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We consider specification and inference for the stochastic scale
of discretely-observed pure-jump semimartingales with locally stable
Lévy densities in the setting where both the time span of the data
set increases and the mesh of the observation grid decreases. The
estimation is based on constructing nonparametric estimate for the
empirical Laplace transform of the stochastic scale over a given inter-
val of time by aggregating high-frequency increments of the observed
process on that time interval into a statistic we call realized Laplace
transform. The realized Laplace transform depends on the activity of
the driving pure-jump martingale and we consider both cases when
the latter is known or has to be inferred from the data.

1. Introduction. Continuous-time semimartingales are used extensively
for modeling many processes in various areas and in particular finance. Typ-
ically the model of interest is an Itô semimartingale (semimartingale with
absolute continuous characteristics) given by

(1.1) dXt = αtdt+ σt−dZt + dYt,

where αt and σt are some processes with càdlàg paths, Zt is an infinite varia-
tion Lévy martingale, Yt is a finite variation jump process satisfying certain
regularity conditions (all technical conditions on the various processes will be
given later). The martingale Zt can be continuous (i.e., Brownian motion),
jump-diffusion or of pure-jump type (i.e., without a continuous component).
The presence of the last term in (1.1) might appear redundant as Zt can
already contain jumps, but its presence will allow us to encompass also the
class of time-changed Lévy processes in our analysis. In any case, this last
term in (1.1) is dominated over small scales by the term involving Zt.

Our interest in this paper will be in inference about the process σt when
Zt is a pure-jump Lévy process. Pure-jump models have been used to study
various processes of interest such as volatility and volume of financial prices
[3, 5], traffic data [21], and electricity prices [18].
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Parametric or nonparametric estimation of a model satisfying (1.1) in the
pure-jump case is quite complicated for at least the following reasons. First,
very often the transitional density of Xt is not known in closed-form. This
holds true even in the relatively simple case when Xt is a pure-jump Lévy
process. Second, in many situations the realistic specification of σt often
implies that Xt is not a Markov process, with respect to its own filtration,
and hence all developed methods for estimation of the latter will not apply.
Third, the various parameters of the model (1.1) capture different statistical
properties of the process Xt and hence will have various rates of convergence
depending on the sampling scheme. For example, in general αt and the tails
of Zt can be estimated consistently only when the span of the data increases,
whereas the so-called activity of Zt can be recovered even from a fixed-span
data set, provided the mesh of the latter decreases (see [6] for estimation
of the activity from low-frequency data set). Finally, the simulation of the
process Xt can be in many cases difficult or time consuming.

In view of the above-mentioned difficulties, our goal here is specification
analysis for only part of the model, mainly the process σt, in the case when
Xt is a pure-jump process following (1.1). We conduct inference in the case
when we have a high-frequency data set of Xt with increasing time span (see
[6] and [22] for inference about jump processes based on low frequency). We
refer to σt as the stochastic scale of the pure-jump process Xt in analogy
with the scale parameter of a stable process, i.e., when Xt is a stable process
then the constant σ is the scale of the process. σt is key in the specification of
(1.1) and in particular it captures the time-variation of the process Xt over
small intervals of time. Our goal here will be to make the inference about
σt robust to the rest of the components of the model, i.e., the specification
of αt and Yt as well as the dependence between σt and Zt.

The inference in the paper is for processes for which the Lévy measure of
the driving martingale Zt in (1.1) behaves around zero like that of a stable
process. This covers of course the stable process, but also many other Lévy
processes of interest with details provided in Section 2 below. The idea of
our proposed method of inference is to use the fact that when Zt is locally
stable, the leading component of the process Xt over small scales is gov-
erned by that of the “stable component” of Zt. Moreover, when σt is an
Itô semimartingale, then “locally” its changes are negligible and σt can be
treated as constant. Intuitively then infill asymptotics can be conducted as
if the increments of Xt are products of (a locally constant) stochastic scale
and independent i.i.d. stable random variables. This in particular implies
that the empirical characteristic function of the high-frequency increments
over a small interval of time will estimate the characteristic function of a
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scaled stable process. The latter, however, is the Laplace transform for the
locally constant stochastic scale. Therefore, aggregating over a fixed interval
time the empirical characteristic function of the (appropriately re-scaled)
high-frequency increments of Xt provides a nonparametric estimate for the
empirical Laplace transform of the stochastic scale over that interval. We
refer to this simple statistic as realized Laplace transform for pure-jump
processes. The connection between the empirical characteristic function of
the driving martingale and the Laplace transform of the stochastic scale
in the context of time-changed Lévy processes, with time-change indepen-
dent of the driving martingale, has been previously used for low-frequency
estimation in [7].

The inference based on the realized Laplace transform is robust to the
specification of αt as well as the tail behavior of Zt. Intuitively, this is due
to our use of the high-frequency data whose marginal law is essentially deter-
mined by the small jumps of Zt and the stochastic scale σt. Quite naturally,
however, our inference depends on the activity of the small jumps of the
driving martingale Zt. The latter corresponds to the index of the stable part
of Z and using the self-similarity of the stable process, it determines its
scaling over different (high) frequencies. Therefore, the activity index enters
directly in the calculation of the realized Laplace transform. We conduct
inference both in the case where the activity is assumed known and when
it needs to be estimated from the data. The estimation of the activity in-
dex however differs from the inference for the stochastic scale. While for
the latter we need in general the time-span to increase to infinity (except
for the degenerate case when σt is actually constant), for the former this is
not the case. The activity index can be estimated only with a fixed span
of high-frequency data and in general increasing time-span will not help for
its nonparametric estimation. Therefore, we estimate the activity index of
Zt using initial part of the sample with a fixed span and then plug it in
the construction of the realized Laplace transform. We further quantify the
asymptotic effect from this plug-in approach on the inference for the Laplace
transform of the stochastic scale.

The Laplace transform of the stochastic scale preserves the information
for its marginal distribution. Therefore, it can be used for efficient estima-
tion and specification testing. We illustrate this in a parametric setting by
minimizing a distance between our nonparametric Laplace estimate and a
model implied one, similar to estimation based on the empirical character-
istic function as in [13].

Finally, the current paper studies the realized Laplace transform for the
case when Zt is pure-jump while [29] (and the empirical application of it
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in [30]) consider the case where Zt is a Brownian motion. The pure-jump
case is substantively different, starting from the very construction of the
statistic as well as its asymptotic behavior. The leading component in the
asymptotic expansions in the pure-jump case is a stable process with index
less than 2 and this index is in general unknown and needs to be estimated,
which further necessitates different statistical analysis from the continuous
case. Also, the residual components in Xt, like αt, play a more prominent
role when Xt is of pure-jump type, and when the activity is low this requires
modifying appropriately the realized Laplace transform to purge them.

The paper is organized as follows. Section 2 presents the formal setup
and assumptions. Section 3 introduces the realized Laplace transform and
derives its limit behavior. In Section 4 we conduct a Monte Carlo study
and in Section 5 we present a parametric application of the developed limit
theory. Section 6 concludes. The proofs are given in Section 7.

2. Setting and Assumptions. Throughout the paper, the process of
interest is denoted with Xt and is defined on some filtered probability space
(Ω,F , (Ft)t≥0,P). Before stating our assumptions, we recall that a Lévy pro-
cess Lt with characteristic triplet (b, c, ν) with respect to truncation function
κ(x) = x (we will always assume that the process has a finite first order mo-
ment) is a process with characteristic function given by

(2.1) E
(
eiuLt

)
= exp

(
t

(
iub− u2c/2 +

∫
R
(eiux − 1− iux)ν(dx)

))
.

With this notation, we assume that the Lévy process Zt in (1.1) has a
characteristic triplet (0, 0, ν) for ν some Lévy measure. Note that since the
truncation function with respect to which the characteristics of the Lévy
processes are presented is the identity, the above implies that Zt is a pure-
jump martingale. The first term in (1.1) is the drift term. It captures the
persistence in the process and when Xt is used to model financial prices, the
drift captures compensation for risk and time. The second term in (1.1) is
defined in a stochastic sense since in assumption A below we will assume
that Zt is of infinite variation. The last term in (1.1) is a finite variation
pure-jump process. Assumption A below will impose some restrictions on
its properties, but we stress that there is no assumption of independence
between the processes σt, Zt and Yt.

In the pure-jump model the jump martingale Zt substitutes the Brownian
motion used in jump-diffusions to model the “small” moves. We note that
the “dominant” part of the increment of Xt over a short interval of time
(t, t+∆) is σt−× (Zt+∆−Zt). This term is of order Op(∆

α) for α ∈ [1/2, 1),
while the rest of the components of Xt are at most Op(∆) when ∆ ↓ 0.
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We recall from the introduction that our object of interest in this paper
is the stochastic scale of the martingale component of Xt, i.e., σt. Of course
we observe only Xt and σt is hidden into it, so our goal in the paper will
be to uncover σt, and its distribution in particular, with assuming as little
as possible about the rest of the components of Xt and the specification
of σt itself (including the activity of the driving martingale). Given the
preceding discussion, the scaling of the driving martingale components over
short intervals of time will be of crucial importance for us, as at best we can
observe only a product of the stochastic scale with Zt,t+∆. Our assumption
A below characterizes the behavior of Zt and Yt over small scales.
Assumption A.The Lévy density of Zt, ν, is given by

(2.2) ν(x) =
A

|x|β+1
+ ν ′(x), β ∈ (1, 2),

∫
R
|x|ν(x)dx < ∞,

where

(2.3) A =

(
4Γ(2− β)| cos(βπ/2)|

β(β − 1)

)−1

, β ∈ (1, 2),

and further there exists x0 > 0 such that for |x| ≤ x0 we have |ν ′(x)| ≤ C
|x|β′+1

for some β′ < 1 and a constant C ≥ 0.
We further have Yt absolutely integrable and E|Yt−Ys|β

′
< C|t−s|| log |t−

s|| for every t, s ≥ 0 with |t− s| ≤ 1, some positive constant C, and β′ < 1
being the constant above.

Assumption A implies that the small scale behavior of the driving martin-
gale Zt is like that of a stable process with index β. The index β determines
the “activity” of the driving process, i.e., the vibrancy of its trajectories,
and thus henceforth we will refer to it as the activity. Formally, β equals
the Blumenthal-Getoor index of the Lévy process Zt. The value of the index
β is crucial for recovering σt from the discrete data on Xt, as intuitively it
determines how big on average the increments Zt,t+∆ should be for a given
sampling frequency. The following lemma makes this formal.

Lemma 1. Let Zt satisfy assumption A. Then for h → 0 we have

(2.4) h−1/βZth
L−→ St,

where the convergence is for the Skorokhod topology on the space of càdlàg
functions: R+ → R, and St is a stable process with characteristic function
E
(
eiuS1

)
= e−|u|β/2.
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The value of the constant A in (2.3) is a normalization that we impose.
We are obviously free to do that since what we observe is Xt whose leading
component over small scales is an integral of σt with respect to the jump
martingale Zt and we never observe the two separately. The above choice
of A is a convenient one that ensures that when β → 2, the jump process
converges finite-dimensionally to Brownian motion. We note that in assump-
tion A we rule out the case β ≤ 1 but this is done for brevity of exposition
as most processes of interest are of infinite variation, (although we rule out
some important processes like the Generalized Hyperbolic).

In assumption A we restrict the “activity” of the “residual” jump com-
ponents of X, i.e., we limit their effect in determining the small moves of
X. The effect of the “residual” jump components on the small moves is con-
trolled by the parameter β′. From (2.2), the leading component of ν(x) is
the Lévy density of a stable and ν ′(x) is the residual one. The restriction
β′ < 1, implies that the “residual” jump component is of finite variation.
This restriction is not necessary for convergence in probability results (only
β′ < β is needed for this) but is probably unavoidable if one needs also the
asymptotic distribution of the statistics that we introduce in the paper. In
most parametric models this restriction is satisfied.

We note that ν ′(x) in (2.2) is a signed measure and therefore assumption
A restricts only the behavior of ν(x) for x ∼ 0 to be like that of a stable
process. However, for the big jumps, i.e., when |x| > K for some arbitrary
K > 0, the stable part of ν(x) can be completely eliminated or tempered by
negative values of the “residual” ν ′(x). An example of this, which is covered
by our assumption A, is the tempered stable process of [24], generated from
the stable by tempering its tails, which has all its moments finite. Therefore,
while assumption A ties the small scale behavior of the driving martingale
Zt with that of a stable process, it leaves its large scale behavior unrestricted
(i.e., the limit of h−αZth for some α > 0 when h → ∞ is unrestricted by our
assumption) and thus in particular unrelated with that of a stable process.
Remark 1. Assumption A is analogous to the assumption used in [2]. It
is also related with the so-called regular Lévy processes of exponential type
studied in [9] with β = ν in the notation of that paper. Compared with the
above mentioned processes of [9], we impose slightly more structure on the
Lévy density around zero but no restriction outside of it. We note that if
assumption A fails then the results that follow are not true. The degree of
the violation depends on the sampling frequency and the deviation of the
characteristic function of Z over small scales from that of a stable.

Finally, the process Yt also captures a “residual” jump component of Xt in
terms of its small scale behavior. Assumption A limits its activity by β′. The
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component of Z corresponding to ν ′(x) and Yt control the jump measure of
Xt away from zero. Unlike the former whose time variation is determined
by σt, the latter has essentially unrestricted time variation. There is clearly
some “redundancy” in the specification in (1.1) in terms of modeling the
jumps of Zt away from zero, but this is done to cover more general pure-
jump models as clear from the following two remarks.
Remark 2. Assumption A nests time-changed Lévy processes with absolute
continuous time changes (see e.g., [11]), i.e., specifications of the form

(2.5) dXt = αtdt+

∫ t

0

∫
R
xµ̃(ds, dx),

where µ is a random integer-valued measure with compensator atdt⊗ ν(dx)
for some nonnegative process at and Lévy measure ν(dx) satisfying (2.2) of
assumption A and µ̃ = µ−ν. This can be shown using Theorem 14.68 of [14]
or Theorem 2.1.2 of [15], linking integrals of random functions with respect
to Poisson measure and random integer-valued measures, and implies that

Xt in (2.5) can be equivalently represented as (1.1) with σt given by a
1/β
t .

On the other hand, if we start with X given by (1.1), with Z strictly
stable and no Y , we can show using the definition of jump compensator and
Theorem II.1.8 of [16] that the latter is a time-changed Lévy process with
time change |σt−|β. For more general “stable-like” Lévy processes, we need
to introduce an additional term (this is Yt in (1.1)) in addition to the above
time-changed stable process.

We note that the connection of (1.1) with the time-changed Lévy processes
does not depend on the presence of any dependence between σt and Zt.
Remark 3. Assumption A is also satisfied by the pure-jump Lévy-driven
CARMA models (continuous-time autoregressive moving average) which have
been used for modeling series exhibiting persistence, see e.g., [10] and the
many references therein. For these processes σt in (1.1) is a constant.

Our next assumption imposes minimal integrability conditions on αt and
σt and further limits the amount of variation in these processes over short
periods of time. Intuitively, we will need the latter to guarantee that by
sampling frequently enough we can treat “locally” σt (and αt) as constant.
Assumption B. The process σt is an Itô semimartingale given by

σt = σ0 +

∫ t

0
α̃sds+

∫ t

0
σ̃sdWs +

∫ t

0

∫
R
δ(s−, x)µ̃(ds, dx),(2.6)

where W is a Brownian motion; µ is a homogenous Poisson measure, with
Lévy measure ν(dx), having arbitrary dependence with µ, for µ being the
jump measure of Z. We assume |δ(t, x)| ≤ γtδ(x) for some integrable process
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γt and
∫
R(δ(x) ∧ 1)β

′′
ν(dx) < ∞ for some β

′′
< 2. Further for every t and

s we have:
(2.7){

E
(
α2
t + σ2

t + α̃2
t + σ̃2

t + (σ̃′
t)
2 +

∫
R δ2(t, x)ν(dx)

)
< C,

E
(
|αt − αs|2 + |σ̃t − σ̃s|2 +

∫
R(δ(t, x)− δ(s, x))2ν(dx)

)
< C|t− s|,

where C > 0 is some constant that does not depend on t and s.
Assumption B imposes σt to be an Itô semimartingale. This is a relatively

mild assumption satisfied by the popular multifactor affine jump-diffusions
[12] as well as the CARMA Lévy-driven models used to model persistent
processes [10]. Assumption B rules out certain long-memory specifications
for σt although we believe that at least for some of them the results in this
paper will continue to hold.

Importantly, however, assumption B allows for jumps in the stochastic
scale that can have arbitrary dependence with the jumps in Xt which is par-
ticularly relevant for modeling financial data, e.g., the parametric models of
[17]. Finally, the second part of (2.7) will be satisfied when the corresponding
processes are Itô semimartingales. The next assumption B′ restricts assump-
tion B in a way that will allow us to strengthen some of the theoretical results
in the next section.
Assumption B′. The process σt is an Itô semimartingale given by

σt = σ0 +

∫ t

0

α̃sds+

∫ t

0

σ̃sdWs +

∫ t

0

σ̃′
sdZs +

∫ t

0

∫
R
δ(s−, x)µ̃(ds, dx),(2.8)

with the same notation as assumption B with the only difference that µ is
now independent from µ. We also assume that corresponding condition (2.7)
holds as well as that Zt is square-integrable.

The strengthening in assumption B′ is in the modeling of the dependence
between the jumps in Xt and σt. In assumption B′ this is done via the third
integral in (2.8). This is similar to modeling dependence between continu-
ous martingales using correlated Brownian motions. What is ruled out by
assumption B′ is dependence between the jumps in Xt and σt that is differ-
ent for the jumps of different size. Assumption B′ will be satisfied when the
pair (Xt, σt) are modeled jointly via a Lévy-driven SDE.

Finally, in our estimation we make use of long-span asymptotics for the
process σt and the latter contains temporal dependence. Therefore, we need a
condition on this dependence that guarantees that a Central Limit Theorem
for the associated empirical process exists. This condition is given next.
Assumption C. The volatility σt is a stationary and α-mixing process with
αmix
t = O(t−3−ι) for arbitrary small ι > 0 when t → ∞, where

αmix
t = sup

A∈F0, B∈F t

|P(A∩B)−P(A)P(B)|, F0 = σ(σs, s ≤ 0) and F t = σ(σs, s ≥ t).
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3. Limit theory for RLT of Pure-Jump Semimartingales. Now
we are ready to formally define the realized Laplace transform for the pure-
jump model and derive its asymptotic properties. We assume the process
Xt is observed at the equidistant times 0,∆n, ..., i∆n, ..., [T/∆n] where ∆n

is the length of the high-frequency interval and T is the span of the data.
The realized Laplace transform is then defined as:
(3.1)

VT (X,∆n, β, u) =

[T/∆n]∑
i=1

∆n cos((2u)
1/β∆−1/β

n ∆n
i X), ∆n

i X = Xi∆n−X(i−1)∆n
,

where β is the activity index of the driving martingale Zt given in its Lévy
density in (2.2). VT (X,∆n, β, u) is the real part of the empirical characteris-
tic function of the appropriately scaled increments of the process Xt. In the
case of jump-diffusions, β in (3.1) is replaced with 2 as the activity of the
Brownian motion has an index of 2 (i.e., for the Brownian motion Lemma 1
holds with β replaced by 2). We show in this section that VT (X,∆n, β, u)/T
is a consistent estimator for the empirical Laplace transform of |σt|β and
further derive its asymptotic properties under various sampling schemes as
well as assumptions regarding whether β is known or needs to be estimated.

3.1. Fixed Span Asymptotics. We start with the case when T is fixed and
∆n → 0, i.e., the infill asymptotics, and we further assume we know β. Since
the driving martingale over small scales behaves like β-stable (assumption A)
and the stochastic scale changes over short intervals are not too big on aver-
age (assumption B), then the “dominant” part (in a infill asymptotic sense)
of the increment ∆n

i X (when ∆n is small) is σ(i−1)∆n
∆n

i Z. ∆n
i Z is approxi-

mately stable and from Lemma 1 we have approximately ∆n
i Z

d
= ∆

1/β
n ×Z1

with the characteristic function of Z1 given by e−|u|β/2. Therefore, for a fixed
T , VT (X,∆n, β, u) is approximately a sample average of a heteroscedastic
data series. Thus, by a Law of Large Numbers (when ∆n → 0), it will con-

verge to
∫ T
0 e−u|σt|βds, which is the empirical Laplace transform of |σt|β after

dividing by T . The following theorem gives the precise infill asymptotic re-
sult. In it we denote with L−s convergence stable in law, which means that
the convergence in law holds jointly with any random variable defined on
the original probability space.

Theorem 1. For the process Xt, assume that assumptions A and B hold
with β′ < β/2 and let ∆n → 0 with T fixed.
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(a) If β > 4/3, then we have
(3.2)

1√
∆n

(
VT (X,∆n, β, u)−

∫ T

0
e−u|σs|βds

)
L−s−→

√∫ T

0
Fβ(u1/β|σs|)ds×E,

where E is a standard normal variable defined on an extension of the
original probability space and independent from the σ-field F ; Fβ(x) =

e−2β−1xβ−2e−xβ+1
2 for x > 0.

A consistent estimator for the asymptotic variance is given by

(3.3)
VT (X,∆n, β, 2

β−1u)− 2VT (X,∆n, β, u) + 1

2
.

(b) If β ≤ 4/3, then

(3.4)

(
VT (X,∆n, β, u)−

∫ T

0
e−u|σs|βds

)
= Op

(
∆2−2/β

n

)
.

In the case when Xt is a Lévy process, or more generally when only the
scale σt is constant as is the case for the Lévy-driven CARMA models, the
above theorem can be used to estimate the scale coefficient σ by either
fixing some u or using a whole range of u-s as in the methods for estimation
of stable processes based on the empirical characteristic function, see e.g.,
[19] and [1]. Furthermore, this can be done jointly with the nonparametric
estimation of β by using for example the estimator we proposed in [27] that
we define in (3.17) below.

The limit result in Theorem 1 is driven by the small jumps in Xt and this
allows us to disentangle the stochastic scale (which drives their temporal
variation) from the other components of the model, mainly the jumps away
from zero. This is due to the fact that the cosine function is bounded and
infinitely differentiable which limits the effect of the jumps of size away
from zero on it. By contrast, for example, the infill asymptotic limit of the
quadratic variation of the discretized process is the quadratic variation of
Xt which is determined by all jumps not just the infinitely small ones.

Unfortunately when the activity of the driving martingale is relatively
low, i.e., β < 4/3, we do not have a CLT for VT (X,∆n, β, u). The reason
is in the presence of the drift term, which for the purposes of our estima-
tion starts behaving closer to the driving martingale Zt and this slows the
rate of convergence of our statistic. However, we can use the fact that over
successive short intervals of time the contribution of the drift term in the
increments of Xt is the same while sum or difference of i.i.d. stable random
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variables continues to have a stable distribution. Therefore, if we difference
the increments of Xt, we will remove the drift term (up to the effect due
to the time-variation in it which will be negligible) and the leading term
will still be a product of the locally constant stochastic scale and a stable
variable. Thus we consider the following alternative estimator

(3.5) ṼT (X,∆n, β, u) =

[T/∆n]∑
i=2

∆n cos
[
u1/β∆−1/β

n (∆n
i X −∆n

i−1X)
]
.

Theorem 2. For the process Xt, assume that assumptions A and B hold
with β′ < β/2 and let ∆n → 0 with T fixed. We have
(3.6)

1√
∆n

(
ṼT (X,∆n, β, u)−

∫ T

0
e−u|σs|βds

)
L−s−→

√∫ T

0
F̃β(u1/β|σs|)ds× Ẽ,

where Ẽ is a standard normal variable defined on an extension of the original

probability space and independent from the σ-field F ; F̃β(x) =

(
e−2β−1xβ+1

2

)2

+

2e−xβ e−2β−1xβ+1
2 − 3e−2xβ

+

(
e−2β−1xβ−1

2

)2

for x > 0.

A comparison of the standard errors in (1) and (2) shows that the latter
can be up to 2.5 times higher than the former for values of β > 4/3. This
is the cost of removing the effect of the drift term via the differencing of
the increments. Therefore, ṼT (X,∆n, β, u) should be used only in the case
when β ≤ 4/3. For brevity, the results that follow will be presented only for
VT (X,∆n, β, u), but analogous results will hold for ṼT (X,∆n, β, u).

3.2. Long Span Asymptotics: The Case of Known Activity. We continue
next with the case when the time span of the data increases together with
the mesh of observation grid decreasing. The high-frequency data allows us
to “integrate out” the increments ∆n

i Z, i.e. it essentially allows to “deconvo-
lute” σt from the driving martingale of Xt in a robust way. After dividing by
T , the infill asymptotic limit of (3.1) is the empirical Laplace transform of the
stochastic scale and we henceforth denote it as L̂β(u) =

1
T VT (X,∆n, β, u).

Then, by letting T → ∞ we can eliminate the sampling variation due to
the stochastic nature of σt, and thus recover its population properties, i.e.,

estimate Lβ(u) = E
(
e−u|σt|β

)
which is the Laplace transform of |σt|β.

The next theorem gives the asymptotic behavior of L̂β(u) when both
T → ∞ and ∆n → 0. To state the result we first introduce some more
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notation. We henceforth use the shorthand

(3.7) Ẑt,β(u) = Vt(X,∆n, β, u)− Vt−1(X,∆n, β, u), t = 1, ..., T,

for the RLT over the time interval (t− 1, t). We further set

(3.8) Ĉk,β(u, v) =
1

T

T∑
t=k+1

(
Ẑt,β(u)− L̂β(u)

)(
Ẑt−k,β(v)− L̂β(v)

)
, k ∈ N.

Theorem 3. Suppose T → ∞ and ∆n → 0 and the process Xt satisfies
assumptions A, B and C.

(a) We have

(3.9)
√
T
(
L̂β(u)− Lβ(u)

)
= Y

(1)
T (u) + Y

(2)
T (u),

(3.10) Y
(1)
T (u)

L−→ Ψ(u),

Y
(2)
T (u) = Op

(√
T
(
| log∆n|∆1−β′/β

n ∨∆
(2−2/β)∧1/2
n

)
∨
√
∆n

)
,

where the result for Y
(2)
T (u) holds locally uniformly in u and the con-

vergence of Y
(1)
T (u) is on the space C(R+) of continuous functions in-

dexed by u and equipped with the local uniform topology (i.e. uniformly
over compact sets of u ∈ R+) and Ψ(u) is a Gaussian process with
variance-covariance for u, v > 0 given by

Σβ(u, v) =

∫ ∞

0
E
[(

e−u|σt|β − Lβ(u)
)(

e−v|σ0|β − Lβ(v)
)

+
(
e−v|σt|β − Lβ(v)

)(
e−u|σ0|β − Lβ(u)

)]
dt.

(3.11)

If we strengthen assumption B to assumption B′, we get the stronger

Y
(2)
T (u) = Op

(√
T
(
| log∆n|∆1−β′/β

n ∨∆2−2/β
n

)
∨
√

∆n

)
.

(b) For arbitrary integer k ≥ 1 and every u, v > 0 we have

(3.12) Ẑ1,β(u)Ẑk,β(v)
P−→

∫ 1

0

∫ k

k−1
e−u|σt|βe−v|σs|βdsdt.



REALIZED LAPLACE TRANSFORMS FOR PURE-JUMPS 13

If further LT is a deterministic sequence of integers satisfying LT√
T
→ 0

as T → ∞ and LT

(
| log∆n|∆1−β′/β

n ∨∆
(2−2/β)∧1/2
n

)
→ 0, we have

(3.13)

Σ̂β(u, v) = Ĉ0,β(u, v)+

LT∑
i=1

ω(i, LT )(Ĉi,β(u, v)+Ĉi,β(v, u))
P−→ Σβ(u, v),

where ω(i, LT ) is either a Bartlett or a Parzen kernel.

The result in (3.9) holds locally uniformly in u. This is important as in a
typical application one needs the Laplace transform as a function of u. We
illustrate in the next section an application of the above result to parametric
estimation that makes use of the uniformity. We note also that Σβ(u, v) is
well defined because of assumption C, see [16], Theorem VIII.3.79.

Under the conditions of Theorem 3, the scaled and centered realized

Laplace transform can be split into two components, Y
(1)
T (u) and Y

(2)
T (u),

that have different asymptotic behavior and capture different errors involved

in the estimation. The first one, Y
(1)
T (u), equals

√
T
(

1
T

∫ T
0 e−u|σt|βdt− E

(
e−u|σt|β

))
,

which is the empirical process corresponding to the case of continuous-record
of Xt in which case |σt|β can be recovered exactly. Hence the magnitude of

Y
(1)
T (u) is sole function of the time span T . On the other hand, the term

Y
(2)
T (u) captures the effect from the discretization error, i.e., the fact that we

use high-frequency data and not continuous record of Xt in the estimation.

For Y
(2)
T (u) to be negligible we need a condition for the relative speed of

∆n → 0 and T → ∞ which in the general case of assumption B is given by√
T
(
| log∆n|∆1−β′/β

n ∨∆
(2−2/β)∧1/2
n

)
→ 0.

The relative speed condition is driven by the biases that arise from using
the discretized observations of Xt. The martingale term that determines the
limit behavior of the statistic for a fixed span in Theorem 1 is dominated

by the empirical process error Y
(1)
T (u) when the time span increases. The

leading biases due to the discretization are two: the drift term αt and the
presence of “residual” jump components in Xt in addition to its leading sta-
ble component at high frequencies. The bias in L̂β(u) due to the “residual”

jump components is Op(| log∆n|∆1−β′/β
n ). The higher the activity of the

“residual” jump components is, the stronger their effect is on measuring the
Laplace transform of |σt|β. Typically, β′ will be determined from a Taylor
expansion of the Lévy density of the driving martingale around zero. In this
case β′ = β − 1 and the bias will be bigger for the higher levels of activity

β. The bias due to the drift term is Op(∆
2−2/β
n ) and it becomes bigger the
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lower the activity of the driving martingale is. This bias can be significantly
reduced if we make use of ṼT (X,∆n, β, u) when estimating Lβ(u). Finally,
the orders of magnitude of the above biases can be shown to be optimal
by deriving exactly the bias in the simple case (covered by our assumption
A) in which Xt is Lévy and further Zt is a sum of two independent stable
processes with indexes β and β′.

The relative speed condition here can be compared with the correspond-
ing one that arises in the problem of maximum likelihood estimation of
Markov jump-diffusions, see e.g., [26]. The general condition in this problem
is T∆n → 0 (also known as the rapidly increasing experimental design), i.e.,
the mesh of the grid should increase somewhat faster than the time span
of the data. In our problem here we need weaker relative speed condition
provided we use the stronger assumption B′ and the deviation of Zt from a
stable process at high frequencies is not too big, i.e., β′ is relatively low.

Part b of Theorem 3 makes the limit result in (3.10) feasible, i.e., it pro-
vides estimates from the high-frequency data for the asymptotic variance

of the leading term Y
(1)
T (u). The first result in it, i.e., the limit in (3.12)

is of independent interest. The sample average of the limit in (3.12) essen-
tially identifies the integrated joint Laplace transform of |σt|β. This is a
natural extension of our results here for the marginal Laplace transform of
|σt|β and can be used for estimation and testing of the transitional density
specification of the stochastic scale. We do not pursue this any further here.

Finally, the proof of Theorem 3 implies also that L̂β(u) converges to Lβ(u)
in L1(R+, ω) where ω(u) is a bounded nonnegative-valued weight function
with ω(u) = o(u−1−ι) when u → ∞ for arbitrary small ι > 0. This can be
used to invert L̂β(u), using regularized kernels as those of [20], to estimate
nonparametrically the density of the stochastic scale.

3.3. Long Span Asymptotics: The Case of Estimated Activity. The asymp-
totic results in Theorem 3 relied on the premise that β is known. The realized
Laplace transform crucially relies on β, as the latter enters not only in its
asymptotic limit and variance but also in its construction. If we put a wrong
value of β in the calculation of the realized Laplace Transform, then it is
easy to see that L̂β(u) will converge either to 1 or 0 depending on whether
the wrong value is above or below the true one respectively.

In this section we provide asymptotic results for the case where the ac-
tivity β needs to be estimated from the data. Developing an estimate for β
from the high-frequency data is relatively easy (we will give an example at
the end of the section). Hence, here we investigate the effect of estimating
β on our asymptotic results in Theorem 3.
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Theorem 4. Suppose there exists an estimator of β, denoted with β̂ and
assumptions A, B and C hold.

(a) If β̂ − β = op

(
∆α

n√
T

)
for some α > 0, then we have

(3.14)
√
T
(
L̂
β̂
(u)− L̂β(u)

)
= op

(
1√
T

)
.

(b) If β̂ uses only information before the beginning of the sample or an
initial part of the sample with a fixed time-span (i.e., one that does not
grow with T ), and further β̂ − β = Op(∆

α
n) for α > 1/(2β), β′ < β/2,

β > 4/3 and T∆n → 0, then we have (locally uniformly in u)
(3.15)
√
T
(
L̂
β̂
(u)− L̂β(u)

)
−
√
T log(2u/∆n)E(Gβ(u

1/β |σt|))
β2

(β̂−β)
P−→ 0,

where Gβ(x) = βxβe−xβ
for x > 0.

(c) Under the conditions of part (b), a consistent estimator for E(Gβ(uσt))
is given by

Ĝβ =
∆n

T

[T/∆n]∑
i=1

(
(2u)1/β̂∆−1/β̂

n ∆n
i X
)
sin
(
(2u)1/β̂∆−1/β̂

n ∆n
i X
)

P−→ E(Gβ(u
1/β |σt|)).

(3.16)

Unlike the estimation of Lβ(u), which requires both ∆n → 0 and T → ∞,
the estimation of β can be performed with a fixed time span by only sampling
more frequently. Therefore, typically the error β̂−β will depend only on ∆n.
Thus, in the general case of part (a) of the theorem, we will need the relative
speed condition T∆γ

n → 0 for some γ > 0 to guarantee that the estimation
of β does not have an asymptotic effect on the estimation of the Laplace
transform of the stochastic scale. By providing a bit more structure, mainly
imposing the restriction that β̂ is estimated by previous part of the sample
or an initial part of the current sample with a fixed time span, we can derive
the leading component of the introduced error in our estimation. This is
done in part (b) of the theorem, where it is shown that the latter is a linear
function of β̂ − β (appropriately scaled). As mentioned earlier, β̂ does not
need long span, just sampling more frequently, i.e., ∆n → 0. Therefore, in a
practical application one can estimate β from a short period of time at the
beginning of the sample and use the estimated β̂ and the rest of the sample
(or the whole sample) to estimate the Laplace transform of the stochastic
scale. In such a case, part (b) allows to incorporate the asymptotic effect of
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the error in estimating β into calculation of the standard errors for Lβ(u).
For this, one needs to note that the errors in (3.9) and (3.15) in such case
are asymptotically independent.

A more efficient estimator, in the sense of faster rate of convergence, will
mean that the approximation error L̂

β̂
(u)−L̂β(u) will be smaller asymptot-

ically. Finally, the lower bound on α in part(b) of the above theorem would
typically be satisfied when β′ < β/2. We finish this section with providing an
example of

√
∆n-consistent nonparametric estimator of β (when β′ < β/2)

developed in [27]. The estimation is based on a ratio of power variations
over two time scales for optimally chosen power. It is formally defined as

(3.17) β̂ =
ln (2) p∗

ln (2) + ln [ΦT (X, p∗, 2∆n)]− ln [ΦT (X, p∗,∆n)]
,

where p∗ is optimally chosen from a first-step estimation of the activity and
the power variation ΦT (X, p,∆n) is defined as

(3.18) ΦT (X, p,∆n) =

[T/∆n]∑
i=1

|∆n
i X|p.

It is shown in [27] that β̂ in (3.17) is
√
∆n-consistent for T fixed with an

associated feasible Central Limit Theorem also available.

4. Monte Carlo Assessment. We now examine the properties of the
estimators of the Laplace transform both in the case when activity of the
driving martingale is known or needs to be estimated from the data, L̂β(u)

and L̂
β̂
(u) respectively. The Monte Carlo setup is calibrated for a financial

price series. In particular, we use 1, 000 Monte Carlo replications of 1, 200
“days” worth of 78 within-day price increments and this corresponds ap-
proximately to the span and the sampling frequency of our actual data set
in the empirical application. The model used in the Monte Carlo is given by

(4.1) dXt = V
1/β
t dLt, dVt = 0.02(1.0− Vt)dt+ 0.05

√
VtdBt,

where Lt is a Lévy process with characteristic triplet (0, 0, ν) for ν(x) =
0.11

|x|1+1.7 or ν(x) = 0.11e−0.25|x|

|x|1+1.7 . The first choice of the Lévy measure corre-

sponds to that of a stable process with activity index of 1.7 while the second
one is that of a tempered stable process with the same value of the activity
index. For the second choice of ν(x), assumption A is satisfied with β′ = 0.7,
which indicates a rather active “residual” component in the driving martin-
gale in addition to its stable part. Therefore, the second case represents a
very stringent test for the small sample behavior of the RLT.
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Table 1 summarizes the outcome of the Monte Carlo experiments. The
first two columns of the table report the results for the case when the ac-
tivity is known and fixed at its true value. In both cases, the estimate is
very accurate and virtually unbiased. The third column presents the results
for the case when the inference is done with β = 2 (with Lt being tem-
pered stable) which corresponds to treating erroneously the process Xt as
a jump-diffusion. As seen from Table 1 this results in a rather nontrivial
upward bias. The reason is that in forming the realized Laplace transform

the increments should be inflated by the factor ∆
−1/1.7
n but they are instead

inflated by the much smaller ∆
−1/2
n . Using the under-inflated increments in

the computations induces a very large upward bias in the estimator.
The last two columns of Table 1 summarize the Monte Carlo results for

the case where the index β is presumed unknown and estimated using (3.17)
based on the first 252 “days” in the simulated data set. As to be be expected,
the estimator of the Laplace transform is less accurate than when the activity
is known. In the case when the driving martingale is tempered stable, our
measure becomes slightly biased due to a small bias in the estimate of the
activity level β. These biases however are relatively small when compared
with the standard deviation of the estimator.

5. An Application to Parametric Estimation of the Stochastic
Scale Law. We apply the preceding theoretical results to define a criterion
for parametric estimation based on contrasting our nonparametric realized
Laplace transform to that of a parametric model for the stochastic scale (or
the time change).

Theorem 5. Suppose the conditions of Theorem 3 are satisfied. Let the
Laplace transform of |σt|β be given by Lβ(u; θ) for some finite-dimensional
parameter vector lying within a compact set θ ∈ Θ with θ0 denoting the true
value and further assume that Lβ(u; θ) is twice continuously-differentiable
in its second argument. If Θl is some local neighborhood of θ0, assume
supθ∈Θl {|∇θLβ(u; θ)|+∇θθ′Lβ(u; θ)|} bounded. Suppose for a kernel func-
tion with bounded support κ : R+ → R+ we have that∫

R+

(Lβ(u; θ)− Lβ(u; θ0))
2 κ(u)du > 0, θ ̸= θ0.

Define the estimator

(5.1) θ̂ =
θ∈Θ

argmin

∫
R+

(
L̂β(u)− Lβ(u; θ)

)2
κ̂(u)du,
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Table 1
Monte Carlo Results

S TS TS S TS

Activity
Fixed at Fixed at Fixed at Estimated Estimated
true value true value β = 2

Lβ(0.10)

true value 0.9051 0.9051 0.9051 0.9051 0.9051
mean 0.9052 0.9085 0.9390 0.9057 0.9137
std 0.0063 0.0065 0.0045 0.0074 0.0072

Lβ(0.50)

true value 0.6112 0.6112 0.6112 0.6112 0.6112
mean 0.6111 0.6159 0.7771 0.6141 0.6434
std 0.0208 0.0218 0.0145 0.0292 0.0284

Lβ(1.25)

true value 0.3001 0.3001 0.3001 0.3001 0.3001
mean 0.2998 0.3035 0.5776 0.3050 0.3449
std 0.0249 0.0259 0.0231 0.0383 0.0393

Lβ(2.50)

true value 0.0980 0.0980 0.0980 0.0974 0.0980
mean 0.0977 0.0994 0.3753 0.1024 0.1312
std 0.0158 0.0164 0.0265 0.0261 0.0297

Lβ(3.75)

true value 0.0344 0.0344 0.0344 0.0344 0.0344
mean 0.0342 0.0350 0.2544 0.0374 0.0536
std 0.0084 0.0087 0.0249 0.0142 0.0179

Note: In all simulated scenarios T = 1, 200 and [1/∆n] = 78. The mean and the standard

deviation (across the Monte Carlo replications) correspond to the estimator L̂β(u) (the first

three columns) or L̂β̂(u) (the last two columns). The estimator β̂ is computed using (3.17)
and the first 252 “days” of the sample. Vt has Gamma marginal law with corresponding

Laplace transform of
(
1 + u ∗ 0.052/0.04

)−0.04/0.052

. The Monte Carlo replica is 1000.

where κ̂ is a nonnegative estimator of κ with (u2+ι ∨ 1) supu∈R+
|κ̂(u) −

κ(u)| P−→ 0 for some ι > 0. Then for T → ∞ and T∆n → 0, we have

(5.2)
√
T
(
θ̂ − θ0

)
L−s−→

(∫
R+

∇θLβ(u; θ)∇θLβ(u; θ)
′κ(u)du

)−1

Ξ1/2E′,

where E is a standard normal vector and

(5.3) Ξ =

∫
R+

∫
R+

Σβ(u, v)∇θLβ(u; θ)∇θLβ(v; θ)
′κ(u)κ(v)dudv,

for Σβ(u, v) the variance-covariance of Theorem 3.

Remark 4. There are two types of pure-jump models used in practice. First
are the time-changed Lévy processes, see e.g., [11] and [7]. As explained in



REALIZED LAPLACE TRANSFORMS FOR PURE-JUMPS 19

Remark 2, the time-change at corresponds to |σt|β in (1.1). Therefore, L̂β(u)
provides an estimate of the Laplace transform of the time-change which is
modeled directly in parametric settings. The second type of pure-jump models
are the ones specified via Lévy-driven SDE. In this case we typically model
σt and not |σt|β. Therefore, to apply Theorem 5 in this case one will need
to evaluate Lβ(u; θ) via simulation. In both cases, the use of RLT simplifies
the estimation problem significantly as it preserves information about the
stochastic scale and importantly is robust to any dependence between σt and
Zt, which particularly in financial applications is rather nontrivial.

The theorem was stated using L̂β(u) but obviously the same result will

apply if we replace it with L̂
β̂
(u). By way of illustration, we apply the theory

to the VIX index computed by the Chicago Board of Options Exchange; the
VIX is an option-based measure of market volatility. The data set spans the
period from September 22, 2003, until December 31, 2008, for a total of 1, 212
trading days. Within each day, we use 5-minute records of the VIX index
corresponding to 78 price observations per day. [28] present nonparametric
evidence indicating that the VIX is a pure-jump Itô semimartingale.

The underlying pure-jump model we consider for the log VIX index, de-
noted by vt, is

dvt = αtdt+

∫ t

0

∫
R
µ̃(dx, dt),

where αt is the drift term capturing the persistence of vt, and µ̃ is a ran-
dom integer-valued measure that has been compensated by at dt ⊗ ν(dx)
for at a stochastic process capturing time varying intensity. The martin-
gale component of vt is a time-changed Lévy process as in [11]. Recall that
the time-change at corresponds to |σt|β in the general model (1.1), and our
interest here is in making inferences regarding its marginal distribution.

The parametric specification we use for the marginal distribution of the
time-change is that of a tempered stable subordinator [24], which is a self-
decomposable distribution, i.e., there is an autoregressive process of order
one that generates it [25]. The Laplace transform of the tempered stable is

L(u; θ) =

{
exp {cΓ(−α) [(λ+ u)α − λα]} , if α ∈ (0, 1),(

1
1+u

λ

)c
if α = 0.

(5.4)

where θ = (α cλ) is the parameter vector, Γ(−α) = − 1
αΓ(1 − α) for α ∈

(0, 1), Γ denotes the standard Gamma function, α ∈ [0, 1) can be interpreted
as the activity index of the time-change at, c is the scale of the marginal
distribution of at, and λ governs the tail.

To make the estimation feasible, we need an estimate of β and further
specify the kernel κ of Theorem 5. For β we use the estimator defined in
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equation (3.17) over the first year of the sample exactly as in the Monte Carlo
work; the point estimate is β̂ = 1.862 with standard error 0.034. We next
follow [23] in using a Gaussian kernel κ(u) = exp(−2u2/u2max) where umax

is defined via ∇uLβ(umax, θ0) = −0.05. The point umax is set so that we
collect most of the information available in the empirical Laplace transform.
The feasible kernel κ̂(u) is constructed from the infeasible by replacing umax

with a consistent estimator for it. It is easy to verify that this choice of the
kernels satisfies the conditions of Theorem 5 above.

Table 2 shows the parameter estimates and asymptotic standard errors
based on this feasible implementation of (5.1)–(5.3). Interestingly, α is es-
timated to be below that associated with the Inverse Gaussian (α = 1/2),
while the estimated tail parameter λ suggests relatively moderate dampen-
ing, but this parameter appears somewhat difficult to estimate with high
precision given the time span of our data set. Figure 1 shows the fit of
the model. Specifically, the heavy solid line is the model-implied Laplace
transform evaluated at the estimated parameters. It plots on top of the
(not visible) realized Laplace transform, (3.1), and thereby passes directly
through the center of the (nonparametric) confidence bands. Overall, the fit
of the tempered stable to the marginal law of the time-change is quite tight.
From this point, one can follow the strategy of [5] and go further to develop
a dynamic model for the time-change by coupling the fitted marginal law
with a specification for the memory of the process.

Table 2
Estimation Results

Parameter Estimate Standard Error

α 0.2651 0.0453
c 1.2872 0.0469
λ 0.0377 0.0103

6. Conclusion. We derive the asymptotic properties of the realized
Laplace transform for pure-jump processes computed from high-frequency
data. The realized Laplace transform is shown to estimate the Laplace trans-
form of the stochastic scale of the observed process. The results are (locally)
uniform over the argument of the transform. We can thereby also derive the
asymptotic properties of parameter estimates obtained by fitting parametric
models for the marginal law of the stochastic scale to the realized Laplace
transform. This estimation entails minimizing a measure of the discrepancy
between between the model-implied and observed transforms.
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Fig 1. The solid line is the fitted parametric Laplace transform of the marginal distribution
of the scale of the log VIX index, which essentially plots on top of the estimated realized
Laplace transform (not visible), and the dashed lines show 95 percent nonparametric con-
fidence intervals about the estimated realized Laplace transform.

7. Proofs. Here we give the proof of the main results in the paper:
Lemma 1 and Theorems 1 and 3 with the rest shown in the supplementary
appendix. In all the proofs we will denote with C a constant that does not
depend on T and ∆n, and further it might change from line to line. We
also use the short hand En

i−1 for E
(
·|F(i−1)∆n

)
. We start with stating some

preliminary results, proof of which are in the supplement, and which we use
in the proofs of the theorems.

7.1. Preliminary results. For a symmetric stable process with Lévy mea-
sure c

|x|β+1dx for some c > 0 and β ∈ (1, 2), using Theorems 14.5 and 14.7

of [25], we can write its characteristic function at time 1 as

exp

(
c

∫ ∞

0
(eiur − 1− iur)

dr

r1+β
+ c

∫ ∞

0
(e−iur − 1 + iur)

dr

r1+β

)
, u ∈ R.

Then using Lemma 14.11 of [25], we can simplify the above expression to

exp
(
2cΓ(−β) cos(βπ/2)|u|β

)
,

where Γ(−β) = Γ(2−β)
β(β−1) for β ∈ (1, 2). Therefore, the Lévy measure of a

β-stable process, Lt, with E
(
e−iuLt

)
= e−t|u|β/2, is

A× 1

|x|β+1
dx,
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for A defined in (2.3). Throughout, after appropriately extending the original
probability space, we will use the following alternative representation of the
process Xt (proof of which is given in the supplement)

Xt = X0 +

∫ t

0
αsds+

∫ t

0

∫
R
σs−xµ̃1(ds, dx)

+

∫ t

0

∫
R
σs−xµ2(ds, dx)−

∫ t

0

∫
R
σs−xµ3(ds, dx) + Yt,

where µ1, µ2 and µ3 are homogenous Poisson measures (the three measures
are not mutually independent) with compensators respectively ν1(dx) =

A
|x|β+1dx, ν2(dx) = |ν ′(x)|dx and ν3(dx) = 2|ν ′(x)|1 (ν ′(x) < 0) dx and αs =

αs−σs−
∫
R xν ′(x)dx. Finally, to simplify notation we will also use the short-

hand Lt =
∫ t
0

∫
R xµ̃1(ds, dx) and further for a symmetric bounded function

κ with κ(x) = x for x in a neighborhood of zero, we decompose

(7.1) Lt = Lt+ L̃t, Lt =

∫ t

0

∫
R
(x−κ(x))µ̃1(ds, dx), L̃t =

∫ t

0

∫
R
κ(x)µ̃1(ds, dx).

With this notation we make the following decomposition

(7.2) VT (X,∆n, β, u)−
∫ T

0

e−u|σt|βdt =

[T/∆n]∑
i=1

3∑
j=1

ξ
(j)
i,u +

∫ T

[T/∆n]∆n

e−u|σt|βdt,

ξ
(1)
i,u = ∆n cos

(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L
)
−
∫ i∆n

(i−1)∆n

e−u|σ(i−1)∆n−|βds,

ξ
(2)
i,u =

∫ i∆n

(i−1)∆n

(
e−u|σ(i−1)∆n−|β − e−u|σs|β

)
ds,

ξ
(3)
i,u = ∆n

(
cos
(
(2u)1/β∆−1/β

n ∆n
i X
)
− cos

(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L
))

.

Starting with ξ
(1)
i,u , using the self-similarity of the stable process Lt, and

the expression for its characteristic function, we have
(7.3)

En
i−1

(
cos
(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L
)
− e−u|σ(i−1)∆n−|β

)
= 0,

En
i−1

(
cos
(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L
)
− e−u|σ(i−1)∆n−|β

)2
= Fβ(u

1/β |σ(i−1)∆n−|),

En
i−1

(
cos
(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L
)
− e−u|σ(i−1)∆n−|β

)4
≤ C.
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Using first-order Taylor expansion we decompose ξ
(2)
i,u =

∑3
j=1 ξ

(2)
i,u (j) where

ξ
(2)
i,u (1) = Υ(σ(i−1)∆n−, u)

∫ i∆n

(i−1)∆n

(∫ s

(i−1)∆n

σ̃udWu +

∫ s

(i−1)∆n

∫
R
δ(u−, x)µ̃(du, dx)

)
ds,

ξ
(2)
i,u (2) =

∫ i∆n

(i−1)∆n

(
Υ(σ∗

s , u)−Υ(σ(i−1)∆n−,u)
)(∫ s

(i−1)∆n

σ̃udWu

+

∫ s

(i−1)∆n

∫
R2

δ(u−, x)µ̃(du, dx)

)
ds,

ξ
(2)
i,u (3) =

∫ i∆n

(i−1)∆n

(
e−u|σ̂s|β − e−u|σs|β

)
ds,

where Υ(x, u) = βsign{x}u|x|β−1e−u|x|β , σ∗
s is a number between σ(i−1)∆n−

and σ̂s, and

σ̂s = σ(i−1)∆n−+

∫ s

(i−1)∆n

σ̃udWu+

∫ s

(i−1)∆n

∫
R
δ(u−, x)µ̃(du, dx), s ∈ [(i−1)∆n, i∆n].

We derive the following bounds in the supplement for any finite u > 0

[T/∆n]∑
i=1

En
i−1

(
ξ
(2)
i,u (1)

)
= 0,

∆−2
n

T
E

[T/∆n]∑
i=1

En
i−1

(
ξ
(2)
i,u (1)

)2 ≤ C,(7.4)

(T∆β/2
n )−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(2)i,u (2)|
)

≤ C,(7.5)

(T∆n)
−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(2)i,u (3)|
)

≤ C.(7.6)

Turning to ξ
(3)
i,u , we can first make the following decomposition (recall the

decomposition of Lt in (7.1))

(7.7) cos(χ1)− cos(χ5) =

4∑
j=1

[cos(χj)− cos(χj+1)],

χ1 = (2u)1/β∆−1/β
n ∆n

i X, χ2 = (2u)1/β∆−1/β
n

(∫ i∆n

(i−1)∆n

αsds+

∫ i∆n

(i−1)∆n

σs−dLs

)
,

χ3 = (2u)1/β∆−1/β
n

(
∆nα(i−1)∆n

+

∫ i∆n

(i−1)∆n

σs−dL̃s

)
,

χ4 = (2u)1/β∆−1/β
n σ(i−1)∆n−∆

n
i L̃, χ5 = (2u)1/β∆−1/β

n σ(i−1)∆n−∆
n
i L.
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Then, using the formula for cos(x)− cos(y), x, y ∈ R for the first bracketed
term on the right side of (7.7) and a second-order Taylor expansion for the

third one, allows us to write ξ
(3)
i,u =

∑5
j=1 ξ

(3)
i,u (j) where

ξ
(3)
i,u (1) = −2∆n sin

(
0.5(2u)1/β∆−1/β

n

(
∆n

i X +

∫ i∆n

(i−1)∆n

αsds+

∫ i∆n

(i−1)∆n

σs−dLs

))

× sin

(
0.5(2u)1/β∆−1/β

n

(
∆n

i X −
∫ i∆n

(i−1)∆n

αsds−
∫ i∆n

(i−1)∆n

σs−dLs

))
,

ξ
(3)
i,u (2) = −(2u)1/β∆2−1/β

n sin
(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L̃
)
α(i−1)∆n

,

ξ
(3)
i,u (3) = −(2u)1/β∆1−1/β

n sin
(
(2u)1/βσ(i−1)∆n−∆

−1/β
n ∆n

i L̃
)∫ i∆n

(i−1)∆n

(σs− − σ(i−1)∆n−)dL̃s,

ξ
(3)
i,u (4) = ∆n[cos(χ2)− cos(χ3)] + ∆n[cos(χ4)− cos(χ5)],

ξ
(3)
i,u (5) = 0.5(2u)2/β∆1−2/β

n cos (χ̃)

(
∆nα(i−1)∆n

+

∫ i∆n

(i−1)∆n

(σs− − σ(i−1)∆n−)dL̃s

)2

,

with χ̃ denoting some value between χ3 and χ4.
We derive the following bounds in the supplement for any finite u > 0

(T | log(∆n)|∆1−β′/β
n )−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(3)i,u (1)|
)

≤ C.(7.8)

En
i−1

(
ξ
(3)
i,u (2)

)
= 0,

(∆
3−2/β
n )−1

T
E

[T/∆n]∑
i=1

En
i−1

(
ξ
(3)
i,u (2)|

)2 ≤ C.(7.9)

(T∆3/2−1/β
n )−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(3)i,u (4)|
)

≤ C.(7.10)

(T∆2−2/β
n )−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(3)i,u (5)|
)

≤ C.(7.11)

(T∆1−ι
n )−1E

 sup
0≤u≤u

∣∣∣∣ [T/∆n]∑
i=1

En
i−1ξ

(3)
i,u (3)

∣∣∣∣
 ≤ C, under B′,(7.12)

(
T∆1/(β∨β′′

+ι)
n

)−1

E

 sup
0≤u≤u

∣∣∣∣ [T/∆n]∑
i=1

En
i−1ξ

(3)
i,u (3)

∣∣∣∣
 ≤ C, under B.(7.13)

(T∆3−2/β
n )−1

[T/∆n]∑
i=1

E
(

sup
0≤u≤u

|ξ(3)i,u (3)|
2

)
≤ C.(7.14)



REALIZED LAPLACE TRANSFORMS FOR PURE-JUMPS 25

2

7.2. Proof of Lemma 1. Since h−1/βZht is a Lévy process to prove the
convergence of the sequence we need to show the convergence of its char-
acteristics (see e.g. [16], Corollary VII.3.6), i.e., we need to establish the
following for h → 0

(7.15)

{
h1−2/β

∫
R κ2(h−1/βx)ν(x)dx −→

∫
R κ2(x) A

|x|β+1dx,

h
∫
R g(h−1/βx)ν(x)dx −→

∫
R g(x) A

|x|β+1dx,

where g is an arbitrary continuous and bounded function on R, which is 0
around 0.

The result in (7.15) follows by a change of variable in the integration and
using the fact that by assumption A we have |ν ′(x)| < C

|x|β′+1 for |x| ≤ x0

where x0 is fixed and β′ < β. 2

7.3. Proof of Theorem 1. Part (b) of the theorem holds from the bounds
in (7.3)-(7.6) and (7.8)-(7.14), so we are left with showing part(a). First,

we show that for ∆n → 0, 1√
∆n

∑[t/∆n]
i=1 ξ

(1)
i,u converges stably as a process

in t for the Skorokhod topology to the process
∫ t
0

√
Fβ(u1/β |σs|)dW ′

s where

W ′
t is a Brownian motion defined on an extension of the original probability

space and independent from the σ-field F . Using the result in (7.3), we get
for every t > 0 1√

∆n

∑[t/∆n]
i=1 En

i−1(ξ
(1)
i,u )

P−→ 0, 1
∆n

∑[t/∆n]
i=1 En

i−1(ξ
(1)
i,u )

2 P−→
∫ t

0
Fβ(u

1/β |σs|)ds,
1

∆2
n

∑[t/∆n]
i=1 En

i−1(ξ
(1)
i,u )

4 P−→ 0,

where for the second convergence above we made use of Riemann integrabil-
ity. Thus to show the stable convergence, given the above result and upon
using Theorem IX.7.28 of [16], we need to show only

(7.16)

[t/∆n]∑
i=1

En
i−1

(√
1/∆nξ

(1)
i,u∆

n
i M

)
P−→ 0, ∀t > 0,

where M is a bounded martingale defined on the original probability space.
When M is discontinuous martingale we can argue as follows. First, we

can set Mn
t = M[t/∆n]∆n

and Nn
t =

∑[t/∆n]
i=1

√
1/∆nξ

(1)
i,u for any t. With this

notation we have [Mn, Nn]t =
∑[t/∆n]

i=1

(√
1/∆nξ

(1)
i,u∆

n
i M

)
and ⟨Mn, Nn⟩t =∑[t/∆n]

i=1 En
i−1

(√
1/∆nξ

(1)
i,u∆

n
i M

)
. We trivially have that Mn converges (for
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the Skorokhod topology) to M , and furthermore from the results above the
limit ofNn, which we denote here withN , is a continuous process. Therefore,
using VI.3.33 (b) of [16], we have that (Mn, Nn) is tight. Then, using the
fact that M is a bounded martingale (and hence it has bounded jumps),
we can apply VI.6.29 of [16] and conclude that the limit of [Mn, Nn] (up
to taking a subsequence) is [M,N ]. However, since continuous and pure-
jump martingales are orthogonal, see e.g., I.4.11 of [16], we conclude that
[M,N ] = 0. Further, the difference [Mn, Nn]−⟨Mn, Nn⟩ is a martingale and

using Itô isometry, the fact that
√

1/∆nξ
(1)
i,u ≤ C

√
∆n, and the boundedness

of M , we have

E ([Mn, Nn]t − ⟨Mn, Nn⟩t)2 = E

∑
s≤t

(∆Mn
s ∆Nn

s )
2


≤ C∆nE

∑
s≤t

(∆Mn
s )

2

 ≤ C∆n.

Therefore, [Mn, Nn]−⟨Mn, Nn⟩ converges in probability to zero and hence
so does ⟨Mn, Nn⟩.

When M is a continuous martingale, we can write En
i−1

(
ξ
(1)
i,u∆

n
i M

)
=

En
i−1 (∆

n
i N∆n

i M) where now we denote Nt = E(ξ(1)i,u |Ft) for t ∈ [(i −
1)∆n, i∆n] (which is obviously a martingale with respect to the filtration

Ft). However, note that ξ
(1)
i,u is uniquely determined by F(i−1)∆n

and the
homogenous Poisson measure µ1. Therefore, Nt remains a martingale for the
coarser filtration F ∗

t = F(i−1)∆n
∩ Fµ1

t for Fµ1
t being the filtration gener-

ated by the jump measure µ1. Then using a martingale representation for
the martingale (Nt)t≥(i−1)∆n

with respect to the filtration F ∗
t (note µ1 is

a homogenous Poisson measure), Theorem III.4.34 of [16], we can represent
Nt as a sum of F(i−1)∆n

-adapted variable and an integral with respect to
µ̃1. But then since pure-jump and continuous martingales are orthogonal,

we have En
i−1

(
ξ
(1)
i,u∆

n
i M

)
= 0.

This establishes the stable convergence of 1√
∆n

∑[t/∆n]
i=1 ξ

(1)
i,u . Next, the

bounds for ξ
(2)
i,u and ξ

(3)
i,u in (7.4)-(7.6) and (7.8)-(7.11) imply that 1√

∆n

∑[T/∆n]
i=1 (ξ

(2)
i,u+

ξ
(3)
i,u ) is asymptotically negligible for ∆n → 0 and T fixed. 2

7.4. Proof of Theorem 3. Part (a). The proof consists of showing finite-
dimensional convergence in u and tightness of the sequence.
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(1) Finite-dimensional Convergence. First, given assumption C and using
a CLT for stationary and ergodic process, see [16], Theorem VIII.3.79, we
have for a finite-dimensional vector u

(7.17)
√
T

(
1

T

∫ T

0
e−u|σt|βdt− Lβ(u)

)
L−→ Ψ,

where Ψ is a zero-mean normal variable with elements of the variance-
covariance matrix given by Σβ(ui, uj).

Next, the results in Section 7.1 imply for T → ∞ and ∆n → 0 under the
weaker assumption B

1√
T

[T/∆n]∑
i=1

ξ
(1)
i,u = op(

√
∆n),

1√
T

[T/∆n]∑
i=1

ξ
(2)
i,u = op(

√
T∆β/2

n ∨
√
∆n),

1√
T

[T/∆n]∑
i=1

ξ
(3)
i,u = op

(√
T (| log(∆n)|∆1−β′/β

n ∨∆(2−2/β)∧1/2
n ) ∨

√
∆n

)
,

(7.18)

with the last one replaced with the weaker

1√
T

[T/∆n]∑
i=1

ξ
(3)
i,u = op

(√
T (| log(∆n)|∆1−β′/β

n ∨∆2−2/β
n ) ∨

√
∆n

)
,

when the stronger assumption B′ holds.
(2) Tightness. Lets denote for arbitrary u, v ≥ 0:

zt = (e−u|σt|β − Lβ(u))− (e−v|σt|β − Lβ(v)).

Then, using successive conditioning and Lemma VIII.3.102 in [16], together
with the boundedness of zt and assumption C, we get

E

(
1√
T

T∑
t=1

ztdt

)2

=
1

T

∫ T

0

∫ T

0
E (ztzs) dsdt

≤ C|u1/p − v1/p| 1
T

∫ T

0

∫ T

0
E
(
|σs∧t|β/pE(zs∨t|Fs∧t)

)
dsdt

≤ C|u1/p − v1/p|1+ι 1

T

∫ T

0

∫ T

0

(
αmix
|t−s|

)1/3−ι
dtds

≤ C|u1/p − v1/p|1+ι

∫ ∞

0

(
αmix
s

)1/3−ι
ds ≤ C|u1/p − v1/p|1+ι,

where ι > 0 is the constant of assumption C and p > 3. Using The-
orem 12.3 of [8], the above bound implies the tightness of the sequence
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1√
T

∫ T
0 (e−u|σt|β − Lβ(u))dt, and from here we have its convergence for the

local uniform topology.

Turning now to 1√
∆n

∑[T/∆n]
i=1 ξ

(1)
i,u , we can use the analogue of the result

in (7.3) for ξ
(1)
i,u − ξ

(1)
i,v , to get

E

 1√
T∆n

[T/∆n]∑
i=1

(ξ
(1)
i,u − ξ

(1)
i,v )

2

≤ C|u1/β − v1/β|2,

for some constant C. From here using Theorem 12.3 of [8], we get the tight-

ness of 1√
T∆n

∑[T/∆n]
i=1 ξ

(1)
i,u .

Similarly, using the analogue of (7.9) applied to ξ
(3)
i,u (2)− ξ

(3)
i,v (2), we have

∆
−(3−2/β)
n

T
E

[T/∆n]∑
i=1

(
ξ
(3)
i,u (2)− ξ

(3)
i,v (2)

)2

≤ C|u1/β − v1/β |2.(7.19)

This establishes tightness for ∆
−(3/2−1/β)
n

∑[T/∆n]
i=1 ξ

(3)
i,u (2). We can do ex-

actly the same for ∆
−(3/2−1/β)
n

∑[T/∆n]
i=1

(
ξ
(3)
i,u (3)− En

i−1(ξ
(3)
i,u (3))

)
using the

analogue of (7.14) applied to ξ
(3)
i,u (3)− ξ

(3)
i,v (3)−En

i−1(ξ
(3)
i,u (3)− ξ

(3)
i,v (3)). Next,

∆−2
n

T
E

[T/∆n]∑
i=1

(
ξ
(2)
i,u (1)− ξ

(2)
i,v (1)

)2

≤ C (u− v)2 ,(7.20)

where we used successive conditioning and further made use of the inequality

|Υ(x, u)−Υ(x, v)| ≤ C|x|β−1|u− v|, x ∈ R, u, v ≥ 0,

which follows from applying first-order Taylor expansion of Υ(x, u) in its
second argument and using the fact that the derivative of Υ(x, u) in its

second argument is bounded by C|x|β−1. Therefore,
∑[T/∆n]

i=1
∆−1

n√
T
ξ
(2)
i,u (1) is

tight on the space of continuous functions equipped with the local uniform
topology.

Next, using the results in Section 7.1, it is easy to show that for any finite
u > 0 we have

(7.21) lim
∆n↓0,T↑∞

P

 sup
0≤u≤u

∣∣∣∣∣∣
[T/∆n]∑
i=1

(T∆β/2
n )−1ξ

(2)
i,u (2)

∣∣∣∣∣∣ > ϵn

 = 0, ∀ϵn ↑ ∞.
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The same holds when in the above we replace (T∆
β/2
n )−1ξ

(2)
i,u (2) with ei-

ther of the following terms: (T∆n)
−1ξ

(2)
i,u (3), (T | log(∆n)|∆1−β′/β

n )−1ξ
(3)
i,u (1),

(T∆
3/2−1/β
n )−1ξ

(3)
i,u (4), (T∆

2−2/β
n )−1ξ

(3)
i,u (5) as well as (T∆

1−ι

n )−1En
i−1(ξ

(3)
i,u (3))

under assumption B′ and (T∆
1/(β∨β′′

+ι)
n )−1En

i−1(ξ
(3)
i,u (3)) under the weaker

assumption B. This implies that those terms are uniformly in u bounded in
probability.
Part (b). First, (3.12) follows directly from Theorem 1, so here we only
show (3.13). If we denote for k ≥ 0

Ck,β(u, v) =
1

T

T∑
t=k+1

∫ t

t−1

(
e−u|σs|β − Lβ(u)

)
ds

∫ t−k

t−k−1

(
e−v|σs|β − Lβ(v)

)
ds,

then under our assumptions, by standard arguments, see e.g., Proposition 1
in [4], we have

(7.22) C0,β(u, v) +

LT∑
i=1

ω(i, LT )(Ci,β(u, v) + Ci,β(v, u))
P−→ Σβ(u, v).

Therefore, we are left showing

(Ĉ0,β(u, v)− C0,β(u, v))

+

LT∑
i=1

ω(i, LT )(Ĉi,β(u, v) + Ĉi,β(v, u)− Ci,β(u, v)− Ci,β(v, u))
P−→ 0.

(7.23)

We note that for arbitrary 1 ≤ k ≤ T we have:

∆n

[k/∆n]∑
i=[(k−1)/∆n]+1

cos((2u)1/β∆−1/β
n ∆n

i X) ≤ 1, and

∫ k

k−1
e−u|σs|βds ≤ 1.

Hence, for k = 0, 1, ..., LT , we have

∣∣∣Ĉk,β(u, v)− Ck,β(u, v)
∣∣∣ ≤ 1

T

T∑
t=1

∣∣∣∣Ẑt,β(u)−
∫ t

t−1
e−u|σs|βds

∣∣∣∣
+

1

T

T∑
t=1

∣∣∣∣Ẑt,β(v)−
∫ t

t−1
e−v|σs|βds

∣∣∣∣+ ∣∣∣L̂β(u)− Lβ(u)
∣∣∣+ ∣∣∣L̂β(v)− Lβ(v)

∣∣∣+O

(
k

T

)
.
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First, using the CLT result in (7.17), and since LT /
√
T → 0, we have

(7.24)

LT∑
i=1

|ω(i, LT )|
∣∣∣L̂β(u)− Lβ(u)

∣∣∣ P−→ 0, ∀u > 0.

Further, using the stationarity of the process σt and the bounds on the

moments of the terms ξ
(j)
i,u derived in Section 7.1, we have for every t ≥ 1

E
∣∣∣∣Ẑt,β(u)−

∫ t

t−1
e−u|σs|βds

∣∣∣∣ ≤ C
(
| log∆n|∆1−β′/β

n ∨∆(2−2/β)∧1/2
n

)
.

Therefore, using the relative speed condition between LT and ∆n in the
theorem, we have

(7.25)

∑LT
i=1 |ω(i, LT )|

T

T∑
t=1

E
∣∣∣∣Ẑt,β(u)−

∫ t

t−1
e−u|σs|βds

∣∣∣∣ −→ 0, ∀u > 0.

(7.24) and (7.25) imply (7.23) and this combined with (7.22) establishes the
result in (3.13). 2
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