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1 Introduction

Economic models often place exact restrictions across the realizations of a set of random variables.

One case in point is an affine term structure model for bond prices that constrains all bond yields

to lie along a very low dimensional manifold; see, for example, Singleton (2006) and citations

therein. More generally, factor models specify the pricing kernel as a function of a low-dimensional

factor process. Combining this structure with a model for aggregate asset payoffs implies low-

dimensional factor structure for the conditional distribution, and thereby the first and second

conditional moments, of asset returns and derivative prices.

In a broad sense, dimension reduction is also often imposed for the purposes of parsimony in

modeling high-dimensional objects so as to mitigate the statistical and/or computational complexity

of econometric models. One example is the use of diffusion index in macroeconomic forecasting

(see Stock and Watson (2002) and references therein). Other examples arise in models of the

stochastic covariance matrix of a multivariate process, where dimension-reduction restrictions may

take the form of time-invariant correlations (Bollerslev (1990)) or equal stochastic correlations

among multiple time series (Engle and Kelly (2012)). Similar strategies have also been used in

moderately high-dimensional models for nonlinear dependence, such as copula models (Oh and

Patton (2013)).

The primary focus of this paper is the estimation and testing for such model restrictions among

the elements of the spot covariance matrix of a multivariate process of asset returns. The estimation

is based on high-frequency (intraday) observations of a multivariate Itô semimartingale process on

a fixed time interval with mesh of the observation grid shrinking to zero. For this process, we

are interested in estimating and testing pathwise models that impose time-invariant (over the

observation interval) relations among possibly nonlinear transforms (e.g. beta, correlation and

idiosyncratic variance) of the spot covariance matrix.

The statistical uncertainty in our setting arises from the fact that the spot covariance matrix is

not directly observed and needs to be estimated, or “measured,” from the discrete observations. The

measurement error makes the functional relationship among latent risks hold only approximately for

their estimated counterparts. Nevertheless, as the sampling frequency increases, the error vanishes

asymptotically, so that we can uncover and rigorously test model restrictions for the latent risks.

To the best of our knowledge, our test is the first general method for testing such model restrictions

in the high-frequency setting, while allowing for general forms of nonstationarity and dependence
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in the data.

In the first part of our theoretical analysis, we consider estimation based on forming moment

conditions under the covariance occupation measure which are implied by our pathwise volatility

model. We then construct sample analogues of these moment conditions by plugging in local

nonparametric estimators of volatility formed over blocks of high-frequency price increments with

asymptotically decreasing length of each of the blocks. This is similar to Jacod and Rosenbaum

(2013) who use block volatility estimates to construct estimators for integrated nonlinear functions

of volatility. Finally, we weight the moment conditions using a feasible weight matrix and form a

quadratic-form objective function that our estimator minimizes. We derive the limit behavior of

our estimator not only in the case when the model is correctly specified but also in the case of model

misspecification, and further provide feasible estimates for the standard errors of the parameters

in the model.

Our estimator of the parameters of the volatility model can be viewed as an analogue to the

classical minimum distance type estimators with several important differences. First, the moment

conditions in our case are formed under the occupation measure and, hence, they hold for the

observed path but not necessarily for the invariant distribution of the volatility process; indeed, the

invariant distribution is not even required to exist. The strategy of framing inference procedures in

terms of moments under the occupation measure opens the possibility of systematically reincarnat-

ing many classical moment-based econometric procedures (e.g. Hansen (1982)), which are framed

under the probability measure, for conducting inference for multivariate volatility models. Second,

the asymptotic behavior of the estimator is equivalent to that generated by observing the moment

condition with the true value of the spot covariance matrix plus a Gaussian martingale defined on

an extension of the original probability space. This Gaussian martingale has quadratic variation

that is adapted to the original filtration and shrinks asymptotically at order ∆n, where ∆n is the

length of the high-frequency interval. Our estimation problem is thus similar to the problem of

estimating a signal with asymptotically shrinking Gaussian noise, see, for example, section VII.4 in

Ibragimov and Has’minskii (1981). Third, the limit law of our estimator is mixed Gaussian which

means that the precision of estimation will typically vary depending on the particular realization.

The second, and perhaps more important, part of our analysis is specification testing for the

pathwise volatility model. Since the model holds almost everywhere in time over the fixed time

interval, designing a test based on the distance from zero of the model-based moment conditions

under the covariance occupation measure is not sufficient. The reason is fairly intuitive: the

covariance occupation measure does not preserve the information about the value of the spot
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covariance matrix at a particular point in time. For this reason, we introduce the concept of the

weighted covariance occupation measure which, unlike the original occupation measure, allows to

weigh differently the values of the spot covariance matrix at different points in time. We derive

an empirical-process-type theory for an estimator of the weighted occupation measure. We use the

latter to design a specification test for our pathwise volatility model by comparing the distance

from zero of a set of moment conditions under a family of weighted occupation measures. We

show that if the family of weight functions is chosen appropriately, our test statistic produces an

asymptotically valid test.

Finally, we apply our inference theory to study the stochastic covariance structure on the

industry level using S&P 500 sector index exchange-traded funds (ETFs). We specify and test

models for the spot covariance matrix of the components of the industry returns that are orthogonal

to the market portfolio. Our results show that not all variations in the stochastic variances of the

industry portfolios can be accounted for by their sensitivity to market returns and the market

variance. Some sectors like the Financials and Energy have independent sources of variance shocks

in addition to that of the market. We further document nontrivial temporal variation in correlation

in the market-neutral industry portfolio returns with nontrivial cross-sectional differences. The

temporal variation in the market-neutral industry portfolio correlations suggests the presence of

additional factors in the industry portfolio returns to span their risks.

The inference methods developed in the current paper are related with several strands of litera-

ture. First, our work is closely related to the literature on volatility estimation using high-frequency

data. Early work mainly focuses on the estimation of the integrated variance (Barndorff-Nielsen

and Shephard (2002), Andersen et al. (2003)) and covariance (Barndorff-Nielsen and Shephard

(2004b)), which can be considered as the mean of the covariance occupation measure. The estima-

tion of nonlinear transforms of the volatility has been considered by Barndorff-Nielsen et al. (2005),

Jacod (2008), Mykland and Zhang (2009), Todorov and Tauchen (2012), Jacod and Rosenbaum

(2013), Li et al. (2013), Kalnina and Xiu (2014) and Aı̈t-Sahalia and Xiu (2015) among others.

Similar to Jacod and Rosenbaum (2013) our estimation is based on local estimates of volatility,

which are local versions of the truncated variation of Mancini (2001), over blocks of decreasing

length. Unlike the above cited literature on the estimation of volatility functionals, our focus

here is on the estimation and specification of pathwise models for the spot covariance matrix. On

the technical level, this requires a derivation of empirical-process-type limit results for a family of

weighted covariance measures which is new.1 Second, in Li et al. (2013) we advocate the volatility

1In a concurrent work, Li and Xiu (2015) study regression-type problems for noisy semimartingales using the
stochastic variance as an explanatory variable in conditional moment equality models that arise from derivative
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occupation measure as a unifying framework for high-frequency based volatility estimation, but

in Li et al. (2013) we focus only on the estimation of the volatility occupation time in a univari-

ate setting, without weighting the observations, and importantly without deriving feasible central

limit theorems. Third, our inference can be compared with the literature on estimating parametric

volatility models using realized measures under joint in-fill and long span asymptotics, see, for

example, Bollerslev and Zhou (2002), Barndorff-Nielsen and Shephard (2002), Corradi and Distaso

(2006), Todorov (2009) and Todorov and Tauchen (2012). Unlike our setup here, the estimation

in these papers is always parametric (at least about the stochastic volatility part of the observed

process) and relies crucially on the error due to the discrete sampling being dominated by the

empirical process type error due to time aggregation. In contrast, our estimation here is performed

on a fixed span and does not involve full parametric specification of the volatility process. The

pathwise volatility models of interest here hold for whole families of parametric models. The fixed

span setting also allows us to accommodate general forms of nonstationarity and dependence in

the data.

The paper is organized as follows. Section 2 presents the setting, three motivating examples,

and a heuristic overview of our inference methods. The theory is developed in Section 3. Section

4 presents our empirical application. Section 5 concludes. All proofs are in the appendix. The

working paper version of this paper contains a comprehensive simulation study that supports our

asymptotic theory; to save space, we do not include the simulation results here.

2 The setting

We start with some notation that we are going to use throughout. All limits in the paper are for

n→∞. We use
P−→ to denote convergence in probability and use

L-s−→ to denote stable convergence

in law. For any matrix A, we use Aij to denote its (i, j) element and Aᵀ to denote its transpose.

We sometimes identify the matrix A with its elements by writing A = [Aij ]. For a matrix valued

process At, the notations Aij,t and Aᵀ
t are interpreted similarly. For a matrix A and a differentiable

function g, we denote ∂jkg(A) = ∂g(A)/∂Ajk and ∂2
jk,lmg(A) = ∂2g(A)/∂Ajk∂Alm. If A and B

are matrices with the same number of rows, we use (A,B) to denote a matrix with columns being

those of A and B. The column vectorization operator is denoted by vec. The Kronecker product for

matrices is denoted by ⊗; this notation is also used for the product of σ-fields. For any q ∈ N, we

denote the q dimensional identity matrix by Iq. The symbol ≡ indicates equality by definition. We

pricing and market microstructure models. In contrast, the current paper focuses on the stochastic covariance matrix
itself and conducts inference for pathwise restrictions on its behavior.
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use ‖·‖ to denote the Euclidean norm on any finite-dimensional linear space. Additional conventions

used throughout the paper are: the symbols x, y, z, z?, x̃, ỹ, w, g, h and h? are reserved to denote

various deterministic functions and blackboard bold letters such as F, V and B are functions that

act on deterministic functions. Composite notations such as FBg and FV (g, h) are understood as

F [B (g)] and F [V (g, h)], respectively.

2.1 The spot covariance and the covariance occupation measure

The discretely observed process X is a d dimensional Itô semimartingale, defined on the filtered

probability space (Ω,F , (Ft)t≥0,P), with the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
R
δ (s, u)µ (ds, du) , (2.1)

where the variable X0 is F0-measurable, the instantaneous drift bt is d dimensional càdlàg (i.e.

right continuous with left limit) adapted, W is a d′ dimensional Brownian motion, σt is a d × d′

dimensional càdlàg adapted, δ : Ω × R+ × R 7→ Rd is a predictable function and µ is a Poisson

random measure with compensator ν (dt, du) = dt ⊗ λ (du) for some σ-finite measure λ. The spot

covariance matrix of X is then given by ct ≡ σtσᵀt , which takes value in the spaceMd consisting of

d dimensional positive definite matrices. In this paper we are interested in estimating and testing

functional relationships among various components of ct, while recognizing the presence of the drift

and the jump components of X.

The occupation measure induced by the spot covariance process over [0, T ] is defined as F(B) =∫ T
0 1{cs∈B}ds for any Borel subset B ⊆ Rd×d. From basic integration theory, it is equivalent

(and more convenient) to consider the occupation measure F as a linear functional that acts on

measurable functions: for any measurable function g :Md 7→ Rdim(g), we denote

Fg ≡
∫
g(c)F (dc) =

∫ T

0
g(cs)ds. (2.2)

In other words, the integrated g-transform of the spot covariance process can be thought of as the

“mean” of g under F.2

We suppose that X is observed at discrete times i∆n, i = 0, 1, . . ., over a fixed time interval

[0, T ] with ∆n → 0 asymptotically and we further assume the following for X.

Assumption HF: The process X is a Rd-valued Itô semimartingale with the form (2.1) such

that the following conditions hold for a sequence (Tm)m≥1 of stopping times increasing to infinity.

2To make the analogy exact, one may normalize the expression in (2.2) by T−1 or simply normalize T = 1. Here,
we follow the convention in the literature on occupation measures (see, e.g., Geman and Horowitz (1980)) without
using this normalization.
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(a) For some constant r ∈ (0, 1), there exists a sequence of λ-integrable nonnegative functions

(Γm)m≥1 such that ‖δ(ω, t, u)‖r ∧ 1 ≤ Γm(u) for all (ω, u) ∈ Ω× R and t ≤ Tm.

(b) The process σ is also an Itô semimartingale with the form

vec(σt) = vec(σ0) +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs

+

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖≤1}(µ− ν)(ds, du)

+

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖>1}µ(ds, du),

where b̃t and σ̃t are respectively dd′ and dd′ × d′ dimensional optional locally bounded processes,

and δ̃ is a dd′ dimensional predictable function. Moreover, there exists a sequence of λ-integrable

nonnegative functions (Γ̃m)m≥1 such that ‖δ̃(ω, t, u)‖2 ∧ 1 ≤ Γ̃m(u) for all (ω, u) ∈ Ω × R and

t ≤ Tm.

(c) For a sequence of convex compact subsets (Km)m≥1 of Md, ct ∈ Km for all t ≤ Tm.

Assumption HF is very general and nests most of the multivariate continuous-time models used

in economics and finance. The part of the assumption concerning the jump component Jt restricts

the jump process to be of finite variation, but allowing it to have infinite activity. This assumption is

perhaps unavoidable if one wants ∆
−1/2
n asymptotic mixed normality for our estimators introduced

later on. Similar assumptions regarding the jumps have been employed in the context of estimating

functionals of ct from high-frequency data; see, for example, Jacod and Protter (2012) and many

references therein. Assumption HF can be further relaxed to allow for infinite-variational jumps

in X if one is only interested in consistency results. The Itô semimartingale assumption for σ is

very general but it nevertheless rules out some stochastic volatility models of long-memory type

that are driven by fractional Brownian motions (Comte and Renault (1998)). Finally, the localized

support condition (c) facilitates the use of the spatial localization technique of Li et al. (2014); this

allows us to avoid Jacod and Rosenbaum’s (2013) polynomial growth condition on g(·), which is

(prohibitively) restrictive for our applications.

2.2 Model restrictions on volatilities

Our main interest is to test model restrictions on the spot covariance matrix ct, which we now

formally describe. We consider a setting with m̄ linear restrictions on possibly nonlinear transforms

of ct: for m ∈ {1, . . . , m̄},

ỹm(ct)− x̃m (ct)
ᵀ θm,0 = 0, for Lebesgue almost every t ∈ [0, T ] , (2.3)
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where, for each m, ỹm : Md 7→ R and x̃m : Md 7→ Rdim(θm) are known deterministic transforma-

tions, and the vector θm,0 : Ω 7→ Rdim(θm) is an unknown parameter which is allowed to be random.

We allow x̃m and θm,0 to be empty, in which case the term x̃m (ct)
ᵀ θm,0 is considered absent from

(2.3). In the general case with unknown θm,0, we are also interested in its estimation and inference.

The key restriction imposed by (2.3) is that the transforms ỹm(·) and x̃m(·), as well as the

parameter θm,0, are all time-invariant. Hence, the model can be used to investigate whether the

variation of ỹm(ct) can be spanned by that of x̃m(ct). Relationships between (transforms of) the

elements of the covariance matrix ct as in (2.3) arise in many applications in economics and finance,

as we now illustrate with a few examples. Additional novel examples are studied in our empirical

application; see Section 4.

Example (Factor Models): A continuous-time factor model for the d dimensional asset

price process X can be written as dXt = Adft + dX̃t, where A is a d × k constant factor loading

matrix, f is a k dimensional factor process with k < d, and X̃ is the residual component. The

continuous martingale components of X̃ are mutually orthogonal and are orthogonal to that of

f .3 The dynamics of the factors is given by dft = bf,tdt + Σ
1/2
f,t dWt + dJf,t, where the factor

spot covariance matrix process Σf,t is normalized to be diagonal, W is a k dimensional standard

Brownian motion and Jf is the jump part of f . The factors may be latent and we do not assume

that they can be recovered from observing X. This setup covers many uses of factor models

in asset pricing.4 The factor structure implies linear restrictions on the off-diagonal elements of

the spot covariance matrix ct of the process X. Indeed, the time variation of all d(d − 1)/2 off-

diagonal elements are completely captured by the time variation in the k factor variances. To

be explicit, we denote Ã ≡ [A1jA(i+1)j ]1≤i,j≤k and assume Ã has full rank. We can then write

(Σ11,f,t, . . . ,Σkk,f,t)
ᵀ = Ã−1(c12,t, . . . , c1(k+1),t)

ᵀ, which implies the following time-invariant linear

restrictions

cij,t = (Ai1Aj1, . . . , AikAjk)Ã
−1(c12,t, . . . , c1(k+1),t)

ᵀ, for i 6= j. (2.4)

If the residual component, X̃, is absent, the linear restrictions can be extended to also include the

diagonal elements of ct (i.e., spot variances): cij,t = (Ai1Aj1, . . . , AikAjk)Ā
−1(c11,t, . . . , ckk,t)

ᵀ for

3Two continuous (local) martingales are called orthogonal if their quadratic covariation process is identically zero,
up to an evanescent set.

4Examples include models in the arbitrage pricing theory with exact factors for pricing individual stocks, as well
as models of linkages between international stock markets (King et al. (1994)), although the exact factor structure is
restrictive in high-dimensional settings (Fan et al. (2014)). Another important example is the term structure model

where bond yields follow the above factor specification with the idiosyncratic component X̃ absent (see, e.g., chapters
12 and 13 in Singleton (2006) and references therein). Since f is allowed to be latent, our setup is general enough
to accommodate term structure models in which volatility is not spanned by the yield curve. We note finally that,
factor models often impose structure on the drift and the jumps of X; estimating and testing model restrictions of
these sorts, however, is out of the scope of the current paper.
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all 1 ≤ i, j ≤ d, where the matrix Ā ≡ [A2
ij ]1≤i,j≤k is assumed to have full rank.

Example (Spot Correlation Models): Many multivariate models, including Bollerslev

(1990) and Engle and Kelly (2012), impose restrictions on the spot correlation matrix. The simplest

case is the continuous-time analogue of the constant conditional correlation model of Bollerslev

(1990) which imposes that

ρt ≡


c
−1/2
11,t 0

. . .

0 c
−1/2
dd,t

 ct


c
−1/2
11,t 0

. . .

0 c
−1/2
dd,t

 = R, (2.5)

where ρt denotes the spot correlation matrix and R is a time-invariant (positive semidefinite)

correlation matrix. This model has the form of (2.3) with x̃(ct) containing only the constant term

and ỹ(ct) being the spot correlation matrix ρt. More generally, extensions of the above model,

such as the dynamic equicorrelation model of Engle and Kelly (2012) and its generalization to

block equicorrelation model, allow the spot correlation matrix ρt to vary over time but impose

linear time-invariant restrictions between the elements of ρt. These restrictions can be casted in

the model setting of (2.3) by redefining ỹ(ct) as the proper linear transformation of ρt.

Example (Idiosyncratic Variance Models): In empirical finance, it is common to define

the idiosyncratic variance of an asset as the variance of the residual of the stock return obtained from

a linear projection on systematic risk factors, where the slope coefficient in the linear projection is

called beta. Restricting attention to the one-factor market model for simplicity, the beta for the

diffusive movement of the stock with respect to the market is given by βt ≡ c12,t/c11,t, where the

market and the stock are labelled by 1 and 2 respectively. The idiosyncratic spot variance of the

stock is thus c22,t − β2
t c11,t = c22,t − c2

12,t/c11,t. The idiosyncratic variance has received a lot of

attention in the empirical finance literature (see, e.g., Ang et al. (2006, 2009)). A natural question

concerning whether the idiosyncratic variance captures an independent source of risk is to examine

whether it can be spanned by systematic factors such as the stochastic variance of the market. In the

univariate setting, this can be conveniently casted in the form of the following parsimonious linear

model c22,t−c2
12,t/c11,t = θ0 +θ1c11,t, which corresponds to (2.3) with θ = (θ0, θ1), x̃ (ct) = (1, c11,t)

ᵀ

and ỹ(ct) = c22,t−c2
12,t/c11,t. Here, the parameter θ1 may be referred to as the idiosyncratic variance

beta of the stock with respect to the market. Extensions to the case with multiple risk factors is

obvious.

In the above three examples, the model restrictions imply that the deterministic relationship

between the elements of the spot variance matrix hold true for any time interval, and not just
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for the fixed one over which we test the model restriction. However, if one allows for presence of

structural breaks in the above models (e.g., market beta that remains constant only over a week

or a month) with known times of the structural breaks, then the testing of such deterministic

connections between the elements of the spot variance matrix is only for a given fixed interval of

time, exactly as in our asymptotic setup.

As indicated by the three preceding examples, model restrictions like (2.3) can be conveniently

used to investigate the relationship between many latent risk measures that are of practical inter-

est. We note that model restrictions like (2.3) are semiparametric in nature: they only impose

parametric constraints on the spot covariance of the Itô semimartingale model (2.1) of the asset

prices, while leaving other model components, such as drift, jumps and the marginal law of each

component of ct, completely nonparametric.

The current setting is nonstandard in several aspects. First, the identification of the spot

covariance process is from observing the sample path of the studied process in continuous time,

rather than from the invariant distribution of observed data. Indeed, we do not even require the

invariant distribution of the price process or that of the volatility process to exist. Doing so allows us

to accommodate essentially arbitrary forms of nonstationarity, dependence and heterogeneity in the

data. As the identification is obtained in continuous time, we consider an in-fill asymptotic setting

with data sampled at high frequency. Second, the fixed-span setting can be implemented over short

samples (e.g., one quarter) but still provides statistically accurate inference. By implementing the

method over relatively short subsamples using high-frequency data, one can readily accommodate

slowly varying parameters like in structural break models.

Model (2.3) may be further generalized in several directions. First, one may extend the set of

random variables entering the model (2.3) to include any directly observable processes. Another

extension is to augment the model (2.3) by allowing for various latent quantities associated with the

process X which can be recovered asymptotically as we sample more frequently. These include the

jumps on a given interval and various measures associated with them. Given the highly nonstandard

nature of the estimation problem concerning jumps and the associated different rates of convergence

of the corresponding estimators, formulating such a problem in a general setting is rather nontrivial.

Finally, our setup in (2.3) is linear in the parameter vector θ and a natural extension is to consider

models that are nonlinear in parameters.

We conclude this subsection by formalizing the notion of correct specification. We consider two
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sets of sample paths

Ω0,T ≡
{
ω ∈ Ω : ỹm(ct(ω))− x̃m (ct(ω))ᵀ θm(ω) = 0 for some

real vector θm(ω), all 1 ≤ m ≤ m̄ and Lebesgue almost every t ∈ [0, T ]
}
,

and Ωa,T ≡ Ω \ Ω0,T . That is, Ω0,T collects the sample paths on which the model restrictions

in (2.3) hold for some vector θ(ω), whereas its complement Ωa,T is the event of misspecification.

Model (2.3) is called correctly specified if the observed sample path falls in Ω0,T and is called mis-

specified otherwise. The sets Ω0,T and Ωa,T play the role of the null and the alternative hypotheses,

respectively, in a specification test. Specifying hypotheses in terms of random events is unlike the

classical setting of hypothesis testing (e.g., Lehmann and Romano (2005)), but is standard in the

study of high frequency data; see, e.g., Aı̈t-Sahalia and Jacod (2012) and many references therein.

2.3 Heuristics for the inference procedures

We next describe the heuristics for our inference procedures with the formal theory presented in

Section 3. For equation m, we consider a known measurable function zm : Md 7→ Rqm for some

qm ∈ N. Under correct specification, model (2.3) implies a set of moment conditions under the

occupation measure

F (ym − xmθm,0) = 0, where ym(·) ≡ zm(·)ỹm(·), xm(·) ≡ zm(·)x̃ᵀm (·) , 1 ≤ m ≤ m̄. (2.6)

Analogous to standard econometric terminology, we refer to the function zm(·) as an instrument.

It is convenient to stack the equations in (2.6) by writing

F (y − xθ0) = 0, (2.7)

where

y (·) = (y1 (·)ᵀ , . . . , ym̄ (·)ᵀ)ᵀ , θ0 =
(
θᵀ1,0, . . . , θ

ᵀ
m̄,0

)ᵀ
,

x (·) =


x1(·) 0

. . .

0 xm̄ (·)

 .

Below, we denote q ≡
∑m̄

m=1 qm.

We conduct estimation via a classical minimum distance (CMD) procedure. Suppose that we

can construct a sample analogue Fn (see Section 3.1) for the occupation measure F, so that Fy

and Fx can be estimated by Fny and Fnx respectively. For any weighting matrix Ψn that satisfies

Ψn
P−→ Ψ, where Ψ is a positive semidefinite matrix, the CMD estimator is given by

θn ≡ argmin
θ

(ȳn − x̄nθ)ᵀΨn(ȳn − x̄nθ),
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where we use the shorthand

x̄n ≡ Fnx, ȳn ≡ Fny. (2.8)

The CMD estimator has a simple closed-form solution

θn = (x̄ᵀnΨnx̄n)−1 x̄ᵀnΨnȳn, (2.9)

provided that the matrix inversion is well-defined, at least asymptotically. Note that studying the

asymptotic property of the CMD estimator amounts to studying the joint asymptotic behavior of

x̄n and ȳn.

A further important problem is specification testing. That is, we want to decide in which event,

Ω0,T or Ωa,T , the observed sample path falls. As is clear from the definition of these events, such a

decision requires knowledge about ct at almost every t ∈ [0, T ]. Such temporal information is lost

in the occupation measure F as a result of the temporal aggregation. To preserve the temporal

information, it is useful to consider a generalized occupation measure as follows. Throughout the

paper, we call a function w : R 7→ R a weight function if it is infinitely continuously differentiable.

Consider a family of weight functions wτ (·) indexed by τ ∈ T where T ⊂ R is compact with positive

Lebesgue measure. For each τ , the wτ -weighted occupation measure, denoted by Fτ , is defined as

a linear functional:

Fτg ≡
∫ T

0
g (cs)wτ (s) ds. (2.10)

If the model (2.3) is correctly specified, then

Fτ (ỹm − x̃ᵀmθm,0) = 0, for any 1 ≤ m ≤ m̄ and τ ∈ T . (2.11)

Moreover, if the family of weight functions is properly chosen, the moment condition (2.11) holds

if and only if (2.3) is correctly specified (see Proposition 3 below). A specification test then can

be carried out by testing (2.11) via its empirical analogue. This idea motivates us to introduce

the notion of weighted occupation measure Fτ in the first place. It also motivates the study of

the asymptotic theory concerning the estimation and inference for the τ -indexed process Fτg for

some fixed test function g. This testing strategy is akin to the consistent model specification test

of Bierens (1982), but applied in a nonstandard setting for investigating the pathwise properties of

stochastic processes.

3 Theory

We now present the main theoretical results of the paper. Section 3.1 introduces the estimator of

the weighted occupation measure Fτ for a family of weight functions {wτ (·) : τ ∈ T } and discusses

12



its asymptotic properties. We present asymptotic results for the CMD estimator θn in Section 3.2

and propose a specification test in Section 3.3.

3.1 The empirical covariance occupation measure

The empirical occupation measure, that is, the estimator of the covariance occupation measure

from the discrete observations of X, is constructed in two steps. In the first step we recover

nonparametrically the spot covariance process and in the second step we use the spot covariance

estimates to construct a sample analogue of Fτ .

Let ∆n
i X ≡ Xi∆n −X(i−1)∆n

denote the ith increment of X at asymptotic stage n. Following

Jacod and Protter (2012), we estimate the spot covariance at time i∆n via a local truncated varia-

tion estimator (Mancini (2001)). To define this local estimator, we consider a sequence of integers

kn that determines the number of increments in a local window for spot covariance estimation. The

spot covariance estimator is then given by

ĉi∆n ≡
1

kn∆n

kn∑
j=1

(
∆n
i+jX

) (
∆n
i+jX

)ᵀ
1{‖∆n

i+jX‖≤χ∆$
n }, (3.1)

where χ > 0 and $ ∈ (0, 1/2) are constants that specify the truncation threshold. The truncation

technique is used so that the local estimator ĉi∆n is robust to jumps in X. Along the same line

of argument as in Li et al. (2013), we can allow the truncation threshold to have (a certain type

of) data-dependence without affecting the results of this paper. In the setting without jumps, the

estimation of spot variance can be dated back to Foster and Nelson (1996) and Comte and Renault

(1998). We assume the following for the tuning parameters.

Assumption LW: kn � ∆−ςn for some constant ς ∈ ( r2 ∨
1
3 ,

1
2) and $ ∈ [ 1−ς

2−r ,
1
2).

Equipped with the local estimator ĉi∆n , we set, for any measurable function g :Md 7→ Rdim(g)

and τ, η ∈ T , 
F̂nτ g ≡ ∆n

bT/∆nc−kn∑
i=0

g(ĉi∆n)wτ (i∆n),

F̂nτ,ηg ≡ ∆n

bT/∆nc−kn∑
i=0

g(ĉi∆n)wτ (i∆n)wη(i∆n),

where bT/∆nc denotes the integer part of T/∆n. Clearly, F̂nτ is the sample analogue of Fτ . The

double-indexed estimator F̂nτ,η is the sample analogue of

Fτ,ηg ≡
∫ T

0
g(cs)wτ (s)wη(s)ds,
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which is used below for denoting the asymptotic covariance function of our estimators. In the

sequel, we refer to F̂nτ as the raw empirical occupation measure, as it suffers from a high-order bias

that needs to be corrected. Nevertheless, F̂nτ is useful for constructing consistent estimators for

various quantities, such as the asymptotic variances.

We impose a smoothness condition on the family {wτ (·) : τ ∈ T } of weight functions as follows,

where WF stands for weight function.

Assumption WF: The index set T is a compact subset of R. Moreover, for some constant

K > 0, we have |wτ (s)− wη(s)| ≤ K |τ − η| and |wτ (s)− wτ (t)| ≤ K |s− t| for all τ, η ∈ T and

s, t ∈ [0, T ].

Theorem 1 below provides sufficient conditions and an exact sense for the uniform consistency

of F̂nτ and F̂nτ,η towards Fτ and Fτ,η, respectively.

Theorem 1. Suppose (i) Assumptions HF, LW and WF and (ii) g is a continuous function on

Md. Then, F̂nτ g
P−→ Fτg and F̂nτ,ηg

P−→ Fτ,ηg uniformly in τ, η ∈ T .

The convergence in Theorem 1 is not associated with a central limit theorem because of the

presence of an asymptotic bias. To get a central limit theorem, we now consider a bias-corrected

version of F̂nτ , denoted below by Fnτ . With each g that is three times continuously differentiable, we

associate a function Bg given by

(Bg) (c) ≡ 1

2

d∑
j,k,l,m=1

∂2
jk,lmg (c) (cjlckm + cjmckl) .

Now, we can define the bias-corrected empirical occupation measure Fnτ as

Fnτ g ≡ F̂nτ g − k−1
n F̂nτBg,

where we remind the reader that, by convention, F̂nτBg is understood as F̂nτ (Bg). To simplify

notation, henceforth, when the weight function is identically one, we denote the raw and the bias-

corrected empirical occupation measure respectively by F̂n and Fn, cf. (2.2).

In the next theorem we state the stable convergence in law5 (denoted with
L-s−→) of the sequence

∆
−1/2
n (Fnτ g−Fτg) of τ -indexed processes for some fixed test function g. To describe the asymptotic

5Stable convergence in law is stronger than the usual notion of weak convergence. It requires that the convergence
holds jointly with any bounded random variable defined on the original probability space. Its importance for our
problem stems from the fact that the limiting process of our estimator is an F-conditionally Gaussian process and
stable convergence allows for feasible inference using a consistent estimator for its F-conditional variance. See Jacod
and Shiryaev (2003) for further details on stable convergence on filtered probability spaces.
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covariance function of ∆
−1/2
n (Fnτ g − Fτg), we define, for each pair g, h of vector-valued functions,

[V(g, h)] (c) =
d∑

j,k,l,m=1

∂jkg (c) ∂lmh (c)ᵀ (cjlckm + cjmckl) .

Theorem 2. Suppose (i) Assumptions HF, LW and WF; (ii) g is three times continuously differ-

entiable onMd. Then the sequence ∆
−1/2
n (Fnτ g−Fτg) of τ -indexed processes converges stably in law

to a process under the uniform metric, which is defined on an extension of the space (Ω,F ,P) and

is, conditional on F , a centered Gaussian process with covariance function M(τ, η) ≡ Fτ,ηV (g, g),

for τ, η ∈ T .

3.2 Asymptotic properties of the CMD estimator

We consider next the asymptotic behavior of the CMD estimator θn given by (2.9), with the

(obvious) assumption that the term x̃ᵀmθm,0 is present in (2.3). We complement the notation in

(2.8) by setting

x̄ ≡ Fx, ȳ ≡ Fy.

The following condition ensures that θn is well-defined, where ID stands for identification.

Assumption ID: We have Ψn
P−→ Ψ for some F-measurable positive semidefinite random

matrix Ψ. Moreover, the random matrix x̄ᵀΨx̄ is almost surely nonsingular.

The convergence in probability of θn is given in the following theorem.

Theorem 3. Suppose (i) Assumptions HF, LW and ID; (ii) the functions x (·) and y (·) are three

times continuously differentiable on Md. Then θn
P−→ θ∗0 ≡ (x̄ᵀΨx̄)−1x̄ᵀΨȳ.

Remark 1. The convergence result in Theorem 3 does not depend on (2.3) being correctly specified.

Hence, in general, θ∗0 is interpreted as the pseudo-true parameter in the current estimation setting.

In the basic case with x̃(ct) = z (ct) ≡ 1, the pseudo-true parameter θ∗0 reduces to the integrated

volatility functional
∫ T

0 ỹ (cs) ds for a general smooth function ỹ (·).

We now turn to the second-order asymptotic behavior, namely the stable convergence in law,

of the CMD estimator θn. We start with a general result (Theorem 4 below) without assuming

correct specification. We state this result under a high-level, but easily verifiable, condition that is

given as follows, where SC stands for stable convergence.

Assumption SC: ∆
−1/2
n (Fnx−Fx,Fny−Fy,Ψn−Ψ)

L-s−→ (ξx, ξy, ξΨ), where the limit variables

are defined on an extension of the probability space (Ω,F ,P).
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The joint convergence of ∆
−1/2
n (Fnx − Fx,Fny − Fy) in Assumption SC can be derived using

Theorem 2 applied to g(·) = (vec(x(·))ᵀ, y(·)ᵀ)ᵀ and a constant weight function. In the special case

with Ψn ≡ Ψ, Assumption SC is verified with (ξx, ξy) being an F-conditionally centered Gaussian

variable and ξΨ ≡ 0. More generally, if Ψn has the form Fnψ for some three times continuously

differentiable function ψ, then Assumption SC can again be verified using Theorem 2 applied to

g(·) = (vec(x(·))ᵀ, y(·)ᵀ, vec(ψ(·))ᵀ)ᵀ.

Theorem 4. Under Assumptions ID and SC, we have ∆
−1/2
n (θn − θ∗0)

L-s−→ (x̄ᵀΨx̄)−1(ξᵀxΨ(ȳ −
x̄θ∗0) + x̄ᵀξΨ (ȳ − x̄θ∗0) + x̄ᵀΨ (ξy − ξxθ∗0)).

Theorem 4 shows the stable convergence of θn in a nonparametric setting that allows for mis-

specification. In particular, θn is centered at the pseudo-true parameter θ∗0 which, as mentioned

in Remark 1, includes integrated volatility functionals as special cases. We note that the first two

components of the limit variable in Theorem 4 are zero if ȳ = x̄θ∗0. This condition holds when

model (2.3) is correctly specified. This condition also holds under misspecification provided that

θ∗0 is exactly identified. The latter case is of particular practical interest since empirical workers

typically use an exactly identified system of moment conditions.

With this in mind, we specialize the result of Theorem 4 in the exact identification setting

under primitive conditions. To facilitate application, we also provide the asymptotic variance and

its estimator in explicit form, for which we need some additional notation. We set Myy ≡ FV (y, y) , Mxx ≡ FV (vec(x), vec(x)) ,

Myx ≡ FV (y, vec(x)) , Mxy ≡ FV (vec(x), y) ,
(3.2)

with sample analogue estimators Myy,n ≡ F̂nV (y, y) , Mxx,n ≡ F̂nV (vec(x), vec(x)) ,

Myx,n ≡ F̂nV (y, vec(x)) , Mxy,n ≡ F̂nV (vec(x), y) .
(3.3)

Below, for a generic sequence Zn of random variables, we write Zn
L-s−→ MN (0,ΣZ) if Zn

converges stably in law to a variable that is defined on an extension of the space (Ω,F ,P) and is,

conditional on F , centered Gaussian with covariance matrix ΣZ .

Proposition 1. Let Ψn and Ψ be the identity matrix. Suppose (i) Assumptions HF and LW; (ii)

x̄ ≡ Fx is a square random matrix and is nonsingular almost surely; (iii) the functions x(·) and

y(·) are three times continuously differentiable on Md. Then the following statements hold.

(a) ∆
−1/2
n (θn − θ∗0)

L-s−→MN (0,Σ∗), where Σ∗ ≡ x̄−1A∗ (x̄ᵀ)−1 and

A∗ ≡Myy −MyxΘ∗ᵀ0 −Θ∗0Mxy + Θ∗0MxxΘ∗ᵀ0 , Θ∗0 ≡ θ
∗ᵀ
0 ⊗ Iq.
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(b) The asymptotic variance Σ∗ can be consistently estimated by Σ∗n ≡ (F̂nx)−1An(F̂nxᵀ)−1,

where An is given by

An ≡Myy,n −Myx,nΘᵀ
n −ΘnMxy,n + ΘnMxx,nΘᵀ

n, for Θn ≡ θᵀn ⊗ Iq. (3.4)

3.3 Specification testing

We next derive a test for the pathwise relation in (2.3), that is, we test in which of the two com-

plementary events, Ω0,T or Ωa,T , the observed sample path falls. As hinted in Section 2.3, model

restrictions in (2.3) can be equivalently represented by moment equalities under weighted occupa-

tion measures, provided that the family of weight functions is properly chosen. This argument is

formalized in Proposition 2. Below, we consider a family of weight functions {wτ (·) : τ ∈ T } where

the index set T ⊂R is compact with positive Lebesgue measure. This family is said to be complete

if it satisfies the following property: for any càdlàg function f : [0, T ] 7→ R, f(t) = 0 for Lebesgue

almost every t ∈ [0, T ] if and only if
∫ T

0 f(s)wτ (s)ds = 0 for all τ ∈ T .

Proposition 2. Suppose Assumption ID. For each m ∈ {1, . . . , m̄}, let z?m : Md 7→ (0,∞) be a

(strictly positive) measurable function. If {wτ (·) : τ ∈ T } is complete, then Ω0,T = {Fτ (z?mỹm) −
Fτ (z?mx̃

ᵀ
m)θ∗m,0 = 0 for all τ ∈ T and 1 ≤ m ≤ m̄}.

Proposition 2 shows that Ω0,T can be equivalently specified as Fτ (z?mỹm)− Fτ (z?mx̃
ᵀ
m)θ∗m,0 = 0

for all τ ∈ T and m ∈ {1, . . . , m̄}. A natural choice of the instrument z?m is z?m (·) ≡ 1, so that

the moment condition to be tested corresponds to (2.11). We consider z? with general functional

forms with no additional cost in our derivations. In practice, the user may choose z? to assign

more weight on some regions of the state space. Below, for the sake of notational simplicity, we set

y?m = z?mỹm, x?m = z?mx̃
ᵀ
m and

y? ≡


y?1
...

y?m̄

 , x? ≡


x?1 0

. . .

0 x?m̄

 .

With this notation, the assertion of Proposition 2 can be written as

Ω0,T = {Fτ (y? − x?θ∗0) = 0 for all τ ∈ T } . (3.5)

Proposition 3 below provides a general way of constructing a complete class of weight functions.

Proposition 3. Let T be a compact subset of R with strictly positive Lebesgue measure. Let

w : R 7→ R be a power series on R such that the set
{
k ∈ N : (d/du)kw (u) |u=0 = 0

}
is finite. Then

the family of weight functions wτ (s) ≡ w(τs), τ ∈ T , is complete.
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Proposition 3 is a special case of Theorem 1 of Bierens and Ploberger (1997). A concrete

example of the function w(·) is w(s) ≡ cos (s) + sin(s). The corresponding weight functions can be

taken as wτ (s) = w (τs) with T being a compact interval with positive length.

We consider the scaled sample analogue of the moment conditions in (3.5) given by

ζn(τ) ≡ ∆−1/2
n (Fnτ y? − (Fnτ x?) θn).

The asymptotic behavior of ζn(·) is described in Theorem 5 below. Under correct specification,

that is, in restriction to Ω0,T , we show that the process ζn(·) converges stably in law to a mix-

ture Gaussian process. We need some notation to describe the conditional asymptotic covariance

function of the limiting process and the consistent estimator for it. We set

h? = (y?ᵀ, vec (x?)ᵀ)ᵀ , h = (yᵀ, vec (x)ᵀ)ᵀ ,

Q(τ, η) ≡

 Fτ,ηV (h?, h?) FτV (h?, h)

FηV (h, h?) FV (h, h)

 ,

Qn(τ, η) ≡

 F̂nτ,ηV (h?, h?) F̂nτV (h?, h)

F̂nηV (h, h?) F̂nV (h, h)

 .

(3.6)

We further set 

Ξ ≡ (x̄ᵀΨx̄)−1x̄ᵀΨ,

Ξn ≡ (F̂nxᵀΨnF̂nx)−1F̂nxᵀΨn,

κ(τ ; θ) ≡ (Im̄,−θᵀ ⊗ Im̄,− (Fτx?) Ξ, (Fτx?) Ξ (θᵀ ⊗ Iq)) ,

κn(τ ; θ) ≡
(
Im̄,−θᵀ ⊗ Im̄,−(F̂nτ x?)Ξn, (F̂nτ x?)Ξn (θᵀ ⊗ Iq)

)
.

Finally, we set  N(τ, η; θ) ≡ κ (τ ; θ)Q(τ, η)κ (η; θ)ᵀ ,

Nn(τ, η; θ) ≡ κn (τ ; θ)Qn(τ, η)κn (η; θ)ᵀ .

Theorem 5. Suppose (i) Assumptions HF, LW, WF and ID; (ii) the functions x?, y?, x and y

are three times continuously differentiable on Md. Then we have the following.

(a) ∆
1/2
n ζn(τ)

P−→ ζ? (τ) ≡ Fτy? − (Fτx?) θ∗0 uniformly in τ ∈ T .

(b) In restriction to Ω0,T , the sequence ζn(τ) of τ -indexed processes converges stably in law

under the uniform metric to a process ζ(τ) which is defined on an extension of the space (Ω,F ,P)

and is, conditional on F , centered Gaussian with covariance function N(·, ·; θ0).

(c) Nn(τ, η; θn)
P−→ N(τ, η; θ∗0) uniformly in τ, η ∈ T . In particular, Nn(τ, η; θn)

P−→ N(τ, η; θ0)

uniformly in τ, η ∈ T in restriction to Ω0,T .
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We are now ready to describe the specification test. Among many possible choices, we consider

a Kolmogorov-Smirnov type test statistic given by

Sn ≡ ϕ (ζn(·), Nn(·, ·; θn)) ≡ sup
τ∈T

sup
1≤m≤m̄

|ζm,n(τ)|√
Nmm,n (τ, τ ; θn)

, (3.7)

where ζm,n (·) is the mth component of ζn (·), Nmm,n (·) is the mth diagonal element of Nn(·), and

the function ϕ (·) is implicitly defined by the second equality. The normalization by the standard

error makes the test statistic scale-invariant, which is desirable in practice.

The asymptotic properties of Sn follow directly from Theorem 5 and the continuous mapping

theorem. More specifically, Theorem 5(a,c) shows that ∆
1/2
n Sn

P−→ ϕ (ζ? (·) , N (·, ·; θ∗0)). Under

misspecification, ζ?(·) is not identically zero by Proposition 2 and, hence, Sn diverges to infinity in

probability. On the other hand, if model (2.3) is correctly specified, then Theorem 5(b,c) implies

that Sn
L-s−→ ϕ(ζ(·), N (·, ·; θ0)). To conduct the specification test at nominal level α, it remains to

select a tight sequence cvn,α of critical values, which, in restriction to Ω0,T , consistently estimates

the 1−α F-conditional quantile of ϕ(ζ(·), N (·, ·; θ0)). Since the limiting distribution is nonstandard,

the quantile does not have a closed-form expression in general. Nevertheless, as is standard in this

type of problems, the critical value can be obtained via simulation by following three steps. Step 1:

estimate the conditional covariance function N(·, ·; θ∗0) using Nn(·, ·; θn). Step 2: simulate a large

number of centered Gaussian processes with covariance function Nn(·, ·; θn); Step 3: set cvn,α to be

the 1 − α quantile of ϕ(ζMC
n (·) , Nn (·, ·; θn)), where ζMC

n (·) denotes a Monte Carlo realization of

the Gaussian process simulated in Step 2. Corollary 1 below summarizes the testing result.

Corollary 1. Let α ∈ (0, 1/2) be a constant. Consider a sequence Cn,α of critical regions given

by Cn,α ≡ {Sn > cvn,α}. Suppose (i) the conditions in Theorem 5; (ii) the family {wτ (·) : τ ∈ T }
is complete and z?m takes values in (0,∞) for each m ∈ {1, . . . , m̄}; (iii) for each m ∈ {1, . . . m̄},
infτ∈T Nmm (τ, τ ; θ∗0) > 0 almost surely. Then the following statements hold.

(a) The test associated with the critical region Cn,α has asymptotic size α under the null hy-

pothesis that (2.3) is correctly specified: P (Cn,α|Ω0,T ) −→ α.

(b) The test associated with the critical region Cn,α has asymptotic power one under the alter-

native hypothesis that (2.3) is misspecified: P (Cn,α|Ωa,T ) −→ 1.

4 Empirical applications

We illustrate the use of our inference techniques in an analysis of the dynamic and cross-sectional

properties of the stochastic variance in the economy. In particular, we use data on the SPDR

ETF tracking the S&P 500 index and the nine S&P 500 sector index ETFs, all traded on the New
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York Stock Exchange. The nine sector ETFs conveniently separate the stocks of the S&P 500 index

into the following sector categories: Consumer Discretionary, Consumer Staples, Energy, Financial,

Health Care, Industrial, Materials, Technology and Utilities. Our data covers the period January

1, 2006 till December 31, 2012 for a total of 1,746 days, or 28 quarters. In order to mitigate the

effect of microstructure noise, we sample the data sparsely at every 10 minutes during the trading

hours, which results in 38 high-frequency returns per day for each of the studied ETFs. Below, we

label the market to be 1 and the sector ETFs by 2, . . . , 10.

We set tuning parameters as follows. In (3.1), the truncation threshold in day t is given by

3σ̄t∆
0.49, where σ̄t is a preliminary estimate of the day-t average volatility, here computed as the

squared root of the annualized bipower variation (Barndorff-Nielsen and Shephard (2004a)). The

specification test is conducted with z?(·) ≡ 1 and the weight function wτ (s) = cos (τs) + sin (τs)

for τ ∈ T ≡ [5, 100]. To keep the computation manageable, T is discretized as {5, 10, . . . , 100}. We

set the local window kn = 14.6

We now introduce some notation for our empirical analysis. The dynamics of the market

portfolio are given by

dX1,t = b1,tdt+ dXc
1,t + dJ1,t, (4.1)

where Xc
1 and J1 are respectively the diffusive and the jump parts of X1 and we further assume

the following dynamics for the nine sector portfolios

dXj,t = bj,tdt+ βj,tdX
c
1,t + dX̃c

j,t + dJj,t, j = 2, ..., 10, (4.2)

where Jj is the jump component of portfolio j, βj,t ≡ c1j,t/c11,t is the spot beta of portfolio j with

respect to the market, and X̃c
j is the residual diffusive component of Xj , which we henceforth refer to

as the market-neutral component of Xj . We stress that βj,t is defined locally and nonparametrically.

Also, the model (4.2) entails no a priori conditions on the cross-sectional dependencies among the

market-neutral returns. The specification in (4.2) is a decomposition that formalizes the sense of

market neutrality. We finally note that we do not separate the jumps into market and market-

neutral components since the jumps are filtered out in the estimation.

In the empirical application, we are interested in estimating and testing model restrictions for

the spot covariance and spot correlation matrices of X̃c
t , which are respectively denoted by c̃t and

ρ̃t and defined as

6We use the same setup in a simulation setting with realistic features such as leverage effect, stochastic volatility
and volatility jumps. The simulation results suggest that the inference procedure perform well and is robust to
nontrivial perturbations in kn. For brevity, we refer the reader to the working paper version of this paper for details
regarding the simulation study.
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c̃jk,t ≡
〈
dX̃c

j,t, dX̃
c
k,t

〉
= cjk,t − c1j,tc1k,t/c11,t, ρ̃jk,t =

c̃jk,t√
c̃jj,tc̃kk,t

.

These quantities are smooth nonlinear transforms of ct. We conduct our analysis on a quarterly

basis (i.e. T =1 quarter), so that low-frequency structural changes across quarters are automatically

accommodated. The short sample span is closely aligned with our “fixed-T” asymptotic setting,

where we allow for essentially arbitrary forms of nonstationarity and data heterogeneity.

4.1 Variance spanning of market-neutral returns of sector portfolios

We start with the diagonal elements of c̃t. Our initial working hypothesis is that all of the variation

over time in the variances of market-neutral returns is attributable to the market variance itself, i.e.

c11,t. Formally, we examine the following set of linear specifications, both jointly and individually,

for the spot variances

c̃jj,t = θj,0 + θj,1c11,t, j ∈ {2, . . . , 10} . (4.3)

We refer to the coefficients θj,1, 2 ≤ j ≤ 10, as variance betas. The set of restrictions with a

single spanning factor embodied in (4.3) appears strong, but they appear in many equilibrium (and

reduced form) models for the variance risk premium.7 Also, a single macro volatility factor is the

key feature of aggregate time change models.

We first test whether this set of linear equations holds jointly for all nine sector portfolios over

each of the 28 quarters in our sample. The results of these tests are shown in Figure 1, where we

plot the test statistic and the (pointwise) 1% level critical value for each quarter. In order to draw

inference across all quarters, we also plot the uniform 1% level critical value that is uniform with

respect to all 28 quarters.8 As seen from the figure, there is strong evidence that the market-neutral

variance risk in the sector portfolios cannot be linearly spanned by the market variance risk. This is

in spite of the fact that the parameters in (4.3) are kept fixed only during a relatively short period

of time, that is, a quarter.

We next study whether the spanning restriction (4.3) holds for some sectors. To address this

question, we perform tests for each of the sector portfolios individually. The results are shown

on Figure 2. Some interesting findings emerge. First, there are a few sectors for which the linear

7See Drechsler and Yaron (2011), Bollerslev et al. (2012), and references therein.
8The uniform critical value is constructed as the 99% quantile of the supremum of the 28 quarterly test statistics

under the null distribution. The null distribution of the quarterly statistics are asymptotically F-conditionally
independent since the limiting variable in the CLT is a process with F-conditionally independent increments. Similar
to the computation of the quarterly critical values, the uniform critical value can be estimated via simulation. To
be specific, we independently simulate Monte Carlo samples of the null distribution of each quarterly test statistics,
based on which we construct a Monte Carlo sample for the supremum of all quarterly statistics, and then report the
99% quantile of the latter Monte Carlo sample as the uniform critical value at the 1% significance level.
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Figure 1: Joint Test for Variance Spanning.
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Asterisk: test statistic. Dashed line: 1% level pointwise critical value. Dash-dotted line: 1% level
uniform critical value.

restriction (4.3) appears reasonable, in the sense that the specification (4.3) is not rejected jointly

over all quarters (i.e., all quarterly test statistics are below the uniform critical value). These

sectors include Consumer Staples, Consumer Discretionary and Industrials. On the other hand, for

sectors such as Energy and Financials, we see that (4.3) is not only strongly rejected jointly for all

quarters, but also rejected for many individual quarters over the entire sample.

While the tests on Figures 1 and 2 impose constancy of the parameters in (4.3) within each

quarter, it is interesting to investigate whether the variance beta estimates are positive and whether

they exhibit large variations across quarters in our sample.9 On Figure 3 we plot the quarterly

variance beta estimates, along with a two-sided 95% confidence band and a 99% lower confidence

bound. We find strong evidence that the residual variances of sector portfolios, (c̃jj,t)j=2,...,10,

comove with the market variance, c11,t, that is, variance betas are always positive with nontrivial

statistical significance. Moreover, we can see from the plot that sectors like Consumer Staples,

Consumer Discretionary and Industrials exhibit relatively small variation in their variance beta

estimates. In sharp contrast, the variance betas of Financials and Energy vary substantially across

quarters in our sample.

9In view of the evidence of misspecification mentioned above, we interpret the variance betas as pseudo-true
parameters, or linear projection coefficients under the occupation measure, from model (4.3).
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Figure 2: Industry-specific Tests for Variance Spanning.
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Asterisk: test statistic. Dashed line: 1% level pointwise critical value. Dash-dotted line: 1% level
uniform critical value.

To sum up, we find that, for sector portfolios, the temporal variation of the market-neutral

stochastic variances cannot be explained (i.e., linearly spanned) completely by the variation in the

market variance. This finding is most pronounced for Financials and Energy sectors, suggesting

that they load on important systematic variance risk factors that are not captured by the market

variance risk.

4.2 Correlation of market-neutral returns of the sector portfolios

We next study the market-neutral correlation matrix ρ̃t. Our goal is to specify and test model

restrictions for the dynamic behavior of ρ̃t within each of the 28 quarters in the sample. Before

diving into the within-quarter analysis, we briefly describe the between-quarter variations of corre-

lations. In Figure 4, we plot the quarterly averages of the market-neutral correlation ρ̃jk,t and, for
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Figure 3: Variance Betas.
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comparison, the quarterly averages of the raw correlations ρjk,t ≡ cjk,t/
√
cjj,tckk,t. To save space,

we only show correlations of the Financials sector with the other eight sectors, while noting that

the empirical regularities discussed below are not limited to this choice.

Some interesting patterns emerge from Figure 4. We first note that the raw correlations are

typically positive and high in magnitude, but the market-neutral correlations are much lower.

This evidence suggests, perhaps not surprisingly, that a significant part of the positive correlations

between the raw returns of the sector portfolios is driven by their (time-varying) loadings on the

market returns. Second, the market-neutral correlations appear to be somewhat smoother than

the corresponding raw correlations. This is in spite of the fact that ρ̃t is harder to estimate than

ρt, as the former involves more “layers of latency.” The occasional spikes in ρt evident from Figure
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Figure 4: Quarterly Average Correlations of Financials Sector with other Industry Portfolios.
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4 can be explained with the factor structure of the industry portfolio returns and the (random)

shocks in the market portfolio. Indeed, once we account for the exposure of the industry portfolios

to the market risk, the correlations in the residual returns, ρ̃t, are less erratic. Remarkably, the

market-neutral correlations are fairly stable after 2009.10 Nevertheless, we still see some variation

in ρ̃t, particularly during the turbulent period of 2007-2008. This evidence suggests that we need

more factors, than the market portfolio, to span the risks in the industry portfolios, a possibility

that we shall explore later in this subsection.

10The post-2009 stability in the market-neutral correlation is shared by all pairs of sector portfolios. The market-
neutral correlation between the Financials and other sectors in the post-crisis period is, interestingly, close to zero.
The latter pattern is not shared by all sector pairs.
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Figure 5: Correlation Risk Tests.
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Top panel: constancy of partial correlation. Middle panel: equal partial correlations. Bottom
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We now turn to the formal analysis of the market-neutral correlations within quarters. We

start with testing two hypotheses. The first regards the presence of correlation risks in the market-

neutral sector portfolio returns, that is, we study whether ρ̃t actually varies within each quarter;

this amounts to a specification test of the model restriction

ρ̃jk,t = R̃jk, for all 2 ≤ j, k, l,m ≤ 10, (4.4)

for some parameters R̃jk, which are time-invariant within each quarter but are allowed to differ

across quarters. The second hypothesis is that market-neutral correlations can be restricted to be

the same over the cross section, that is,

ρ̃jk,t = ρ̃lm,t, for all 2 ≤ j, k, l,m ≤ 10. (4.5)

This is essentially a test for an equicorrelation model, like that proposed in Engle and Kelly (2012).11

We note that the equicorrelation restriction concerns the cross section, while allowing the spot cor-

relation process to be time-varying and stochastic. The two restrictions, (4.4) and (4.5), respectively

impose homogeneity on the temporal and the cross-sectional dimensions.

To cast the testing problem of the equicorrelation model (4.5) in the setting of Section 3.3, we

define, for 2 ≤ j < k ≤ 10,

ỹjk (ct) = ρ̃jk,t −
1

36

∑
2≤l<m≤10

ρ̃lm,t,

and let ỹ (ct) be a vectorization of the double-indexed array ỹjk (ct). By construction, ỹ (ct) collects

the deviation of the spot market-neutral correlation of each pair of sector ETFs from the average

of the market-neutral correlations of all 36 such pairs. The equicorrelation hypothesis (4.5) can be

equivalently written as ỹ (ct) = 0, which corresponds to a simple special case of (2.3) without the

regressor x̃ (ct) or the parameter θ.

The results of the two tests for the hypotheses in (4.4) and (4.5) are shown on the top two

panels of Figure 5 respectively. From the top panel, we find evidence for the presence of correlation

risk even within the quarterly horizon. The highest values of the test statistic for the hypothesis

(4.4) (i.e., the null of no market-neutral correlation risk within the quarter) are during the last two

quarters of 2007 and the first three quarters of 2008 which cover a relatively turbulent period in the

market. The results from the equicorrelation test plotted on the middle panel of Figure 5 indicate a

strong rejection, in every quarter, of this cross-sectional restriction among the (stochastic) market-

neutral correlations. The equicorrelation test statistic also peaks during the 2008 crisis period.

11We stress however that we conduct the test for the market-neutral correlations and not for the raw correlations
among sector portfolio returns. In particular, due to the presence of the market factor with stochastic variance (and
possibly dynamic loadings on it), the stochastic correlation matrix of the raw returns in general does not have an
equicorrelation structure even if (4.5) holds.
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Figure 6: Correlation Risk Tests without Financials and Energy.
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With the heteroskedasticity/heterogeneity on both time-series and cross-sectional dimensions

formally documented above, we further investigate the plausibility of model restrictions that are

less restrictive. We start with a hypothesis that the cross-sectional heterogeneity in the stochastic

correlations are only in (time-invariant) levels, with their intraquarter time variation driven by a

common factor. That is, we test whether the following is true

ρ̃jk,t − ρ̃lm,t = δ̃ρjk,lm, for all 2 ≤ j, k, l,m ≤ 10, (4.6)

for some time-invariant parameters δ̃ρjk,lm. We refer to this hypothesis as a hypothesis for equal

correlation risk (ECR). This ECR restriction is perhaps the most parsimonious one that allows the

market-neutral correlation processes to be time-varying and cross-sectionally heterogenous. The

testing results for ECR are reported on the bottom panel of Figure 5. As seen from the figure,

the hypothesis is rejected jointly for all quarters and 7 individual quarters, with the test statistics

peaked around the 2008 financial crisis. Nevertheless, the ECR hypothesis is not rejected for 21

out of 28 quarters, which is in sharp contrast to the strong rejection of the equicorrelation test

reported above.

Finally, we explore whether additional factors can account for the presence of correlation risk

in the market-neutral components of the industry portfolio returns. Given the special role of the

financial sector during the 2008 crisis and the distinct role of oil shocks in general, we use them

as additional factors to span dependencies between the industry portfolios. We thus replace (4.2)

with the following decomposition of the sector portfolio returns:

dXj,t = bj,tdt+ βj,tdX
c
1,t + β′j,tdf1,t + β′′j,tdf2,t + dX̃c

j,t + dJj,t, j = 2, ..., 10, (4.7)

where the additional systematic risk factors f1 and f2 are taken as the diffusive components of

returns of Financials and Energy sector portfolios and X̃c
j is, by definition, orthogonal to Xc

1, f1

and f2. Clearly, the residual diffusive return dX̃c
j,t defined by (4.7) is different from that defined

by (4.2). In particular, the residual returns of Financials and Energy sectors are identically zero

by construction. The other seven sectors give 21 pairs of residual correlation processes, for which

we apply tests similar to those reported in Figure 5. Figure 6 shows the testing results. We see

that the constancy of the residual correlations is rejected jointly over all quarters, but now only

marginally so.12 The equicorrelation hypothesis is again strongly rejected. The equal correlation

risk hypothesis is rejected in a few quarters, but the test does not reject jointly for all quarters.

12As further evidence for the decreased correlation risk, the quarterly averages of the residual returns, after con-
trolling for the sensitivity towards market returns and Financial and Energy sector returns, become closer to zero and
somewhat smoother compared with the corresponding quarterly averages of the market-neutral return correlations.
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This finding suggests that the equal correlation risk is a reasonable restriction for the residual

correlation structure after controlling for the exposure to the Financial and Energy sectors returns

as well as the market returns.13

To conclude, we find that the market-neutral correlation structure is time-varying and cross-

sectionally heterogeneous. In particular, the equicorrelation hypothesis and the ECR hypothesis,

especially the former, are both rejected. When we further control for the sensitivity to the Finan-

cial and Energy sectors returns, the residual correlation within quarters decreases and the ECR

hypothesis is not rejected for the residual correlation dynamics jointly for all quarters in our sample.

These findings suggest that a three-factor model with ECR may capture the dynamic correlation

structure of the sector portfolios.

5 Conclusion

This paper develops inference theory for models involving the covariance occupation measure of

a discretely-observed multivariate Itô semimartingale. Time-invariant (but possibly random) rela-

tions between nonlinear transforms of the elements of the stochastic spot covariance matrix of a

multivariate stochastic process arise in many applications in economics and finance, such as factor

models. We propose minimum distance type estimators for the random parameters of the above

relations. We prove consistency and asymptotic mixed normality of our estimators. We further

derive specification tests for the path-wise models concerning the covariance occupation measure of

the discretely-observed multivariate process. We use the developed inference techniques to study

the variance risk of a set of well-diversified industry portfolios comprising the S&P 500 index market

portfolio.

Our empirical results indicate the presence of sector-specific variance risks in addition to that of

the market. We further document time variation in cross-sectional correlations of market-neutral

industry returns. The magnitude and cross-sectional heterogeneity of the residual industry return

correlations decreases when, in addition to the market, we control for exposure to shocks in the

financial and energy sectors.

13A by-product of using the Financials and the Energy sector portfolio returns to span the systematic returns is
that they are effectively excluded in the testing exercise, in the sense that their residual correlations with other sectors
are, by construction, zero. It is conceivable that, even in the one-factor model (4.2), if we exclude the Financials and
the Energy sector, the ECR hypothesis may not be rejected, because the joint test would involve less restrictions.
We implement our tests in this setting and find that the ECR hypothesis is still rejected at the 1% level jointly for
all quarters.
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6 Appendix: Proofs

Throughout the appendix, we use K to denote a generic positive constant which may change

from line to line. For a generic sequence Zn(τ) of τ -indexed processes, we write Zn = opu(1) if

Zn(τ)
P−→ 0 uniformly in τ ∈ T . Similarly, for a double-indexed process Zn (τ, η), τ, η ∈ T , we

write Zn = opu(1) if Zn(τ, η)
P−→ 0 uniformly in τ, η.

By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we can

strengthen Assumption HF to Assumption SHF below, without loss of generality.

Assumption SHF: We have Assumption HF. The processes bt, σt, b̃t and σ̃t are uniformly

bounded. There exists a bounded λ-integrable function Γ on R, such that ‖δ(ω, t, u)‖r ≤ Γ(u) and

‖δ̃ (ω, t, u) ‖2 ≤ Γ (u) for all (ω, t, u) ∈ Ω × [0, T ] × R. Finally, ct takes value in a convex compact

set K for all t ≤ T .

Proof of Theorem 1. Step 1. By arguing component by component, we can assume that g is

scalar-valued without loss of generality. By Lemma 1 of Li et al. (2014), the variables (ĉi∆n)i≥0

are uniformly bounded with probability approaching one. By using the spatial location argument

as in Theorem 2 of Li et al. (2014), we can assume that g is compactly supported without loss of

generality. In this step, we fix some τ ∈ T , and show that

F̂nτ g
P−→ Fτg. (6.1)

We set ĉ+
t = ĉi∆n and wn,τ (t) = wτ (i∆n) for t ∈ [(i− 1)∆n, i∆n). Then

F̂nτ g = ∆n

bT/∆nc−kn∑
i=0

g(ĉi∆n)wτ (i∆n)

= ∆ng(ĉ0)wτ (0) +

∫ (bT/∆nc−kn)∆n

0
g(ĉ+

s )wn,τ (s)ds.

Since g and wτ (·) are bound, we further deduce∣∣∣F̂nτ g − Fτg
∣∣∣ ≤ Kkn∆n +

∫ (bT/∆nc−kn)∆n

0

∣∣g(ĉ+
s )wn,τ (s)− g(cs)wτ (s)

∣∣ ds.
By Theorem 9.3.2 of Jacod and Protter (2012), ĉ+

s
P−→ cs for each s ∈ [0, T ]. Since g and wτ are

continuous, g(ĉ+
s )wn,τ (s)

P−→ g(cs)wτ (s) for each s ∈ [0, T ]. By the bounded convergence theorem,

we derive F̂nτ g
P−→ Fτg.

Step 2. By Assumption WF, sups∈[0,T ] |wτ (s)− wη(s)| ≤ K|τ − η|. Note that for any τ, η ∈ T ,∣∣∣F̂nτ g − F̂nηg
∣∣∣ ≤ KF̂n (|g|) |τ − η|.
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By Step 1, F̂n (|g|) = Op(1). Hence, the sequence of τ -indexed processes F̂nτ g is stochastically

equicontinuous. Combining this with the pointwise convergence in (6.1), we have F̂nτ g
P−→ Fτg

uniformly.

Step 3. Finally, we note that by essentially the same argument as above, we can also show

F̂nτ,ηg
P−→ Fτ,ηg uniformly. The details are omitted. Q.E.D.

Proof of Theorem 2. Step 1. By Lemma 1 and the spatial localization argument underlying

Theorem 2 of Li et al. (2014), we can again assume that the variables (ĉi∆n)i≥0 are uniformly

bounded and that g is compactly supported without loss of generality. In this step, we outline the

proof of Theorem 2. We denote the continuous component of X by

X ′t = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs.

The spot covariance estimator for X ′ is given by, for i ∈ {0, . . . , bT/∆nc − kn},

ĉ′i∆n
≡ 1

kn∆n

kn∑
j=1

(∆n
i+jX

′)(∆n
i+jX

′)ᵀ.

We then set

αni =
(
∆n
i+1X

′) (∆n
i+1X

′)ᵀ − ci∆n∆n, βni = ĉ′i∆n
− ci∆n ,

and denote the (j, k) components of αni and βni by αnjk,i and βnjk,i respectively.

We consider the decomposition

∆−1/2
n (Fnτ g − Fτg) =

5∑
j=1

Vj,n(τ),
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where

V1,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

(g(ĉi∆n)− g(ĉ′i∆n
))wτ (i∆n)

−∆1/2
n k−1

n

bT/∆nc−kn∑
i=0

(Bg(ĉi∆n)− Bg(ĉ′i∆n
))wτ (i∆n),

V2,n(τ) ≡ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

(g(ci∆n)wτ (i∆n)− g(cs)wτ (s))ds

−∆−1/2
n

∫ T

(bT/∆nc−kn+1)∆n

g(cs)wτ (s)ds,

V3,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

d∑
l,m=1

∂lmg(ci∆n)wτ (i∆n)
1

kn

kn∑
u=1

(clm,(i+u−1)∆n
− clm,i∆n),

V4,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

(
g(ci∆n + βni )− g(ci∆n)

−
d∑

l,m=1

∂lmg(ci∆n)βnlm,i − k−1
n Bg(ĉ′i∆n)

)
wτ (i∆n),

V5,n(τ) ≡ ∆−1/2
n k−1

n

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

αnlm,i+u−1

wτ (i∆n).

We prove the assertion of the theorem by showing

sup
τ∈T
|Vj,n(τ)| = op(1), for j = 1, 2, 3, 4, (6.2)

and

V5,n(·) L-s−→ ξ(·), (6.3)

where ξ(·) denotes a process that is defined on an extension of the space (Ω,F ,P) and, conditional

on F , is centered Gaussian with covariance function M(·, ·).
Step 2. This step contains four substeps which respectively show (6.2) for j = 1, 2, 3, 4. By

using a componentwise argument, we can assume that g is R-valued without loss of generality.

Below, the notations ζni , ζ ′ni and ζ ′′ni are defined differently across substeps 2(i)–2(iv).

Step 2(i). Since g is compactly supported, its derivatives are bounded. Then, by a mean-value

expansion and (4.8) in Jacod and Rosenbaum (2013),

E
∣∣g(ĉi∆n)− g(ĉ′i∆n

)
∣∣ ≤ Kan∆(2−r)$

n (6.4)
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for some deterministic sequence an that satisfies an → 0. Under Assumption WF, it is easy to see

that

sup
τ∈T ,s∈[0,T ]

|wτ (s)| <∞. (6.5)

By (6.4), (6.5) and the triangle inequality,

E

sup
τ∈T

∣∣∣∣∣∣∆1/2
n

bT/∆nc−kn∑
i=0

(g(ĉi∆n)− g(ĉ′i∆n
))wτ (i∆n)

∣∣∣∣∣∣
 ≤ Kan∆(2−r)$−1/2

n → 0, (6.6)

where the convergence follows from $ ≥ 1/2(2−r), which is implied by Assumption LW. Similarly,

E

sup
τ∈T

∣∣∣∣∣∣∆1/2
n k−1

n

bT/∆nc−kn∑
i=0

(Bg(ĉi∆n)− Bg(ĉ′i∆n
))wτ (i∆n)

∣∣∣∣∣∣
→ 0. (6.7)

Combining (6.6) and (6.7), we derive (6.2) for j = 1.

Step 2(ii). By (6.5) and k2
n∆n → 0 (Assumption LW), it is easy to see that

sup
τ∈T

∣∣∣∣∣∆−1/2
n

∫ T

(bT/∆nc−kn+1)∆n

g(cs)wτ (s)ds

∣∣∣∣∣ = Op(kn∆1/2
n ) = op(1).

To simplify notation, we set

R2,n(τ) ≡ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

(g(ci∆n)wτ (i∆n)− g(cs)wτ (s))ds.

We decompose

R2,n(τ) = R2,1,n(τ) +R2,2,n(τ) +R2,3,n(τ),

where

R2,1,n(τ) ≡ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

g(ci∆n) (wτ (i∆n)− wτ (s)) ds,

R2,2,n(τ) ≡ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

(g(ci∆n)− g(cs)−
d∑

l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s))wτ (s)ds,

R2,3,n(τ) ≡ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

d∑
l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s)wτ (s)ds.

By Assumption WF, supτ∈T |wτ (i∆n)− wτ (s)| ≤ K∆n for any s ∈ [i∆n, (i+ 1)∆n]. Hence,

sup
τ∈T
|R2,1,n(τ)| ≤ K∆1/2

n → 0. (6.8)
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Next, consider R2,2,n(τ). By a mean-value expansion and the boundedness of ‖cs‖, we have∣∣∣∣∣∣g(ci∆n)− g(cs)−
d∑

l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s)

∣∣∣∣∣∣ ≤ K ‖cs − ci∆n‖
2 .

By a standard estimate, E ‖cs − ci∆n‖
2 ≤ K |s− i∆n|, where K does not depend on s and i. Since

wτ (s) is uniformly bounded in τ and s, we readily derive

E
[

sup
τ∈T
|R2,2,n(τ)|

]
≤ K∆1/2

n . (6.9)

Now turn to R2,3,n(τ). We first show that R2,3,n(τ) is stochastically equicontinuous. Let

τ, η ∈ T . We observe

|R2,3,n(τ)−R2,3,n(η)|

≤ ∆−1/2
n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

∣∣∣∣∣∣
d∑

l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s) (wτ (s)− wη(s))

∣∣∣∣∣∣ ds
≤ K |τ − η|∆−1/2

n

bT/∆nc−kn∑
i=0

∫ (i+1)∆n

i∆n

∣∣∣∣∣∣
d∑

l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s)

∣∣∣∣∣∣ ds
= |τ − η|Op(1),

where the first inequality follows from the triangle inequality, the second equality is by Assumption

WF, and the last line is derived by observing that |∂lmg(ci∆n)| is bounded and E ‖cs − ci∆n‖ ≤
K∆

1/2
n . The stochastic equicontinuity of R2,3,n(τ) readily follows.

In order to show

sup
τ∈T
|R2,3,n(τ)| = op(1), (6.10)

it remains to show that R2,3,n(τ) = op(1) for each fixed τ ∈ T . To simplify notation, let

ζni (τ) ≡
∫ (i+1)∆n

i∆n

d∑
l,m=1

∂lmg(ci∆n)(clm,i∆n − clm,s)wτ (s)ds.

We denote ζ ′ni (τ) ≡ E [ζni (τ)|Fi∆n ] and ζ ′′ni (τ) ≡ ζni (τ)− ζ ′ni (τ). Then we can decompose

R2,3,n(τ) = R′2,3,n(τ) +R′′2,3,n(τ), (6.11)

where

R′2,3,n(τ) = ∆−1/2
n

bT/∆nc−kn∑
i=0

ζ ′ni (τ), R′′2,3,n(τ) = ∆−1/2
n

bT/∆nc−kn∑
i=0

ζ ′′ni (τ).
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Note that for s ≥ i∆n, ‖E [cs − ci∆n |Fi∆n ]‖ ≤ K |s− i∆n|. Hence, E |ζ ′ni (τ)| ≤ K∆2
n and

E
∣∣R′2,3,n(τ)

∣∣ ≤ K∆1/2
n . (6.12)

Note that ζ ′′ni (τ) forms an array of martingale differences by construction. Moreover, E |ζ ′′ni (τ)|2 ≤
K∆3

n. Hence, for each τ ∈ T , E
∣∣R′′2,3,n(τ)

∣∣2 ≤ K∆n, which further implies

R′′2,3,n(τ) = op(1). (6.13)

Combining (6.11)–(6.13), we derive (6.10). We then derive (6.2) for j = 2 by combining (6.8)–

(6.10).

Step 2(iii). To simplify notation, we set (by overloading the notation ζni )

ζni ≡
d∑

l,m=1

∂lmg(ci∆n)
1

kn

kn∑
u=1

(clm,(i+u−1)∆n
− clm,i∆n),

so that V3,n(τ) can be written as V3,n(τ) = ∆
1/2
n
∑bT/∆nc−kn

i=0 ζni wτ (i∆n). We then set ζ ′ni =

E [ζni |Fi∆n ] and ζ ′′ni = ζni − ζ ′ni . It is easy to see that∣∣ζ ′ni ∣∣ ≤ Kkn∆n, E
∣∣ζ ′′ni ∣∣2 ≤ Kkn∆n. (6.14)

Now, consider the decomposition

V3,n(τ) = V ′3,n(τ) + V ′′3,n(τ),

where

V ′3,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

ζ ′ni wτ (i∆n),

V ′′3,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

ζ ′′ni wτ (i∆n).

By (6.14) and k2
n∆n → 0 (Assumption LW), we derive

sup
τ∈T

∣∣V ′3,n(τ)
∣∣ ≤ K∆1/2

n

bT/∆nc−kn∑
i=0

∣∣ζ ′ni ∣∣ = Op(kn∆1/2
n ) = op(1). (6.15)

Now, note that ζ ′′ni and ζ ′′nl are uncorrelated whenever |i− l| ≥ kn. Hence, by the Cauchy–Schwarz

inequality, (6.5), (6.14) and Assumption LW,

E
∣∣V ′′3,n(τ)

∣∣2 ≤ K∆nkn

bT/∆nc−kn∑
i=0

E
∣∣ζ ′′ni ∣∣2 ≤ Kk2

n∆n → 0.
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In particular, V ′′3,n(τ) = op(1) for each τ ∈ T . We now show that V ′′3,n(τ) is stochastically equicon-

tinuous. Note that for τ, η ∈ T , by the Cauchy–Schwarz inequality, (6.14) and Assumption WF,

E
∣∣V ′′3,n(τ)− V ′′3,n(η)

∣∣2
= E

∣∣∣∣∣∣∆1/2
n

bT/∆nc−kn∑
i=0

ζ ′′ni (wτ (i∆n)− wη(i∆n))

∣∣∣∣∣∣
2

≤ K

∆nkn

bT/∆nc−kn∑
i=0

E
∣∣ζ ′′ni ∣∣2

 |τ − η|2
≤ K |τ − η|2 .

Therefore, the L2 norm of V ′′3,n(τ)− V ′′3,n(η) is bounded by K |τ − η|. Since T is a one-dimensional

space, V ′′3,n(τ) is stochastic equicontinuous. Combining this with the pointwise convergence, we

have

V ′′3,n(τ) = opu(1). (6.16)

Combining (6.15) and (6.16), we derive (6.2) for j = 3.

Step 2(iv). In this substep, we set

ζni ≡ g(ci∆n + βni )− g(ci∆n)−
d∑

l,m=1

∂lmg(ci∆n)βnlm,i − k−1
n Bg(ĉ′i∆n),

ζ ′ni ≡ 1

2

d∑
j,k,l,m=1

∂2
jk,lmg(ci∆n)

(
βnjk,iβ

n
lm,i −

1

kn
(cjl,i∆nckm,i∆n + cjm,i∆nckl,i∆n)

)
ζ ′′ni ≡ ζni − ζ ′ni .

Note that V4,n(τ) = ∆
1/2
n
∑bT/∆nc−kn

i=0 ζni wτ (i∆n). In the proof of Lemma 4.4 in Jacod and Rosen-

baum (2013), it was shown that

E

∆1/2
n

bT/∆nc−kn∑
i=0

(∣∣ζ ′′ni ∣∣+
∣∣E [ζ ′ni |Fi∆n

]∣∣)→ 0.

Hence, by (6.5), we have

sup
τ∈T

∣∣∣∣∣∣∆1/2
n

bT/∆nc−kn∑
i=0

(
ζ ′′ni + E

[
ζ ′ni |Fi∆n

])
wτ (i∆n)

∣∣∣∣∣∣ = op(1).

To show (6.2) for j = 4, it remains to show that,

V ′4,n(τ) ≡ ∆1/2
n

bT/∆nc−kn∑
i=0

(
ζ ′ni − E

[
ζ ′ni |Fi∆n

])
wτ (i∆n) = opu(1). (6.17)
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As shown in Jacod and Rosenbaum (2013) (see (4.11)), E ‖βni ‖
4 ≤ K(k−2

n +kn∆n). By Assumption

LW, we have

E
∣∣ζ ′ni ∣∣2 ≤ K(k−2

n + kn∆n) ≤ Kkn∆n.

Further note that ζ ′ni − E [ζ ′ni |Fi∆n ] and ζ ′nl − E [ζ ′nl |Fl∆n ] are uncorrelated whenever |i− l| ≥ kn.

Hence, for τ, η ∈ T ,

E|V ′4,n(τ)− V ′4,n(η)|2 = ∆nE

bT/∆nc−kn∑
i=0

(
ζ ′ni − E

[
ζ ′ni |Fi∆n

])
(wτ (i∆n)− wη(i∆n))

2
≤ K∆nkn

bT/∆nc−kn∑
i=0

E
∣∣ζ ′ni ∣∣2 (wτ (i∆n)− wη(i∆n))2

≤ K |τ − η|2 .

Since T ⊆ R, the above estimate implies that V ′4,n(τ) is stochastically equicontinuous. The proof

of (6.17) is now reduced to showing the pointwise convergence, that is, V ′4,n(τ) = op(1) for fixed

τ ∈ T . To see this, we observe that

E
∣∣V ′4,n(τ)

∣∣2 ≤ K∆nkn

bT/∆nc−kn∑
i=0

E
∣∣ζ ′ni ∣∣2 ≤ Kk2

n∆n → 0.

This finishes the proof of (6.2) for j = 4.

Step 3. In this step, we show (6.3). The finite-dimensional convergence is obtained by a

straightforward extension of the proof of Lemma 4.5 in Jacod and Rosenbaum (2013). It remains

to show that the process Vn,5(τ) is stochastic equicontinuous.

We set α′nlm,i = E[αnlm,i|Fi∆n ] and α′′nlm,i = αnlm,i − α′nlm,i. We can decompose

Vn,5(τ) = V ′n,5(τ) + V ′′n,5(τ),

where

V ′n,5(τ) ≡ ∆−1/2
n k−1

n

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

α′nlm,i+u−1

wτ (i∆n),

V ′′n,5(τ) ≡ ∆−1/2
n k−1

n

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

α′′nlm,i+u−1

wτ (i∆n).

Note that

sup
τ∈T

∥∥V ′n,5(τ)
∥∥ ≤ K∆−1/2

n k−1
n

bT/∆nc−kn∑
i=0

 d∑
l,m=1

kn∑
u=1

∥∥α′nlm,i+u−1

∥∥ P−→ 0,
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where the inequality follows from (6.5) and the convergence is derived by using (4.12) and Lemma

4.2 in Jacod and Rosenbaum (2013).

It remains to show that V ′′n,5(τ) is stochastically equicontinuous. Note that (α′′nlm,i,F(i+1)∆n
)

forms an array of martingale differences. Hence,
∑kn

u=1 α
′′n
lm,i+u and

∑kn
u=1 α

′′n
lm,j+u are uncorrelated

whenever |i − j| ≥ kn. Moreover, E ‖α′′ni ‖
2 ≤ E ‖αni ‖

2 ≤ K∆2
n, where the second inequality is by

(4.10) in Jacod and Rosenbaum (2013). Therefore,

E

∥∥∥∥∥
kn∑
u=1

α′′nlm,i+u

∥∥∥∥∥
2

≤ Kkn∆2
n. (6.18)

For any τ, η ∈ T ,

E
∥∥V ′′n,5(τ)− V ′′n,5(η)

∥∥2

= ∆−1
n k−2

n E

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

α′′nlm,i+u−1

 (wτ (i∆n)− wη(i∆n))

2
≤ K∆−1

n k−1
n E

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

α′′nlm,i+u−1

2

(wτ (i∆n)− wη(i∆n))2


≤ K |τ − η|2 ∆−1

n k−1
n E

bT/∆nc−kn∑
i=0

 d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

α′′nlm,i+u−1

2
≤ K |τ − η|2 ,

where the first inequality follows from the Cauchy–Schwarz inequality, the second inequality follows

from Assumption WF, and the third inequality follows from (6.18) and the boundedness of ‖∂g(ct)‖.
It readily follows that V ′′n,5(τ) is stochastically equicontinuous. This finishes the proof of (6.3). The

proof of the theorem is complete. Q.E.D.

Proof of Theorem 3. Theorem 2, when applied to the constant weight function, implies that

x̄n
P−→ x̄ and ȳn

P−→ ȳ. The assertion then follows from Assumption ID. Q.E.D.

Proof of Theorem 4. Recall that x̄n ≡ Fnx, ȳn ≡ Fny, x̄ ≡ Fx and ȳ ≡ Fy. We set

ξx,n = ∆−1/2
n (x̄n − x̄), ξy,n = ∆−1/2

n (ȳn − ȳ), ξΨ,n = ∆−1/2
n (Ψn −Ψ). (6.19)
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We observe

∆−1/2
n x̄ᵀnΨn (ȳn − x̄nθ∗0)

= ∆−1/2
n (x̄+ ∆1/2

n ξx,n)ᵀ
(

Ψ + ∆1/2
n ξΨ,n

)(
ȳ − x̄θ∗0 + ∆1/2

n (ξy,n − ξx,nθ∗0)
)

= ∆−1/2
n x̄ᵀΨ (ȳ − x̄θ∗0) + ξᵀx,nΨ(ȳ − x̄θ∗0) + x̄ᵀξΨ,n (ȳ − x̄θ∗0) + x̄ᵀΨ (ξy,n − ξx,nθ∗0) + op(1)

= ξᵀx,nΨ(ȳ − x̄θ∗0) + x̄ᵀξΨ,n (ȳ − x̄θ∗0) + x̄ᵀΨ (ξy,n − ξx,nθ∗0) + op(1),

(6.20)

where the first equality is by definition, the second equality follows from the fact that ξx,n, ξy,n and

ξΨ,n are Op(1), and the third equality is obtained by using x̄ᵀΨ (ȳ − x̄θ∗0) = 0.

Note that ∆
−1/2
n (θn−θ∗0) = (x̄ᵀnΨnx̄n)−1∆

−1/2
n x̄ᵀnΨn (ȳn − x̄nθ∗0). We derive the assertion of the

theorem by combining (6.20) with Assumption SC. Q.E.D.

Proof of Proposition 1. (a) Recall (6.19). Let g = (yᵀ, vec(x)ᵀ)ᵀ. Since g is three times

continuously differentiable, by Theorem 2, Assumption SC is verified with (ξy,n, vec(ξx,n))
L-s−→

MN (0,FV (g, g)) and ξΨ,n = ξΨ = 0. Note that ξxθ
∗
0 = (θ∗ᵀ0 ⊗ Iq)vec (ξx). The assertion of part

(a) is then implied by Theorem 4.

(b) By Theorem 3, θn
P−→ θ∗0. Since x is continuous, by Theorem 1, we have F̂nx P−→ x̄.

Furthermore, with g = (yᵀ, vec(x)ᵀ)ᵀ, V (g, g) is also continuous. Hence, we can apply Theorem 1

to the function V (g, g) and derive that F̂nV (g, g)
P−→ FV (g, g). From here we derive An

P−→ A∗.

The assertion of part (b) readily follows. Q.E.D.

Proof of Proposition 2. It is obvious that Ω0,T ⊆ {Fτ (y? − x?θ∗0) = 0 for all τ ∈ T }. It remains

to show the inclusion in the other direction. Fix a path ω ∈ Ω on which Fτ (y? − x?θ∗0) = 0 for

all τ ∈ T . On this path, we consider a càdlàg function f (s) = y?(cs) − x?(cs)θ∗0 and observe that∫ T
0 f (s)wτ (s)ds = 0 for all τ ∈ T . Since the weight functions form a complete family, we have

f(s) = 0 for Lebesgue almost every s ∈ [0, T ]. Since z?m (·) is strictly positive, this further implies

that ỹm(cs) − x̃m(cs)
ᵀθ∗m,0 = 0 for almost every s ∈ [0, T ] and all 1 ≤ m ≤ m̄. Hence, ω ∈ Ω0,T ,

which completes the proof. Q.E.D.

Proof of Proposition 3. Fix an arbitrary càdlàg function f : [0, T ] 7→ R. The proof requires

showing the claim that, if
∫ T

0 f (s)wτ (s)ds = 0 for all τ ∈ T , then f (s) = 0 for almost every

s ∈ [0, T ]. Below, we suppose the condition in this claim holds. Let S be a random variable

uniformly distributed on [0, T ] and U = f(S). It remains to show that E[U |S] = 0 almost surely.

Suppose the claim were not true, that is, P(E [U |S] = 0) < 1. Note that, since f is càdlàg,

U is bounded. Then, by Theorem 1 of Bierens and Ploberger (1997), the set T0 ≡ {τ ∈ R :
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E [Uw(τS)] = 0} would have zero Lebesgue measure. Since the Lebesgue measure of T is positive,

we then would have 0 6= E [Uw(τS)] =
∫ T

0 f (s)w (τs) ds for some τ ∈ T , a contradiction. The

proof is now complete. Q.E.D.

Proof of Theorem 5. Part (a). By Theorem 1, Fnτ y? = Fτy? + opu(1), Fnτ x? = Fτx? + opu(1)

and θn = θ∗0 + opu (1). The assertion in part (a) readily follows from the definition of ζn (τ).

Part (b). Recall that h? = (y?ᵀ, vec (x?)ᵀ)ᵀ and h = (yᵀ, vec (x)ᵀ)ᵀ. By a slight extension of

Theorem 2, we see that the sequence of processes

ξn (τ) ≡
(

∆−1/2
n (Fnτh? − Fτh?)ᵀ ,∆−1/2

n (Fnh− Fh)ᵀ
)ᵀ

(6.21)

converges stably in law to a process ξ (τ) which, conditional on F , is centered Gaussian with

covariance function

Q(τ, η) ≡

 Fτ,ηV (h?, h?) FτV (h?, h)

FηV (h, h?) FV (h, h)

 .

Note that ξn(τ) consists of the following components: ξ?y,n(τ) = ∆
−1/2
n (Fnτ y? − Fτy?), ξ?x,n(τ) = ∆

−1/2
n (Fnτ x? − Fτx?) ,

ξy,n = ∆
−1/2
n (Fny − Fy), ξx,n = ∆

−1/2
n (Fnx− Fx) .

In restriction to Ω0,T ,

ζn (τ) = ∆−1/2
n (Fnτ y? − (Fnτ x?) θn)

= ∆−1/2
n (Fnτ y? − (Fnτ x?) θ0)−∆−1/2

n (Fnτ x?) (θn − θ0)

= ξ?y,n(τ)− ξ?x,n (τ) θ0 − (Fτx?) Ξ (ξy,n − ξx,nθ0) + opu (1)

= ξ?y,n(τ)− (θᵀ0 ⊗ Im̄) vec
(
ξ?x,n (τ)

)
− (Fτx?) Ξ (ξy,n − (θᵀ0 ⊗ Iq)vec (ξx,n)) + opu (1) .

Recall that κ (τ ; θ) = (Im̄,− (θᵀ ⊗ Im̄) ,− (Fτx?) Ξ, (Fτx?) Ξ (θᵀ ⊗ Iq)). Hence, ζn (τ) = κ(τ ; θ0)ξn(τ)+

opu(1). Therefore, ζn(·) converges stably in law to a mixture centered Gaussian process with F-

conditional covariance function κ (τ ; θ0)Q (τ, η)κ (η; θ0)ᵀ for τ, η ∈ T .

Part (c). By Theorem 1, we have Qn(τ, η)
P−→ Q(τ, η) uniformly in τ, η ∈ T . Applying

Theorem 1 again, we derive F̂nτ x? = Fτx? + opu(1) and Ξn
P−→ Ξ. Since θn

P−→ θ∗0, we have

κn(τ ; θn)
P−→ κ (τ ; θ∗0) uniformly in τ ∈ T . From here, we readily derive the assertions of part (c).

Q.E.D.
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