using the result in Theorem 1, it is easy to see that the approximations Lτ (t) and

Xτ (t) converge almost surely and uniformly in t on the interval [0, 1] to L(t) and X(t)

respectively.

The approximations Lτ (t) and Xτ (t) involve random number of terms (but on

average they will be τ). This way of truncating the infinite series in (5) has the

advantage that the approximation Lτ (t) is itself a Lévy process of finite activity with

Lévy measure
∫ τ
0 ψ(r, ·)dr.

In general the approximation given in equation (9) does not necessarily truncate

the small jumps. However when H(r, v) is nonincreasing in r, this ”on average” will

be true. That is the approximation error, which is itself a jump process will allocate

less and less mass on bigger jumps.

The approximation error in the case when the truncation involves cutting exactly

the small jumps of the Lévy process (which will be the true in the case of the Inverse

Lévy Measure method) was analyzed in Asmussen and Rosiński (2001); see also the

work of Wiktorsson (2002) for the integrals with respect to G-type Lévy processes.
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3.2 Practical Implementation and Numerical Error

We now show the implementation of the above Lévy shot noise decomposition for the

relatively simple case of a gamma process with Lévy measure given by

ν(dy) = c
e−λy

y
I(y > 0)dy, (11)

where λ is a scale parameter and c controls the overall intensity of the process, which

is infinitely active. For the gamma process, a very convenient choice for the function

H(Γ, V ) in the representation (5) is

H(Γ, V ) =
V

λ
e−Γ/c.

We illustrate how to approximate a realization L(t), t ∈ [0, 1], and the integral

X(t) =

∫ t

0
e−ρsdL(s), t ∈ [0, 1],

where the kernel function in (7) is f(s) = e−ρs.

Table 1 shows an actual working FORTRAN 90 code segment written to look like

pseudo-code easily translatable into another language. For brevity, the table only shows

the innermost part of the program that actually generates the approximations Lτ (t) and

Xτ (t) in (9) and (10); the code segment is embedded in a larger main program available

upon request. Keep in mind that both Lτ (t) and Xτ (t) are defined over all t ∈ [0, 1],

but on a computer it is only possible to evaluate each over a finite number of points.

After execution of the code segment in Table 1, the arrays levy and x consist of Lτ (tj),

and Xτ (tj), respectively, over the equi-spaced grid tj = j/N , j = 1, 2, . . . , N , where N

is the number of grid points, or bins. The process of computing the approximations

simply consists of adding the shot noises (or weighted shot noises) to the appropriate

“bins” corresponding to the times in [0, 1] where the jumps occur.

Given values of c, λ, and the cutoff τ , along with various control parameters, the

code segment works as follows. The first main loop in Table 1 generates a random

number nshot of shot noises, H(i), and integers, bin(i), corresponding to the jump

times, where nshot is the cutoff τ on average. The middle part of the code segment

is just some checking that sufficient space was allocated and some initialization. The

final loops accumulate the shot noises to form levy(j) = Lτ (tj) and the weighted shot

noises to form x(j) = Xτ (tj), j = 1, 2, . . . , N .

A potential application is simulated method of moments estimation, so we assess
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accuracy in that context. In particular, consider estimation via simulation of

E

[∫ 1

0
X(s)ds

]

(12)

E

[∫ 1

0
X(s)2ds

]

. (13)

The simulation-based estimator would be obtained by generating many replicates of

1

N

N
∑

j=1

Xτ (tj) (14)

1

N

N
∑

j=1

[Xτ (tj)]
2 (15)

using the code displayed in Table 1, and then averaging the replications. Figure 1

displays the relative error, (expected - simulation average)/expected, as a function of

τ , for λ = 1.0, ρ set so that the half-life is 0.05, and two values c = 5.0 and c = 15.0.

Closed form expressions are available for the expected values in (12) and (13) and we

used a grid size of N = 2000 and 10,000 replications of (14) and (15). Figure 1 suggests

that quite accurate approximations can be obtained with rather modest values of τ ,

although the minimum τ required for a given level of accuracy is higher for the more

active process. The figure also indicates that the minimum required value of τ can in

practice be determined by trying different values and looking for the smallest value for

which the computations stabilize.

4 Mixture of Gammas Lévy-Processes

4.1 The One Dimensional Case

The one dimensional Lévy processes that we will be using in this paper are an extension

of the gamma process (11). Our mixture of gammas process is a pure jump, infinitely

activity and finite variation Lévy process, whose Lévy measure is given by

ν(dy) =

(

c1e
−λ1|y|

|y|
+
c2e

−λ2|y|

|y|
+ ...+

cme
−λm|y|

|y|

)

I(y < 0) dy

+

(

cm+1e
−λm+1|y|

|y|
+ ...+

cm+ne
−λm+n|y|

|y|

)

I(y > 0) dy

(16)

where c1, c2,...,cm+n and λ1, λ2,...,λm+n are positive real numbers. Note that in this

case, unlike the gamma process, we allow for the possibility of negative jumps. This

Lévy process is a superposition of the pure jump Lévy processes used in Carr, Geman,

Madan, and Yor (2002, 2003) with tilting parameter set to zero.
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For the mixture of gammas we can use as the shot noise in the series representation

the function

H(Γi, Vi, Ji) = e−Γi/cJiVi (17)

where Vi are i.i.d. standard exponential, c = c1+ ...+ cm+n, Γi are the arrival times of

standard Poisson process, and Ji are i.i.d random variables such that

Ji =



























































−λ−11 with probability c1/c
...

−λ−1m with probability cm/c

λ−1n+1 with probability cm+1/c
...

λ−1m+n with probability cm+n/c .

Verification of this claim follows from the fact that the measure given in equation (16)

is easily shown to be a valid Lévy measure (that is it satisfies the integrability condition

(3)) and it is of finite variation. The rest of the proof follows directly from Theorem 1,

part (a). Using the proposed shot noise (17) above and equations (9) and (10) we can

simulate mixture of gammas and moving averages of them.

4.2 A Bivariate Mixture of Gammas

To accommodate the leverage effect in the stochastic volatility model, we will need a two

dimensional pure jump Lévy process whose individual processes are linked. One process

pertains to the price and the other to the volatility. In order to capture the possibility

of common jumps and separate jumps, we consider the joint Lévy measure. Intuitively,

if the two processes jump almost always together and their jumps are in constant ratio,

this will manifest itself in the Lévy measure being concentrated predominantly on the

set: {(x, y) : x = constant × y}. This is an example of completely dependent Lévy

processes such as those used in Barndorff-Nielsen and Shephard (2001b) or Carr and

Wu (2004), among others. Note that the processes jumping in a fixed proportion is one

of the many possible instances of complete dependence. Another one, for example, will

be if the jumps of the one process are recovered from the jumps of the other process by

raising them to the power three. If the processes comprising a two dimensional Lévy

process never jump together, this will imply that the Lévy measure will be concentrated

on the set {(x, y) : xy = 0}. In this case the two Lévy processes are independent.
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An approach to capture the dependence would be to use the Lévy copula introduced

by Tankov (2003) and Cont and Tankov (2004), and studied further by Barndorff-

Nielsen and Lindner (2004). A possible advantage of this approach is that the depen-

dence between the individual processes captured by the Lévy copula is disentangled

from the marginal distributions. However, the simulation from Lévy processes linked

by a Lévy copula is not so easy, since it employs the Inverse Lévy Measure method,

and the inverse of the tail of the Lévy measure is known in closed form in very few

cases.

In order to bridge between the two extremes of complete dependence and inde-

pendence, we model directly the joint Lévy measure. Theorem 1 is already stated in

multidimensional framework. All we need to do is to specify the Lévy measure in a

way that allows us to capture parsimoniously the dependence structure.

We propose the following multidimensional Lévy measure ν

ν(A) =

∫

Rd
0

∫ ∞

0

∫ ∞

0
IA(e

−rvz)e−vdrdvµ(dz), (18)

where the measure µ on Rd
0 satisfies

∫

Rd
0

|z|µ(dz) <∞. (19)

It is easy to verify that when the condition in (19) is satisfied, the measure in (18)

is a valid Lévy measure of finite variation, but infinite activity. It could be shown

that this measure is the same as the tempered stable measure introduced in Rosiński

(2002) for value of the tempering parameter zero. However note that the analysis in

Rosiński (2002) is restricted only to the case of tempering parameter taking values in

the interval (0, 2) since only in this case the measure could be analyzed as tempering

of a stable process, see the discussion in Rosiński (2002, 2004).

We specialize the measure µ to the following sums of atoms in R2
0

µ = c1δ(λ−1
11

,0) + c2δ(0,λ−1
22
) + c3δ(λ−1

13
,λ−1

23
) + ...+ cpδ(λ−1

1m,λ−1
2m)

, (20)

and c1, . . . , cm are nonnegative numbers. This could be viewed as a generalization of

the mixture of gamma processes to the bivariate case. The λ’s may be of either sign,

as there is no way in the bivariate case to separate out the positive and negative jumps

as in (16) above. Note that λ2i/λ1i determines the ratio of the jumps.

We can enforce complete independence of the two individual processes with the

measure

µ = c1δ(λ−1
11

,0) + c2δ(0,λ−1
22
). (21)
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In this case, the measure will be concentrated on the set {(x, y) : xy = 0}. The marginal

distribution will be gamma processes. An example of two independent gamma processes

are shown on the top panel of Figure 2.

The other extreme of complete dependence, where the jumps of the two individual

processes are in fixed proportion, can be achieved with the measure

µ = cδ(λ−1
13

,λ−1
23
). (22)

In this case the marginal distributions are again gamma processes. This case is illus-

trated on the middle panel of Figure 2.

In general, we want to permit patterns of dependence between the two individual

Lévy processes that is flexible and admits complete independence and dependence as

special cases. Following the reasoning of the one dimensional case, we can specify a

series representation in the two dimensional case where the Lévy measure is specified

in equation (18). In particular, H(Γi, Vi, Ji) is given by

H(Γi, Vi, Ji) = e−Γi/cViJi (23)

where Γi are the arrival times of a standard Poisson process, Vi are i.i.d. standard

exponential variables, c = c1+ c2+ ...+ cm, and Ji are i.i.d. random vectors in R2 such

that

Ji =































(λ−111 , 0) with probability c1/c

(0, λ−122 ) with probability c2/c
...

(λ−11m, λ
−1
2m) with probability cm/c.

(24)

This shot noise decomposition of the Lévy measure, combined with equations (9) and

(10), gives us a way to simulate the two dimensional mixture of gammas proposed here

as well as moving averages of it. The bottom panel of Figure 2 illustrates an example of

this general case with two subordinators that can jump independently or in two fixed

proportions. The measure µ in (18) need not be atomistic, and the setup is flexible

enough to accommodate more general dependent structures of higher dimension than

two.
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5 Lévy driven Stochastic Volatility Models

5.1 The Generic Stochastic Volatility Model

In this subsection we define the generic Lévy driven stochastic volatility model. As it

will be shown, this generic model nests most of the stochastic volatility models analyzed

in the finance literature.

The scaled logarithm of the price at time t of the financial price will be denoted by

p(t); the scaling of the logarithm is often used so the increments represent a geometric

return. The general Lévy driven stochastic volatility model is written as

dp(t) = µp(t)dt+ σ(t−)dLp1(t) + dLp2(t) (25)

σ2(t) = h(c′X(t)) (26)

dX(t) = a(X(t−), t)dt+ b(X(t−), t)dLX(t) (27)

where Lp1(t) and Lp2(t) are two independent Lévy processes, Lp2(t) and LX(t) are

potentially dependent Lévy processes, and h : R → R+. The system of equations (25)-

(27) specifies a Markovian type SDE driven by Lévy process. Equation (26) specifies

σ2(t) as driven by an n-dimensional vector of factors X(t). The (n × 1) vector of

constants c defines the weights of the factors in the variance. The process σ2(t) is

not the variance of the return process but only part of it. However, the other part,

which is coming from the variance of the pure jump component, is not time varying.

Throughout, we keep the name stochastic variance for σ2(t). The vector of factors X(t)

driving the stochastic variance of the price process follow a Lévy-driven SDE, specified

in equation (27), where LX(t) is a k-dimensional Lévy process.

Most of the stochastic volatility models could be viewed as particular cases of this

generic model. For example the model introduced by Barndorff-Nielsen and Shephard

(2001a) can be obtained by setting LX(t) to be pure jump Lévy subordinator, Lp2(t)

to be a centered version of it, Lp1(t) to be Brownian motion, and the factor X(t) to

follow Ornstein-Uhlenbeck process.

The time changed Lévy driven stochastic volatility models for the risk neutral

dynamics of Carr, Geman, Madan, and Yor (2003) are also embedded in the above,

provided the time change is of a Brownian motion. The time change is continuous

process, which is locally deterministic with activity rate following an SDE. The activity

rate of the economy in these models plays the same role as the volatility here. The

models of Carr, Geman, Madan, and Yor (2003) are different however when the time

change is of a pure jump Lévy process.
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Many of the jump-diffusion models in the finance literature can be nested in the

generic stochastic volatility model (25)–(27). In these models, the jumps are rare events

and are modeled as finitely active processes. The stochastic volatility is usually driven

by Brownian motion, i.e., in the framework here LX(t) is a Brownian motion. The

leverage effect is captured by specifying Lp1(t) as another Brownian motion, which is

correlated with the ones driving the factors of the volatility. Among others, the affine

jump diffusion models of Duffie, Pan, and Singelton (2000) with time homogenous Lévy

measure are nested in this framework.

There are three main features of the stock market returns that every stochastic

volatility model should address: (1) volatility clustering and persistence with possible

jumps in volatility, (2) jumps in the price, and (3) the leverage effect. Here we elaborate

on how these features can be captured by the generic stochastic volatility model defined

in equations (25)–(27).

1. Volatility Persistence The generic stochastic volatility model proposes a multi-

factor structure for the spot variance. This enables one to produce different

degrees of persistence in the spot volatility and the pure-jump Lévy component

generates jumps in volatility.

2. Jumps in the Price We observe the price process only on discrete intervals, so

it is natural to ask whether we can disentangle the jump part, if it exists, from the

diffusion one. The answer to that question is affirmative, by making use of the

nonparametric tests proposed by Barndorff-Nielsen and Shephard (2004, 2006).

Using these statistics Andersen, Bollerslev, and Diebold (2005) and Huang and

Tauchen (2006) find considerable evidence for jumps in exchange rate returns and

asset returns respectively. Therefore we model the price process by allowing for

jumps in the prices.

3. Leverage Effect The leverage effect pertains to a negative correlation between

the volatility and the return process. There are different ways it can be captured

in the generic stochastic volatility model. It should be kept in mind that the link

could be done only through a link between the continuous parts in the price and

the variance, through their jump parts or through a combination of those two,

because the pure jump Lévy process is always orthogonal to the Brownian motion.

One of the most frequently used ways is to let Lp1(t) and LX(t) have Brownian

Motions, which are correlated. That is, in this way we can produce the leverage

effect through the diffusion parts of the variance and the price process. This
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approach was followed by most of the jump-diffusion literature. An alternative

modelling approach is to link the jumps in the price and that in the variance,

that is, to let Lp2(t) and the pure jump part of LX(t) be dependent pure jump

processes. Eraker, Johannes, and Polson (2003) introduce leverage effect through

a combination of these two modelling alternatives. Another approach is to capture

the leverage effect by linking the pure jump components of Lp1(t) and LX(t).

This could also avoid the need for an additional jump component (Lp2(t) here)

for capturing the leverage effect; since Lp1(t) is specified as a process containing

jump part, we will have jumps in the price. This is similar in spirit to the

approach, proposed in Carr and Wu (2004), where the pure jump Lévy process

of the price and the instantaneous business activity rate are linked.

5.2 The Lévy-Driven CARMA Stochastic Volatility Model

In this subsection we adapt Barndorff-Nielsen and Shephard (2001a) and Brockwell

(2001a,b) to introduce a Lévy-driven CARMA (continuous time autoregressive moving

average) stochastic volatility model. The model is nested within the generic stochastic

volatility introduced in the previous section, and it accommodates both jumps in the

price process and the variance. In fact, the variance process is driven solely by jumps.

The price process is modelled as having a diffusion part and a pure jump component.

The pure jump component is a Lévy process, which might be of infinite activity (even

infinite variation) and can have positive and negative jumps. The diffusion part of the

price displays time-varying variance, and the pure jump part is of constant variance.

The model is

dp(t) = µp(t)dt+ σ(t−)dW (t) + dLp(t) (28)

a(D)σ2t = b(D)DLσ(t) (29)

where W (t) is a standard Brownian Motion, Lp(t) is the pure jump Lévy process in

the price, Lσ(t) is the Lévy process driving the stochastic variance, D is a differential

operator, and a(D) and b(D) are given by

a(z) = zp + a1z
p−1 + ...+ ap

b(z) = b0 + b1z + ...+ bqz
q, q < p.

(30)

In (29) σ2(t) is a Lévy-driven CARMA(p, q) process of Brockwell (2001a,b). Equiva-

lently we can write

σ2(t) = b′X(t), (31)
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where X(t) is a solution to the SDE

dX(t) = AX(t)dt+ edL(t) (32)

and where,

A =




















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0 1 0 . . . 0
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...

...
...

. . .
...
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0
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0

1












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







, b =























b0

b1
...

bp−2

bp−1























The above shows that the Lévy driven stochastic volatility model is nested in the

generic framework introduced in the previous section.

If the eigenvalues of A, denoted ζj , j = 1, 2, . . . , p, have negative real parts, i.e.,

Re(ζj) < 0 for j = 1, 2, . . . , p, then the CARMA(p, q) is a causal stationary process

(Brockwell (2001b)). In this case, for t big enough the contribution of the starting

value is negligible and

σ2t =

∫ t

0
g(t− u)dL(u), (33)

where g(h) is the kernel for the corresponding CARMA process, and from Brockwell

(2001b)

g(u) =
1

2π

∫ ∞

−∞
eitλ

b(iλ)

a(iλ)
dλ. (34)

The kernel function g(u) determines the memory of the process σ2(t). It gives the

weights with which the past observations enter the Lévy functional. Since we are

modelling the spot variance of the return process by a CARMA process, we require its

kernel to be nonnegative everywhere. The CARMA approach provides a rich variety

of processes that generalize the Lévy-driven OU case (a CARMA(1, 0)) analyzed by

Barndorff-Nielsen and Shephard (2001b) and also used by Nicolato and Venardos (2003)

for options pricing.

Farther below in Subsection 6.2 we concentrate on a CARMA(2, 1) process for the

stochastic variance, which we parameterize as

a(z) = (z − ρ1)(z − ρ2), b(z) = 1 + b1z,

for real ρ1 < 0 and ρ2 < 0, ρ1 6= ρ2. The kernel is

g(h) =
1 + b1ρ1
ρ1 − ρ2

eρ1h +
1 + b1ρ2
ρ2 − ρ1

eρ2h, h ≥ 0 (35)
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A necessary and sufficient condition that guarantees nonnegativity of the kernel is

0 ≤ b1 ≤ max{−1/ρ1,−1/ρ2} as shown in the Appendix.

The kernel, given in equation (35) will be decreasing for ∀h ≥ 0 if

b1 ∈

[

−
1

ρ1 + ρ2
,max(−

1

ρ1
,−

1

ρ2
)

]

,

while for

b1 ∈

(

0,−
1

ρ1 + ρ2

)

the kernel increases initially and reaches a maximum and decreases afterwards.

This Lévy-driven CARMA(2, 1) setup accommodates the three key properties de-

fined in Subsection 5.1 as follows:

• volatility persistence and ability of the volatility to move quickly

The studies of Chernov, Gallant, Ghysels, and Tauchen (2003) and Alizadeh,

Brandt, and Diebold (2002) argue in favor of a two factor structure in the volatility

process. One of the factors should slowly mean revert, allowing for the volatility

persistence. The other factor on the other hand should be quickly mean reverting

in order to allow the volatility to move quickly. Motivated by these two factor

structure of the volatility, we propose here following Brockwell (2001b) a Lévy

driven CARMA(2,1) model for the stochastic variance. One of the autoregres-

sive roots is high in magnitude, corresponding to quick mean reversion, while the

other one is low in magnitude and thus allowing for slow mean reversion. This

structure of the autoregressive part of the CARMA(2,1) allows for pretty flexi-

ble autocorrelation in the spot variance process. Furthermore, since the driving

Lévy process of the CARMA(2,1) process is a pure jump process, the Lévy driven

CARMA(2,1) process could naturally produce the desired effect of quick moves in

the variance as argued in Alizadeh, Brandt, and Diebold (2002). An alternative

approach, which resembles the diffusion factor stochastic volatility models ana-

lyzed by Chernov, Gallant, Ghysels, and Tauchen (2003), is the superposition

of Lévy driven Ornstein-Uhlenbeck processes as proposed by Barndorff-Nielsen

and Shephard (2001a) and further evaluated empirically in the context of sub-

ordinated Levy processes without leverage by Barndorff-Nielsen and Shephard

(2005a). This alternative allows more flexible autocorrelation structures for the

spot variance over the exponential one implied by the single Ornstein-Uhlenbeck

process in a similar way the CARMA(2,1) kernel does. The potential advantage

of CARMA modelling is even more flexible autocorrelation structures and with

only a single driving process.
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• jumps in the price

The model proposed here, allows for jumps in the price process. In addition the

price has a diffusion component in it. This makes this model being different from

the models analyzed in Carr, Geman, Madan, and Yor (2003), where the price

has no diffusion component in it. The modelling here resembles the jump-diffusion

models. However unlike the jump-diffusion models, the jumps in the price need

not be rare events, but can be infinitely many in any finite time interval.

• leverage effect

Since in our model the variance is driven solely by a pure jump process, Lσ(t), the

only way we can capture the leverage effect is by linking the two jump components

Lσ(t) and Lp(t). That is the leverage effect in our model is captured by the jumps

in the price process. Note that in our model the jumps in both the variance and

in the price need not be rare events (as in the jump-diffusion models). There

could be infinite number of small jumps in a given interval of time. Thus, the

model here allows for a link between variance and returns, not only in the case

of extreme events of big changes in the price, but also for small changes in the

price and variance. A similar approach of modelling the leverage effect is taken

in Barndorff-Nielsen and Shephard (2001a) and Carr, Geman, Madan, and Yor

(2003). In these models however, the jump components in the price and in the

variance are perfectly dependent. In terms of the notation adopted here in these

models Lp(t) = constant×Lσ(t). This implies, that the jumps in the variance and

in the price process arrive at the same time and are proportional. Here we relax

the dependence structure between the jumps in the price and in the variance by

using the two dimensional generalization of the mixture of gammas proposed in

Subsection 4.2. As it was discussed in that section we allow for various degrees of

dependence between the two jump processes: in some cases the jumps arrive at

the same time, while in other cases they arrive in different times. Also in the case,

the jumps arrive at the same time, the jump sizes can be in different proportions.

6 Examples

In this section we will demonstrate through several examples that the proposed stochas-

tic volatility model can produce reasonable dynamics. In practice we observe, the price

process in discrete intervals. For simplicity here we assume that the observational in-

tervals are equally spaced. We denote with a the length of the observational time.
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Throughout the paper our time is measured in number of trading days. In the exam-

ples below we work with half-hour returns and assuming eight hour trading day, we

will have then a = 1/16.

6.1 Simulating from Lévy driven CARMA SV Models

The stochastic volatility model specified in equations (28)–(29), implies that the geo-

metric return, ra(t), over the interval (t− a, t] is

ra(t) = p(t)− p(t− a) =

∫ t

t−a
σ(s−) dW (s) + Lp(t)− Lp(t− a), (36)

where for now we assume the drift in (28) is zero. Using the fact that
∫ t
t−a σ(s−) dW (s)

is Gaussian conditional on the pure jump processes in the price and the variance, and

under the Lévy-driven model the variance process has no fixed time of discontinuity

(σ2(s) = σ2(s−) almost surely), we can write

p(t)− p(t− a)
d
= Zt

√

∫ t

t−a
σ2(s)ds+ Lp(t)− Lp(t− a), (37)

where Z(t) is standard normal distribution independent of Lp(t) and Lσ(t) and
∫ t
t−a σ

2(s)ds

is the integrated variance over the time interval a.

Applying the Fubini theorem to the general case (33) the integrated variance is

∫ t

t−a
σ2(s)ds =

∫ t

t−a

∫ s

0
g(s− u)dL(u)ds

=

∫ t

t−a

∫ t

u
g(s− u)dsdL(u) +

∫ t−a

0

∫ t

t−a
g(s− u)dsdL(u)

=

∫ t

0
g∗(t, u)dL(u)

(38)

where the functional form of g∗ can be obtained from that of g. In the case of

CARMA(2,1)

g∗(t, u) =







(eρ1(t−u) − eρ1(t−a−u)) 1+b1ρ1

ρ1(ρ1−ρ2)
+ (eρ2(t−u) − eρ2(t−a−u)) 1+b1ρ2

ρ2(ρ2−ρ1)
if 0 < u < t− a

(eρ1(t−u) − 1) 1+b1ρ1

ρ1(ρ1−ρ2)
+ (eρ2(t−u) − 1) 1+b1ρ2

ρ2(ρ2−ρ1)
if t− a ≤ u < t

(39)

The displayed equations in (38) can be viewed as an extension to the general case of

the observation by Barndorff-Nielsen and Shephard (2001b,c) that in the non-Gaussian

OU model the integrated variance is linear in the Lévy-innovations, and (39) gives the

functional form for the CARMA(2, 1) model. The proposed stochastic volatility model

suggests a relatively easy way to simulate from it using the results in Section 3.
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Suppose we want to simulate from the price process at intervals with length a. Con-

ditional on the integrated variance and the increment from the pure jump component

of the price, the price increment is Gaussian with variance equal to the integrated vari-

ance. Therefore once we develop a way to jointly simulate from the integrated variance

and the pure jump component of the price, the simulation of the price increments is

trivial. The generic simulation scheme is

1. Simulate jointly from the two pure jump Lévy processes Lp(t) and Lσ(t).

2. Generate the implied integrated variance by using (39).

3. Simulate the price increment by drawing from a normal distribution with mean

zero and variance equal to the integrated variance computed in the preceding step

and adding the increments of Lp(t) that occur within the interval (t− a, t].

Given the discussion in Section 3 we know that we are simulating approximately from

the model specified above and exactly from a stochastic volatility model with pure

jump Lévy processes Lp(t) and Lσ(t) substituted with high activity compound Poisson

processes, which very closely resemble the infinite activity ones. Also note that the

proposed scheme of simulation does not involve any Euler discretization. Finally, it

generalizes in a direct way if there is a volatility risk premium, and the drift in (28) is

an affine function of the spot variance, since the cumulated drift is thereby an affine

function of the integrated variance.

6.2 The MG-CARMA(2,1) Model

To illustrate the properties of the proposed simulation schemes, we show the implied

dynamics of an MG-CARMA(2, 1), which stands for a mixture of gammas Lévy-process

that jointly drives a pure jump in the price and a CARMA(2, 1) stochastic volatility

specification. We show characteristics of the simulated realizations for four different

settings of the parameters as listed in Table 2. In all cases, the simulation was run

for 1,000 days (four trading years) with a burn period of 250 days. We work with half

hour returns, which correspond to sixteen equally spaced intervals in every trading

day. Thus, in each of Figures 3–6 there are a total of 16,000 observations on half hour

returns. The tolerance parameter τ is fixed at 20, implying on average 20 jumps are

generated per trading day. As seen from Table 2, in each case c =
∑

i ci ≈ 0.02; from

the analysis of Subsection 3.2 above, the value of τ = 20 is well above that needed

for a reasonable level of accuracy for this value of c and much larger values as well.

This truncation entails discarding jumps of extremely small magnitude which, in the
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presence of continuous component in the price process, are immaterial. In all four

cases, we chose the parameter values so that the variance of the daily returns is equal

to 1.00, which is about the variance of the daily S&P 500 Index return, and the drift

in the price equation is always identically zero.

The parameters governing the two dimensional mixture of gammas process, which is

the background driving Lévy-process (BDLP), are set as follows. The number of terms

in the mixture of gammas in equation (20) is m = 4. The price and volatility jump

independently if J1 or J2 occur, while they jump together but in different proportions

if J3 or J4 occur.

For the parameters governing the CARMA(2,1) kernel, the choice was made as

follows. The MA parameter b1 is set equal to 0.001 in all four cases. Following the

discussion in Section 5, ρ2 has a very short half life 0.03 days for all cases, so it

corresponds to the fast mean reverting autoregressive root. The other root, ρ1, is

relatively slow mean reverting. In the first two cases, Figures 3 and 4, the half life is

50 days; in the other two, Figures 5 and 6, the half life is 10 days. The effects of the

persistence of the root ρ1 are quite noticeable in the dynamics of the spot variance.

When ρ1 = 10, a jump in the driving Lévy process of the CARMA(2,1) dies off much

more quickly than when ρ1 = 50. Looking at the spot variances in Figures 3–6 we

can see that the MG-CARMA(2,1) model can produce the persistence of the variance

and at the same time its ability to change quickly. This translates automatically in

clustering of the volatility, which can be seen most clearly in the return dynamics in

the bottom panels of Figures 3–6.

Finally the parameters in the stochastic volatility model were chosen in such a

way that the pure jump component of the returns has a fixed proportion in the total

variance of the returns: 0.3 in the cases corresponding to Figures 3, 5, and 0.1 in the

cases corresponding to Figures 4, 6. Since the variance of the jump component of

the returns is not varying, we would expect the clustering of the volatility to be less

pronounced if the jumps contribute a higher proportion in the total variance of the

returns. Indeed this is the case as can be easily confirmed by comparing Figures 3

with 4,and 5 with 6.

Figures 7–9 provide additional characteristics of the simulated returns correspond-

ing to the case plotted in Figure 6.

Figure 7 shows the realized daily variance, the daily bipower variation of Barndorff-

Nielsen and Shephard (2004), and the integrated daily variance. We define the bipower
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variation as
π

2
Σ16j=1|r

a
t+ja||r

a
t+(j−1)a|, (40)

where we work with half hour returns so a = 1/16, and the scale factor π
2 makes

the measure directly comparable with the integrated variance. It is well known that

the realized daily variance is not a consistent estimator of the integrated variance in

the presence of jumps in the price process; the use of squared returns picks up the

variation of the jump component along with that of the diffusive component. This is

readily confirmed by comparing the top and bottom panels of Figure 7. In the presence

of relatively big jumps during a given day, the realized variance is significantly higher

than the integrated variance.

The bipower variation is generally (but not always) robust to jumps and provides

a consistent estimator of the integrated variance as the sampling interval goes to zero.

Barndorff-Nielsen, Shephard, and Winkel (2005) contains sufficient conditions for con-

sistency, which are satisfied by our mixture of gammas. Comparison of the middle

and the bottom panels of Figure 7 indicates that, as expected, the bipower variation

does an excellent job of tracking the integrated variance despite the infinitely active

character of the underlying BDLP.

The top panel of Figure 8 shows the difference between the realized variance and

the bipower variation, which is a measure of the pure jump component of the price

process. The second panel shows this difference divided by the realized variance, which

is the measure of the relative share of jumps in total variance considered in Huang and

Tauchen (2006). The underlying mixture of gammas is infinitely active, but in general

with just a few large jumps and many small jumps. Comparing the top and middle

panels of Figure 8 to the bottom panel of Figure 6 suggests that these jump measures

are large on days with large jumps, but the measures are unable to separate the very

small jumps from the Brownian component of the price. This contrast suggests that

the simulation methods developed in this paper could be used for a far more extended

analysis of the properties of the jump-detection tests of Barndorff-Nielsen and Shephard

(2006) than that conducted by Huang and Tauchen (2006).

Finally, Figure 9 shows the autocorrelation in the absolute and the squared re-

turns along with the cross correlation of the increment of the price jump process,

Lp(t)−Lp(t−a), and the integrated variance
∫ t
t−a σ

2
sds. The plots extend for 160 lags,

which corresponds to 10 trading days. In the top two panels the persistence in the ab-

solute and squared returns is quite evident, even with ρ1 having a half life of 10 days.

The bottom panel shows the leverage effect, which in the this setup is generated by
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the negative covariance between price jumps and variance increments in the bivariate

gamma mixture model. The contemporaneous correlation is negative and then slowly

dissipates in a manner consistent with that of observed data (Bollerslev, Litvinova, and

Tauchen (2005), Litvinova (2004), Tauchen (2005)).

6.3 Discussion of Estimation

The continuous time MG-CARMA(2,1) model of the previous subsection can capture

many of the known features of financial returns data. Nonetheless, taking such a

model directly to very high frequency returns presents serious challenges pertaining to

the data and estimation strategy.

As regards the data, the sampling interval cannot be too small, or the returns will be

dominated by microstructure noise, which often limits the sampling interval to no finer

than five minutes. Complications such as bid-ask bounce overwhelm the information

in the data at the highest frequencies. Microstructure noise is an area of intense

current research, and a full review is beyond the scope of this paper; a comprehensive

recent survey of the issues is in Barndorff-Nielsen and Shephard (2005b). The noise

issue notwithstanding, another problem is that return volatility shows a deterministic

pattern over the day, with high volatility in the early part of the day, lower in the

middle, and higher again towards the later part of the day. Also, the overnight return

has a different variance than very short-term returns. Raw returns will therefore have

to be adjusted for diurnal and overnight patterns. The result is an adjusted returns

series that itself is not actually the return on any traded security and is not sampled

as finely as one might think possible.

These data issues might be considered minor and addressable by data transforma-

tions, but the estimation problems associated with application to high very frequency

returns are truly formidable. As is widely known, the challenge is that the model-

implied transition density of returns given past returns is not available in simple closed

form. Direct analytical likelihood-based methods are thus intractable. Except in the

simplest situations, simulation can be expected to play a role somewhere in order to

integrate out the unobserved volatility variable(s). Simulated likelihood in the manner

of Durham and Gallant (2002) is applicable only in certain cases, because one generally

lacks the joint density of the observed and unobserved variables, so there is no conve-

nient way to define an importance function for efficient simulation. Indirect estimation

techniques as discussed by Tauchen (1997) can potentially be applied in this context,

but that approach requires a good statistical description of the high frequency returns,
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and it is not clear if the extant models are adequate for this purpose.

MCMC in the style of Eraker, Johannes, and Polson (2003) and Li, Wells, and Yu

(2004) can potentially be adapted for estimation of models like the MG-CARMA(2,1)

but there are obstacles to overcome. With exceptions such as Eraker (2001) and Ele-

rian, Chib, and Shephard (2001), MCMC applications typically assume the sampling

interval is the same as a tick on the continuous time clock, which greatly reduces the

number of unobserved variables to deal with. In effect, this reframes the task to that

of estimating a discrete time stochastic volatility model. By doing so, it is not possi-

ble to explore the model’s implications for the price series at intervals finer than the

sampling interval, and there is discretization bias. Roberts, Papaspiliopoulos, and Del-

laportas (2004) avoid discretization bias in an MCMC context by using a shot noise

decomposition as analyzed here, but only for OU models applied to low frequency data.

Another matter that pertains to any estimation strategy is that of compounding

of specification error bias. Regardless of the estimation technique, small specification

errors at the highest frequency can be expected to accumulate if the model’s dynamics

are spun out to the daily, weekly, or monthly intervals.

An alterative route to direct estimation on the high frequency returns is to work

at the daily level, while retaining from the high frequency summary measures such

as the realized variance and the bipower variation studied in Andersen, Bollerslev,

and Diebold (2005) and others. An underlying continuous time model, e.g., the MG-

CARMA(2, 1) above, could be forced to confront the dynamics of the vector of the

daily summary variables. One empirical effort in this style is Barndorff-Nielsen and

Shephard (2005a), who use quasi-maximum-likelihood to generate semi-parametric es-

timates of continuous time volatility dynamics but do not generate estimates of the

entire continuous time law of motion of the price process. In special cases, the law of

motion might be estimable using likelihood-based techniques, but in general computa-

tion of the transition density of the daily summary measures is intractable. Simulated

method of moments, or indirect estimation techniques, appear more directly applicable

to the task, though that approach requires a good statistical description of the dynam-

ics of the daily summary measures. A starting point in this direction is Bollerslev,

Kretschmer, Pigorsch, and Tauchen (2005), which is an extensive statistical modeling

effort of its own. In on-going work, the authors and other researchers are in the ini-

tial stages of implementing both method of moments-type estimators and simulated

indirect estimation methods using the daily summary statistics.

Development of an appropriate estimation strategy that effectively uses the infor-
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mation in the large high frequency data sets is topic of current research. Regardless

of the strategy, however, it appears clear that simulation schemes from more general

Lévy processes such as those above can be expected to play a central role.

7 Conclusion

We have developed simulation schemes for the new classes of non-Gaussian pure jump

Lévy processes for stochastic volatility. We showed how to write the price and volatility

processes as integrals against a vector Lévy process, which then makes the series ap-

proximation methods directly applicable. These methods entail simulation of the Lévy

increments and formation of weighted sums of the increments; they do not require a

closed-form expression for a tail mass function nor specification of a copula function.

We have also presented a new, and apparently quite flexible, bivariate mixture of gam-

mas model for the driving Lévy process. Within this setup, it is quite straightforward

to generate simulations from a Lévy-driven CARMA stochastic volatility model aug-

mented by a pure-jump price component. The simulations reveal the wide range of

different types of financial price processes that can be generated in this manner. By

appropriate choice of parameters, the resulting simulated price series displays many

of the same features of observed price data, including persistent stochastic volatility,

dynamic leverage, and jumps.
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Appendix

A Necessary and Sufficient Condition for Non-
negativity of the CARMA(2, 1) Kernel

The CARMA(2,1) kernel is given by

g(h) =
1 + b1ρ1
ρ1 − ρ2

eρ1h +
1 + b1ρ2
ρ2 − ρ1

eρ2h, h ≥ 0.

We want to find a condition on the parameters ρ1, ρ2 and b1, which will guarantee the

nonnegativity of the kernel for every h ≥ 0. We assume ρ2 < ρ1 < 0 without loss of

generality. Then this is equivalent to conditions on the parameters such that

(1 + b1ρ1)e
ρ1h ≥ (1 + b1ρ2)e

ρ2h, h ≥ 0.

First note that this inequality will be violated for b1 < 0 for values of h zero and

sufficiently close to zero. Also the inequality is trivially satisfied for b1 = 0. We

concentrate on giving the necessary and sufficient condition for the nonnegativity of

the CARMA(2,1) kernel in the case b1 > 0.

The first derivative w.r.t. ρ of the function f(ρ) = (1 + b1ρ)e
ρh is

f ′(ρ) = eρh(h+ b1ρh+ b1).

We have three cases

1. b1ρ1+1 > 0 and b1ρ2+1 ≥ 0. In this case f(ρ) is increasing in the interval [ρ2, ρ1]

for every h ≥ 0, which implies the positivity of the kernel.

2. b1ρ1 + 1 ≥ 0 and b1ρ2 + 1 < 0. In this case the kernel is trivially nonnegative.

3. b1ρ1 + 1 < 0 and b1ρ2 + 1 < 0. In this case there exist values for h ≥ 0 such that

f(ρ) is decreasing in the interval [ρ2, ρ1] which will produce negative values for

the kernel for those h.

Taken together, the results above imply the following necessary and sufficient con-

dition for the nonnegativity of the CARMA(2,1) kernel: 0 ≤ b1 ≤ max{− 1
ρ1
,− 1

ρ2
}.
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Table 1: Working Code

* Parameters c, lambda, rho, and
* control values tau, N, seed, SIMMAX
* already initialized above.
*
* The function ran generates uniform random variables.

* --------------------------------------------------------
* SHOT NOISE GENERATION
* --------------------------------------------------------

gamlag = 0.0d0
i=0
do while ( (gamlag .le. tau) .and. (i .le. SIMMAX) )

i=i+1
ur = ran(seed) ! generate uniform
gam(i) = gamlag - DLOG(ur) ! increment is exp(1)
gamlag = gam(i) ! save lagged value
ur = ran(seed) ! another uniform
v = -DLOG(ur) ! v is exp(1)
H(i) = (1.0/lambda)*DEXP(-gam(i)/c)*v ! ith shot noise
u(i) = ran(seed) ! uniform for jump time
bin(i) = INT( 1.0d0 + u(i)*N ) ! bin number of jump
nshot = i ! number of shot noises

enddo
* --------------------------------------------------------
*
* Check to see if we ran out of space before gam(i)>tau

if ( (gam(nshot) .lt. tau) .and. (nshot .eq. SIMMAX) ) then
write(*,’(a )’) ’PROBLEM: SIMMAX too small for this seed,HALT’
stop

endif

* Initialize
do j=1,N

levy(j) = 0.0
x(j) = 0.0
tbin(j) = DFLOAT(j)/DFLOAT(N)

enddo
*
* --------------------------------------------------------
* DISTRIBUTION OF THE SHOT NOISES
* --------------------------------------------------------

do i=1,nshot
do j=bin(i),N

levy(j) = levy(j) + H(i)
x(j) = x(j) + DEXP(-rho*(tbin(j) - u(i)))*H(i)

enddo
enddo

* --------------------------------------------------------
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Table 2: Parameter Settings for MG-CARMA(2, 1) Stochastic Volatility Model

Figure 3 Figure 4 Figure 5 Figure 6
Parameter

Half life of ρ1 (days) 50.0 50.0 10.0 10.0
Half life of ρ2 (days) 0.0300 0.0300 0.0300 0.0300

b1 0.0100 0.0100 0.0100 0.0100

c1 0.0060 0.0060 0.0120 0.0120
c2 0.0015 0.0015 0.0030 0.0030
c3 0.00025 0.00025 0.0005 0.0005
c4 0.0045 0.0045 0.0090 0.0090

λ11 0.2600 0.0044 0.3600 0.6200
λ13 -0.0430 -0.0740 -0.0600 -0.1000
λ14 -0.2600 -0.0044 -0.3600 -0.6200

λ22 0.0560 0.0440 0.0220 0.0170
λ23 0.0700 0.0054 0.0028 0.0022
λ24 0.0280 0.0220 0.0110 0.0087

Note: Shown above are the parameter choices for the CARMA(2,1) model (35) and those
controlling the distribution of the Ji in (24).
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Figure 1: The panels show the relative approximation error as a function of τ in estimating
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and E
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via simulation.
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Figure 2: Different degrees of dependence between the two parts of a two dimensional mix-
ture of gammas Lévy process. The top panel shows the complete independence case with
parameters c1 = c2 = 5, λ11 = λ22 = 0.5; the second one illustrates the complete dependence
case with parameters c1 = c2 = 0, c3 = 10, λ31 = 1 and λ32 = 2; the third panel shows
the general case with the following parameters c1 = c2 = c3 = c4 = 2.5, λ11 = λ22 = 1,
λ31 = λ42 = 1 and λ32 = λ41 = 0.5.
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Figure 3: Simulated Half Hour Realizations from the MG-CARMA(2,1) stochastic volatility
model with parameter setting specified in Table 2. The top panel shows the spot variance;
the second illustrates the Lévy subordinator driving the variance; the third panel shows the
pure jump part of the price process and the bottom one shows the half hour price change.
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Figure 4: Simulated Half Hour Realizations from the MG-CARMA(2,1) stochastic volatility
model with parameter setting specified in Table 2. The top panel shows the spot variance;
the second illustrates the Lévy subordinator driving the variance; the third panel shows the
pure jump part of the price process and the bottom one shows the half hour price change.

32



0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

Days

Return
0 100 200 300 400 500 600 700 800 900 1000

−5

0

5
Jump Process in the Price

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500
BDLP of the volatility

0 100 200 300 400 500 600 700 800 900 1000
0

5

10
 Spot Variance (σ2), CARMA(2,1) 

Figure 5: Simulated Half Hour Realizations from the MG-CARMA(2,1) stochastic volatility
model with parameter setting specified in Table 2. The top panel shows the spot variance;
the second illustrates the Lévy subordinator driving the variance; the third panel shows the
pure jump part of the price process and the bottom one shows the half hour price change.
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Figure 6: Simulated Half Hour Realizations from the MG-CARMA(2,1) stochastic volatility
model with parameter setting specified in Table 2. The top panel shows the spot variance;
the second illustrates the Lévy subordinator driving the variance; the third panel shows the
pure jump part of the price process and the bottom one shows the half hour price change.
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Figure 7: Summary statistics for the simulated MG-CARMA(2,1) stochastic volatility model,
corresponding to Figure 6 with parameter settings specified in Table 2.The top panel shows
the realized daily variance, the middle one shows the bipower variation and the third panel
shows the integrated daily variance.
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Figure 8: Summary statistics for the simulated MG-CARMA(2,1) stochastic volatility model,
corresponding to Figure 6 with parameter settings specified in Table 2. The top panel shows
the difference between the realized variance and the bipower variation; the middle one is a
plot of the relative jump statistic; the bottom panel plots the bipower variation against the
integrated daily variance.
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Figure 9: Summary statistics for the simulated MG-CARMA(2,1) stochastic volatility model,
corresponding to Figure 6 with parameter settings specified in Table 2. The top panel
shows the autocorrelation in the absolute half hour returns; the second panel shows the
autocorrelation in the squared half hour returns; the third shows the serial cross correlation
between the increment in the price jump process and lags and leads of the integrated variance.
In all three panels, the maximum number of lags corresponds to two weeks of trading days.
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