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We propose a nonparametric estimator of spot volatility from
noisy short-dated option data. The estimator is based on forming
portfolios of options with different strikes that replicate the (risk-
neutral) conditional characteristic function of the underlying price in
a model-free way. The separation of volatility from jumps is done by
making use of the dominant role of the volatility in the conditional
characteristic function over short time intervals and for large values
of the characteristic exponent. The latter is chosen in an adaptive
way in order to account for the time-varying volatility. We show that
the volatility estimator is near rate-optimal in minimax sense. We
further derive a feasible joint Central Limit Theorem for the proposed
option-based volatility estimator and existing high-frequency return-
based volatility estimators. The limit distribution is mixed-Gaussian
reflecting the time-varying precision in the volatility recovery.

1. Introduction. Options provide a natural source of information for
studying volatility. Indeed, following the seminal work of [14] and [33], any
option written on an asset can be used to back out the unknown volatility
of the asset. The resulting estimator of volatility is typically referred to
as Black-Scholes Implied Volatility (BSIV). Unfortunately, the assumptions

behind the model of [14] and [33], mainly constant volatility and no jump
risk, are too simple for such volatility extraction to work in practice, see
e.g., [19], [21] and [10]. Indeed, BSIV backed out from available options

with strikes that are far from the current price level are typically too high
when compared to historical averages based on returns data. These elevated
implied volatility levels are a reflection of the importance of time-varying
volatility and jump risk for investors. The goal of this paper is to develop
nonparametric spot volatility estimator from options that works in general
settings when jumps are present and volatility can vary over time.

Recent developments in financial markets make the construction of option-
based nonparametric volatility estimates practically feasible. In particular,
the availability and liquidity of very short-maturity options with a wide
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range of strikes has significantly increased over the last few years, see e.g.,
6]-

We use these short-dated options in the construction of our estimator. A
natural candidate for a spot volatility estimator is provided by the BSIV of
options with strikes that are close to the current price level. The short time
to expiration limits the effect of the time-varying volatility on these options.
Similarly, the proximity of their strikes to the current price limits the effect
of jumps on them. Nevertheless, we show that jumps cause an upward bias in
the recovery of volatility from the BSIV of short-dated options with strikes
close to the price level. This bias is nontrivial and cannot be ignored in
practice.

In this paper, we take a different approach for estimating spot volatil-
ity from options, which allows for an efficient separation of volatility from
jumps. Our approach makes use of the fact that the expected value of smooth
functions of the price of the underlying asset at expiration can be replicated
by portfolios of options with continuum of strike levels, see e.g., [15] as well
as the earlier work of [26] and [38]. Using this insight, we construct port-
folios of options which replicate the conditional risk-neutral characteristic
function of the price at expiration. If the time to expiration is short, then
the time variation in volatility has a negligible effect on the latter and can
be ignored. The effect of the jumps on the characteristic function, on the
other hand, is more subtle. If the value of the characteristic exponent is
close to zero, then the jumps have a non-negligible effect. However, their
effect diminishes for higher values of the characteristic exponent. We show
that asymptotically (as the time to maturity shrinks) optimal separation of
volatility from jumps can be achieved when the characteristic exponent is
growing at a rate proportional to the square root of the time to expiration
of the options. This leads to a volatility estimator which is significantly less
biased in presence of jumps than the BSIV of options with strikes close to
the current price.

We establish consistency of the proposed volatility estimator in an asymp-
totic setting in which options are observed with error, their maturity goes
to zero together with shrinking mesh of the available strike grid. We fur-
ther derive a Central Limit Theorem (CLT) for our volatility estimator.
The limiting distribution is determined by the asymptotic behavior of the
observation error in the available options. The convergence is stable and its
asymptotic limit is mixed Gaussian. That is, the limit is centered Gaussian
when conditioning on the sigma algebra on which the return and option
data are defined. This allows for the asymptotic variance of the volatility es-
timator to depend, in particular, on the current level of volatility and more
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generally on any other variable that determines the quality of the option
data. Hence, the precision in estimation will typically differ over different
points in time. For feasible inference, we develop a simple estimator of the
asymptotic variance which is based on an option portfolio that measures the
sensitivity of the observed option prices to changes in their strikes.

There are many asymptotically valid choices for the characteristic expo-
nent of the volatility estimator. However, for the successful performance of
the estimator in practice, this choice matters a lot. Therefore, we develop an
adaptive procedure for setting this tuning parameter by using an initial con-
sistent estimator of volatility constructed from the option data. Our initial
consistent estimator is the option analogue of the truncated high-frequency
return volatility estimator of [31]. It is based on integrating the available
options in a portfolio which spans a truncated second moment of the price
at expiration (i.e., a function which behaves like the square function around
zero and diminishes to zero for values of the argument diverging from zero).

We show that our estimator is near-rate optimal. In particular, in the
specialized setting of Lévy jump-diffusion dynamics for the underlying price
and Gaussian observation errors proportional to the true unobserved option
prices, we show that the efficient rate (in a minimax sense) of recovering
volatility from the noisy short-maturity option data coincides with the rate
of convergence of our estimator up to a log term (the rate of convergence
of our estimator is some power of the time to maturity). This is unlike a
volatility estimator based on the average of close-to-money BSIV.

The nonparametric spot volatility estimator developed in this paper can
be viewed as the option counterpart of the high-frequency return-based
volatility estimators. In pioneering work, [9, 10] propose so-called multi-
power variation statistics as a way to separate volatility from jumps while
[31, 32] develops truncated variance estimator that achieves the same goal.
More recently, [30] propose the use of the empirical characteristic function
of returns as a way to measure volatility in a jump-robust way, which allows
also to deal with jumps of arbitrary high activity in an efficient way.

The high-frequency return-based volatility estimators use an asymptoti-
cally increasing number of increments in a local window of time to estimate
volatility in a way similar to estimating volatility from a sequence of i.i.d.
returns in classical settings. By contrast, the newly-proposed option-based
estimator uses an asymptotically increasing number of short-dated options
with different strikes to identify the expectation about the future volatil-
ity embodied in them. In turn, this conditional expectation of volatility
converges to the spot volatility when the time to maturity of the options
shrinks. We show that the convergence of the option-based and return-based
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volatility estimators holds jointly. This allows one to construct an optimal
mixture of the two types of estimators which has the lowest asymptotic
variance for measuring spot volatility from return and option data.

We evaluate the performance of the option-based volatility estimator in a
Monte Carlo experiment whose setup mimics key features of available option
data. The Monte Carlo shows satisfactory finite sample properties of the de-
veloped estimator and the inference about it. In an empirical application to
short-dated S&P 500 index options, we find that the option-based volatility
estimator is on average very close to an estimator based on high-frequency
returns on the S&P 500 index but it is significantly more accurate.

The current paper is related to two strands of literature on volatility in-
ference from option data. First, there is a large body of work that considers
short-maturity expansions of at-the-money options or options which become
at-the-money in the limit, see e.g., [12], [23], [24], [36], [35]. Unlike this body
of work, we consider a portfolio of options across strikes which is important
to reduce the asymptotic bias of the estimator. We further allow for obser-
vation error, derive a stable CLT for our estimator and establish its near
rate-optimality. Second, [11], [20], [11], [12], [13, 44] consider nonparametric
inference for the diffusive volatility in the class of exponential-Lévy models
from options with fixed maturity. The major difference between the current
paper and this strand of work is that our analysis applies to general It6
semimartingales and the asymptotic setup here is one with shrinking matu-
rity of the options. The latter difference leads to a significantly faster rate of
convergence of the volatility estimator in the current asymptotic setting as
the shrinking maturity aids the separation of diffusive volatility from jumps.

The rest of the paper is organized as follows. In Section 2 we develop non-
parametric methods for recovering volatility from options in the infeasible
scenario where a continuum of short-maturity options with strikes spanning
the positive real line are available. Section 3 adapts these procedures to the
feasible setting where only a finite number of noisy option observations are
available instead. In this section we further characterize the rate of conver-
gence of the volatility estimator, derive a feasible CLT for it, and develop
an adaptive method for selecting the tuning parameter used in its construc-
tion. Section 4 derives the minimax risk of recovering spot volatility from
noisy short-dated options in the special Lévy case and Gaussian observation
errors. Section 5 contains a Monte Carlo study and Section 6 an empirical
application. The proofs are given in Section 7.

2. Option Portfolios and Volatility. We begin our analysis with
showing how to identify volatility in the infeasible setting where short-dated
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options with arbitrary strikes are available and further when the options are
observed without error. We will relax these assumptions about the option
observation scheme in the next section.

The underlying asset price is denoted by X and is defined on the fil-
tered probability space (Q(O),}'(O), (.7-}(0))@0,1?(0)). Since our focus in this
paper is on extracting information from options, we will specify here only
the behavior of X under the so-called risk-neutral measure @Q, which un-
der no-arbitrage is locally equivalent to P(®). For the return-based volatility
estimates, which we use later on to compare the option-based volatility esti-
mator with, we will need to impose some structure on the P(©) dynamics of
X as well (see assumption A6 in Section 3.2). The dynamics of the log-price
x = In(X) under Q is given by

t t t
(2.1) xt—/ asds—i—/ ades—i—/ /xﬁ(ds,dx),
0 0 o Jr

where W is a Brownian motion, p is an integer-valued random measure on
Ry x R, counting the jumps in x, with compensator v;(x)dt ® dr and 1
is the martingale measure associated with u (W and v, are defined with
respect to Q). The regularity conditions for the above quantities are given
in Section 3.2.

Although equation (2.1) describes the dynamics of z under Q, under no-
arbitrage, o, continues to be the diffusive volatility of z under P, Our
goal here is to estimate the spot diffusive variance V; = o2 under general
conditions, i.e., with minimal regularity assumptions about (a¢, o¢, 14).

For the recovery of V;, we will use options written on X at time ¢, which
expire at t + T, for some T > 0. Since t will be fixed throughout, we will
henceforth suppress the dependence on t in the notation of the option prices
and other related quantities. For simplicity, we will further assume that
the dividend yield associated with X and the risk-free interest rate are both
equal to zero as their effect on short-dated options is known to be negligible.
With these normalizations, the theoretical values of the options we will use
in our analysis are given by

EQ(ek — e+t if k< ay
2.2 k) =1 g itk >
(2.2) tr (k) { E?(e$t+T — et i k> a2y

kr(k) is the price of an out-of-the-money (OTM) option (i.e., an option
which will be worth zero if it were to expire today). This is a call contract
(an option to buy the asset) if k¥ > x; and a put contract (an option to sell
the asset) if k& < z;. In what follows, we will refer to K = e* and k as the
strike and log-strike, respectively, of the option.
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To simplify analysis, in this section, we will assume that jumps are of
finite activity, i.e., that

t+T
(2.3) / /us(dac)ds < 00, a.s.
t R

Many jump models used in financial applications satisfy the above finite
activity assumption and we will further relax it in the derivation of the
formal results presented in the next section.

Henceforth, for a generic sequence of random variables Y and some de-
terministic sequence Ry, Y7 = O,(R7) will mean that Y7 /Ry is bounded in
probability and Y7 = op,(Rr) will mean that Y7 /Ry converges in probability
to zero, with both statements being for 7' | 0, see e.g., Section 2.2 in [1(].

Since the volatility accounts for the small moves in the asset price, a
natural candidate for a spot volatility estimator is the at-the-money (ATM)
Black-Scholes option implied volatility. Indeed, the ATM BSIV has often
been used as a proxy for spot volatility in empirical work. When (2.3) holds
and under some weak regularity type assumptions for (a¢, o4, 14), it is easy
to show that

(2.4) k7 (0) = ﬂat +O,(T), asT | 0.

Ner
This bound on the error for recovering oy from rp(0) is sharp and a large
component of it is due to the jumps in X. This can be illustrated using
the seminal Merton jump-diffusion model ([34]) for which a higher-order
expansion of k7(0) can be derived. In the Merton model the volatility is
constant and the jumps are compound Poisson with intensity A and their
size is drawn from a normal distribution with mean p; and variance 0']2». In
this case, by directly expanding the option price by considering the leading
cases of no jump or one jump in X until expiration, we get for the ATM
option price, k3! (0), the following as T' | 0:
2
,ﬁl\! (0) = ﬂa _To”

V2or 4

o2 .
AT (@ (B et (L6 )) 40,17,
. X J p
gj gj

where ® denotes the cdf of a standard normal random variable. The first
two terms on the right-hand side of (2.5) are the leading terms of the option
price when conditioning on no jumps in X until expiration. The third term
is the leading component of the option price when conditioning on exactly
one jump occurring during the life of the option.

(2.5)
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The above parametric example shows that the bound in (2.4) is sharp.

Using the ATM option price expansion in (2.4), we have
2T

(2.6) Vi = 5 (0) + O,(VT), asT |0,
and we can alternatively estimate V; using the Black-Scholes implied volatil-
ity corresponding to k7 (0) (with obviously the same order of magnitude of
the approximation error as above). In Figure 1 we illustrate the accuracy
of the ATM BSIV for measuring spot volatility using volatility and option
data generated from the parametric model used later in the Monte Carlo
study. The maturity of the options in the experiment is set to T" = 2 days.
As seen from the figure, even for such short maturity, the bias due to the
jumps in the ATM BSIV as a measure of V' is rather nontrivial and increases
as a function of the volatility. Moreover, in practice, we often do not have
an option with k equal exactly to 0 (due to the discreteness of the available
strike grid) and this will likely generate additional bias in the measurement
of spot volatility.
ATM PSIV vs. Spot Vo‘latility
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Fic 1. ATM BSIV as a Measure of Volatility. The solid line corresponds to simulated path
of V' from the model in the Monte Carlo experiment in Section 5 (case H). The dashed
line is the ATM BSIV with time to maturity of two business days.

REMARK 1. While Figure 1 shows that BSIV is a poor estimator of the
true spot diffusive volatility of the underlying asset, we note nevertheless that
BSIV is widely used in practice to quote options and also to generate option



8 VIKTOR TODOROV

prices for strikes which are not available via interpolation in BSIV space. In
addition, if one is interested solely in modeling the options, then (misspec-
ified) diffusive stochastic volatility models which generate option prices free
of arbitrage can be used. However, there is a large nonparametric evidence
for presence of jumps in the underlying asset from return data (see e.g., [1])
as well as from option data (see e.g., [10]). Therefore, if one is interested in
the joint modeling of the underlying asset and the derivatives written on it
in a dynamically consistent way, then the nonparametric recovery of the spot
diffusive volatility is important. Moreover, the volatility of the underlying as-
set is interesting in itself for addressing various practical risk management
and theoretical asset pricing questions.

We now develop an alternative strategy for recovering spot volatility from
short-dated options which will have much smaller approximation error than
the ATM BSIV. Our strategy builds on the fact that the conditional expec-
tation (under Q) of any sufficiently smooth functions of x; 7 can be spanned
by a portfolio of options with continuum of strikes, {x7(k)}rer, see e.g., [L5].
We note that this spanning result lies also behind the construction of the
popular volatility VIX index computed by the CBOE options exchange.

The idea of our estimation strategy is to pick a function of the terminal
price which will allow us to efficiently separate the volatility from the jumps.
We will use the characteristic function to achieve this. Using {k7(k)}ker,
we can recover EZ (e™(@e+1=21)) (see the expression in (3.11) below for the
explicit formula). For an appropriate choice of u, as we now show, we can
disentangle volatility from jumps using Ei@ (eiu(xtJrT_"’”)).

To help intuition, lets first assume that x, 7 — x; is, Fy-conditionally, a
Lévy process under Q (i.e., a process with i.i.d. increments). In this case,
the Lévy-Khintchine formula ([39], Theorem 8.1) implies

(2.7)
E? (6iu($t+T_$t)/\/T)

2 . —
= exp (iuﬁat - %Vt + T/(GWT Vi iuT1/2$)Vt(:L‘)dLL’> :
R

Using our finite activity jump assumption in (2.3), we easily have that
Jz(cos(uT—1/2z) — 1)1y (x)dz = Op(1), and therefore

(2.8) V= _%m (m (E9 (ew@w—xt)/ﬁ))) +0,(T), asT 1 0.

As we show in the appendix, the above approximation continues to hold even
when x4 —; is not Fi-conditionally a Lévy process but it can instead have
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time-varying volatility and jump intensity. Comparing (2.6) and (2.8), we
can see that the characteristic function based approach has asymptotically
smaller error than the ATM BSIV for estimating the spot volatility.

In Figure 2, we illustrate the accuracy of the expression on the right-hand-
side of (2.8) for measuring V; in the context of the parametric model used in
the Monte Carlo study below. We use two horizons of T' = 2 and T' = 5 days.
As seen from the figure, when v is very small, the bias in estimating volatility
due to the presence of jumps is rather nontrivial. Indeed, for the limit case

of u | 0, —%% (ln <E9 <ei"(‘”t+T*zt)/ﬁ>)) converges to the (expected)

spot quadratic variation, V;+ [, 22vy(x)dz, which includes the (risk-neutral)
second moment of the jump part. As u increases, the effect due to the jumps
disappears and the characteristic function based volatility measures converge
to V4. This happens faster for the volatility measure based on the shorter of
the two horizons and this volatility measure is also uniformly (across u) less
biased.

Overall, consistent with our asymptotic analysis above, volatility estima-
tion based on the conditional characteristic function can separate volatility
from jumps far more efficiently than ATM BSIV (in the sense of smaller
bias). For this to be of practical use, however, we need to be able to estimate
reliably from the available options the conditional characteristic function of
the returns for sufficiently high values of u for which the effect of the jumps
is minimal. This is what we study next.

3. Nonparametric Option-Based Volatility Estimation. We now
develop the feasible counterpart of the volatility estimator based on the char-
acteristic function proposed in the previous section and derive its asymptotic
properties. We start with describing the observation scheme in Section 3.1
and stating our assumptions in Section 3.2, followed by a formal defini-
tion of the estimator in Section 3.3 and derivation of its asymptotic order.
Section 3.4 proposes an option-based truncation volatility which we use in
Section 3.5 to select the characteristic exponent of the volatility estimator
in an adaptive way. This section further presents a feasible CLT.

3.1. The Observation Scheme. Our data consists of OTM options at time
t, expiring at ¢t + 7', and having log-strikes

(3.1) k k1<k2<"'kNEE,

with the corresponding strikes given by

(3.2) KEK1<K2<"'KNEF.
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Fic 2. Characteristic Function Based Volatility FEstimates. The plot displays
—u%% (ln (IE;Q (ei“(“*T*z”/ﬁ))) as a function of u for the model in the Monte Carlo

experiment in Section 5 (case H). The solid line corresponds to two business days and the
dashed one to five business days. The horizontal solid line is at the true value of the spot
variance.

We denote the gaps between the log-strikes with A; = k; — k;—1, for ¢ =
2,...., N. We note that we do not assume an equidistant log-strike grid, i.e.,
we allow for A; to differ across i-s. The asymptotic theory developed below
is of joint type in which the time to maturity of the option T goes down to
zero, the mesh of the log-strike grid sup,_, n A; shrinks to zero and (in
some cases) the log-strike limits —k and k increase to infinity.

Finally, as common in empirical derivatives pricing, we allow for observa-
tion error, i.e., instead of observing rr(k;) directly, we observe:

(3.3) kr(ki) = kr(ki) + €,

where the sequence of observation errors {¢; };>1 is defined on a space Q) =
RR. This space is equipped with the product Borel o-field F() and with
conditional probability P()(w(©) dw™) from the original probability space
QO — on which X is defined — to Q). The reason for defining the errors on
RR is that our asymptotic setup is of infill type and so we need to define an
error for every log-strike which takes value in R. We further define,

Q=00xoW  F=FOxFO PEw®, dw™) = PO (dw@)PD (0O dw®).
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We will assume E (| F (0)) = 0 and that ¢; and ¢; are F(©-conditionally
independent for ¢ # j. At the same time, we will allow for a general form of
FO)_conditional heteroskedasticity in the observation error.

3.2. Assumptions. We continue with our formal assumptions for the pro-
cess x, the option observation scheme as well as the observation error.

A1.V; > 0 and the process o has the following dynamics under Q for s > t:
(34) os=o0y +/ bydu —|—/ NudWoy, —|—/ ﬁuqu —I—/ / 0% (u, 2)p’ (du, dz),
t t t t R

where W is a Brownian motion independent of W; u? is a Poisson random
measure on Ry X R with compensator v (du, dz) = du®dz, having arbitrary
dependence with the random measure p; b, n and 1 are processes with cadlag
paths and 6% (u, z) : Ry x R — R is left-continuous in its first argument.

A2-r. With the notation of A1 and for some r € [0,1], there exists an Fi-
adapted random variable t > t such that for s € [t,1]:

4
(3.5) EX|as|* + E2|o,|0 + ER(etl®s]) + ED (/ (3 —1) v |z|r]us(z)dz> < C4,
R
for some Fi-adapted random variable C}, and in addition for some ¢ > 0:

(3.6) 59 ([0t |6”<s,z>|>dz)m <.

A3. With the notation of Al, there exists an Fi-adapted random variable
t >t such that for s € [t,1]:

(3.7)
Eflas — al’ + BE|og — 0P + EF ns — nel? + ER |7 — 7P < Cils — ], p € [2,4],

(3.8) E2 (/}R(ezvo|z V[2]?)|vs(2) — ut(z)dz> < Cyls—t|, pe|2,3],

(3.9) E9 (/R (67 (s, 2) — 67 (t, 2))? dz) < Cils— 1],

for some Fy-adapted random variable Cy.



12 VIKTOR TODOROV

A4. The log strike grid {k;}I¥, is ft(o)—adapted and on a set with probability
approaching one, we have

(3.10) nA < inf A; < sup A; <A,
i=2,...,N i=2,...,N

s

where n € (0,1) is some positive constant and A is a deterministic sequence
with A — 0.

A5. We have: (1) ]E(ez-‘}'(o)) =0, (2) E(e?‘}'(o)) = /@T(ki)QaZi where
owi = oy(ki) with infyer oi(k) and supgeg or(k) being finite-valued, posi-
tive and ]:t(o)—adapted random variables, (3) E (|ei|4|}'(0)) < Grr(k)* for
some finite-valued ft(o)—adapted random variable (;, and (4) €; and €; are
FO) _conditionally independent whenever i # j.

A6. The dynamics of X and o under P is as (2.1) and (3.4) but with W, W
and p° defined with respect to P, and with p having a compensator under P of
the form v} (z)dt®dx. The drift coefficient of X is locally bounded. Moreover,
for a sequence of stopping times (1) increasing to infinity and a sequence of
functions T (2) satisfying [ Tn(z)dz < oo, we have [5(|z] A 1)yf (dz) < oo
and |69 (t, z)| < Tp(z) fort < ,.

Assumption Al imposes o; to be an Itd6 semimartingale under Q, which
is the case for many applications, e.g., for models in the popular affine class,
see e.g., [22]. Assumption A2 imposes existence of conditional moments.
This assumption also assumes that the so-called jump activity of X (see
e.g., Section 3.2 of [27]) is bounded by r € [0,1]. Assumption A3 imposes
“smoothness in expectation” type conditions which are satisfied for example
when the corresponding processes are It6 semimartingales. Assumption A4
is a weak condition on the strike grid and Assumption A5 is about the
observation error. The latter is F(®-conditionally centered at zero and it
can have F(©-conditional heteroskedasticity. The F(9-conditional standard
deviation of the observation error is proportional to the option price it is
attached to and this determines the asymptotic order of the error as 7" | 0.
Finally, assumption A6 is only needed for the high-frequency return-based
volatility estimator and is taken from [27] (Assumption H in Section 9.1).

3.3. Construction of the Volatility Estimator and its Rate of Convergence.
We proceed with formally defining our characteristic function based volatil-
ity estimator. Using Appendix 1 of [15], the conditional characteristic func-
tion of the log return, E?(eiu(wt+T_xf)), can be spanned by the following
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portfolio of options
(3.11) 1— (u? + iu) / eltv=Vk—uze e (Ydk, u e R.
R

The integral in the above expression is not computable, given available data,
because we do not have option observations over a continuum of strikes and
furthermore we do not observe directly k7 (k). The computable counterpart
of the expression in (3.11) is formed by using a Riemann sum approxima-
tion of the integral in (3.11) constructed from the available noisy option
observations:

N
(3.12)  fir(u) =1— (u? +iu) Y el Drimr=mmgr (b JA; ueR.
j=2

While in general ;7 — x; is not Ft(o)—conditionally the increment of a Lévy
process, when T is small, the expression for the characteristic function in
(2.7) nevertheless holds approximately true. This motivates the following
estimator of the volatility:

2

(3.13) ‘Z,T(U) = ﬁﬁt,T(U)a
where ]S%T(u) is given by
(3.14) Rop(u) = —R (m (ﬁT(u) v T)) .

For Vt,T(u) to be a consistent estimator of V;, we will need ﬁ,T(u) to converge
in probability to the expression in (3.11) and for this we will need the mesh
of the discrete strike price grid in (3.1) to go to zero and the time to maturity
T of the options to shrink. The formal result for the consistency and rate of
convergence of XZT(u) is given in the next theorem.

THEOREM 1. Suppose assumptions A1-A5 in Section 3.2 hold for some
r € [0,1] and in addition A < T, K < T8, K < T7 for some o >

2
B >0 and~y > 0. Let (ur) be an ft( )—adapted sequence such that

(3.15)  wAT 25w, where T is a finite nonnegative random variable.

Then, we have

(3.16) Vir(ur) — Vi =0, (uT 2 \/ T \/ —1,—2(k|VF) )
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Since the order of magnitude of the increment ;7 — z; shrinks asymp-
totically as T' | 0, it is intuitively clear that we need to consider sequences
(ur) which go to infinity. We look only at the case where up increases as
fast as 1/ \/Ii because for sequences (ur) going at a faster rate to infinity,
the limit of f; r(u) will be zero (recall (2.7)) and hence the signal about the
volatility will be smaller.

The rate of convergence result in (3.16) reveals the role of the different
sources of error in the volatility estimation. The first term on the right-hand
side of (3.16) is a bias due to the presence of jumps in X. The parameter
r controls the so-called jump activity (see assumption A2-r), with higher
values of r implying more concentration of small jumps in X which in turn
are harder to separate from the diffusive component. The case of finite activ-
ity jumps that we considered in the previous section corresponds to r = 0.
Similar to earlier work on recovering volatility from high-frequency return

data (e.g., [9, 10] and [31, 32]) and in line with earlier empirical evidence
in [1] and [18], here we consider only the case of finite variation jumps, i.e.,
r < 1. For the infinite variation case, the bias due to the jumps becomes
larger and a bias correction analogous to the one in [30] for the return-based

estimator is probably needed for satisfactory performance of the volatility
estimator in practice. Finally, from (3.16), it is clear that better separation
of volatility from jumps is achieved for higher values of ur.

The second term on the right-hand side of (3.16) is due to the observation
error, i.e., due to the fact that we use Kp(k) in the estimation instead of
k7 (k). The conditional volatility of the observation error is assumed to be
of the same order of magnitude as the option price it is associated with
(see assumption A5). This is intuitive and is motivated by the empirical
evidence in [1] regarding the size of the relative bid-ask spread in available
option data sets. The asymptotic order of magnitude of the option prices
differ depending on the strike (and hence the same applies for the observation
errors attached to the options). In particular, for log-strikes which are within
a range from the current log-price of order Op(\/T ), the option prices are
of asymptotic order O,(v/T). On the other hand, for log-strikes which are
of fixed size (different from the current log-price), the option prices are of
asymptotic order O,(T") only. That is, for time-to-maturity 7" shrinking to
zero, the option prices whose strikes are close to the current price level are
of larger asymptotic order than the ones whose strikes are further away from
it. Note that in (3.12) we use options with all available strikes (provided /3
and ~y are strictly positive). The above discussion suggests that the effect of
the observation error on the recovery of volatility will be determined by the
option observations whose strikes are in the vicinity of the current price.
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The third term on the right-hand side of (3.16) is due to the finite log-
strike range of the available option data (k, k) used in the estimation. Intu-
itively, the order of magnitude of this error will depend on the probability
mass in the tails of the risk-neutral ]:t(o)—conditional distribution of &y —x.
With stronger assumptions for the latter, than what is currently assumed in
assumption A2, the order of magnitude of this error can be further relaxed.
From a practical point of view, this error is likely to have little impact on the
estimation, as for the typical option data sets, the deepest available OTM
option prices are very close to zero. This implies that the “effective” support
of the conditional return distribution is covered by the available log-strike
range (k, k). Indeed, earlier empirical work has documented that the effect
of the finite strike range of the available options on the precision of the VIX
index (which is another portfolio of options with different strikes) is typi-
cally small. We further note that since the argument of the characteristic
function ur is asymptotically drifting to infinity, we have that ‘//\27T(UT) isa
consistent estimator of V; even when the strike range of the options remains
finite.

Finally, the recovery of the spot volatility from the short-dated options
contains an error due to the time-variation in the volatility and the jump
intensity over the interval [t,¢ + T]. The effect of this error on the volatil-
ity estimation is of order O,(T") and hence it is asymptotically dominated
by the first term on the right-hand side of (3.16) (which recall is due to
the separation of volatility from jumps and is present even if volatility is
constant). We note in this regard that our interest here is in the effect of
the error due to the time-variation in volatility and jump intensity on the
recovery of the option portfolio in (3.11) and not on an individual option.
The former is much smaller than what we can show for the latter. We also
mention that it is only the stochastic changes in the volatility and the jump
intensity which cause the above-mentioned bias in the estimation. Indeed,
if conditional on F; the process V' has deterministic time-variation over the
interval [¢,t + T, then ‘Z,T(UT) is an estimate of & tt+T Vsds without any
bias due to the time-variation in V.

3.4. Data-driven Choice of ur and Option-Based Truncated Volatility.
From Theorem 1, it is clear that in order to minimize the impact of the
jumps on the volatility recovery, it is optimal to set up to be of asymptotic
order O,(1/v/T). This, of course, is an asymptotic statement and it does not
give a specific guidance regarding the choice of up in finite samples. At the
same time, from the expression for the log-characteristic function in (2.7), it
is clear that its behavior is governed by the product T x u% X V4. Therefore,
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one would like to set u7 such that T' x u% x V; is some fixed constant. To do
this, we will need a preliminary estimator of volatility and further we will
have to show that our estimator Vt,T(uT) can be made adaptive, i.e., that
ur can be replaced with an estimate ur based on the data.

In this section we tackle the first problem, i.e., the construction of a
preliminary volatility estimator from the option data, and in the next section
we deal with making ‘A/t,T(uT) adaptive. One natural choice of a preliminary
volatility estimator is the ATM BSIV which has the additional advantage
of being free of tuning parameters. However, given the documented large
bias in the ATM BSIV, we propose an alternative one. Our initial consistent
volatility estimator can be viewed as the option analogue of the truncated

volatility estimator of [31] and is given by
N
— 1 N
(3.17) TVir(n) = 7 Y hy(kj-1)Rr(kj-1)A;, 7 >0,
=2

where we denote

ho (k) = e k—n(k—x.)? [4772(k _ SCt)4
+2—10n(k — z¢)? 4+ 2n(k — 2)® — 2(k — ) |.

T‘\/t,T(n) is a consistent estimator of E? (em@err=20)* (1, 7 — 2,)?) from the
available options. In the special case when 17 = 0 we denote

(3.18) QV,r =TV,.r(0),

and we note that é‘\/ ¢, 15 an estimator of the expected risk-neutral spot
quadratic variation

(3.19) QVir =V + / 22 (z)dz.
R

Thus, @T/ ¢ is the option counterpart of the realized variance computed
from return data ([2] and [7, 8]). We note however a fundamental difference.
The realized variance is an estimator of ftHT Vsds+>" seftir] (AT s)? for some

7 > 0. By contrast, QV; 7 can be viewed as the risk-neutral ffo)—conditional
expectation of this quantity for 7 small (and further standardized, i.e., di-
vided, by 7). While for small 7 we have V; ~ E;Q(V;%T), the same does not
hold for the expected and realized jumps no matter how small 7 is and re-
gardless of whether the jump intensity varies over time or not (i.e., whether
v depends on ¢ or not).
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When 7 is a positive number, then ﬁtj(n) estimates a truncated (con-
ditional) second moment of the increment z;y7 — z; with the degree of
truncation determined by n. When 7 is replaced with an increasing function
depending on 7', i.e., when the degree of truncation changes as we get more
short-dated option data, then we can use TV 7(n) to separate volatility
from jumps. This is analogous to the truncated volatility estimator based
on return data proposed by [31], with the difference being that, unlike [31],
we use a smooth truncated square function here.

To implement the option-based truncated volatility estimator, we need to
choose the truncation level. The tradeoff we face here is similar to the one for
the return-based counterpart of our estimator. On one hand we would like to
set the truncation as high as possible to minimize the impact of the jumps
on the statistic. On the other hand, a more severe truncation will cause a
downward bias in the recovery of volatility since such severe truncation will
start eliminating even the contribution coming from the continuous part
of the process in the second moment of the return. Therefore, an adaptive
version of TV, 7(n) is necessary. We use the following data-driven choice for
the cutoff parameter

QVyrVvVT
for some deterministic sequence 7y that depends only on 7" and which goes
to zero, but at a rate slower than the one at which 7" decreases. The reason
for setting the truncation parameter this way is that the downward bias in
TV ¢ (1) caused by the truncation depends on the product n x T' x QV; 7.
In the next theorem we present the consistency result for our truncation
volatility estimator.

THEOREM 2. Suppose assumptions A1-Ab5 in Section 3.2 hold for some
r € [0,1] and in addition A < T*, K < T8, K < T" for some o > %,
B >0 and vy > 0. We have

— P
(3.21) Vir 5 Qlir.
Suppose in addition that for Tip in (3.20):
N r

3.22 — — 0 and —= — oo.
52 VT T

Then, we also have

o ~ P
(3.23) TVt,T(nT) — Vi
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The result in (3.21) is of independent interest and can be used for making
inference for the jump part of X. We note that we can further derive a CLT
associated with the convergence in (3.21) which will allow us to assess the
precision in the recovery of the jump part of the quadratic variation.

3.5. Feasible CLT for the Characteristic Function Based Volatility Esti-
mator. Theorem 1 allows for the sequence (ur) to be random. However,

it restricts (ur) to be f;o)—adapted and this rules out the case where (ur)
depends on the option data used in the construction of Vt,T(uT). The goal
of this section is to make the volatility estimator adaptive by making ur a
function of our preliminary truncated volatility ﬁt,T(ﬁT). In particular, we
set the characteristic exponent in the construction of ‘A/tT(u) in the following

data-driven way (recall our discussion at the beginning of Section 3.4)
U 1
(3.24) Uy = ——=—F———,
VT \JTV 2 Gir)

where u is some fixed positive number that does not depend on the data.

We will further derive a feasible CLT for f/\},T(ﬁT) and for this we will
need a consistent estimator for its conditional asymptotic variance. We now
introduce the necessary notation for this. First, our estimates for the variance
of the observation error are based on

L 1 . , o
(3.25) € =Fkp(k;) — 3 (Rr(kj—1) +Rr(kjy1)), j=2,.., N—1and j # j",

where j* € {1,..., N} with |kj+ — 24| < |kj — 24|, for j =1,...,N, and

~

€1 =€2 and %\N—l =€N,

Kj* — Kj*—l

& = Rr(kye) = Rr(kje—1) = (Rr(kj 1) =R (kj—2)) 7, il kj- <,
Jj*—1 Jj*—=2

SN . ~ R K — K .

& =R (kj) = Rr(kje41) — Br(kj 1) = Rr(kje o)) o2, if kje > @1

Kjo1—Kjoia'

Since the true option price is smooth in k, then for j = 2,.... N — 1 and
j # j*, € is an estimate of €; — 3 (ej_1 + €j41). We use a different estimate
for the error associated with the available option with strike closest to the
current price level. This is done so that we can incorporate the no-arbitrage
restriction that the option price is a monotone function of its strike (de-
creasing for calls and increasing for puts).
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Given {€j}j—2. . N, we set

(3.26) CtT ZCJ 1 C] 1 ) e~ 2ki- 1A2 A2

Ci(u) = u? cos (ukj — uzy) — usin (uk; — uxy)
=\ wcos (ukj — uzy) + u? sin (uk; — uxy) )’

and with it our estimate for the asymptotic variance is given by

~ T ~
(3.27)  Avar(Vir(u)) = I ( R fer(u) ) Cor(u) ( Rfsr(u) > .

T2t |f, p(u)t \ Sfir(u) S (u)

j=1,...,N,

Theorem 3 gives a feasible CLT for @j(iZT). Below, £ — s denotes stable
convergence, i.e., convergence in law that holds jointly with any bounded
positive random variable defined on the probability space, see e.g., [28] for
further details.

THEOREM 3. Suppose assumptions A1-A5 in Section 3.2 hold for some
€ [0,1] and in addition A < T*, K < TP, K < T7 for some a > 3,
B >0 andy > 0. If (3.22) holds and

(3.28) a<(;+2—r>/\(;+4(5/\7)>7
then

Vir@n) —Ve =5 nooy),
S )

where the limit is defined on an extension of the original probability space
and is independent of F.

(3.29)

The condition in (3.28) ensures that the leading term in the difference
‘A/t’T(ﬂT) — V; is due to the option observation error, and in particular that
the biases in the estimation due to the separation of volatility from jumps
and the finiteness of the strike range are of higher asymptotic order.

We note that the asymptotic limit of Avar(V} r(ur)) (after appropriately
rescaling it) is in general random. That is, the asymptotic limit of ‘Z,T@T) —
V, is mixed Gaussian. This reflects the fact that the precision in the recovery
of the random V; is itself random. This mirrors the limit behavior of the
return-based volatility estimators ([9, 10] and [31, 32]).
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We further point out that the limit above is of self-normalizing type.
That is, we do not establish the limit of appropriately scaled V; r(ur) — V4

and \/ @(TZT(&T)) but only of their ratio. This allows, in particular, to
incorporate general setups for the observed strike grid.

We finish this section by comparing the performance of our estimator
with one constructed from high-frequency return data. We will use a local
(in time) version of the truncated variance of [31, 32] in the comparison,
but the results extend also to other return-based volatility estimators, e.g.,
the multipower variations of [9, 10]. The return-based truncated volatility
estimator is given by

~ n
(3.30) VM = - > (Ar2)*1(jarsj<an-=}, @ >0 and @ € (0,1/2),

"iery

where I' = {i=1,...,ky : [tn] — i} denotes a local window used for the
calculation of the volatility and A’z = x: — xi-1. An estimator for the

n n

asymptotic variance of T?thf can be constructed as follows

- ,h 21’L2 n
(3.31) Avar(VM) = 3 (A 2) L Ar sl <an-=1-
" jelp

For the successful application of Vthf , it is important to set « in a data-driven
way that accounts for the current level of volatility. In the next theorem, we
show that the convergence of V; 7(ur) holds jointly with that of V;hf .

THEOREM 4. In addition to the conditions of Theorem 3 suppose also
that assumption A6 in Section 3.2 holds and k, =< /n. Then

VM-V s

(3.32) — N(0,1),

—  ~

Avar(Vt%)

and this convergence holds jointly with the convergence in (3.29), with the
limits defined on an extension of the original probability space and being
independent of each other and of F.

We note that ‘A/t,T(ﬂT) and ‘A/thf are only JF-conditionally independent
of each other but, due to connections between their conditional asymptotic
variances (which recall are random), they can have dependence uncondition-
ally. The result of Theorem 4 suggests that we can benefit from combining
the two volatility estimators. Indeed, we can optimally weight them (note
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that the weights given below are in general random variables and hence we
need to use the fact that the convergence of the two estimators holds stably)
according to their F-conditional asymptotic variances, to get

(3.33)

T ik

Avar(V;Jf )

V= @Vr(ar) + (L= @)V, @ = =g .
Avar (V1) + Avar (Vi r(ur))

The noisier one of the two volatility estimators is, the less weight it receives in
the combined estimator IA/tm” In fact, if one of the two estimators converges
at a faster rate, then asymptotically the weight it receives in 17;”“"” converges
to one, i.e., it receives all the weight. A convenient feature of ‘Zmix is that
the user does not need to take a stand on whether options or high-frequency
returns are more efficient for recovering volatility at any point in time. The
optimally weighted YA/tm”“" automatically “adapts” to the situation at hand.

4. Minimax Risk for Recovering Volatility from Noisy Short-
Dated Options. We will now derive a lower bound for the minimax risk
for recovering the spot volatility from noisy short-dated option data. This
result will show that our nonparametric estimator ‘//\;gj(ﬁT) is near rate-
efficient. We first introduce the necessary notation for stating the formal
result. We will specialize attention to the case where x is a Lévy process
(under the risk-neutral measure) with finite activity jumps, and hence we
will drop the subscript ¢ in the notation of the diffusive volatility and the
jump compensator here. We will define the set G(R) of risk-neutral proba-
bility measures Q (under which the true option prices k7 (k) are computed
according to (2.2)) for which z is a Lévy process with characteristics triplet
with respect to the identity truncation function ([39], Definition 8.2) given
by

1
(4.1) <—202 - /(ez —1—2)v(2)dz, o, F(z)> ,
R
where F'(dz) = v(z)dz and we further have
1 32|
(4.2) - <lo| <R, ((e — 1)V 1) v(2)dz < R,
R R

for some constant R > 0.
The option observations are given by

(4.3) kr(ki) = wr(ki) + (kr(ki) vV T)e, i=1,..,N,
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where {e};>1 is a sequence of i.i.d. N(0,1) random variables defined on a
product extension of (Q(©), F(0) (ffo))tZO,IP’(O)) and independent of F(©.
One can show that the option prices for every strike are of order O,(T).
Therefore, the truncation from below in the scale of the option error does
not change its asymptotic order.

In what follows, we will denote with E7 expectations under which the
true (unobservable) option prices kr (k) are computed according to the risk-
neutral probability measure 7.

THEOREM 5. In the setting of (4.1)-(4.3), assume further that nA <
A; <A, fori=1,...N and some n € (0,1] and A > 0. Let A < T<,
K=T8 and K <T7, for%<a< % and 3,7 >0 asT | 0.

We then have

A

T|In T[>
(4.4) ingsg%)R) Er (W\E - 0]2> > ¢,
7 Te

for some ¢ > 0 and where & is any estimator of o based on the option data

{Fr(ki) izt N

Under the conditions of Theorem 3, one can show that YZVT(iZT) -V =

O, <}{/A:> Comparing this result with the efficient rate of convergence in

Theorem 5 (in the special setting of that theorem), we see that ‘7}7T(ilT) is
near rate-optimal, i.e., its rate convergence is slower than the optimal one
only by a log term.

5. Monte Carlo Study. We now test the performance of the developed
nonparametric techniques on simulated data. In order to generate option
data, we need a parametric model for the risk-neutral dynamics of X. We
use the following specification:

(5.5) X, = Xo+ /Ot VVedW, +/Ot/R(ew — 1)j(ds, dz),
with W being a Brownian motion and V having the dynamics
(5.6) dV; = 3.6(0.02 — V;)dt — 0.1\/VidW; + 0.21/0.75/VidWy,
where W is a Brownian motion orthogonal to W. The jump measure p has
a compensator v;(z)dt ® dx with v, given by
o—20lz| o—100[z|

(57) I/t(ﬂj‘) = C_%Wl{m<0} + C+%W1{x>0}.
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The specification in (5.5)-(5.7) belongs to the affine class of models ([22])
commonly used in empirical option pricing work. Consistent with existing
empirical evidence, the jumps have time-varying jump intensity. The jump
size distribution is like the one of a tempered stable process which is found
to provide good fit to observed option data. We set the model parameters in
a way that results in option prices similar to observed equity index options.
In particular, the parameter specification of V' implies average annualized
volatility of around 15% (our unit of time is one year) and negative correla-
tion between the innovations in price and stochastic volatility (also known
as leverage effect).

The parameters of the jump distribution are set in a way that produces
jump tail behavior similar to that found in market index option data, see
e.g., [5]. We consider three cases for c. In each of them, the ratio of expected
negative to positive jump variation is 10 to 1, similar to what is found in
the data. The different cases are of low, medium and high value of the jump
variation, corresponding to total expected jump variation being i, % and
%, respectively, of the expected diffusive variation. The values of c4 in the
different cases are given in Table 1. Finally, we set Xy = 2000 and draw Vj
from the stationary distribution of V; under Q (which is Gamma distribution
with shape and scale parameters of 3.6 and 0.02/3.6).

Case c— c+
L 0.3058 x 10°  1.7097 x 103
M 0.6177 x 10> 3.4194 x 10°
H 0.9174 x 10> 5.1291 x 10°
TABLE 1
Monte Carlo Jump Parameter Settings.

We continue next with specifying our option observation scheme. The
strike grid, strike range and the total number of options at a given point in
time are calibrated to match roughly available S&P 500 index option data.
In particular, we set k = —8 X o471 M\/T, where we denote with o477 the
Black-Scholes implied volatility of the ATM option. We then set the strikes
on an equidistant grid in increments of 5, exactly as for the available S&P
500 index option data. That is, we set ¥ = e*i-1 45 for i = 2,..., N and
where N = inf{i : k; > 2.5 x UATM\/T}. This way, we have approximately
k=25 X% carmVT. We add observation error to the model-implied option
prices equal to ¢ = 0.05 X Z; x kr(k;), where {Z;}i=1,. n is a sequence of
i.i.d. standard normal random variables.

To implement the option-based volatility estimator XA/t,T(ﬂT) on the sim-
ulated data, we need to set 7, for the preliminary truncated volatility as
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well as @ for the adaptive characteristic exponent up in (3.24). Recall that
7 is a deterministic sequence converging to zero. We put 7, = 7%, which
for T'= 2/252 takes value of approximately 0.085 and for T' = 5/252 takes
value of approximately 0.135. Our choice for 7 is motivated by the maxi-
mum downward bias in the measurement of volatility. By first-order Taylor
expansion, in the case of no jumps, 37 is equal approximately to the relative
negative bias in the measurement of the spot variance by ﬁt7T(ﬁT).
Turning next to u, we would like to pick this constant as low as possi-
ble to guard against the effect of the jumps while at the same time high
enough so that the estimation is not too noisy. We experiment with two
values, © = 1/2In(1/0.1) and w = 4/21In(1/0.085), which correspond to
\E? (ei“(mf+T_“"f))| having values of 0.1 and 0.085, respectively (recall from

the discussion in Section 2 that for high u we have |E9 (ei“($t+T_xt))\ ~
i T
e_“QtT). Finally, to guard against potential finite sample distortions in

the data-driven choice of w, if the above choice of ur exceeds Unim =
argmin,,e (g 400 | fr(u)|, we set @p equal to the latter.

The results from the Monte Carlo are summarized in Tables 2 and 3.
Overall, the performance of the option-based volatility estimator on the
simulated data is consistent with theory. The estimator is nearly unbiased
and volatility is recovered with good precision. The estimation tends to
be a bit noisier for the shorted-dated options. This is because the number
of available options decreases with T'. Also, the precision of the estimator
is lower for the higher of the two choices for w. This is expected as the
characteristic function is harder to estimate for higher values of its argument
(in the sense of larger associated asymptotic variance).

Case Bias MAE Bias MAE Bias MAE
T = 2 days T = 3 days T =5 days
7 = 4/21In(1/0.085)

L 0.0006  0.0034 0.0008  0.0034 0.0013  0.0035
M 0.0001  0.0034 0.0002  0.0031 0.0007  0.0030
H —0.0001 0.0031 —0.0002 0.0028 0.0001  0.0024

7= +/2In(1/0.1)

L 0.0005  0.0029 0.0004 0.0029 0.0008  0.0030

M 0.0000 0.0028 —0.0001 0.0027 0.0001  0.0026

H —0.0002 0.0026 —0.0005 0.0024 —0.0005 0.0022
TABLE 2

Monte Carlo Results: Bias and MAE. MAFE stands for mean absolute error.

We turn next to the performance of the confidence intervals based on
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our inference theory which we summarize in Table 3. For the case of ©w =
v/21n(1/0.085), we can notice some under-coverage which is most severe
for maturity T = 5 and the low jump variation scenario. As we mentioned
above, for larger u, the precision of the estimation is somewhat lower. On
the other hand, for the case of w = 1/21In(1/0.1), the coverage rates are close
to the nominal ones for the various Monte Carlo scenarios.

Case Coverage Rate Coverage Rate
090 095 090 0.95 0.90 0.95 0.90 095 090 0.95 0.90 0.95
T =2days T =3days T =5 days T=2days T =3days T =5days

w = 4/21In(1/0.085) u = 4/21In(1/0.1)
L 090 092 0.85 090 0.82 0.86 090 093 0.88 091 0.84 0.89
M 091 095 090 0.92 0.86 0.90 092 095 091 094 090 0.93
H 093 095 091 093 0.89 091 094 096 092 096 091 0.95

TABLE 3

Monte Carlo Results: Coverage Probability.

Overall, the results from the Monte Carlo reveal satisfactory performance
of the option-based nonparametric volatility estimation in empirically real-
istic settings.

6. Empirical Application. We next apply our nonparametric volatil-
ity procedure on real data. Our sample covers the period 2016-2017 and the
underlying asset of the options in our analysis is the S&P 500 index. We
use quotes on so-called weekly options traded on CBOE options exchange
(which are settled at the end of the regular trading hours) recorded at mar-
ket close on each Wednesday which is not a holiday. We take the shortest
to maturity available options on each day with time to maturity between 2
and 5 business days. The median number of strikes per date in our option
data set is 54 while on more than 84% of the days the time to maturity is 2
days. In addition to the options, we also make use of intraday data on the
E-mini S&P 500 futures contract (with maturity closest to expiration) to
construct return-based volatility estimates. The sampling frequency of the
S&P 500 futures is five minutes which is sufficiently coarse to guard against
the impact of microstructure related issues.

The tuning parameters of the option-based volatility estimator are chosen
exactly as in the Monte Carlo (we use @ = 0.1). For the return-based estima-
tor, following common practice, we set the truncation level in a data-driven
way. More specifically, we set a and w in (3.30) to

a=3yRV; N BV; and w = 0.49,

(6.8)
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where

ltn) Ltn]
(69) RVi= > (Af2)% BVi=5 > A% alAtal,
i=|(t—1)n]+1 i=[(t—1)n]+2

with RV; being the realized volatility and BV; being the Bipower Variation
of [9, 10] over the trading day. The latter is a nonparametric jump-robust
measure of integrated volatility that is free of tuning parameters. Finally,
our local window for V;hf consists of k,, = 48 five-minute returns before
market close (which is the time when the option data is recorded).

In Figure 3, we plot the two spot volatility estimators. As seen from the
figure, the two series are very close to each other on average. Indeed, the
sample median of the option-based volatility estimate is within 1.5% of that
of the return-based volatility estimator while the correlation between the
two time series is 0.9. At the same time, though, we can note that the
volatility estimate from the high-frequency data is significantly noisier. In-
deed, the standard deviation of the return-based volatility estimate is over
32% higher than that of its option-based counterpart. In addition, the cor-
relation between the first differences of the two estimators, for which the
measurement error plays bigger role, is only 0.6 (first differences are used in
the computation of measures of variation such as the quadratic variation).
Also, the efficiency gains offered by the option-based estimator (based on the
estimated asymptotic variances) are particularly pronounced at the begin-
ning of the sample when the volatility was very high. This is to be expected
as during such episodes the separation of volatility from the realization of
jumps from return data is particularly challenging. Finally, Atmix in (3.33)
that combines optimally the option and return-based volatility estimators is
very close to the former, with correlation between ‘A/t’T(ﬂT) and ﬁmix of over
0.99. This is due to the high weight assigned to XZ,T(@T) in forming f@mix,
particularly in the high volatility period.

Overall, the empirical analysis reveals nontrivial gains in measuring spot
volatility by the use of short-dated options. The newly-proposed nonpara-
metric volatility estimator should therefore greatly improve the precision
in studying various features of the volatility process, e.g., the roughness of
the volatility path (see e.g., [25]) as well as the presence of jumps in the
volatility and their connection with those in the underlying price (see e.g.,
[29] and [3]). Answering these questions regarding the volatility trajectory
from return data alone is known to be very difficult as the volatility is not
directly observed and has to be filtered out from the data. This can be
particularly challenging in the presence of persistent microstructure-related
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Option and Return Based Measures of Spot Volatility
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Fic 3. Option and Return Based Measures of Volatility. The solid line corresponds to the

option based one, ‘Z,T(QT), and the stars to the one based on five-minute returns of the

underlying asset, |/ Vthf . The z-axis ticks are at the beginning of the corresponding month.

distortions in the high-frequency returns, see e.g., the recent work of [17].
In addition, the option-based spot volatility estimates should be of direct
use for the purposes of volatility forecasting and risk management where a
more precise volatility proxy is known to provide efficiency gains, see e.g.,
[2] in the case of volatility forecasting. In current work in progress I show
this to be the case when using the newly-developed option-based volatility
estimator for forecasting the future volatility of various assets.

7. Proofs. In the proofs we will denote with C; a finite-valued and Fi-
adapted random variable which might change from line to line. If the variable
depends on some parameter ¢, then we will use the notation Cy(q). Further,
without loss of generality, in the proofs, we will set X; = 1 or equivalently
Ty = 0.

7.1. Decomposition, Notation and Auziliary Results. The jump part of
the process z; can be represented as an integral with respect to a Poisson
random measure under Q. In particular, using the so-called Grigelionis rep-
resentation of the jump part of a semimartingale (Theorem 2.1.2 of [27])
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and upon suitably extending the probability space, we can write

(7.1) /Ot/Rﬁ(ds,dx)E/Ot/Eax(s,z)gw(ds,dz),

where p*(ds, dz) is a Poisson measure on Ry x E with compensator dt®\(dz)
for some sigma-finite measure A on F, u* is the martingale counterpart of
#* and 0% is a predictable and R-valued function on © x R, x F such that
vi(z)dz is the image of the measure \(dz) under the map z — 0%(¢,2) on
the set {z : 0%(w,t,2) # 0}.

There are different choices for E and the function §*. For the analysis
here it will be convenient to use E = Ry xR and 67(¢, z) = 221, <y, (z,)} for
z = (21, 22), with X being the Lebesgue measure on E.

We proceed with introducing some notation that will be used throughout
the proofs. By noting that x; = 0, we can split zs into

(7.2) xiz/ audu+/ oudWy, xgl:/ /5x(u,z)ﬁx(du,dz), s >t.
t t t JE

We now introduce two approximations for x,. The first is Z, = ¢ + 7%,
where for s > ¢

(7.3) T =ay(s —t)+ o (Ws — W), 7¢= /ts /E 6 (t, z)n* (du, dz).

The second approximation is given by Ts = 2% + T‘Si, where for s >t
(7.4)

xgzat(s—t)+/ Tu Wy, T0=31 Gy =0+ (Ws—W))+7,(Ws—W,).
t

The OTM option prices at time ¢ associated with log-terminal value Zy4 7
are denoted by kr(k), the ones with log-terminal value of Ty, 1 are denoted
by Er(k), and the ones with log-terminal value of oy (W r —W;) with KS.(k).

LEMMA 1. Suppose assumptions A1-A8 hold. There exist Fi-adapted
random wvariables t > t and C; > 0 that do not depend on k, ki, ko and
T, such that for T <t we have

et k<0
. < e—F_1° Zf s
(7.5) HT(k)_CtT{ i ik >0,

ek—17

(7.6) \kp (k) — R (k)| < Cy InT|T3/2,
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(7.7) Rz (k) — R (k)] < C, (T V (|§3_/21| A ))
(7.8) fr(k) < Cy (ﬁ N |e,ff_1|) ;

—k—ki

k>kye = Fr(k) < Crmi—aT, kg = onV/T|In T,

k <k = Fr(k) < Cr—o—T, ks =—0V/T|InT],
(7.9) (e )”
( k—k o 1)

~ ~ T
(710) |l€T(k1) — HT(k2)| § Ct |:<k‘§ /\1> 1{|k2|§1} + kj41{k2|>1}:| |e 1 ek }

)

T
(7.11) |I€T(k‘1) — KT(k2)| < Ct |:</€§ /\1) 1{|k2|§1} + k4 1{k2|>1}:| ‘e ek'z

where k1 < ko <0 or k1 > ko > 0.

Proof of Lemma 1. All bounds but the last one are proved in Lemmas 2-7
of [37]. The bound in (7.11) can be proved exactly as Lemma 7 of [37] using
the integrability assumptions in A2-r. O

LEMMA 2. Suppose assumptions A1-A8 hold. There exist Fi-adapted
random variables t >t and Cy > 0 that do not depend on k and T, such that
for T <t we have

(7.12) [kr(k) — &7 (k)| < CT,
(7.13)
we(k) — f (k\;T‘f) VTo, — (¢F — 1)@ (ﬁ;;f) <CT, ifk<0,
Re(k) — f (k\;;f) VTo, + (8 — 1) (1 ) (k\;faf))‘ <O, ifk>0,

where f and ® are the pdf and cdf, respectively, of a standard normal random
variable.

Proof of Lemma 2. We look only at the case k£ > 0, with the proof for the
case k < 0 being done in analogous way. First, we have

~ + + ~
ext+T _ ek" _ eat(Wt+T_Wt) —e S eUt(Wt+T—Wt)|eatT+x?+T _ 1|

|

From here we can use the Fi-conditional independence of Wi 1 — W; and
z¢ ;. and apply Lemma 1 of [37] to obtain the result in (7.12).



30 VIKTOR TODOROV
We continue with the bounds in (7.13). Direct calculation shows for k& > 0

- (28 1)) -0 (52).

From here the result of (7.13) follows by using Taylor expansion and the
fact that the function f is bounded. O

7.2. Proof of Theorem 1. We introduce the following notation
fur(u) = B (eoer=20) | r(u) = B (e Geer50).

Using Appendix 1 of [15], fi7(u) equals the expression in (3.11). We further
note that by Lévy-Khintchine formula

7.14)  fir(u) = exp | iTuas — Tu—Vt +T [ ("™ —1—ijuz)v(x)dr ) .
’ 2
R

We start the proof with establishing a bound for the difference f; 7 (u) —
fe,r(uw). In the proof we will denote with (;7(u) a random variable that
depends on u and further satisfies

(G (w)] < Collul T2V [u|*T?),

where C} is Fi-adapted random variable that does not depend on wu. This
variable can change from one line to another.

We first study the real part of the difference R( f; r(u) —ﬁT(u)) Applying
1t6’s lemma, using the normalization x; = 0 and the integrability assumption
A2, we have

t+T 1 t+T
E2(cos(uzpyr)) — 1 = —E2 / usin(uxs)asds + 5/ u? cos(uz)ods
t t

T
+E2 (/t /R(cos(uxs)(cos(uz) — 1) — sin(uz;)(sin(uz) — usin(z))) VS(Z)dZdS> .

We have an analogous expression for E?(cos(uit+T)) — 1. Then, using as-
sumption A3 as well as E9|x8 —Zs| < CiT for s € [t,t + T] and C; being
Fi-adapted random variable (which follows from using Doob’s inequality
and A3), we can write

t+T 1 t+T
E2(cos(uziir)) — 1 = —E2 / usin(uZs)aids + 5/ u? cos(uzs)o2ds
¢ ¢

t+T
+ IE;Qz (/t /]R (cos(uZs)(cos(uz) — 1) — sin(uZ)(sin(uz) — usin(z))) I/t(Z)dZdS>
+ Crr(u).
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Therefore, we have

E (cos(uwyyr)) — By (cos(uFyyr))

1 t+T
= §E(t@ / u?(cos(uy)o? — cos(uxs)o?)ds | + Cor(u).
t

Using the proof of Lemma 3 in [37] as well as (3.9) of A3, we have E2|z, —

T < C,T3/? for s € [t,t + T| and C; being F;-adapted random variable.
In addition, using assumptions A1-A3 and Doob’s inequality, we also have
E9|08 — 75| < CT for s € [t,t + T] and C; as before. Using these results
and Cauchy-Schwartz inequality, we can write

E} (cos(uwrsr)) — EF (cos(uTryr))

t+T
(7.15) _ %E? (/ u?(cos(ufs)o? — Cos(uxs)ag)ds> + Cer(u).
t

Next, we can decompose

cos(uT s )72 — cos(uls)of = (cos(uTs) — cos(uls))o? 4 cos(uZs)(Ts — o¢)?

(7.16) + 2(cos(uZs) — cos(uZs))(Ts — or)or + 2 cos(uZs)(Ts — ot)ot.

For the second and third terms on the right-hand side of the above equality

we can use E?(ﬁs —04)? < C4T and E?(@ —75)? = E? (fts (Ts — O't)qu)Q <
C,T?, for s € [t,t +T)] and C; being Fi-adapted random variable as well as
Cauchy-Schwartz inequality, and conclude

W TER (G, — 01)? + u?T |E¢[(cos(uTs) — cos(uiy))(Ts — at)]‘ = Gr(w).

For the forth term on the right-hand side of (7.16), we can decompose
cos(us) = cos(uz¢) cos(uz?) — sin(uz?) sin(uz?). Then, using the symmetry
of the density of the standard normal distribution as well as the indepen-

dence of W and W, we have
EQ( ~c ~d\ (= __
¢ (cos(uzy) cos(uzs)(Ts — o))
— —sin(uay(s — £))EZ(sin(uoy (W — Wy)) cos(uz?) (75 — o)),

which is ¢; 7(u) because E9|ES — 04| < C/T for s € [t,t + T]. Using the
JFi-conditional independence of :fgl and 75 — oy, we also have

E¢|sin(us) sin(uzl) (s — 00)| < |u[EF(|71[os — o))

= [u[ELFEL|T, — ool = Gir(w).
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Combining these bounds, we have

E?(cos(u%s)(ﬁs —0y)) = Gr(u).

Finally, for the first term on the right-hand side of (7.16) using the indepen-
dence of W and W and integration by parts, we can write

E?(cos(ufs) — cos(uZs)) = —E?(sin(uis) sin(uZs — uZs)) + G r(u)
= —uE2(sin(uZ,) (T — Ts)) + Cor(u) = —gntEP(sin(ufs)(Ws - W)?) + Cer(u)

= —SmER (sin(uoy (W, = We)) (W = Wo)?) + Gur(w) = G (w),

where for the last two equalities we have made use of the F;-conditional in-
dependence of ¢ and 5? as well as the symmetry of the density of the stan-

dard normal distribution. Altogether we get that Eg( tHT u?(cos(uTs)o2 —

cos(u%Qa?)ds) is (¢ 7(u). Combining this result with (7.15), we have

(7.17) R(fir(u) = frr(u)) = ().

Turning to S(f;7(u) — frr(u)), by making use of EZ|zy 1 — Zyir| < CiT,
we have

(7.18) IE2(sin(uzsyr)) — EL(sin(uFirr))| < CilulT.

The results in (7.17) and (7.18), together with the rate condition for the
sequence ur in (3.15), imply

(7.19) R(for(ur) = R(frr(ur)) = Op(T), S(for(ur)) —S(fir(ur)) = Op(VT).
From (7.14), we also have

(7.20) R(frr(ur)) = 0p(1), S(frr(ur)) = Op(VT).

From here, using Taylor expansion, we have

(7.21) R (0 (fyr(ur))) = R (0 (fur(ur)) ) = 0p(D).

Furthermore, for r being the constant in assumption A2-r, we have

(7.22) '3‘% (ln (ﬁﬂuﬂ)) + Tu;Tcrt2

§2T|uT|r/ |z|" v (z)d.
R
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Altogether, we have

(7.23) - *T 3 R (I (frr(ur)) = of = Opluf ).
~ B 3 7 7U) _ 2
We next decompose ft,T(uT) ft,T(UT) = ijl ¢t where ftT = (“T +
ZUT)T?EJ% and
|
71 ZezuT 1)k;— 16 1Aj’
]:2

N k.
N O DL

Using the bounds of Lemma 1 and assumption A5 for the observation error,
we have

—(1) VA =) A
(7.24) 1= Op (Tl/4> v Jir = Op (ﬁ' 1HT|> :

Turning to ft T, using integration by parts and Lemma 1, we get

/ e(wT_l)k/-iT(k)dk — * €(WT_1)k(/<aép(k) _ K}T(k'))dk'
(7.25)  J-eo “T

_ ie(iuT_l)EnT(E).
ur
Using Lebesgue dominated convergence and the integrability conditions in
Assumption A2, we have

Kip(k) = " Qp (wer < k) = " Q (e_x”T —l<e - 1)

(7.26) o T
= Gge (e_k — 1)37

From here by application of Lemma 1, we obtain f_ﬁoo e(i“T_l)kfiT(k)dk =
Op(u;lTe*mE‘). Exactly the same analysis can be done for the second inte-

3)

gral in ?t,Tv and thus altogether we have

— 3 _ _ 7
(7.27) “-o, (uTle WW’“D) .
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Combining the bounds in (7.23), (7.24) and (7.27), using Taylor expansion
and the rate condition in (3.15) as well as the conditions for the asymptotic
behavior of T, A, k and k in the theorem, we have (3.16).

7.3. Proof of Theorem 2. We set f,(x) = e~ 22 for n > 0, and we
denote

nr 1
7.28 = —=—

which is an Fi-adapted random variable. Using Appendix 1 of [15], for every
finite-valued, nonnegative and Fi-adapted random variable n, we have

o0

(7.29) B2 (fy(Gesr ~50) = [ halk)Rr (k.

—00

We will first show that B2 (fo(F¢pr — 1)) and E2 ( for (Tepr — T4)) are close
to QV; and V4, respectively. Applying [t0’s lemma, taking expectations and
using the integrability conditions of assumption A2-r, we have

(7.30)
_ _ L. - Vi T -
EZ (fy(Fryr — 1)) = aiBY (/0 fo@eis — xt)d5> + gE;Q (/0 fo @egs — il?t)d5>
T
+ E? </ / (fn(aft+s - Et + Z) - fn(%t+s — %t) — f,;(it-i-s — ft)Z) dSl/t(Z)dZ> y
o Jr

for any F-adapted 7. Using then the fact that (which follows by (7.3) and
the integrability conditions in A2-r)

(7.31) IE2(Fyys — %) < O T, for s e [t,t+ T,
we have
1 - ~
(7.32) TE;Q (fo(Tper — 7)) — Vi — / ZQVt(Z)dZ =0, (T).
R

Next, for some constant C' that does not depend on 7 and z, we have for
ne€ Ry and x € R:

(733)  |fy(e)| < Clal and |f; (@) - 2| < Cya?,

oz + 2) = folx) = f(x)z = fu(2)]

7.34
i < C (1allsl + nla 12l + nlal?|2] + e HF)22)
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Using the above bounds and (7.30), the inequality ]m|e‘|x‘2 < C, the fact that
Jz 12|v(2)dz < oo (due to A2-r), the bound E2(|Zs — T2V |2, — % [3) < T
for s € [t,t + T, as well as the integrability assumptions in A2-r, we have
for nr in (7.28):

1

735)  |1ER U —30) Vil = 0, (VI i/ \;TT) .

Given the results in (7.32) and (7.35), to prove the claims of Theorem 2, we
need to show the asymptotic negligibility of QVyp — + [ ho(k)&r(k)dk

and TVtT nr) — # [70 kr(k)dk.
First, using the bounds of Lemma 1 and assumption A5 for the observa-
tion error, we can easily conclude

(7.36) QVtT - / ho(k)kr(k)dk = O, (;/UZ \/e—Z(IEIVE)(M \/k)) )

In addition, using It&’s lemma as well as assumptions A1-A3, we have

@37 [EXolarr —20) — EX(fol@err — )| = O(TVD).

The bounds in (7.36)-(7.37) together with (7.32) establish the consistency
of QV,r. We continue with 7'V (7). For its analysis, we first introduce
the set

Q= {w : ’@-‘\/t,T - QW < ;Qvt}

We will further make use of two algebraic inequalities. For n € Ry, a € Ry
with |a —n| < 7, and k € R, we have

(7.38) |hy (k)] < Ce™ 2K (Jk| v 1),

(7.:39) [ha(k) = hy (k)| < Cla = nlk?e™ 5 (k2 v 1+ n?k?) |

for some C' that does not depend on 7, a and k (recall that z; = 0).

Using the bounds of Lemma 1 and assumption A5 for the observation error
as well as (7.32) and (7.36), we have for T being below some ft(o)—adapted
and positive random variable (; (so that P(T' > ¢;) — 0 as T'— 0):

(7.40) P(QIT < &) < C ﬁ
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and therefore 1(Q°) is O, (%) Further, using the inequality in (7.38), the
bounds of Lemma 1 as well as assumption A5 for the observation error, we
have TV, r(r) — TV i1 (nr) = Op(1). Therefore, altogether

(7.41) (TVLT(?,T) - th,T(nT)) Ligey = Op <\/AT> .

Next, since on the set  we have |7 —nr| < 2 for T small enough, we can
apply (7.39) and bound

‘TVtT T) — TVtT(nT)’1{9}<Ct77T|QVtT QVir|

(7.42) N . )
TZ ke b T R (12 L k) Rk -4y,

for some finite-valued Cy > 0 (note that because of Al we have QV; 1 > 0).
Using the bounds of Lemma 1 and assumption A5 for the observation error,
we have

N
1 _ _ T g2 ~
(T43) oy DK R (2 VL k) Rl )y = 0,(1),
—

and taking into account the bounds for 61\/,&71« in (7.32) and (7.36), we have
altogether
(7.44)

L VA - _
(TVt,T(UT) - TVt,T(TIT)) Loy =0p (UTT1/4 \/ﬁTﬁ\/ﬁT€72(|ka)(|@ VEk)|.

We continue next with TV Vir(nr) — # f k7 (k)dk which we split

into T Vi T), ﬁi% and TVE% defined as

N
—n 1
TV,r = T Z o (kj—1)€j-14,
j=2
V) = & Z / (51 (K1) — Py () () s,

—(3) I 1 [
Vi =7 [ heBsa(k)ab - /k By (k) (k) .
. .

Using assumption A5 and the bounds of Lemma 1, we have

(a5) BEVREO) =0, () TVin =0, (i ).
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—(2
For TV;% we make use of the following algebraic inequality
(T46) |y (ka) = hy(k1)| < Culks — kale*2! =552 (14 [keof) (14 K3 + 7k3) ,

for |k1| < %|ka| and where C; is a finite-valued Fi-adapted random variable
that does not depend on kq, ko and 7. Using this inequality, (7.38) as well
as Lemma 1, we get

—(2) A

Combining the bounds in (7.45) and (7.47), we have altogether (the bound
below is not sharp and can be further relaxed)

(7.48) ﬁt’T(nT)_% /_OO hor (k)sr(k)dk = O, (Iﬁ \/6—2(\E\AIEI)(|@ A |k)> )

This result, together with (7.35), (7.41) and (7.44) as well as
(7.49) B | for (wesm = 20) = for @ — )| < T,
implies the consistency of ﬁt7T(ﬁT).

7.4. Proof of Theorem 3. We use the notation in (7.14). Using the result
in (7.23) in the proof of Theorem 1, the fact that ur is Fi-adapted, the con-
sistency of TV ¢ () for V; from Theorem 2 as well as the strict positivity
of V4 from assumption Al, we have

2 ~ et
up
We denote _ _
N u 1 u 1
Up = —=————, Ur= ———.
VT TVyr(nr) VTV

Using the fact that f; r(u) equals the expression in (3.11), we then decom-
pose fir(@r) — fur(@r) = S0, f9), where fU) = —(@% + itir)TFiy and

1 1,
7}5% _ Z e(zuT—l)k’jflej_lAj7

N
71521)“ _! D (el ko gliur=Dki—tye, (A,
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7T =T
T]:Q kjfl
. 1 k . 1 [e'e] .
Eflj)“ = _T/ W=Dk o (k) dk — T/k W=Dk e (k) dk.

We analyze each of the terms in the above decomposition. We start with
—=(2
fg% We denote

3 Lo (w1
(7.51) Gr(u) == e i ej—14;, u€R.

Taking into account the F(9-conditional independence of the observation
errors and applying Lemma 1, we have for some sufficiently small T":

3 © A
(7.52) B (JerPF?) < a2,

where Cy is ffo)—adapted random variable that does not depend on u. Fur-
ther, by application of Burkholder-Gundy-Davis inequality and the algebraic
inequality | >, a;[P < 37, |a;|P for p € (0,1] as well as the boundedness of
the trigonometric functions, we have for some ¢ € (0, 1):

(7.53)
E (|&.r(w) - &r()*H|F")
N |k,_1‘1+L
< Cilu— o[ty JemCrhn T5J/2+3L/2 rr(kj—2) PTATT, v R,
=2

where C} is ]-"t(o)—adapted random variable that does not depend on u and
v. From here, for T sufficiently small so that the bounds of Lemma 1 apply,
we get

-~ 1+
(7.54) B (&) - &r@)PH|FO) < Clu— o' (%) [T,

and here again C} is }}(O)—adapted random variable that does not depend on u
and v. Since by the rate conditions of the theorem, A/ VT — 0, we can apply

Theorem 12.3 of [13] and conclude that %QT(U) is ft(o)-conditionally tight

in the space of continuous functions of u for any arbitrary bounded interval
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on R. Using the established tightness result, we can apply Theorem 8.2 of
[13] and conclude that for arbitrary small € > 0 and > 0, we have for T

below some value and for some § > 0 (both being ]-'t(o)—adapted):

1/4 . ~
(7.55) P (T/Z |u§1%1|>§6 &r(u) — & ()| > €

where @ is the constant used in defining @z in (3.24). Now, if we have a
sequence U which F(©-conditionally converges in probability to @, then we
can pick T sufficiently small, such that

f@><m

(7.56) PQa—m>ﬂf@)gn

In turn, for T smaller than the values for which the above two results hold,
we have

7.57 P TV 2 ) Em >l 7O ) <9
(7.57) ﬁ‘ft,T(w —&r(@)| >e < 2n.
Therefore,

o VA
(7.58) &) — &r(w) = op <T1/4> .

Applying this result with @ = @, /=" and taking into account that
TV, r(MT)

from the proof of Theorem 2, we have that WLT(ﬁT) converges in proba-
bility F(©)-conditionally to V;, we get

- VA
(7.59) f§2’1)“ = 0p <T1/4> :

Next, using the bounds of Lemma 1 as well as the consistency result for
TV r(nr) of Theorem 2, we have

0 _ o (A 70) _ 0 (=2
(7.60) fid =0, ( Ve 1nT|> L T =0 (e ).
Overall, taking into account the rate condition in (3.28), we have

4 —
; VA
=2

J
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We are left with Tf} First, using assumption A5 and the bounds of Lemma 1,
we have

0\ | £0) 57OV FO) < o, A
(7.62) E((é}%ft,a Fa >+E<(th,T) Fa <o
Using again assumption A5 for the observation errors and the bounds of
Lemma 1, we have

(7.63) E <( "7 o7 ) ( RF STh ) ‘ ]—“(0)> = Vi,

N
1 e
(764) ﬁE E e 4k9716?71A?

where V7 is 2 x 2 matrix with elements given as follows
Vilf T2 Zle urk;1)e - 101&3 117 (ki I)Az
7j=2

with Xim(z) = cos?(x) for I = m = 1, xpn(z) = sin?(z) for [ = m = 2 and
Xim () = cos(z) sin(z) for [ =1 and m = 2. Therefore,

E ( TUT%fz(Sli)“ TUT“ffsl% > ( 29?? TUT\ffili)“ ) ’]—'(0)
(7.65) TUTg?ft,T + Tuj ft,T TuTngt T + Tuj ft T
= Gy r(ur),
where for u € R we denote (recall the notation in (3.26))

Cer(u ZCJ 1(w)G—1( u) e lat] 1"¢T(k3 I)A?

Further, since f; 7 (ur) is FO_adapted, if we set

R fe.r(ur)
|ft,T(uT)|2

S fer(ur)
\ft,T(UT> |2

—(1 —(1 1
XoT = (TudRFoiy — TurST,7)+ (Tur®Friz + T3 ST,'7)

we have for V' = E (X?,T“F(O)>:
(7.66)

vI = !

X T for(un) (Rfrr(ur) Sfor(ur)) Cor(ur) (Rfsr(ur) Sfir(ur))’
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Using (7.19) and (7.62), we have

X = ﬁm(%ft,T(uT) C\\fft,T(UT))Vt,T (%ft,T(UT) %ft,T(UT))—r + Op (Z)

u v B
T TV |ftT 7)|* = ZCOS (\FUt — W T) “hicigl s kg (kj—1)A2 4+ 0, (A),

where we use the notation

uaT
WT |
Ot

. ux uzx

Note that, given assumption A2-r, we have [, 7| < C;V/T. If we denote with

Vz the expression in the second line of (7.67), then by using assumption A5
as well as the bounds of Lemmas 1 and 2, we have

—1 _ CiA
Viz g > cos’urkjon —nr)nt(kj1)A,

Jilkj—1|<VT
CiA N B
= % Y cos’(urkj — ur)RG(kj-1)° A + Op(A)
Jilki—1|<VT
CiA v 2 ~c (1.2 — Z2
> T2 T cos“(urk — 1/Jt7T)I<LT(k:) dk + O, AV = |-

From here, using Lemma 2 and by a change of the variable of integration,
we further have

_ 2
P2 5B [ (%) (1 (£) o)
\/> Ot O Ot O
(7.68) <2
+ O, (Av T) :

We note that the function f(k) — |k|®(—|k|) is strictly positive obtaining
its maximum at k = 0 and decaying to zero in the tails. Therefore, for
T sufficiently small, %VXT is bounded from below by an Fi-adapted and

positive-valued random variable. This shows that % is the sharp order of

magnitude of VXT (and not an upper bound for it).
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Using (7.64) and (7.66)-(7.68) as well as the F(©-conditional indepen-
dence of the observation errors from assumption A5, we can apply Theo-
rem VIIL5.7 of [28] and get

(7.69) XTI E28 Ar(0,1),
53

where in the limit result above the notation £ — s means convergence that is
stable in law and further the limit is defined on an extension of the original
probability space and independent of F.

TFrom the bounds on the terms {fﬁj},}jzlg) as well as the asymptotic

negligibility of ﬁtﬁT(ﬁT) — Vi by Theorem 2, we have

R(for(@r)/R(fer(ur)) — 1 and S(for(ir)) — S(firlur)) — 0.

Therefore, by an application of delta method from the convergence result in
(7.69) and upon taking into account (7.67) and (7.68) as well as (7.61), we
get
(7.70)

~ _ 2 ~ . L
Avar(Vyr(ur) ™ o (R(n(fir(@r)) = R (n(fur(@r)) == N (0,1),

T

where Avar(ﬂj(u;p)) denotes the analogous expression as A/V;“(YAGT(QT))
in which Ct’T(iL\T) is replaced with C’nT(uT), fth(aT) with fth(uT) and Uy
with up. We would like to extend the above result to

(7.71)
At (i (@) (RO (@) = RO (fur(@)))) £55 N (0,1).
T

For this, we need to show that Avar(@vT(uT))/@(ﬂy(aT)) 5 1 and
ur /ur L. 1. Given the asymptotic negligibility of fX\/t,T(ﬁT) — V; and
= - P = P
R(fer(ur)/R(frr(ur)) — 1 and 3(fir(ur)) - S(frr(ur)) — 0
(established above), we only need to show that Cir(ur) — Cyr(ur) =

op (%) First, using the bounds in Lemma 1 as well as assumption A5
for the observation error, we have @T(aT) — @,T(UT) =0, (OZT%) where
f‘\/t,T(ﬁT) — Vi = Op(ar). Second, for @;r(uT) — Cir(ur) we can use as-
sumption A5 for the observation error and apply Buikholder—Davis—Gundy
inequality and conclude @,T(UT) — Cyr(ur) = op (%) Thus, altogether,
@,T(QT) — Cyr(ur) = op (%), and from here the result in (7.71) follows.
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Combining this result with (7.50) and taking into account the rate condition
in (3.28), we have the convergence result (3.29) of the theorem.

7.5. Proof of Theorem 4. Under assumption A6 and our rate condition
for k,, the conditions of Theorem 13.3.3 of [27] are satisfied. Therefore, we
can apply this theorem and a counterpart to Theorem 9.3.2 of [27] for fourth
power local truncated variations, and get

Snr
(7.72) M £ 7,
AU@T(‘Q’T)

with Z being a standard normal random variable defined on an extension of
the original probability space and independent from F. Lets denote Z7' =

% _ Vn (VM -V .

M and Z3 = <t7Ahft>, where Avar(V, r(u)) is defined as in
Avar(Vy, 7 (ur)) \/§Vt ’

the proof of Theorem 3 above and as in that proof we set ur = %\/vat From

Vir (i) -V

Avar(V, r(ar))
prove the result of Theorem 4 we need to establish the joint convergence of
(2}, 25).

We further denote with Z; and Zy two independent standard normal
variables, which are defined on an extension of the original probability space
and independent of F, and with g and h two bounded continuous functions

on R. Now, using our results from the proof of Theorem 3 for the term

the proof of Theorem 3 we have — Z}' = 0p(1) and hence to

?,El%, we can apply Theorem VIIL.5.25 of [28] (using assumption A5 for the
observation errors and the separability of F(©)) and conclude that

(7.73) E (g (Z%) yf<0>) — E(g(Z1)), as.,

and therefore since g and h are bounded functions

() E((E(g(20)|F) ~E(9(2) m(Z)) — 0.

Therefore, using (7.72), we have for every bounded random variable Y on F
(7.75) E(Yg(Z1)(Z3)) — E(Y)E(9(21)E(h(Z2)),

and this establishes (Z7, Z%) £ (Z1,Z3).
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7.6. Proof of Theorem 5. Since T | 0, it is no restriction to assume
T < t, for t being the random variable of Lemmas 1 and 2, and we will do
so in the proof without further mention. We will further define with C' some
positive constant which can change from line to line and depends on R in
(4.2). Finally, we will use the notation a, 2 b, and a, < b, to mean the
respective inequality up to a constant independent of the parameter n.

The idea of the proof is to perturb locally ¢ and then derive the order
of magnitude of the Kullback-Leibler divergence of the resulting two proba-
bility distributions of the observed option prices. Applying Theorem 2.2 in
[15], we then have

T|InT|>/?

(7.76) inf sup Er M\&—UP > V(w),
7 Teg(R) A

where « is an upper bound on the Kullback-Leibler divergence of two proba-

bility distributions in G(R) with diffusive volatilities ") and ¢(? such that

o) — ()| = W\/HZTPM and |a(M) — a®)| < |0 — ¢?)|, and V(a) is some
strictly positive function of «.

The KL divergence between the probability measures for the observed
noisy option prices, corresponding to 7~ with o) and ¢ and the same v,
both of which belong to G(R), is given by

(7.77)
N
KL(e®, o) =3

=1

ko (ki) — kr2(ki))?
2(/‘6T2(ki) v T)?

where the option prices corresponding to o¥) are denoted by Or,;(k), for
j=12.

In order to analyze the KL divergence, we will first establish lower and
upper bounds on 71 (k) and k7 2(k). In what follows we will use the notation
of Section 7.2. For Q € G(R), we can decompose

(7 78) KT(k) = E%(k) + E?[(emt+T — ek)Jrl{,u([t,tJrT]XR)zl}]
— B¢+ — M) L earmixmysny],

for k > 0 and a similar decomposition holds for the case £ < 0. Then using
the independence of zf, » and xf w7 (recall z is a Lévy process under Q), the
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fact that F'(R) < oo (recall notation in (4.1)) as well as Holder’s inequality
and the integrability assumptions for v in (4.2), we have

(7.79) |k (k) — Ry (k)| < CT,

for some positive constant C' which does not depend on k and 7T, and is a
continuous function of o.

We will henceforth concentrate on the case £ < 0 with the other case
k > 0 being treated analogously. Now, we can make use of Lemma 2, and
hence it suffices to look at

(7.80) f (ﬁ;%f) VTo + (F — 1)@ <kJT‘;T> .

We have —x®(x) ~ f(x) for | —o0o, and using this fact and Taylor expan-

sion, we have
k T k—aT
wr(k) - f(f(f) o= (\/TU)‘gCT,

for some positive constant C' which does not depend on k and 7', and is a
continuous function of o. The function f(z)+z®(x) is increasing with value
at zero of f(0) > 0 and limg | o (f(z) + 2®(x)) = 0. Furthermore, we have

. flz)+2P(x)
(7.82) mlilinoo Ty

Therefore, for some € € (0,1), there exists large in absolute value z* < 0
such that for z < z*, we have

(7.83) 1- e)f;;”)

(7.81)

=1.

< 1) +a0(x) < (14 9 L2

As a result, we have the following lower bounds for Q € G(R):

k—aT\ T?/?
(ragy TRV 24 [f () 7 V)
kr(k) VT > CoVT, for k € [z*oVT + aT, 0],

for k < #*oVT + aT,

and we note that * does not depend on ¢ while the constants 1 > C; > 0
and Cy > 0 do. We similarly have the upper bounds for Q € G(R):

(k) for k < 2*oVT + aT,

— k—al T%2
(7.85) C [f< VTo )W\/T ’
kr(k) < CoVT, for k € [z*oVT + aT, 0],

IN

IN
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for some finite constants C; > 0 and Cy > 0 which depend on o. We note
that C'y, Cy, C; and C4 remain bounded both from below and above for
Q € G(R). Further, for T sufficiently small, we have

(7.86) k< — 2TU\/W) = f<k af) ﬂ;‘é <T,

k>—2To = f (%Z) T“:'/; >T.

As a result, for two risk-neutral probability laws Q € G(R) with the same v
and o) — @) | < CT" (and |aV) — a®| < |6 — 6(@)|) with some positive
n > 0, we have

ke(— TR 1n<1/ﬁ>,_¢m<2>) .

(7.87) ) ; k— aOT /f k— a@T X
- < — | <14y,
\/70' VTo®
for some ¢ € (0,1) and where without loss of generality we have assumed
o) < @ Therefore,

T
HTJ(]{}) V < < oo,

7.88 O0<R<
( ) <£= RTQ(]{J)\/T_

for some R and R that depend on R.
Given this bound and using second-order Taylor expansion, we have

—/fT2(k )
2\/T2

(7.89) KL(eW,0®) < Z (o (K

~

To proceed further, we need to analyze the difference wr;(k) — k7 2(k). By
looking separately at the sets at which there is no jump in = on the interval
[t,t + T] and on which there is, we have

(7.90)
k11 (k) — kr2(k)| < [RT (k) — K7a(k)|
2(62)

(e,1)
+2]E9 (6 t""T V 1)‘6 t""T — e"t+T |1{“([t t+T],R)>1}

and therefore, taking into account the independence of z7, , and :cf+T as
well as v(R) < oo and the tail decay of v, we have

(7.91)  |wpa(k) — sro(k)] <[RS (k) — &S5 (k)| + CT3 2o — 6@,
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In what follows, we consider the case £ < 0 with £ > 0 analyzed in a similar
way. Direct calculation yields for k£ < 0:

(7.92)  Fo(k) = ek (k\;T“UT) — e T—"T2g (I“\;;T VT a> ,

and therefore using Taylor expansion, we can make the follow decomposition

Rp(k) = Z?:l Ag,z)(k) where with the shorthand k7 = k\;TEZ, we denote

(7.93) AV (k) = oVT [Fr®(r) + f(Rr)], AP (k) = aT®(Fer),
(7.94) AD) () = % F )T, AD (k) = (¢ — 1 - k)d(Fr),

(7.95) A9 (k) = — (eaT—UQTﬂ - 1) &(kr — oVT),
and Ag? )(k:) is such that we have
(7.96) ]Ag?’)(k)‘ < CT¥(|loy — oVT2 v 1) f(Fr)

For | = 1,2, we denote with kr; and A(J)(k:) the counterparts of k7 and

Ag,z ) (k) where a and o are replaced with a(¥) and ¢(V). Using Taylor expansion
and the monotonicity of f and ®, we then have for k£ <0

(7.97)
A (k) — A (k)| < oﬁ@mwm + fkr) o™ — o)

—|—C\/f( \/\F) kT1V/€T2)\U — @),

k _ _
(7.98) |AD) (k) — ATy(k)| < CT (l/:’? \ \/:F> For1 VEr2)o® — 6@,

(7.99)

3
48,00 - afwl < o1 (SL\ T VE) 1 vErallo® - o),
(7.100)

)

k _ _
A0 = A0 < O A ) (LN VT ) s v Era)lo® = ),
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k _
(7.101) [AP, (k) — AT, (k)| < OT < i \/ \F) (Fr Vo) |o® = 6@,

and these bounds continue to hold for & > 0. Using them, the lower bounds
for kp(k) derived earlier, the fact that —z [*_ f*(u)du ~ f?(z) for z | —oo,
the asymptotic behavior of ®(x) and f(z)+x®(x) for = | —oo, and splitting
the summations below into two sums according to whether |k| is above or

below v2T'c® /In(1/v/T), we have

(7.102)

and further

T ) ] 5/2 9
7.103 ’ 2 < |InT|2
( ) Z_; N RV RS | InT|

Therefore, taking into account also the bound in (7.90), we have

|’“”vT1 —RTQ( )| \F 2 5/2 T5/2 9/2
(7.104) Z VT2 < 2| InT%/? + — |In T2,

where we denote nr = ¢() — (). Evaluating the above bounds with ny =

WnATP/‘l (and making use of the fact that o« < 5/2 by assumption), we

get the result of the theorem.
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