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This appendix consists of a shorter section describing the added details regarding the empirical

work in the paper along with a longer section that presents asymptotic results for the Realized

Laplace Transform for the case in which volatility has a deterministic intraday component.

1 Empirical Documentation

For the analysis of the empirical section in the paper as a measure for the unobservable integrated

variance,
∫ t
t−1 σ

2
sds, we use truncated variation, originally proposed in Mancini (2001), which we

construct in the following way

TV[t−1,t](α,ϖ) =

[t/∆n]∑
i=[(t−1)/∆n]+1

|∆n
i X|21{|∆n

i X|≤α∆ϖ
n }, α > 0, ϖ ∈ (0, 1/2), (31)

where here ϖ = 0.49, i.e., very close to 1/2 and α is 4 ×
√
BV for BV denoting the Bipower

Variation of Barndorff-Nielsen and Shephard (2004, 2006) over the time interval [t− 1, t].

We next provide details on the calculation of the implied volatility densities on the right panel

of Figure 1 in the paper. We first recall, see e.g., Barndorff-Nielsen and Shephard (2001) and the

references therein, that the Generalized-Inverse-Gaussian (GIG) distribution that we use in the

analysis is positively-supported and is controlled by three parameters (ν, δ, γ). If x ∼ GIG(ν, δ, γ),

then the density of x is given by(γ
δ

)ν
2Kν(δγ)

xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)
, x > 0, (32)
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where Kν is a modified Bessel function of third kind.

The three-parameter GIG density is fitted to the observed S&P 500 Realized Laplace transform

as follows. We select three abscissa, u1 = 0.10, u2 = 4.0, and u3 = 8.0, which lie near the origin,

in the central part, and in the upper part, respectively, of the effective domain [0, 8] of the realized

Laplace transform. We then solve the three estimating equations, VT (X,∆n, uj) − LGIG(uj |θ) =

0, j = 1, 2, 3, to obtain θ̂, where LGIG(uj |θ) is the Laplace transform of the GIG distribution

evaluated at uj given the 3×1 parameter vector θ. The resulting point estimate remains unchanged

for other values of u that lie in the same general regions.

The fit of the GIG is essentially exact since LGIG(u|θ̂) and VT (X,∆n, u) agree to within machine

precision over u ∈ [0, 8]. The quality of the fit is evident from Figure 2, which indicates that

LGIG(uj |θ̂) goes right throught the middle of the two-sigma confidence band of Figure 1 of the

main paper.

Figure 2: GIG-Model-Implied Log-Laplace Transforms of the S&P 500 Spot Variance
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The figure shows the implied log-Laplace transform for the spot variance under the Generalized-Inverse-Gaussian distribution

with the data-determined confidence interval for the nonparametric estimate of the log transform.

By way of contrast, Figure 3 reveals the poor fit of the gamma distribution, which is the marginal

distribution of the affine (CIR) model, estimated similarly using two abscissa u1 = 0.10, u2 = 8.0.

[The gamma distribution is a special case of the GIG distribution with δ = 0 and ν > 0 in (31)

above.]

2



Figure 3: CIR-Model-Implied Log-Laplace Transform of the S&P 500 Spot Variance
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The figure shows the implied log-Laplace transform for the spot variance under the gamma distribution with the data-determined

confidence interval for the nonparametric estimate of the log transform.

2 The Case of a Deterministic Intraday Component in Volatility

It is well recognized that financial volatility has a pronounced deterministic intraday U-shape

pattern, see e.g., Andersen and Bollerslev (1998) for an early account of this phenomenon. When

this is the case, it is easy to show that the infill asymptotic result of Theorem 1 in the paper remains

the same (provided the deterministic pattern is captured by a differentiable function). Therefore,

here we look only at the situation when a joint, infill and long span, asymptotics is used, i.e., the

setting of Theorem 2 in the paper. Also, for simplicity we look only at the case of k = 0 and v = 0

for µ̂k(u, v) which in this case is simply 1
T VT (X,∆n, u).

To this end, we suppose that the underlying process, which we now denote with X̃, has the

following dynamics

dX̃t = αtdt+ σ̃tdWt +

∫
R
δ(t−, x)µ(ds, dx), (33)

where σ̃2
t = f(t − [t]) × σ2

t for some deterministic 0.5-Hölder continuous function f with f(t) > 0

and
∫ 1
0 f(s)ds = 1; the processes αt and σt, the measure µ and the stochastic function δ(t, x) are all

defined as in equation (3) of the paper. In other words, the only change from the original setup in

the paper is that the stochastic volatility process σ̃2
t has now a deterministic component. We think,

without loss of generality that the unit time interval represents a day so that f(t) captures the
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intraday deterministic pattern of volatility. In this case the limit of our Realized Laplace transform

under the joint long-span and infill asymptotics (T → ∞ and ∆n → 0) when assumptions A, B

and C hold, is

1

T
VT (X̃,∆n, u)

P−→
∫ 1

0
E
(
e−uf(s)σ2

s

)
ds =

∫ 1

0
Lσ2(uf(s))ds, Lσ2(u) = E

(
e−uσ2

t

)
, u ≥ 0. (34)

In other words, when the volatility has a deterministic intraday pattern, the Realized Laplace

Transform is an estimator for the integrated over the day Laplace transform of volatility.

Further, it is easy to show that under assumptions A, B and C in the paper, and provided

T ↑ ∞ and ∆n ↓ 0 with
√
T∆

1−β/2−ι
n → 0 for ι > 0 arbitrary small (and the additional requirement

that f(t) is differentiable), we have

√
T

(
1

T
VT (X̃,∆n, u)−

∫ 1

0
Lσ2(uf(s))ds

)
L−→ Ψ̃′(u), (35)

where Ψ̃′(u) is Gaussian process with variance-covariance
∑∞

l=−∞ E(Z̃t(u)Z̃t−l(v)) for

Z̃t(u) =

∫ t

t−1

(
e−uf(s−[s])σ2

s − E
(
e−uf(s−[s])σ2

s

))
ds, for t ∈ N.

Most of the times our interest will be in the properties of σt and not σ̃t, and there is a simple

nonparametric procedure to “clean” the intraday component of the volatility that we now present.

Set ∆n = 1/n for n ∈ N and it = t− 1 + i− [i/n]n for t = 1, ..., T and i = 1, ..., nT . We define

ĝi =
n

T

T∑
t=1

|∆n
itX̃|21(|∆n

itX̃| ≤ α∆ϖ
n ), i = 1, ..., nT ; ĝ =

1

n

n∑
i=1

ĝi,

f̂i =
ĝi
ĝ
1{ĝ ̸=0}, i = 1, ..., nT, α > 0, ϖ ∈ (0, 1/2).

(36)

Intuitively, ĝi will be our estimator of the average variance over a particular high-frequency interval

of the day and as a result note that ĝi = ĝj for |i − j| = n. ĝ will be our estimator for the mean

of the integrated variance over the day. Thus the ratio f̂i will be an estimate for the intraday

deterministic component of volatility.

We then define our estimator of the empirical Laplace transform of σ2
t , which “cleans” for the

deterministic intraday patterns in volatility as

V̂T (X̃,∆n, u) =
1

n

nT∑
i=1

cos
(√

2unf̂
−1/2
i 1{f̂i ̸=0}∆

n
i X̃
)
. (37)

Intuitively, we rescale the high-frequency increments, corresponding to the time of the day they

belong to, with our estimate for the deterministic intraday component of volatility. We note that we
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do not need to make any assumption regarding the possible presence of a deterministic component

in the jump compensator, as our Realized Laplace Transform estimator is robust to jumps.

We will show that our time-of-day adjusted V̂T (X̃,∆n, u) is a consistent estimate of Lσ2(u)

(contrast this with the limit in (34)). Our goal further will be to quantify the asymptotic effect on

V̂T (X̃,∆n, u) from the “cleaning” of the deterministic component of volatility, i.e, to compare this

feasible estimator with the infeasible one

VT (X,∆n, u) =
1

n

nT∑
i=1

cos
(√

2un∆n
i X
)
, (38)

where the unobservable process X (defined on the original probability space) has the dynamics

dXt = αtdt+ σtdWt +

∫
R
δ(t−, x)µ(ds, dx), (39)

i.e., exactly as the observable process X̃ but with no intraday deterministic component of volatil-

ity. The next theorem makes this comparison and hence characterizes the asymptotic behavior of

V̂T (X̃,∆n, u).

Theorem 3 Suppose the observable process X̃ has dynamics given by (33) and X has dynamics

given in (39) (both defined on the same probability space). Assume that assumptions A, B and C

hold. Assume further that for any t ≥ 0 and any p > 0

E
(
|αt|p + |σt|p +

∫
R
|δ(t, x)|pν(x)dx+ |vt|p + |v′t|p +

∫
R
|δ′(t, x)|pν(dx)

)
< C, (40)

where C > 0 is some constant that does not depend on t.

Then if T → ∞ and ∆n → 0 such that
√
T∆

[(2−β)ϖ−ι]∧1/2
n → 0 for some arbitrary small ι > 0,

we have for any u ≥ 0:

(a)

√
T

(
1

T
V̂T (X̃,∆n, u)−

1

T
VT (X,∆n, u)

)
− 0.5E(G(uσ2

t ))

E(σ2
t )

1√
T

∫ T

0
(σ2

s − σ̃2
s)ds

P−→ 0, (41)

where we denote the function G(x) =
√
2xe−x.

(b)
√
T

(
1

T
VT (X,∆n, u)− E(e−uσ2

t ),
1

T

∫ T

0
(σ2

s − σ̃2
s)ds

)
L−→ Σ(u)1/2 × Ξ, (42)

where Ξ is a 2× 1 standard normal vector; Σ(u) is 2× 2 matrix of constants given by

Σ(u) = E
(
zt(u)z

′
t(u)

)
+

∞∑
k=1

(
E
(
zt(u)z

′
t+k(u)

)
+ E

(
zt+k(u)z

′
t(u)

))
, (43)

for zt(u) =
(∫ t

t−1

(
e−uσ2

s − E(e−uσ2
t )
)
ds,

∫ t
t−1(σ

2
s − σ̃2

s)ds
)′
.
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(c) Consistent estimate for Σ(u) is given by

Σ̂(u) = Ĉ0(u) + 2

LT∑
i=1

ω(i, LT )Ĉi(u), Ĉi(u) =
1

T

T∑
t=i+1

(ẑt−i(u)ẑ
′
t(u) + ẑt(u)ẑ

′
t−i(u)), (44)

where for some η > 0 such that LTT
η−1/2 → 0, α > 0 and ϖ ∈ (0, 1/2), ẑt(u) is defined as

ẑt(u) =

 1
n

∑tn+n
j=tn+1

(
cos
(√

2unf̂
−1/2
j 1{f̂j ̸=0}∆

n
j X̃
)
− 1

T V̂T (X̃,∆n, u)
)

∑tn+n
j=tn+1(f̂

−1
j ∧ T η − 1)(∆n

j X̃)21(|∆n
j X̃| ≤ α∆ϖ

n )

 ,

and further the sequence LT and ω(i, LT ) are defined as in Theorem 2 in the paper and satisfy

the conditions of that theorem.

A consistent estimator for E(G(uσ2
t ))/E(σ2

t ) is given by

1

nT

nT∑
j=1

(√
2un(f̂

−1/2
j ∧ T η/2)∆n

j X̃
)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)∆n

j X̃
)

ĝ
. (45)

Part (a) of the above theorem shows that 1
T V̂T (X̃,∆n, u) is a consistent estimator for our object

of interest, i.e., E(e−uσ2
t ). It further characterizes the asymptotic effect of using an estimate from

the data for the intraday pattern of volatility on our precision of estimating the Laplace transform

of σ2
t . It is controlled by 1

T

∫ T
0 (σ2

s − σ̃2
s)ds, which implies the rather intuitive observation that this

effect is bigger for wider deterministic intraday variations in volatility.

Part (b) of the theorem derives the joint distribution of the error from estimating the intraday

pattern and the error associated with the empirical process for estimating the Laplace transform

of volatility. Finally, part (c) of the theorem provides an easy to construct feasible estimate for

the asymptotic variance-covariance Σ(u). This provides a feasible way to quantify the precision of

estimating E(e−uσ2
t ) using 1

T V̂T (X̃,∆n, u).

We apply the result of Theorem 3 above to the same data set used in the empirical application

in the paper, i.e., 1-minute level data on the S&P 500 futures index spanning the period January

1, 1990 till December 31, 2008. Our choice for the parameters α and ϖ for the construction of

ĝi is similar to the values of these parameters that we use for computing the truncated variation

estimator TVt(α,ϖ) in the paper: α = 4
√
BV and ϖ = 0.49. Figure 4 shows the effect of cleaning

the possible presence of diurnal volatility pattern on estimating the Laplace transform of volatility.

It compares our original estimate 1
T V (X̃,∆n, u) with the one corrected for the deterministic pattern,

i.e., 1
T V̂ (X̃,∆n, u).

15 As seen from the figure, the effect from cleaning for the deterministic pattern

15Note that due to the possible presence of intraday deterministic component of volatility, we denote the observable
process as X̃ and not X. Of course, X̃ and X coincide when f(t) ≡ 1.
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is relatively small especially when compared with the wedge between the Laplace transform of spot

and integrated volatility.

Figure 4: Observed Log-Laplace Transforms with and without “cleaning” for intraday deterministic
volatility component.
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Estimated log-Laplace transforms using 1-minute S&P 500 stock index data, 1990–2008. Solid line corresponds to

1
T
VT (X̃,∆n, u) (original estimate in Figure 1 of the paper); x-line corresponds to the estimator 1

T
V̂T (X̃,∆n, u) introduced

here that “cleans” the deterministic component of volatility; dashed line corresponds to the empirical Laplace transform of the

daily Truncated Variance.

3 Proof of Theorem 3

As in the proof of Theorems 1 and 2 of the paper, in the proof of Theorem 3 here, C will denote

a positive constant that does not depend on T and ∆n, and further can change from line to line.

We also use the short hand En
i−1 for E

(
·|F(i−1)∆n

)
. We start with some preliminary results that

we need for the proof of Theorem 3.

1. Preliminary results. We start with introducing the following auxiliary estimators for the

intraday average variances:

g̃i =
n

T

T∑
t=1

σ̃2
(it−1)∆n

|∆n
itW |2, i = 1, ..., nT ; g̃ =

1

n

n∑
i=1

g̃i; f̃i =
g̃i
g̃
1{g̃ ̸=0}, i = 1, ..., nT. (46)
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These estimators are formed the same way as ĝi with the only difference that we use σ̃(i−1)∆n
∆n

i W

in their construction instead of the observable truncated increment ∆n
i X̃1{|∆n

i X̃|≤α∆ϖ
n }. Intuitively,

the truncation will make the effect of the jumps on ĝi negligible, and hence ĝi and g̃i are close, as

we will show now.

We can make the decomposition

(∆n
i X̃)21

(
|∆n

i X̃| ≤ α∆ϖ
n

)
− σ̃2

(i−1)∆n
(∆n

i W )2 =

4∑
j=1

ϵi(j), i = 1, ..., nT, (47)

ϵi(1) =

(∆n
i X̃)2 −

(
σ̃(i−1)∆n

∆n
i W +

∫ i∆n

(i−1)∆n

∫
R
δ(s−, x)µ(ds, dx)

)2
 1
(
|∆n

i X̃| ≤ α∆ϖ
n

)
,

ϵi(2) =−
(
σ̃(i−1)∆n

∆n
i W

)2
1
(
|∆n

i X̃| > α∆ϖ
n

)
,

ϵi(3) =

(∫ i∆n

(i−1)∆n

∫
R
δ(s−, x)µ(ds, dx)

)2

1
(
|∆n

i X̃| ≤ α∆ϖ
n

)
,

ϵi(4) =2σ̃(i−1)∆n
∆n

i W

∫ i∆n

(i−1)∆n

∫
R
δ(s−, x)µ(ds, dx)1

(
|∆n

i X̃| ≤ α∆ϖ
n

)
.

Using Hölder’s inequality, Burkholder-Davis-Gundy inequality, assumption B for the process

σt, as well as the smoothness property of f(t), we have for any p ∈ [1, 2]

En
i−1|ϵi(1)|p ≤ C(i−1)∆n

∆3p/2
n , i,= 1, ..., nT, (48)

where the constant C(i−1)∆n
is adapted to F(i−1)∆n

and all its (positive) powers are integrable.

Next, Hölder’s inequality implies

En
i−1|ϵi(2)|p ≤ C(i−1)∆n

∆p+(1−βω)−ι
n , i = 1, ..., nT, (49)

where β is defined in assumption A, ι > 0 is arbitrary small and C(i−1)∆n
is defined as above.

For ϵi(3), we trivially have for any p ∈ [1, 2]

En
i−1|ϵi(3)|p ≤ C(i−1)∆n

∆1+(2p−β)ω−ι
n , i = 1, ..., nT, (50)

where ι > 0 is arbitrary small and C(i−1)∆n
is as defined above.

Finally, we obviously have |ϵi(4)| ≤ |ϵi(2)| + |ϵi(3)| and so the above bounds can be used to

bound En
i−1|ϵi(3)|p for any p ∈ [1, 2].

Combining the above bounds and using successive conditioning and Hölder’s inequality (together

with the integrability condition (40)), we have

E|ĝi − g̃i| ≤ C∆[(2−β)ϖ−ι]∧1/2
n and E|ĝ − g̃| ≤ C∆[(2−β)ϖ−ι]∧1/2

n , i = 1, ..., n, ∀ι > 0, (51)
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and

E|ĝi − g̃i|2 ≤ C∆[(4−2β)ϖ−ι]∧1
n and E|ĝ − g̃|2 ≤ C∆[(4−2β)ϖ−ι]∧1

n , i = 1, ..., n, ∀ι > 0. (52)

2. Proof of parts (a) and (b). We first make the decomposition

1

nT

nT∑
i=1

cos
(√

2unf̂
−1/2
i 1{f̂i ̸=0}∆

n
i X̃
)
− E

[
e−uσ2

t

]
=

5∑
i=1

Ai (53)

A1 =
1

nT

nT∑
i=1

cos
(√

2unσ(i−1)∆n
∆n

i W
)
− E

[
e−uσ2

t

]
,

A2 =
1

nT

nT∑
i=1

{
cos
(√

2unf̃
−1/2
i 1{f̃i ̸=0}f

1/2
i−[i/n]nσ(i−1)∆n

∆n
i W

)
− cos

(√
2unσ(i−1)∆n

∆n
i W

)}
1{Bi},

A3 =
1

nT

nT∑
i=1

{
cos
(√

2unf̃
−1/2
i 1{f̃i ̸=0}f

1/2
i−[i/n]nσ(i−1)∆n

∆n
i W

)
− cos

(√
2unσ(i−1)∆n

∆n
i W

)}
1{Bc

i },

A4 =
1

nT

nT∑
i=1

{
cos
(√

2unf̂
−1/2
i 1{f̂i ̸=0}∆

n
i X̃
)
− cos

(√
2unf̃

−1/2
i 1{f̃i ̸=0}σ̃(i−1)∆n

∆n
i W

)}
1{Bi ∪ Ci},

A5 =
1

nT

nT∑
i=1

{
cos
(√

2unf̂
−1/2
i 1{f̂i ̸=0}∆

n
i X̃
)
− cos

(√
2unf̃

−1/2
i 1{f̃i ̸=0}σ̃(i−1)∆n

∆n
i W

)}
1{Bc

i ∩ Cc
i },

(54)

where the sets Bi and Ci are defined as

Bi = {g̃i ≥ (1+τ)fi−[i/n]nE(σ2
t ) ∪ g̃i ≤ (1−τ)fi−[i/n]nE(σ2

t ) ∪ g̃ ≥ (1+τ)E(σ2
t ) ∪ g̃ ≤ (1−τ)E(σ2

t )},

Ci = {ĝi ≥ (1+τ)fi−[i/n]nE(σ2
t ) ∪ ĝi ≤ (1−τ)fi−[i/n]nE(σ2

t ) ∪ ĝ ≥ (1+τ)E(σ2
t ) ∪ ĝ ≤ (1−τ)E(σ2

t )},

for i = 1, ..., nT and some constant τ ∈ (0, 1).

From the proof of Theorem 2 in the paper, the first component, A1, is the leading term of

1
T VT (X,∆n, u) − E

[
e−uσ2

t

]
. The other components in the above decomposition are due to the

“cleaning” for the diurnal pattern (and the presence of jumps and a drift term in the price incre-

ments as well as the time variation in the volatility). The main difficulty in the proof of parts (a)

and (b) of the theorem comes from the fact that f̂i and f̃i use information from the whole time span

[0, T ] and further are not bounded from below and above. In the rest of the proof, we will further

decompose each of the terms in (54) in order to extract the leading components in the asymptotic

expansion of 1
T V̂T (X̃,∆n, u)− E

[
e−uσ2

t

]
and bound the asymptotically negligible parts.

We start with A3. Using a second-order Taylor expansion of the function h(x, y) = cos(a
√

y/x)

with a =
√
2unσ̃(i−1)∆n

∆n
i W , x = g̃i and y = g̃ around (fi−[i/n]nE(σ2

t ),E(σ2
t )) (note that on the
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set Bc
i , g̃i is strictly positive and g̃ is strictly positive and bounded), we can decompose A3 as

A3 =
∑6

j=1A3(j) where

A3(1) =
0.5µ

n

n∑
i=1

g̃i − fi−[i/n]nE(σ2
t )

fi−[i/n]nE(σ2
t )

− 0.5µ
g̃ − E(σ2

t )

E(σ2
t )

,

A3(2) =
0.5

nT

nT∑
i=1

{
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W − µ
}( g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
,

A3(3) =
−0.5

nT

(
g̃ − E(σ2

t )

E(σ2
t )

) nT∑
i=1

{
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W − µ
}
,

A3(4) =
−0.5

nT

nT∑
i=1

{
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W
}( g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
1{Bi},

A3(5) =
0.5

nT

(
g̃ − E(σ2

t )

E(σ2
t )

) nT∑
i=1

{
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W
}
1{Bi},

A3(6) =
1

nT

nT∑
i=1

{
H11(

√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)

(
g̃i − fi−[i/n]nE(σ2

t )
)2

+H12(
√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)

(
g̃i − fi−[i/n]nE(σ2

t )
) (

g̃ − E(σ2
t )
)

+H22(
√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)

(
g̃ − E(σ2

t )
)2}

1{Bc
i },

(55)

where we denote with µ = E(G(uσ2
t )) (recall G(x) =

√
2xe−x); ˜̃gi is between g̃i and fi−[i/n]nE(σ2

t );

˜̃g is between g̃ and E(σ2
t ) (and is different for i = 1, ..., nT ), and

˜̃
fi = ˜̃gi/˜̃g, and finally

H11(a;x, y) = −1

4
cos

(
a

√
y

x

)
a2y

x3
− 3

4
sin

(
a

√
y

x

)
ay1/2

x5/2
,

H22(a;x, y) = −1

4
cos

(
a

√
y

x

)
a2

xy
+

1

4
sin

(
a

√
y

x

)
a

x1/2y3/2
,

H12(a;x, y) =
1

4
cos

(
a

√
y

x

)
a2

x2
+

1

4
sin

(
a

√
y

x

)
a

x3/2y1/2
.

(56)

For A3(1), using the definition of g̃i and g̃, we have further

A3(1) =
0.5µ

E(σ2
t )

× 1

nT

nT∑
i=1

(
σ2
(i−1)∆n

− σ̃2
(i−1)∆n

)
n(∆n

i W )2 =
0.5µ

E(σ2
t )

×
(
A

(a)
3 (1) +A

(b)
3 (1) +A

(c)
3 (1)

)
,

(57)

A
(a)
3 (1) =

1

T

T∑
t=1

∫ t

t−1

(
σ2
s − σ̃2

s

)
ds, A

(b)
3 (1) =

1

nT

nT∑
i=1

(
σ2
(i−1)∆n

− σ̃2
(i−1)∆n

)
− 1

T

T∑
t=1

∫ t

t−1

(
σ2
s − σ̃2

s

)
ds,

A
(c)
3 (1) =

1

nT

nT∑
i=1

(
σ2
(i−1)∆n

− σ̃2
(i−1)∆n

) (
n(∆n

i W )2 − 1
)
.

(58)
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Then, using assumption B and the fact that f(t) is 0.5-Hölder continuous, we have

E|A(b)
3 (1)| ≤ C

√
∆n, (59)

and further for the martingale process we have

E|A(c)
3 (1)| ≤ C

√
∆n√
T

. (60)

Turning to A1, we can decompose it as A1 = A1(1) +A1(2) where

A1(1) =
1

T

T∑
t=1

(∫ t

t−1
e−uσ2

sds− E[e−uσ2
t ]

)
,

A1(2) =
1

T

nT∑
i=1

(
∆n cos

(√
2unσ(i−1)∆n

∆n
i W

)
−
∫ i∆n

(i−1)∆n

e−uσ2
sds

)
.

(61)

Using the proof of Theorems 1 and 2 in the paper, we have that

A1(2) = Op

(√
∆n

T
+∆n

)
. (62)

Then, using the stationarity, ergodicity and mixing conditions we have

√
T
(
A1(1), A

(a)
3 (1)

)
L−→ Σ(u)1/2 × Ξ . (63)

From the proof of Theorem 2 in the paper, the difference between 1
T VT (X,∆n, u)− E

[
e−uσ2

t

]
and

the term A1 is op(1/
√
T ). Therefore, the above result shows (42) in Theorem 3.

Since g̃i = g̃j for |i− j| = n, we can rewrite A3(2) as

A3(2) =
0.5

n

n∑
i=1

{
1

T

T∑
t=1

(
sin
(√

2unσ(it−1)∆n
∆n

itW
)√

2unσ(it−1)∆n
∆n

itW − µ
)}{ g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

}
.

(64)

Using assumption C, the fact that G(x) is bounded, and Lemma VIII.3.102 in Jacod and Shiryaev

(2003), we have (recall the definition of the constant µ above)

En
i−1

(
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W −G
(
uσ2

(i−1)∆n

))
= 0, i = 1, ..., nT,∣∣∣En

j−1

(
G
(
uσ2

(i−1)∆n

)
− µ

)∣∣∣ ≤ C
(
αmix

i−j
n

)1−ι
, j, i = 1, ..., nT, j ≤ i, ι > 0 arbitrary small.

(65)

Therefore

E

(
1

T

T∑
t=1

(
sin
(√

2unσ(it−1)∆n
∆n

itW
)√

2unσ(it−1)∆n
∆n

itW − µ
))2

≤ C

T

∫ ∞

0

(
αmix
s

)1−ι
ds. (66)
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Similar analysis shows

E

(
1

nT

nT∑
i=1

(
sin
(√

2unσ(i−1)∆n
∆n

i W
)√

2unσ(i−1)∆n
∆n

i W − µ
))2

≤ C

T

∫ ∞

0

(
αmix
s

)1−ι
ds,

E
(
g̃i − fi−[i/n]nE(σ2

t )
)2 ≤ C

T

∫ ∞

0

(
αmix
s

)1−ι
ds, i = 1, ..., n,

E
(
g̃ − E(σ2

t )
)2 ≤ C

T

∫ ∞

0

(
αmix
s

)1−ι
ds+ C∆n,

(67)

where for the last bound we have made use of the fact that f(t) is 0.5-Hölder continuous function.

Using Chebychev’s inequality and the above results we also easily get

P (Bi) ≤ CE
(
g̃i − fi−[i/n]nE(σ2

t )
)2

+ CE
(
g̃ − E(σ2

t )
)2 ≤ (C

T
+ C∆n

)
. (68)

The bounds in (66)-(67) and an application of Cauchy-Schwartz inequality give

E|A3(2) +A3(3)| ≤
C

T
+

C
√
∆n√
T

. (69)

Turning to A3(4), we first can decompose it as

Aa
3(4) =

−0.5

n

n∑
i=1

(
1

T

T∑
t=1

(
sin
(√

2unσ(it−1)∆n
∆n

itW
)√

2unσ(it−1)∆n
∆n

itW − µ
))

×

(
g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
1{Bi},

Ab
3(4) =

−0.5µ

n

n∑
i=1

(
g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
1{Bi}.

(70)

Then we can use the results in (66)-(67) (and Chebychev’s inequality for Ab
3(4)) to conclude

E|A3(4)| ≤
C

T
+

C
√
∆n√
T

. (71)

Similar analysis can be used to show

E|A3(5)| ≤
C

T
+

C
√
∆n√
T

. (72)

Turning to A3(6), first using the fact that on the set Bc
i , g̃i is bounded from below and g̃ is

bounded from below and above, we have

|H11(
√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)|+ |H22(

√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)|+ |H12(

√
2unσ̃(i−1)∆n

∆n
i W ; ˜̃gi, ˜̃g)|

≤ |
√
2unσ̃(i−1)∆n

∆n
i W |2 ∨ |

√
2unσ̃(i−1)∆n

∆n
i W |, i = 1, ..., nT.

(73)
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Then, combining this with the above bounds in (66)-(67) and using the integrability condition in

(40) together with Hölder’s inequality we get

E|A3(6)| ≤
(
C

T
+ C∆n

)1−ι

, ι > 0 arbitrary small. (74)

We continue next with A2 and A4. We can use the trivial inequalities

P
(
ĝi ≤ (1− τ)fi−[i/n]nE(σ2

t )
)
≤ P

(
g̃i ≤ (1− τ/2)fi−[i/n]nE(σ2

t )
)
+ P

(
|ĝi − g̃i| ≥ τfi−[i/n]nE(σ2

t )/2
)
,

P
(
ĝi ≥ (1 + τ)fi−[i/n]nE(σ2

t )
)
≤ P

(
g̃i ≥ (1 + τ/2)fi−[i/n]nE(σ2

t )
)
+ P

(
|ĝi − g̃i| ≥ τfi−[i/n]nE(σ2

t )/2
)
,

P
(
ĝ ≤ (1− τ)E(σ2

t )
)
≤ P

(
g̃ ≤ (1− τ/2)E(σ2

t )
)
+ P

(
|ĝ − g̃| ≥ τE(σ2

t )/2
)
,

P
(
ĝ ≥ (1 + τ)E(σ2

t )
)
≤ P

(
g̃ ≥ (1 + τ/2)E(σ2

t )
)
+ P

(
|ĝ − g̃| ≥ τE(σ2

t )/2
)
,

(75)

and the bound for P(Bi) derived in (68), together with the first absolute-moment restrictions for

the differences ĝi − g̃i and ĝ − g̃ in (51), to get

E(|A2|+ |A4|) ≤
C

T
+ C∆[(2−β)ϖ−ι]∧1/2

n , ∀ι > 0. (76)

We are left with A5. First, using the definition of the set Bc
i ∩ Cc

i and a first-order Taylor

expansion of the function h(x, y) = x
y , we have for i = 1, ..., nT∣∣∣∣ cos(√2unf̂

−1/2
i ∆n

i X̃
)
− cos

(√
2unf̃

−1/2
i σ̃(i−1)∆n

∆n
i W

) ∣∣∣∣1{Bc
i ∩ Cc

i }

≤ C|
√
2un∆n

i X̃ −
√
2unσ̃(i−1)∆n

∆n
i W |β+ι + C|

√
2unσ(i−1)∆n

∆n
i W ||ĝi − g̃i|1{Bc

i ∩ Cc
i }

+ C|
√
2unσ(i−1)∆n

∆n
i W ||ĝ − g̃|1{Bc

i ∩ Cc
i }, ∀ι ∈ (0, 1− β].

(77)

Using this inequality, we can bound |A5| ≤ C
∑5

j=1A5(j) where

A5(1) =
1

nT

nT∑
i=1

|
√
2un∆n

i X̃ −
√
2unσ̃(i−1)∆n

∆n
i W |β+ι, (78)

A5(2) =
√
2u

1

n

n∑
i=1

{
1

T

T∑
t=1

√
n|σ(it−1)∆n

∆n
itW | −

√
2

π
E|σt|

}
|ĝi − g̃i|1{Bc

i ∩ Cc
i }, (79)

A5(3) =
√
2u

√
2

π
E|σt|

1

n

n∑
i=1

|ĝi − g̃i|1{Bc
i ∩ Cc

i }, (80)

A5(4) =
√
2u

{
1

nT

nT∑
i=1

√
n|σ(i−1)∆n

∆n
i W | −

√
2

π
E|σt|

}
|ĝ − g̃|1{|ĝ−g̃|≤4τE(σ2

t )}, (81)

A5(5) =
√
2u

√
2

π
E|σt||ĝ − g̃|1{|ĝ−g̃|≤4τE(σ2

t )}. (82)
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First, it is easy to show that

E|
√
n∆n

i X̃ −
√
nσ̃(i−1)∆n

∆n
i W |β+ι ≤ C∆1−β/2−ι/2

n , ∀ι ∈ (0, 1− β], (83)

and therefore

E(A5(1)) ≤ C∆1−β/2−ι/2
n , ∀ι ∈ (0, 1− β]. (84)

For A5(3) and A5(5), we can use (51) to get

E(A5(3) +A5(5)) ≤ C∆[(2−β)ϖ−ι]∧1/2
n , ∀ι > 0. (85)

For A5(2) and A5(4), we can derive a bound on E
(

1
T

∑T
t=1

√
n|σ(it−1)∆n

∆n
it
W | −

√
2
πE|σt|

)2
for i =

1, ..., n and E
(

1
nT

∑nT
i=1

√
n|σ(i−1)∆n

∆n
i W | −

√
2
πE|σt|

)2
exactly as in (66) (using the integrability

conditions on σt of the theorem and assumption C), and then apply Cauchy-Schwartz inequality

and (51) to get

E(|A5(2)|+ |A5(4)|) ≤ C∆[(1−β/2)ϖ−ι]∧1/4
n /

√
T , ∀ι > 0. (86)

Therefore, overall we have the bound

E|A5| ≤ C∆[(2−β)ϖ−ι]∧1/2
n + C∆[(1−β/2)ϖ−ι]∧1/4

n /
√
T , ∀ι > 0. (87)

Combining all of the above bounds we get that

E
∣∣∣∣ 1T V̂T (X̃,∆n, u)− E

[
e−uσ2

t

]
−A1(1)−A

(a)
3 (1)

∣∣∣∣ ≤ C

(
1

T 1−ι
+

∆
[(1−β/2)ϖ−ι]∧1/4
n √

T
+∆[(2−β)ϖ−ι]∧1/2

n

)
,

for ι > 0 arbitrary small. This together with (63) establishes the results in (41)-(42) of parts (a)

and (b) of the theorem.

Proof of part (c). We first show that Σ̂(u) is consistent for Σ(u) under the conditions of the

theorem. Using the assumptions of the theorem and Proposition 1 in Andrews (1991) we have

C0(u) + 2

LT∑
i=1

ω(i, LT )Ci(u)
P−→ Σ(u), Ci(u) =

1

T

T∑
t=i+1

(zt−i(u)z
′
t(u) + zt(u)z

′
t−i(u)), (88)

where zt(u) is defined in part (b) of the theorem. Therefore we are left with bounding the difference

Σ̂(u)− (C0(u) + 2
∑LT

i=1 ω(i, LT )Ci(u)). For this we use the following bound

||zt(u)− ẑt(u)|| ≤ C
6∑

j=1

|z̃(j)t |, (89)

where

z̃
(1)
t = cos

(√
2unf̂

−1/2
j 1{f̂j ̸=0}∆

n
j X̃
)
−
∫ t+1

t
e−uσ2

sds, (90)
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z̃
(2)
t =

1

T
V̂T (X̃,∆n, u)− E(e−uσ2

t ), (91)

z̃
(3)
t =

tn+n∑
j=tn+1

(f̂−1
j ∧ T η − 1)

[
(∆n

j X̃)21(|∆n
j X̃| ≤ α∆ϖ

n )−
∫ j∆n

(j−1)∆n

σ̃2
sds

]
, (92)

z̃
(4)
t =

tn+n∑
j=tn+1

(f̂−1
j ∧ T η − f−1

j−[j/n]n)1{Bc
j∩Cc

j }

∫ j∆n

(j−1)∆n

σ̃2
sds, (93)

z̃
(5)
t =

tn+n∑
j=tn+1

(f̂−1
j ∧ T η − f−1

j−[j/n]n)1{Bj∪Cj}

∫ j∆n

(j−1)∆n

σ̃2
sds, (94)

z̃
(6)
t =

tn+n∑
j=tn+1

∫ j∆n

(j−1)∆n

(f−1
j−[j/n]nσ̃

2
s − σ2

s)ds. (95)

In what follows we will bound the second order moments of each the terms z̃
(j)
t . From the proof

of parts (a) and (b) of the theorem, using the boundedness of z̃
(1)
t and z̃

(2)
t as well as the relative

speed condition between T and ∆n of the theorem, we have

E|z̃(1)t + z̃
(2)
t |2 ≤ C√

T
. (96)

For z̃
(3)
t , we have

E|z̃(3)t |2 ≤ CT 2ηE

 tn+n∑
j=tn+1

∣∣∣∣∣(∆n
j X̃)21(|∆n

j X̃| ≤ α∆ϖ
n )−

∫ j∆n

(j−1)∆n

σ̃2
sds

∣∣∣∣∣
2

. (97)

Then for i ̸= j, using successive conditioning, the decomposition in (47) above, Hölder’s inequality

together with the integrability conditions in (40), we get

E

{∣∣∣∣∣(∆n
i X̃)21(|∆n

i X̃| ≤ α∆ϖ
n )−

∫ i∆n

(i−1)∆n

σ̃2
sds

∣∣∣∣∣
∣∣∣∣∣(∆n

j X̃)21(|∆n
j X̃| ≤ α∆ϖ

n )−
∫ j∆n

(j−1)∆n

σ̃2
sds

∣∣∣∣∣
}

≤ C∆2+[(4−2β)ϖ−ι]∧1
n ,

(98)

for ι > 0 arbitrary small. Similar calculations give

E

∣∣∣∣∣(∆n
i X̃)21(|∆n

i X̃| ≤ α∆ϖ
n )−

∫ i∆n

(i−1)∆n

σ̃2
sds

∣∣∣∣∣
2

≤ C∆1+(4−β)ϖ−ι
n , ∀ι > 0. (99)

Combining these inequalities we get

E|z̃(3)t |2 ≤ CT 2η∆[(4−2β)ϖ−ι]∧1
n , ∀ι > 0. (100)
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Turning to z̃
(4)
t , using the definition of the sets Bi and Ci, as well as first-order Taylor expansion

we have

|z̃(4)t | ≤ C

tn+n∑
j=tn+1

{[
|ĝj − g̃j |+ |ĝ − g̃|+ |g̃j − fj−[j/n]nE(σ2

t )|+ |g̃ − E(σ2
t )|
]
1{Bc

j∩Cc
j }

∫ j∆n

(j−1)∆n

σ̃2
sds

}
.

(101)

Using the bounds in (52), Hölder’s inequality, as well as the integrability conditions in (40), we get

E|z̃(4)t |2 ≤ C

(
1

T
+∆[(4−2β)ϖ−ι]∧1

n

)1−ι

, ∀ι > 0. (102)

Turning to z̃
(5)
t , using the definition of the sets Bi and Ci as well as the trivial bound in (75), we

get

E|z̃(5)t |2 ≤ CT 2η

(
1

T
+∆[(4−2β)ϖ−ι]∧1

n

)1−ι

, ∀ι > 0. (103)

Finally, for z̃
(6)
t we can write using the 0.5-Hölder continuity of the function f

E|z̃(6)t |2 ≤ C∆n. (104)

Using the above bounds, the square-integrability of zt(u) (which follows from the integrability

conditions of the theorem), an application of Cauchy-Schwartz inequality and the relative speed

conditions between LT , T and ∆n in the theorem, we get

||Σ̂(u)− (C0(u) + 2

LT∑
i=1

ω(i, LT )Ci(u))|| ≤ CLTT
η−1/2. (105)

This result combined with (88) proofs the consistency of Σ̂(u).

Finally we prove

1

nT

nT∑
j=1

(√
2un(f̂

−1/2
j ∧ T η/2)∆n

j X̃
)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)∆n

j X̃
)

ĝ

P−→ E(G(uσ2
t ))

E(σ2
t )

. (106)

First, from (67) and (52), we have ĝ
P−→ E(σ2

t ). Hence we only need to show

1

nT

nT∑
j=1

(√
2un(f̂

−1/2
j ∧ T η/2)∆n

j X̃
)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)∆n

j X̃
)

P−→ E(G(uσ2
t )). (107)

By a Law of Large Numbers we have

1

nT

nT∑
j=1

(√
2unσ(j−1)∆n

∆n
jW

)
sin
(√

2unσ(j−1)∆n
∆n

jW
)

P−→ E(G(uσ2
t )), (108)
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and further we can make the decomposition

1

nT

nT∑
j=1

(√
2un(f̂

−1/2
j ∧ T η/2)∆n

j X̃
)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)∆n

j X̃
)

− 1

nT

nT∑
j=1

(√
2unσ(j−1)∆n

∆n
jW

)
sin
(√

2unσ(j−1)∆n
∆n

jW
)
=

1

nT

nT∑
j=1

(ζ
(1)
j + ζ

(2)
j + ζ

(3)
j ),

(109)

for

ζ
(1)
j =

{(√
2un(f̂

−1/2
j ∧ T η/2)∆n

j X̃
)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)∆n

j X̃
)

−
(√

2un(f̂
−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
,

(110)

ζ
(2)
j =

{(√
2un(f̂

−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
−
(√

2unσ(j−1)∆n
∆n

jW
)
sin
(√

2unσ(j−1)∆n
∆n

jW
)}

1{Bc
j∩Cc

j },

(111)

ζ
(3)
j =

{(√
2un(f̂

−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
sin
(√

2un(f̂
−1/2
j ∧ T η/2)σ̃(j−1)∆n

∆n
jW

)
−
(√

2unσ(j−1)∆n
∆n

jW
)
sin
(√

2unσ(j−1)∆n
∆n

jW
)}

1{Bj∪Cj}.

(112)

For ζ
(1)
j , using the result in (83), we have

E|ζ(1)j | ≤ T η
√

∆n. (113)

For ζ
(2)
j , we can use the bounds in (51), the integrability condition in (40) and apply Hölder’s

inequality, to get

E|ζ(2)j | ≤ CE
{[

|ĝj − g̃j |+ |ĝ − g̃|+ |g̃j − fj−[j/n]nE(σ2
t )|+ |g̃ − E(σ2

t )|
]

× 1{Bc
j∩Cc

j }
[
|
√
nσ(j−1)∆n

∆n
jW | ∨ |

√
nσ(j−1)∆n

∆n
jW |2

]}
≤ C

(
1√
T

+∆[(2−β)ϖ−ι]∧1/2
n

)1−ι

, ∀ι > 0.

(114)

For ζ
(3)
j , we can use Chebychev’s inequality and proceed as above to get

E|ζ(3)j | ≤ CT η/2

(
1√
T

+∆[(2−β)ϖ−ι]∧1/2
n

)1−ι

, ∀ι > 0. (115)

Taking into account the restriction on η in the theorem we altogether get that 1
nT

∑nT
j=1(ζ

(1)
j +ζ

(2)
j +

ζ
(3)
j ) is asymptotically negligible and hence we are done. �
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