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1 Additional Monte Carlo Evidence

In this section we report our findings for the performance of our developed estimator and tests on
simulated data from the following two-factor stochastic volatility model for the underlying stock
price X under the risk-neutral distribution

dXt

Xt−
=
√
V1,t dW1,t +

√
V2,t dW2,t

dV1,t = κ1 (v1 − V1,t) dt + σ1
√
V1,t dB1,t

dV2,t = κ2 (v2 − V2,t) dt + σ2
√
V2,t dB2,t,

(72)

where (W1,t,W2,t, B1,t, B2,t) is four-dimensional Brownian motion with correlations ρ1 = corr (B1,t,W1,t)

and ρ2 = corr (B2,t,W2,t). The parameter vector is given by θ = (ρ1, v1, κ1, σ1, ρ2, v2, κ2, σ2) and

the parameter values used in the Monte carlo are reported in Table 7. The observation setting is

exactly the same as in the Monte Carlo study reported in Section 5 of the paper with the only

exception being that now the moneyness range is reduced to to [−2, 1] ·σ
√
τ because, for the model

(72) without any jump component, the OTM option prices in the range [−4,−2] · σ
√
τ are very

close to zero, and not representative of what is observed in practice.

Table 7: Parameter Setting for the Numerical Experiments

Under P Under Q
Parameter Value Parameter Value Parameter Value Parameter Value

ρ1 −0.500 ρ2 0.000 ρ1 −0.500 ρ2 0.000
v1 0.010 v2 0.015 v1 0.020 v2 0.020
κ1 4.000 κ2 30.000 κ1 2.000 κ2 15.000
σ1 0.250 σ2 0.700 σ1 0.250 σ2 0.700

The precision in recovering the parameters is reported in Table 8. Overall, the parameters are

estimated quite well and the biases are close to negligible.

Table 8: Monte Carlo Results: Estimation of the Risk-Neutral Parameters

Parameter True Value Median IQR Parameter True Value Median IQR

ρ1 −0.500 −0.502 0.116 ρ2 0.000 0.000 0.036
v1 0.020 0.020 0.001 v2 0.020 0.020 0.002
κ1 2.00 1.993 0.242 κ2 15.000 14.938 1.971
σ1 0.250 0.249 0.043 σ2 0.700 0.699 0.089

Turning next to the diagnostic tests, Table 9 reports on the size of the various tests developed

in Section 4 of the paper. Generally, the small sample behavior is satisfactory. The tests for
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the fit to the option panel are almost perfectly sized, with only mild over-rejection for the OTM

short-maturity puts. The omnibus test for parameter stability test under-rejects slightly while the

volatility test rejects a bit too frequently.

Table 9: Monte Carlo Results: Diagnostic Tests

Test Nominal size of test
1% 5% 10%

Panel A: Fit to Option Panel

Out-of-the-money, short-maturity puts 3.1% 7.8% 12.7%
Out-of-the-money, short-maturity calls 1.0% 4.0% 7.6%
Out-of-the-money, long-maturity puts 1.0% 4.9% 10.0%
Out-of-the-money, long-maturity calls 0.5% 4.0% 9.1%

Panel B: Parameter Stability

1.2% 2.6% 5.4%

Panel C: Distance implied-nonparametric volatility

3.6% 9.4% 14.9%

Note: Table description as for Table 3 in the paper.

Finally, in Table 10 we report on the tests for stability of individual parameters. They perform

well, except for v1 and v2 , where we notice a somewhat larger degree of under-rejection (particularly

at the 10% level). As seen from Table 8, these two parameters are recovered extremely precisely,

so the under-rejection stems from a slight over-estimation of their asymptotic variances.

Table 10: Monte Carlo Results: Tests for Stability of Individual Parameters

Parameter Nominal Size Parameter Nominal Size
1% 5% 10% 1% 5% 10%

ρ1 2.4% 6.0% 12.6% ρ2 1.2% 3.2% 7.4%
v1 0.2% 1.2% 2.0% v2 0.4% 1.2% 2.2%
κ1 1.4% 5.2% 10.2% κ2 2.2% 4.8% 10.0%
σ1 1.6% 5.2% 12.2% σ2 1.0% 3.4% 7.8%

Note: The parameter stability test is given in equation (18) in the paper.

Overall, the simulation evidence confirms that our inference technique works satisfactorily even

in the more challenging case when the asset dynamics is governed by a two-factor stochastic volatil-

ity model.
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2 Further Details on the Empirical Application

2.1 Additional Diagnostics for the Empirical Application

We now present additional diagnostic tests for the two estimated models (1) and (22). First, in

Table 11 below, we report the rejection rates for the formal tests for fit to the different regions

of the option surface as well as the tests for equality of the nonparametric and the option pricing

model implied spot volatility estimates.

Table 11: Diagnostic Tests for S&P 500 Option Data

One-factor Model Three-factor Model
Test Nominal Size Nominal Size

1% 5% 1% 5%
Panel A: Fit to the Option Panel

OTM, short-maturity puts 45.92% 60.92% 18.03% 35.00%
ATM, short-maturity puts 70.00% 77.89% 16.05% 30.39%
OTM, short-maturity calls 30.39% 49.08% 20.66% 37.11%
OTM, long-maturity puts 60.39% 72.89% 16.71% 30.53%
ATM, long-maturity puts 62.76% 74.34% 18.42% 32.37%
OTM, long-maturity calls 9.08% 15.53% 14.34% 34.87%

Panel B: Root-Mean Squared Error of IV Option Fit

3.06% 1.59%
Panel C: Equality of Implied and Nonparametric Volatility

53.29% 63.42% 51.05% 62.63%

Note: Panel A reports rejection frequencies across the full sample for the option
fit to specific regions of the option surface at the end of trading on Wednesdays.
This test relies on Corollary 1, using the first two maturities for the first three tests
and all remaining options with maturity less than one year for the last three. OTM
puts and calls, ATM options, and short- versus long-maturity options are defined in
Figure 3. Panel B provides the root-mean-squared-error of the model-implied BSIV
relative to the market mid-quote BSIV across all options used during estimation over
the full sample. The test in Panel C is defined in Corollary 3.

Panel A of Table 11 shows also that moving from the one-factor to the three-factor model

(22) provides a near uniform improvement in the model’s ability to fit the different parts of the

option surface over the sample period. The improvement is very significant for the short and long

maturity OTM puts and ATM options. There is only a small increase in the rejection rates for the
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long-maturity OTM calls. Overall, the three-factor model improves the average fit of the one-factor

model, measured in terms of the root-mean-squared-error, by almost 50%.

Next, Table 12 reports rejection rates for pairwise tests of individual parameter stability across

each calendar year within our sample. The table reveals significant variation in the parameter

estimates, but also a dramatic improvement in the stability for some parameters as we move from the

one-factor to the three-factor model, suggesting improved model specification. Nevertheless, some

parameters in the three-factor model are quite unstable, most notably the persistence parameters

κ1 and κ2. Again, it is evident that neither model is correctly specified. In fact, for the two models

the joint test for stability of the full parameter vector across any two consecutive years has a 100%

rejection rate. If anything, this confirms the power of our tests and reiterates the point that none

of the models provide an ideal fit to the complex option surface dynamics.

Table 12: Parameter Stability Tests on S&P 500 options data

Parameter Nominal size of test Parameter Nominal size of test

1% 5% 1% 5%
Panel A: One-Factor Model

ρd 25.71% 40.00% λj 68.57% 75.24%
v 72.38% 77.14% µx 47.62% 58.10%
κ 81.90% 86.67% σx 30.48% 38.10%
σd 69.52% 74.29% µv 41.90% 50.48%

ρj 32.38% 36.19%

Panel B: Three-Factor Model

ρ1 0.00 0.00 ρ3 0.00 0.00
v1 49.52 57.14 c+0 18.09 26.67
κ1 47.62 56.19 c−1 12.38 18.10
σ1 25.71 34.29 c+1 0.00 2.85
ρ2 0.00 0.00 c−2 0.00 0.00
v2 34.29 43.81 c+2 0.00 0.00
κ2 73.33 82.86 c−3 13.33 17.14
σ2 13.33 25.91 λ− 35.24 45.71
µu 0.00 0.00 λ+ 6.67 8.57
κ3 32.38 42.86 µ1 7.62 15.24

Note: Tests based on parameter estimates of the models over consecutive calendar
years in the sample. The test is based on Corollary 2.

Finally, Figure 7 depicts the nonparametric and the option-implied volatility series extracted

from each of the two models. It is evident that they all are highly correlated. Nonetheless, the formal
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test for equality between the option-implied and the nonparametric diffusive volatility estimates

rejects the null hypothesis for a nontrivial number of days for all models, as may be confirmed from

Panel C of Table 11. In fact, the rates are fairly similar across the two models, likely reflecting the

tighter standard errors on the option-implied volatility estimates associated with the three-factor

model. This is corroborated by the serial correlation in the discrepancy between the option implied

and nonparametric volatility estimates plotted in the bottom panels of Figure 7. Under correct

model specification these series should not display significant autocorrelation. However, relatively

strong temporal dependence is evident for both series, albeit somewhat less for the three-factor

model.
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Figure 7: Volatility Estimates. The left panel corresponds to the one-factor model and the right
panel to the three-factor model. The bottom plots of the figure are the autocorrelations in ξ1(Ŝt)−
V̂ n
t and log(ξ1(Ŝt))− log(V̂ n

t ).
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2.2 Implied Volatility Skews for the Three-Factor Model

We now provide implied volatility skews for each calendar year for the three-factor model (22).
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Figure 8: Implied Volatility Standard Error Bands, Jan 1, 1996 - Jan 1, 1997. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 9: Implied Volatility Standard Error Bands, Jan 1, 1997 - Jan 1, 1998. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 10: Implied Volatility Standard Error Bands, Jan 1, 1998 - Jan 1, 1999. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 11: Implied Volatility Standard Error Bands, Jan 1, 1999 - Jan 1, 2000. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 12: Implied Volatility Standard Error Bands, Jan 1, 2000 - Jan 1, 2001. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 13: Implied Volatility Standard Error Bands, Jan 1, 2001 - Jan 1, 2002. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 14: Implied Volatility Standard Error Bands, Jan 1, 2002 - Jan 1, 2003. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 15: Implied Volatility Standard Error Bands, Jan 1, 2003 - Jan 1, 2004. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 16: Implied Volatility Standard Error Bands, Jan 1, 2004 - Jan 1, 2005. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).

11



−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
8

10

12

14

16

18

20

22

Moneyness =
l o gK /F

σ

√

T

B
S

 i
m

p
lie

d
 v

o
la

ti
lit

y

01−Jan−2005 to 01−Jan−2006

−1.5 −1 −0.5 0
8

10

12

14

16

18

20

22

Moneyness =
l o gK /F

σ

√

T

B
S

 i
m

p
lie

d
 v

o
la

ti
lit

y

01−Jan−2005 to 01−Jan−2006

Figure 17: Implied Volatility Standard Error Bands, Jan 1, 2005 - Jan 1, 2006. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 18: Implied Volatility Standard Error Bands, Jan 1, 2006 - Jan 1, 2007. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 19: Implied Volatility Standard Error Bands, Jan 1, 2007 - Jan 1, 2008. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 20: Implied Volatility Standard Error Bands, Jan 1, 2008 - Jan 1, 2009. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 21: Implied Volatility Standard Error Bands, Jan 1, 2009 - Jan 1, 2010. Left panel: short-
maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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Figure 22: Implied Volatility Standard Error Bands, Jan 1, 2010 - July 21, 2010. Left panel:
short-maturities (tenor below 60 days). Right panel: long-maturities (tenor exceeds 150 days).
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2.3 Alternative Three-factor Volatility Model

We conclude this section with results from estimation of an alternative three-factor model. It
stipulates the following risk-neutral equity index dynamics,

dXt

Xt−
= (rt − δt) dt +

√
V1,t dW1,t +

√
V2,t dW2,t +

√
V3,t dW3,t +

∫
R2

(ex − 1) µ̃(dt, dx, dy),

dV1,t = κ1 (v1 − V1,t) dt + σ1
√
V1,t dB1,t + µv1

∫
R2

x2 1{x<0} µ(dt, dx, dy),

dV2,t = κ2 (v2 − V2,t) dt + σ2
√
V2,t dB2,t,

dV3,t = − κ3 V3,t dt + µv3

∫
R2

[
(1− ρ3)x2 1{x<0} + ρ3 y

2
]
µ(dt, dx, dy).

(73)

The jump measure µ has a compensator given by dt⊗ νQt (dx, dy), where,

νQt (dx, dy) =
{(
c−1{x<0}λ−e

−λ−|x| + c+1{x>0}λ+e
−λ+x

)
1{y=0} + c−1{x=0, y<0}λ−e

−λ−|y|
}
dx⊗dy,

c− = c−0 + c−1 V1,t− + c−2 V2,t− + c−3 V3,t−, c+ = c+0 + c+1 V1,t− + c+2 V2,t− + c+3 V3,t− .

The specification in (73) differs from our original three-factor model (22) primarily by having

the third factor, driving the jump intensity, V3, be a component of the diffusive volatility. The

number of parameters in the two alternative three-factor models is identical.

As for model (22), we impose c+3 = 0 and c−0 = 0 during the estimation. The parameter

estimates of model (73) are reported in Table 13, the corresponding Z-scores for the fit to the

separate regions of the option surface are plotted on Figure 23, and results for further diagnostic

tests and plots are given in Table 14 and Figure 24.

Table 13: Parameter Estimates for the Alternative Three-Factor Model

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.8225 0.0195 σ2 0.0838 0.0076 c−2 79.3262 3.7170
v1 0.0127 0.0003 µv3 2.9428 0.962 c+2 247.1285 99.4715
κ1 5.7246 0.1274 κ3 19.9491 0.9336 c−3 123.8232 9.7126
σ1 0.3587 0.0101 ρ3 0.8109 0.2020 λ− 14.7842 0.5526
ρ2 −0.9964 0.0569 c+0 1.9995 1.3937 λ+ 102.3357 3.4339
v2 0.0318 0.0043 c−1 0.1289 1.1831 µv1 10.4981 1.0545
κ2 0.1688 0.0249 c+1 290.4399 78.9567

Note: Parameter estimates of the alternative three-factor model (73) for S&P 500 equity-index
option data sampled every Wednesday over the period January 1996-July 2010.

Finally, in Figure 25, we provide a more direct comparison of the two three-factor models in

terms of the distribution of the Z-scores relative to the theoretical quantiles. We find that the
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Figure 23: Option Price Fit for the Alternative Three-factor Model.

extended model with an independent degree of flexibility in the left jump tail produces quantiles

that are positioned much closer to the theoretical 45 degree benchmark for five of the six regions

relative to the traditional three-factor model, while they are very similar for the short maturity

calls. Overall, the model constructed according to the familiar volatility structure falls significantly

short of the new extended three-factor model along the majority of the dimensions explored, and

often by a substantial margin.

16



Table 14: Diagnostic Tests for the Alternative Three-Factor Model

Alternative Three-factor Model
Test Nominal Size

1% 5%
Panel A: Fit to the Option Panel

OTM, short-maturity puts 34.08% 49.61%
ATM, short-maturity puts 24.61% 42.37%
OTM, short-maturity calls 20.53% 38.55%
OTM, long-maturity puts 30.26% 41.84%
ATM, long-maturity puts 38.82% 51.05%
OTM, long-maturity calls 26.84% 47.37%

Panel B: Root-Mean Squared Error of IV Option Fit

1.66%
Panel C: Equality of Implied and Nonparametric Volatility

43.94% 55.52%

Note: Panel A reports rejection frequencies across the full sample for the option
fit to specific portions of the option surface at the end of trading on Wednesdays.
This test is based on Corollary 1, using the first two maturities for the three initial
tests and all remaining options with maturity less than one year for the last three
tests. DOTM puts, OTM puts and calls, and short- versus long-maturity options
are defined in Figure 1. Panel B provides the root-mean-squared-error of the model-
implied BSIV relative to the market mid-quote BSIV across all options used for
estimation over the full sample. The test in Panel C is defined in Corollary 3.
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Figure 24: Volatility Estimates for the alternative three-factor model. The bottom plots of the
figure are the autocorrelations in ξ1(Ŝt)− V̂ n

t and log(ξ1(Ŝt))− log(V̂ n
t ).
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Figure 25: The dark line corresponds to our three-factor model and the gray line to the three-factor
volatility model.
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3 Details on Computation

The estimation procedure described in Section 4.2 entails two distinct issues. On the one hand, on

each day in the sample, we have to recover the volatility states inverting the option pricing formula

for a given model for the asset returns dynamics. We use the free/open-source NLopt1 library for

nonlinear optimization to perform this task. Specifically, we employ the BOBYQA algorithm: this

is a local derivative-free optimization algorithm which performs derivative-free bound constrained

optimization using an iteratively constructed quadratic approximation for the objective function

This method proved to be fast and reliable.

On the other hand, we need to minimize the objective function in equation (5) which depends

upon a high dimensional parameter vector and it is costly to evaluate since it nests many minimiza-

tions coming from the volatility state recovery that has to be done for every day in the sample (i.e.

about three thousand observations). To overcome this problem we followed four complementary

strategies. First, all the code has been written in C++ to benefit from its computational speed.

Second, since the inversion problem is inherently independent from one day to another, we relied

on the Open MPI (Messages Passing Interface, www.open-mpi.org) library in order to exploit the

power of multiple CPUs at the same time, which means that we can simultaneously back out the

volatility states over different days. Third, we choose the Fourier-cosine series expansion described

in Fang and Oosterlee (2008) as our option valuation method, which has been shown to be re-

markably faster than the Carr and Madan (1999) method. Fourth, since the Fourier-cosine series

expansion method basically relies on the knowledge of the log-price characteristic function (CF),

we needed a way to compute it fast even when it is not known in closed form. This is easily done

taking into account that the CF for example for our two-factor volatility model is of the form:

f(τ, yt, v1,t, v2,t, u) = Et[exTu] := eα(τ,θ,u)+β1(τ,θ,u)v1,t+β2(τ,θ,u)v2,t+uxt , u ∈ C,

where xt = log(Xt). The coefficients α(τ, θ, u) and βi(τ, θ, u) can be computed once at the beginning

of each objective function evaluation. In this way we only need to solve the system of ODEs over

the longest option maturity in our sample and for different values of u once, for each parameter

vector.

Finally, in order to cope with time constraints we followed two different approaches for the

Monte Carlo study and the empirical investigation, respectively. Precisely:

• Monte Carlo study: we carry out the minimization using the NLopt library. Specifically, we

1For further information about the library and the different minimization algorithms see the official web-site
http://ab-initio.mit.edu/wiki/index.php/Nlopt_Introduction.

20

www.open-mpi.org
http://ab-initio.mit.edu/wiki/index.php/Nlopt_Introduction


sequentially used a global search algorithm and a local search one. We start the minimization

from the true parameter value but we allow a wide exploration of the parameter space through

the global search algorithm. We use the Controlled Random Search (CRS) with local mutation

algorithm as our global optimization: it can be compared to genetic algorithms, since it starts

with a random “population” of points and then it randomly evolves them. Finally, the local

search has been done with the Sbplx (based on Subplex) algorithm, which has been proven

to be more efficient and robust than standard simplex methods.

• Empirical application: the Monte Carlo Markov Chain (MCMC) method has been used to

perform the objective function minimization. We employed the wide-scope C++ library of

Ronald Gallant which is an implementation of the Chernozhukov and Hong (2003) estimator

and that can be downloaded form http://www.unc.edu/~arg/.

In order to carry out the Monte Carlo study in a timely fashion we relied on on a High Perfor-

mance Computing System -ranked among the 500 fastest computers worldwide- composed of 504

(4032 cores) Intel Nehalem E5520, 64-bit, 8M Cache, 2.26 GHz, with 48GB’s of DDR3 memory per

node, and 252 (3024 cores) Intel Westmere X5650, 64-bit, 12MB Cache, 2.66 GHz, with 48GB’s of

QDR memory per node. The complete experiment required approximatively 100 thousand CPUs

hours.
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