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Abstract

We develop a new parametric estimation procedure for option panels observed with error. We
exploit asymptotic approximations assuming an ever increasing set of option prices in the mon-
eyness (cross-sectional) dimension, but with a fixed time span. We develop consistent estimators
for the parameters and the dynamic realization of the state vector governing the option price
dynamics. The estimators converge stably to a mixed-Gaussian law and we develop feasible
estimators for the limiting variance. We also provide semiparametric tests for the option price
dynamics based on the distance between the spot volatility extracted from the options and one
constructed nonparametrically from high-frequency data on the underlying asset. Furthermore,
we develop new tests for the day-by-day model fit over specific regions of the volatility surface
and for the stability of the risk-neutral dynamics over time. A comprehensive Monte Carlo study
indicates that the inference procedures work well in empirically realistic settings. In an empirical
application to S&P 500 index options, guided by the new diagnostic tests, we extend existing
asset pricing models by allowing for a flexible dynamic relation between volatility and priced
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1 Introduction

A voluminous literature spanning several decades has, unambiguously, established that time-varying

volatility and jumps are intrinsic features of financial prices. Moreover, there has been substantial

interest in linking return premiums in financial markets to compensation for such latent risks. In

parallel, the trading of derivative contracts has grown explosively, in part reflecting a desire among

investors to manage their volatility and jump risk exposures. As a result, ever more comprehensive

data for, in particular, exchange-traded options have become available over time. These options

span a variety of distinct times-to-maturity (tenor) and strike prices (moneyness), effectively pro-

viding an option or “implied volatility” surface at a given point in time, indexed by moneyness and

tenor. This sequence of option surfaces – which we label an option panel – is an attractive input

for estimation of dynamic asset pricing models. Specifically, in a frictionless parametric setting, the

surface allows for perfect recovery of the risk-neutral parameters and (multivariate) state vector

driving the option price dynamics. Within realistic asset pricing models, this state vector consists

of much more than the current spot volatility. It may include factors governing separate short- and

long-run volatility components as well as the jump intensity. These state variables are intrinsically

latent from the perspective of the underlying asset price, even if a continuous trajectory of the

latter is observed, so the option panel augments the information set in important directions.

In practice, however, drawing inference from the option panel is complicated by the presence of

relatively large observation errors. Both mid-quotes and transaction prices are affected by a non-

trivial bid-ask spread, and we can only infer that the actual valuations reside within the quoted

(binding) spreads. Thus, observed option value proxies, such as quote midpoints, deviate from

the true latent option prices. Empirically, the magnitude of those observation errors vary across

strikes and tenor and depend on general market conditions, including possibly the state vector itself.

The convolution of the theoretical option prices with observation errors render the state vector and

parameters unobservable directly from a noisy option panel. This situation resembles the recovery of

volatility from high-frequency returns, where the volatility is convoluted with Gaussian innovations

as well as jumps and microstructure noise. In that context, an elegant solution is to resort to

in-fill asymptotics in the time dimension and “average out” the Gaussian return innovations along

with the remaining confounding factors. This effectively renders volatility statistically identifiable.

Below, we follow an analogous strategy in the spatial (moneyness) domain for the option panel.

The article develops rigorous inference techniques for the implied (latent) state vector and risk-

neutral parameters, while avoiding parametric assumptions about the actual measure governing

the state vector dynamics. This is feasible as we develop asymptotic distributional approximations
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assuming only that the number of options underlying each volatility surface is large, so we may

treat the time dimension as fixed. We may also allow the observation errors for the option prices to

exhibit limited dependence in the spatial (across strikes and tenors) and time series dimension. We

accommodate variation in the number of option quotes as well as the strike range and tenor across

time – as in the data – and there is no requirement of stationarity in the pattern of maturity and

moneyness. Similarly, the observation error may have a non-ergodic and time-varying distribution.

Our estimation method is penalized nonlinear least squares (NLS). The objective function has

two parts. The primary component is the mean-square-error in fitting the observed option prices

using the parametric option pricing model. The second piece of the objective function penalizes

estimates depending on how much the option-implied volatility state deviates from a local nonpara-

metric estimate of spot volatility constructed from high-frequency data on the underlying asset.

This constraint stems from the no-arbitrage condition that the current (aggregate) diffusion coef-

ficient must be identical under the actual and risk-neutral measures. Assuming the option price

errors “average out” sufficiently when pooled in the objective function, we can consistently estimate

both the parameters of the risk-neutral density and the realized trajectory of the state vector.

We further establish the asymptotic properties of our estimator. The limiting distribution is

mixed Gaussian with an asymptotic variance that can depend on any random variable adapted

to the filtration. The limiting law reflects the flexibility of the estimation approach: we can ac-

commodate option errors that depend in unknown ways on the volatility state as well as option

characteristics such as moneyness and tenor. We also provide consistent estimators for the asymp-

totic variance, thus enabling feasible inference. In analogy to standard NLS, if the option errors are

heteroskedastic, we may enhance efficiency by weighting the option fit appropriately across mon-

eyness and tenor. Consequently, in contrast to much earlier work on option pricing allowing for

observation error, e.g., Bates (2000), Jones (2006), and Eraker (2004), we do not impose parametric

assumptions on the pricing errors, and we allow them to display significant heteroskedasticity.

As alluded to above, the recovery of the volatility state from the option surface shares critical

features with “realized volatility” estimation based on high-frequency returns, see, e.g., Andersen

and Bollerslev (1998), Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002, 2006).

In either case, the volatility realization at a specific point in time may be recovered pathwise.

Moreover, both estimators are consistent and feature an asymptotic variance that depends on the

observed trajectories of asset prices, but do not require stationarity or ergodicity of the volatility

process. While the high-frequency (jump-robust) estimator of volatility “averages out” the noise

in the high-frequency return data, the option-based volatility estimator “averages out” the obser-
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vation errors across the option surface. The major difference is that the option-based estimator

exploits a parametric pricing model while the estimator based on high-frequency returns is fully

nonparametric. If the option pricing model is valid, the two volatility estimates should not differ

in a statistical sense. We formalize and operationalize this observation. Under correct model spec-

ification, we establish a joint convergence law for the two estimators, enabling us to devise a model

specification test based on the distance between the two volatility measures.

We propose additional new diagnostic tests for the option price dynamics. The first explores

the stability of the risk-neutral parameter estimates over distinct time periods. If the model is

misspecified, the period-by-period estimates will, in general, converge to a pseudo-true value, see,

e.g., White (1982) and Gourieroux et al. (1984). However, the latter changes over time as the

trajectory of the state vector varies across estimation intervals and, for incorrect model specification,

this cannot be accommodated by an invariant parameter vector. Hence, we develop a test based

on the discrepancy between the parameter estimates over subsequent time periods.

Yet another diagnostic focuses on model performance over specific parts of the implied volatility

surface. The empirical option pricing literature typically gauges performance based on the time-

averaged fit for a limited set of options. In contrast, we may test for adequacy of the model implied

option pricing at any given point in time. This diagnostic exploits our feasible limit theory by

quantifying the statistical error over the relevant portion of the surface, and then determines if the

pricing errors are significant. In essence, the approach disentangles the impact of observation errors

(noise) in the option prices from the systematic errors stemming from a misspecified model.

We explore the finite-sample properties of the estimators through an extensive Monte Carlo

study using the double-jump stochastic volatility model of Duffie et al. (2000), commonly used in

the option pricing literature, as well as a two-factor model. The scale of this simulation study

exceeds what has been undertaken previously in the related literature. We find our inference

technique to perform well within realistically calibrated settings.

In the empirical application we propose a new three-factor jump-diffusive stochastic volatility

model and estimate it using an extensive option panel for the S&P 500 index. The model generalizes

existing specifications by allowing the intensity of the jump tail to depend on an additional factor

that is not a component of market volatility (although it can depend on it). Our diagnostic tests

reveal that this feature is crucial for explaining the observed dynamic dependencies between short

maturity out-of-the-money put options and at-the-money options. The results imply a significant

time variation in the risk-neutral jump tail risk. Furthermore, the left and right jump tails exhibit

very different dynamics with the latter resembling the dynamics of market volatility more closely.
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Finally, we document that the response of the priced left tail risk often is substantially more

pronounced and persistent than for the volatility process following market crises.

The rest of the paper is organized as follows. Section 2 provides an illustration of our estimation

approach applied to the popular double-jump stochastic volatility model. Section 3 introduces our

formal setup. Section 4 develops our estimators and derives the feasible limit theory. In Section 5,

we develop diagnostic tests for the option price dynamics. Section 6 contains our Monte Carlo

study. In Section 7, we exploit our new inference tools to analyze the option price dynamics of the

S&P 500 index. Section 8 concludes. All proofs are deferred to the appendix. A supplementary

appendix collects additional results pertaining to the Monte Carlo and empirical applications.

2 Illustrative Example

2.1 The Gaussian Double-Jump Stochastic Volatility Model

We start with an illustration of our approach to inference for the risk-neutral density in the context

of the “double-jump” stochastic volatility model of Duffie et al. (2000) which is widely used in

empirical work. For a univariate asset price process X, it takes the form,

dXt

Xt−
= (rt − δt)dt+

√
Vt dWt + dLx,t , dVt = κd (v − Vt) dt+ σd

√
Vt dBt + dLv,t , (1)

where (Wt, Bt) is a two-dimensional Brownian motion with corr (Bt,Wt) = ρd ; (Lx,t, Lv,t) is a

compound Poisson process with intensity λj , and jump size (Zx, Zv) governed by the marginal

distribution of Zv, which is exponential with mean µv, while, conditional on Zv, log(Zx + 1) is

Gaussian with mean µx + ρjZv and standard deviation σx , and, finally, Lx,t is a jump martingale.

The model also involves the cross-parameter restriction, σd ≤
√

2κd v. For simplicity, we assume

rt and δt to be deterministic.1 The full parameter vector is,

θ = (ρd, v, κd, σd, λj , µx, σx, µv, ρj) ,

and we denote its true value with θ0.

Our estimation is based on a panel of options written on the asset X. We denote the prices of

European-style out-of-the-money (OTM) options on X at time t by Ot,k,τ . Assuming frictionless

trading, the option prices equal the expected discounted payoffs under the risk-neutral measure Q,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(2)

1In the empirical application to SPX options written on the S&P 500 equity index, we use the LIBOR rate for
the corresponding maturity to proxy for the interest rate while the dividend yield is obtained from OptionMetrics.

4



where τ is the tenor, K is the strike price, Ft,t+τ is the futures price of the underlying asset, X, at

time t for the future date t+ τ , and k = ln(K/Ft,t+τ ) is the log-moneyness.

Given our parametric model,
ert,t+τOt,k,τ

Ft,t+τ
is a sole function of the parameter vector θ, the diffusive

spot volatility Vt, and the option characteristics τ and k, with rt,t+τ being the risk-free interest

rate for the period [t, t + τ ]. As is common practice, we quote each option price in terms of its

Black-Scholes implied volatility (BSIV), which is a known nonlinear transform of
ert,t+τOt,k,τ

Ft,t+τ
and

therefore also depends only on k, τ , θ and Vt. Henceforth, we denote this quantity κ(k, τ, Vt, θ).

In the double-jump model, it is known in semi-analytic form, see Duffie et al. (2000). Even under

correct model specification, the model-implied BSIV, κ(k, τ, Vt, θ ), differs from the corresponding

BSIV, κ̃t,k,τ , obtained from market prices or quotes, due to the presence of observation errors.

More generally, subject only to the regularity conditions, our inference technique will apply for

any parametric model which generates option prices (BSIVs) of the form κ(k, τ,St, θ), where St

denotes a (multivariate) state vector, capturing the dynamics of the option surface (in this section,

Vt ≡ St). This holds for most option pricing models used in empirical work, including standard

specifications within the exponentially-affine class.

2.2 The Estimation Procedure

Our option panel covers T trading days where, at the close of each day t, we observe Nt option

prices with different strikes and tenors. Our asymptotic results pertain to the given sample period,

i.e., T is fixed, but we have Nt → ∞ for t = 1, ..., T . In this manner, our procedure reflects the

large number of available OTM options for broad strike ranges across several maturities.

While the parametric model in (1) concerns the risk-neutral distribution of X, absence of

arbitrage implies that, at each point in time, the spot volatility, Vt , is the same under the statistical

distribution. A number of alternative nonparametric estimators for Vt may be constructed from

high-frequency data on X. They can aid in the estimation of the risk-neutral model (1) without

imposing parametric structure on the statistical law of X. We denote any such estimator of spot

volatility by V̂ n
t , where n signifies the number of high-frequency observations of X available within

a unit interval of time. We provide an account of such estimators in Section 4.

Using the option panel and a specific nonparametric high-frequency volatility measure, our basic

estimator of the spot volatilities and parameters takes the form,

(
{V̂t}t=1,...,T , θ̂

)
= argmin
{Vt}t=1,...,T , θ∈Θ

T∑
t=1


Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj , Vt, θ)

)2
Nt

+ λn

(√
V̂ nt −

√
Vt)

)2
 , (3)

for a nonnegative λn , where λn → 0 , as n → ∞. The main component of the objective function
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in (3) is the mean squared error in fitting the observed option (BSIV) panel, but we add a term

penalizing the deviation of the implied spot volatility from the model-free high-frequency estimate.

The choice of λn should reflect the precision of the nonparametric spot volatility estimator

relative to the option pricing error. As we demonstrate in the Monte Carlo study later, the infor-

mation content in the option panel tends to dominate the precision of the high-frequency volatility

estimator under realistic scenarios, so “modest” penalization is appropriate. Hence, the primary

role of V̂ n
t in the objective function is to facilitate the optimization by penalizing values that imply

“unreasonable” volatility levels. Moreover, in the presence of possible model misspecification, the

penalization forces the estimates of spot volatility to fall within a sensible range of its true value.

In our implementation, given our sample size, we choose a moderate fixed value of λn = 0.05.2 In

practice, of course, it is straightforward to check the sensitivity of the inference to the choice of

the penalization parameter. Specifically, in our setting, we found little qualitative difference to the

results for λn = 0.10, or even λn = 0.20.

To summarize, our estimation approach differs from previous related studies in numerous re-

spects. First, we exploit a wider option cross-section. Second, while we impose parametric re-

strictions on the risk-neutral asset returns, only very weak assumptions are made regarding the

statistical distribution and, in particular, no comparable parametric restrictions are invoked on the

latter.3 This ensures that the option data “speak freely,” unhampered by potential misspecification

of the asset return dynamics or associated risk premiums. We develop the econometric theory for

inference from such option panels, allowing us, in addition, to formally track the fit to the option

surface over time. Moreover, the risk-neutral model alone, e.g., the one-factor double-jump model,

implies strong linkages between the dynamics of the option panel and that of the underlying asset,

which pertain to the realized path of X. This is reflected in our estimation procedure through the

inclusion of the penalty term. Moreover, later on we develop a diagnostic test for this property of

the estimated system. This fundamental economic restriction has been unexplored in prior work,

due to the lack of the type of statistical tools developed below.

2.3 Empirical Findings

We illustrate our inference procedure using data on European style S&P 500 equity-index (SPX)

options traded at the CBOE. We rely on the closing bid and ask prices reported by OptionMetrics,

2Theorem 6 in the appendix provides the formal results regarding the asymptotic impact of the penalization on
inference. It is optimal to limit penalization to the point where it has no first-order asymptotic effect.

3For an alternative approach imposing minimal assumptions on the objective probability measure, while employing
a parametric specification for the stochastic discount factor, see Gagliardini et al. (2011). The inference procedures
differ very substantially in other important dimensions, as Gagliardini et al. (2011) invoke large time span asymptotics
and deal with a small and fixed cross-section of options for each day.
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applying standard filters and discarding all in-the-money options, options with a tenor of less than

7 days, and options with zero bid prices. We then compute the mid bid-ask BSIV.4 The data span

January 1, 1996 to July 21, 2010. Following earlier empirical work, e.g., Bates (2000) and Broadie

et al. (2007), we sample the options every Wednesday. The full sample includes 760 days, and we

have an average of 234 bid-ask quotes per day. Finally, the details regarding the high-frequency

data and the implementation of the nonparametric volatility estimator are given in Section 7.

The double-jump model has not been estimated in full generality previously in the literature.

Moreover, prior studies rely heavily on parametric restrictions on the statistical measure in esti-

mating the model. As such, our empirical results provide a new perspective on the performance

and implications of this popular model. Table 1 reports our parameter estimates. Focusing on

the broader features, the risk-neutral mean of volatility, implied by the point estimates, is 22.5%

(quoted in annualized volatility). Second, the correlation between the Gaussian shocks in volatility

and price is close to −1. Third, the implied mean price jump is huge, around −40%, and has a large

standard deviation, but the jumps occur with a frequency of only 1.8% per year. Similarly, the

mean of the volatility jump is extremely large, at an imposing 200%. Hence, the jump components

have a significant impact on the estimated level of (risk-neutral) volatility. Overall, the model fit

generates an average root-mean-squared-error (RMSE) for the option BSIV of 3.06%.5

Table 1: Parameter Estimates for the One-Factor Model

Parameter Estimate Standard Error Parameter Estimate Standard Error

ρd −0.9338 0.0082 λj 0.0176 0.0004

v 0.03310 0.0004 µx 0.4630 0.0142

κd 2.0493 0.0397 σx 0.3674 0.0161

σd 0.3541 0.0044 µv 2.0570 0.0426

ρj −0.5023 0.0151

Note: Parameter estimates of model (1) for S&P 500 equity-index options sampled
at the close of trading every Wednesday, January 1996-July 2010. Standard errors
are computed according to the asymptotic theory developed in Section 4.

4The two shortest maturities, beyond seven calendar days, are also used by the CBOE for the VIX computation.
The rationale is that very short maturity options, historically, are highly illiquid. However, the CBOE has recently
introduced weekly options and they are traded quite intensively after 2012. Shorter maturity options should enable
improved inference of the jump dynamics, so such data are likely to prove useful in future empirical studies.

5This equals the square-root of the first part of the objective function at the fitted parameters and spot volatilities.
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The estimates reflect the shape of the implied volatility surface across the sample. The negative

jumps accommodate the presence of a pronounced skew over short maturities (the gap in BSIV

between OTM put and at-the-money (ATM) options), and the strong negative correlation between

the diffusive return and volatility shocks help rationalize a negative skew for longer maturities.

The negative jump association between the return and volatility further accentuates the skewness.

Finally, the extracted spot volatility adapts to the variation in the level of the surface over time.

The results in Table 1 demonstrate that our option panel provides solid identification of this

(risk-neutral) double-jump model. All parameter attain economically sensible values and are es-

timated with reasonable precision. Moreover, the results deviate in important ways from prior

estimates obtained by exploiting both the statistical and risk-neutral probability measures. For

example, Broadie et al. (2007) fix a number of parameters at values obtained exclusively from time

series modeling of the underlying asset returns. Relative to that study, we obtain stronger (more

negative) return-volatility asymmetries (“leverage effects”), as they use ρd = −0.48 and fix ρj = 0.

Likewise, we have a much more persistent volatility process and substantially larger jump sizes for

the equity returns (negative) and volatility (positive).6

Figure 1 plots the spot volatilities estimated using our inference procedure against the non-

parametric ones obtained from high-frequency data. Qualitatively, they evolve similarly across

the sample, indicating the model-implied volatilities are reasonable on average. Nonetheless, the

high-frequency estimator appears noisy relative to the option-based one and, importantly, there are

systematic patterns in the deviations around turbulent episodes. In particular, the high-frequency

estimates display more pronounced spikes and generally lie below the option-based estimates for

prolonged periods following crises period, e.g., the end of 1997 and 1998, and much of 2009-2010.

Are the observed differences statistically significant? We cannot formally address this question

without an asymptotic theory for the joint behavior of the two volatility estimators. Similarly, the

RMSE for the model fit does not tell us whether the dynamics of the option surface is matched

by the model. In general, we want to assess whether the model pricing errors display systematic

patterns across days, moneyness, or tenor. Again, this necessitates a set of formal diagnostic tools

for the quality of fit to the option surface dynamics. The following sections develop such a general

framework for inference regarding dynamic risk-neutral densities from option panels.

6An important caveat is that Broadie et al. (2007) use a very different sample and use transaction prices for
options that are not synchronized, but collected across the entire trading day.

8



97 98 99 00 01 02 03 04 05 06 07 08 09 10
0

0.2

0.4

0.6

0.8

1

Spot Volatility

Figure 1: Model-Implied and High-Frequency Nonparametric Spot Volatility Estimates. The black
line represents the option-based estimate of spot volatility from the double-jump model (1). The
grey line corresponds to V̂ −,nt defined in (16) below with the truncation parameters given after that
equation, and with n = 400 (1-minute sampling) and kn = 400.

3 The Basic Modeling Framework

We now introduce the setup and state the assumptions needed for the general results of the paper.

These assumptions nest the double-jump model of the previous section.

3.1 Setup and Notation

We first establish some notation. The underlying process X is defined on a filtered probability space(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)

over the calendar time interval [0, T ], for T > 0 fixed. It is assumed to

be governed by the following general dynamics (under P(0)),

dXt

Xt−
= αtdt +

√
Vt dWt +

∫
x>−1

x µ̃(dt, dx) , (4)

where αt and Vt are càdlàg; Wt is a P(0)-Brownian motion; µ is a random measure counting the

jumps in X, with compensator ν̃ P(dt, dx) = atdt ⊗ νP(dx) for some process at and Lévy measure

νP(dx), and the associated martingale measure is µ̃ = µ−ν̃ P.7 We denote the expectations operator

under P(0) by E[·] and impose the following regularity conditions on X.

7The separability of the Lévy measure in a time-invariant jump measure on the jump size and a stochastic process
is a nontrivial restriction. It essentially amounts to restricting the time-variation of jumps of different sizes to be the
same. Nonetheless, it is satisfied for most parametric jump models in empirical applications, e.g., it holds for affine
jump-diffusion models. We invoke the identical assumption for the risk-neutral probability measure below.
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Assumption A0. The process X in equation (4) satisfies:

(i) There exists a sequence of stopping times Tr increasing to infinity, and for each integer r there

exists a bounded process V
(r)
t satisfying Vt = V

(r)
t for t < Tr, and there are positive constants Kr

such that E

{
|V (r)
t − V (r)

s |2
∣∣∣∣∣F (0)

s

}
≤ Kr|t− s| for every 0 ≤ s ≤ t ≤ T .

(ii)
∫
x>−1 (|x|β ∧ 1) νP(dx) <∞, for some β ∈ [0, 2).

(iii) inft∈[0,T ] Vt > 0 and the processes αt, Vt and at are locally bounded.

Assumption A0 is quite weak and satisfied for standard continuous-time asset pricing models. A0(i)

is valid if Vt is governed by a stochastic differential equation.8 The localization condition in A0(i)

means we do not require any integrability condition on the diffusion coefficient or jumps of V , while

A0(ii) merely restricts the Blumenthal-Getoor index of the jumps to be below β.9 Finally, A0(iii)

implies that the price process has a non-vanishing continuous martingale component throughout.

We reiterate that assumption A0 imposes no integrability or stationarity conditions on the model.

A risk-neutral probability measure, Q, is guaranteed to exist by no-arbitrage restrictions on the

price process, see, e.g., Section 6.K in Duffie (2001), and is locally equivalent to P. It transforms

discounted asset prices into (local) martingales. In particular, for X under Q, we have,

dXt

Xt−
= (rt − δt) dt +

√
Vt dWt +

∫
x>−1

x µ̃(dt, dx) , (5)

where, as before, rt is the risk-free interest rate and δt is the dividend yield. Moreover, with slight

abuse of notation, Wt now denotes a Q-Brownian motion and the jump martingale measure is

defined with respect to a risk-neutral compensator ν̃Q(dt, dx).

We further assume the diffusive volatility and jump processes are governed by a (latent) state

vector, so that Vt = ξ1(St) and ν̃Q(dt, dx) = ξ2(St)⊗νQ(dx), where νQ(dx) is a Lévy measure; ξ1 and

ξ2 are known functions in C2, and St denotes the p×1 state vector (in the double-jump model St ≡
Vt.). Moreover, rt and δt are smooth functions of St, which follows a jump-diffusive Markov process

under Q. This specification nests most continuous-time models used in empirical work, including the

affine jump-diffusion class of Duffie et al. (2000). The setting allows for volatility processes whose

dynamics closely approximate long-memory type dependence, but since St is finite dimensional and

follows a Markov process, we do rule out genuine long-memory volatility processes.10

8To show this, use the bounds for increments of an Itô semimartingale; see Section 2.1.5, Jacod and Protter (2012).
9On these points, see, e.g., Sections 4.4.1 and Section 3.2 of Jacod and Protter (2012), respectively.

10We only assume the diffusion coefficient and the jump intensity of X are governed by a finite-dimensional state
vector under the risk-neutral probability measure, but make no such assumption for the statistical measure, as this
clarifies what is needed to obtain our theoretical results. In addition, there is no economic reason why the state
vector governing the conditional dynamics under P(0) and Q(0) should coincide.
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We stress that we do not impose any restriction on the dependence between the latent state

vector St and either Wt or the jump measure µ. That is, the so-called leverage effect, working

through either the diffusive or the jump component of Xt, or both, is allowed for.

Finally, we assume that the state vector St determines uniquely the time t risk-neutral condi-

tional distribution of the triple (log(Xt+τ/Xt),
∫ t+τ
t rsds,

∫ t+τ
t δsds). In this case, exactly as in the

special case of the double-jump model,
ert,t+τOt,k,τ

Ft,t+τ
is a function only of the tenor, state vector, and

moneyness (as well as t, if stationarity under Q does not hold). The same applies for the BSIV.11

3.2 The Parametric Option Pricing Framework

Extending the approach from Section 2, we henceforth assume a general parametric model for the

risk-neutral distribution, characterized by the q× 1 parameter vector θ, with θ0 signifying the true

value, while we do not restrict the objective distribution for the underlying asset beyond what is

implied by the equivalence of the two probability measures. For expositional convenience we assume

that the functions ξ1(·) and ξ2(·) do not depend on the parameter vector.12 The option panel has

a fixed time span, [0, T ], and we observe the option surface at given integer times t = 1, . . . , T . We

have a large cross-section of k values, spanning a significant strike range, available each date for

several different tenors, τ . This is a natural assumption for active and liquid option markets.

In this section, we focus on the ideal scenario without measurement errors in the option prices.

The critical extension to the case involving such errors is provided in Section 4. The theoretical

value of the BSIV under the risk-neutral model for a value of the state vector Zt and parameter θ

is denoted κ(k, τ,Zt, θ) with its value at the true state vector and parameter, κ(k, τ,St, θ0), being

finite valued.13 For each date t, we have a cross-section of option prices {Ot,kj ,τj}j=1,...,Nt for some

integer Nt, where the index j runs across the full set of strikes and tenors available on day t. The

number of options for the maturity τ is denoted N τ
t . The asymptotic theory developed below

reflects the distribution of the available options in the sample across the days. Henceforth, we rely

on the following notation,

Nt =
∑
τ

N τ
t , N =

∑
t

Nt, N = min
t=1,...,T

Nt. (6)

For each pair, (t, τ), k(t, τ) and k(t, τ) denote the minimum and maximum log-moneyness, respec-

11Since Xt can be part of the state vector St, this does not necessarily imply homogeneity of degree one of the
option price. Renault (1997) discusses homogeneity of the option price with respect to (Xt,K) in a general context.

12This assumption is also almost universally satisfied for the models used in practical applications.
13If stationarity does not hold under Q, then κ should also have a subscript t. For notational simplicity, we impose

stationarity, but the analysis readily accommodates non-stationarity.
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tively. The moneyness grid for the options at time t and tenor τ is denoted,

k(t, τ) = kt,τ (1) < kt,τ (2)... < kt,τ (N τ
t ) = k(t, τ).

The asymptotic scheme sequentially adds new strikes to the existing ones within [k(t, τ), k(t, τ)].

The following condition formally captures the notion of a large, yet heterogeneous, option panel.

Assumption A1. For each t = 1, ..., T and each moneyness τ , the number of options N τ
t ↑ ∞

with N τ
t /Nt → πτt and Nt/N → ςt, for some positive numbers πτt and ςt. Moreover, the grids of

strike prices have an absolute continuous limit distribution, i.e., we have N τ
t ∆t,τ (i) → ψt,τ (k)

uniformly on the interval (k(t, τ), k(t, τ)), where ∆t,τ (i) = kt,τ (i)− kt,τ (i− 1) and ψt,τ (·) takes on

finite and strictly positive values.

Assumption A1 allows for a great deal of intertemporal heterogeneity in the observation scheme.

For example, the tenors need not be identical across days and the assumption of a fixed number

of maturities at each point in time is imposed only to simplify the exposition. Importantly, we

allow for a different number of options in the panel across days, maturities and moneyness. Also,

intuitively, the relative number of options on a given date will impact the precision of the inference

for the state vector compared with other dates. Likewise, the relative number of options across

the different maturities and the local “sparseness” of the strikes should influence the quality of

inference for parameters and state variables differentially depending on their sensitivity to tenor

and moneyness. The quantities ςt, π
τ
t and ψt,τ (k) capture these facets of the panel configuration

and they appear explicitly in the asymptotic distribution theory established later.

Of course, although a risk-neutral measure is guaranteed to exist, it is not unique because, in

general, financial markets are incomplete. Our next assumption ensures unique identification of the

parameterized Q measure (and the state vector) given the observation scheme in assumption A1.

Assumption A2. For every ε > 0 and θ ∈ Θ, for some compact set Θ, we have,

inf
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

Nt∑
j=1

(κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ))
2

Nt
> 0,

for N sufficiently large, almost surely.

We emphasize that this identification condition varies across distinct realizations of the state

vector. Assumption A1 and A2 imply that, given correct model specification, we can recover the

parameter vector as well as the state vector realization without error at any point in time.14 While

14In a setting with an increasing time span T , the time series of the recovered state vector, St , may be further used
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the state variables change from period to period, the parameter vector should remain invariant.

Similarly, the fit to the option prices provided by the model should be perfect. These restrictions

may serve as the basis for specification tests. Moreover, the parametric model has implications for

the pathwise behavior of X across all equivalent probability measures. Most notably, the diffusion

coefficient of X, Vt, should be identical for Q and P. This property is also testable: the diffusion

coefficient may be recovered nonparametrically from a continuous record of X and contrasted with

the model-implied ξ1(St). We develop formal tests for such pathwise restrictions of the risk-neutral

model in Section 5, covering the relevant case of noisy option and asset price observations.

There are marked differences in the information content of the option panel (with fixed time

grid) versus the price path of the underlying asset. This is again most readily seen in the ideal, and

infeasible, setting of frictionless trading and error-free pricing. A continuous record for X allows

us to obtain the diffusive volatility, without error, from a local neighborhood of the current time,

and to identify the timing and size of any price jump. In contrast, error-free option data enable

us to directly observe the state vector, St. If the state vector consists of a single volatility factor,

Vt, as is often assumed, the two approaches provide equivalent, and perfect, inference about the

state of the system. If the model allows for price jumps, the option panel lets us infer the, possibly

time-varying, risk-neutral jump intensities and jump distributions, but does not reveal the actual

jump realizations. In contrast, the price path for X identifies the jumps, but does not pin down

the jump distribution. Finally, if we move to a multi-factor volatility setting, as implied by much

recent research, the options data are even more pivotal for inference. For example, if there are two

volatility factors, i.e., Vt = V1,t + V2,t, the high-frequency data for X directly informs us about the

aggregate value, Vt, only, while the option data let us identify V1,t and V2,t separately. While these

conclusions only apply for an ideal setting, it clarifies what type of information one may aspire to

obtain from either source, even if it will involve estimation and inferential errors in practice.

Finally, when T = 1, assumption A2 implies that the parametric model can be identified from

the cross-section of options at the close of a single trading day. As a practical matter, this is

challenging if the model is richly parameterized. For example, some days may have no longer dated

options available, or even only a single maturity may be traded, in which case identification may

require pooling data across trading days. Moreover, including more days in the sample enhances

the precision in recovering the parameters of the model. We note that estimation of all model

parameters from a single option cross-section is typically done through calibrations based on rel-

to estimate, parametrically or nonparametrically, the associated P law. Hence, an option panel with increasing time
span (and wide cross-section) suffices for estimating both the Q and P measures, and thus also the risk premiums
associated with the state vector dynamics. In principle, there is no need for return data on the underlying asset.
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atively parsimonious specifications. However, this involves daily re-estimation so the procedure is

dynamically inconsistent: the model parameters differ for each option cross-section.

4 Inference for Option Panels with a Fixed Time Span

We now turn to the empirically relevant case of noisy observations. Figure 2 depicts a nonparametric

kernel regression estimate of the relative bid-ask spread in the quotes for S&P 500 index options,

in units of BSIV, as a function of moneyness, and normalized by volatility. The spread is non-

trivial and increases sharply for deep OTM calls. These facts motivate our use of an extensive

cross-section of option prices to mitigate and diversify the impact of measurement error.15 Overall,

Figure 2 underscores the importance of allowing for the observation error when analyzing large

option panels covering the spans of moneyness depicted in the figure.
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Figure 2: Kernel regression estimate of the bid-ask spread of option implied volatility as a function
of moneyness. The estimates are based on the best bid and ask quotes for the S&P 500 options on
the CBOE at the end-of-trading for each Wednesday during January 1, 1996 – July 21, 2010. We
use all available options with maturities up to a year. F and σ denote, respectively, the futures
price and the ATM BSIV at the end of the trading day.

In the remainder of this section, we develop inference procedures for the parameter vector, θ,

governing the risk-neutral distribution and the realized trajectory of the state vector {St}t=1,...,T

based on an option panel, observed with error. We first introduce our assumptions regarding option

15A similar logic underlies the CBOE computation of the volatility VIX index. It includes all relevant short
maturity S&P 500 index options within the prescribed strike range, with the implicit premise that the observation
errors largely “wash out” in the integration.

14



errors, then define our estimator and, in turn, establish consistency and asymptotic normality.

4.1 The Option Error Process

We stipulate that option prices, quoted in terms of BSIV, are observed with error, i.e., we observe

κ̃t,k,τ = κt,k,τ + εt,k,τ ,

where the observation (measurement) errors, εt,k,τ , are defined on a space Ω(1) = 

t∈N,k∈R,τ∈Γ

At,k,τ ,

for At,k,τ = R, with Γ denoting the set of all possible tenors. Ω(1) is equipped with the product

Borel σ-field F (1), with transition probability P(1)(ω(0), dω(1)) from the original probability space

Ω(0) – on which X is defined – to Ω(1). We define the filtration on Ω(1) via F (1)
t = σ (εs,k,τ : s ≤ t).

Then the filtered probability space (Ω,F , (Ft)t≥0,P) is given as follows,

Ω = Ω(0)×Ω(1), F = F (0)×F (1), Ft = ∩s>tF (0)
s ×F (1)

s , P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).

Processes defined on Ω(0) or Ω(1) may trivially be viewed as processes on Ω as well, e.g., Wt continues

to be a Brownian motion on Ω. We henceforth adopt this perspective without further mention.

Intuitively, this representation may be motivated as follows. The option errors are defined on

the space Ω(1). We equip this space with the simple product topology as, at any point in time, only

a countable number of them appear in our estimation. Since the option errors can be associated

with any strike, point in time and maturity, we need a “large” space to support them. Finally,

since we want to allow the errors and the underlying process X to be dependent, we define the

probability measure via a transition probability distribution from Ω(0) to Ω(1).16

Given the presence of observation error, we cannot identify the parameters and state vector

simply by inverting the option pricing formula. We must explicitly accommodate the impact of

noise on the inference. In particular, if a limited set of options is included, then inference is only

feasible under strict parametric assumptions regarding the error distribution. This is problematic,

as we have little evidence pertaining to the nature of these price errors. In contrast, a large

cross-section allows us to “average out” the errors and remain fully nonparametric regarding their

distribution. However, this error “diversification” only works if we can ensure that the effect of the

option price errors vanishes in a suitable manner. The following condition suffices for establishing

consistency of our estimator (recall the notation N = mint=1,...,T Nt).

Assumption A3. For every ε > 0 , t = 1, ..., T , and any finite positive-valued F (0)
T -adapted

16For the formal analysis of Ω(1), see chapter I of Dellacherie and Meyer (1978).
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process ζt(k, τ) on R× Γ continuous in its first argument, we have, for N → ∞ and θ ∈ Θ,

sup
{||Zt−St||>ε} ∪ {||θ−θ0||>ε}

∑Nt
j=1 ζt(kj , τj) [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt

j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

P−→ 0 .

If the state vector St has bounded support, assumption A3 follows from a uniform Law of Large

Numbers on compact sets for which primitive conditions are well known, see, e.g., Newey (1991).

Of course, for typical asset pricing models the (stochastic) volatility process, and thus St , has

unbounded support. Assumption A3 may then be shown to follow from uniform convergence on a

space of functions vanishing at infinity; see, e.g., Theorem 21 in Ibragimov and Has’minskii (1981).

Assumption A3′ provides sufficient conditions for Assumption A3 to hold.

Assumption A3′. For every t = 1, ..., T , we assume: (i) κ(k, τ,Z, θ) is continuously differentiable

in its last two arguments; (ii) κ−1(k, τ,Z, θ) = O(%(||Z||)) as ||Z|| → ∞ uniformly in θ ∈ Θ and

k for some region in (k(t, τ), k(t, τ)) with positive Lebesgue measure, where % : R+ → R+ with

%(x) = o(1) as x → ∞; (iii) εt,k,τ and εt,k′,τ ′ are independent conditional on F (0) , whenever

(k, τ) 6= (k′, τ ′), E
(
εt,k,τ |F (0)

)
= 0 , E

(
|εt,k,τ |max{p,q}+ι|F (0)

)
= ζt,k,τ , for ζt,k,τ being a continuous

function in its second argument and ι > 0 arbitrary small.

Assumption A3′ provides conditions directly on the observation error and option price. In partic-

ular, condition (ii) requires the option price to diverge in step with the state vector. This is pretty

intuitive. Indeed, the BSIV for short maturity ATM options approximately equals spot volatility

and hence increases indefinitely as volatility does so. The smoothness of the option prices in (i) as

well as the independence and unbiasedness of the observation errors in (iii) are necessary for the

asymptotic limit theory to hold, and these conditions are discussed further below. This leaves the

weak moment restriction in (iii) as the only separate assumption on the error process.

We require additional regularity for our limiting distributional results.

Assumption A4. For the error process, εt,k,τ , we have,

(i) E
(
εt,k,τ |F (0)

)
= 0 ,

(ii) E
(
ε2t,k,τ |F (0)

)
= φt,k,τ , for φt,k,τ being a continuous function in its second argument,

(iii) εt,k,τ and εt′,k′,τ ′ are independent conditional on F (0) , whenever (t, k, τ) 6= (t′, k′, τ ′),

(iv) E
(
|εt,k,τ |4 |F (0)

)
<∞, almost surely.

Assumption A4 implies that the observation errors, conditional on the σ-field F (0), are independent.

Nonetheless, the error process may display a stochastically evolving volatility which can depend

on option moneyness and tenor as well as any other process defined on the original probability
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space such as the entire history of Xt and St. Relative to the earlier literature, we avoid parametric

modeling of the error and allow for significant flexibility for its conditional distribution, including the

variance and higher order moments. Assumption A4 does, however, rule out correlated observation

errors, although this requirement may also be weakened.

Assumption A4 is analogous to the conditions imposed on the microstructure noise process for

high-frequency asset prices in Jacod et al. (2009) and subsequent papers. We stress that part (i) is

critical for our results, although it may be weakened to allow for a bias that vanishes asymptotically.

Part (iii) excludes correlation in the observation error across strikes, but we can accommodate weak

(spatial) dependence, at the cost of more complex notation (and proof). On the contrary, if the

errors contain a common component across all strikes, we obviously cannot “average them out” by

spatial integration in the moneyness dimension. For example, Bates (2000) assumes that option

prices on a given day, for moneyness within certain ranges, may contain a common error component.

He interprets this as a model specification error. In our setting, such features must be included in

the theoretical value κ(k, τ,St, θ0) rather than being treated as observation errors.

Finally, if it is more appropriate to assume unbiased errors for the option price rather than the

BSIV – which constitutes a nonlinear transformation of the price – one should instead minimize

the distance between observed and model-implied option prices. In our empirical application, we

find the BSIV to be approximately linear in the option price across the relevant strike range, so the

distinction between unbiasedness of price or BSIV is not a practical concern; see, e.g., Christoffersen

and Jacobs (2004) for a discussion of the impact of the observation error specification.

4.2 Consistency

Extending the objective function in (3) to accommodate multiple state variables, our estimates for

the latent state realizations and the risk-neutral parameters are obtained as follows,(
{Ŝt}t=1,...,T , θ̂

)
= argmin
{Zt}t=1,...,T , θ∈Θ

T∑
t=1


Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt, θ)

)2
Nt

+ λn

(√
V̂ nt −

√
ξ1(Zt)

)2
 ,

(7)

for a deterministic sequence of nonnegative numbers {λn}. The presence of the penalization term

in (7) is reminiscent of the inclusion of information regarding the P dynamics in option-based

estimation, e.g., Bates (2000) and Pan (2002). There is, however, a fundamental difference. We do

not model the P dynamics and, thus, the penalization in (7) concerns the pathwise behavior of the

option surface, not its P law. This no-arbitrage constraint is therefore a more robust (parameter-

free) and stronger (pathwise) restriction on the option dynamics.

The consistency of
(
{Ŝt}t=1,...,T , θ̂

)
follows from the next theorem.
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Theorem 1 Suppose assumptions A1-A3 hold for some T ∈ N fixed and that {V̂ n
t }t=1,...,T is con-

sistent for {Vt}t=1,...,T , as n→∞. Then, if N →∞ and λn → λ for some finite λ ≥ 0 as n→∞,

we have that
(
{Ŝt}t=1,...,T , θ̂

)
exists with probability approaching 1 and further that,

||Ŝt − St||
P−→ 0, ||θ̂ − θ0||

P−→ 0, t = 1, ..., T. (8)

The above result holds true also if

√
V̂ n
t −

√
Vt = Op(ηn) for t = 1, ..., T and some deterministic

nonnegative sequence ηn, provided λnη
2
n → 0 as n→∞.

Hence, in the presence of observation errors satisfying assumption A3, we can still recover the

state vector and the risk-neutral parameters consistently from the option panel. The key difference

between the parameters and the state vector is that the latter changes from day to day, while

the former must remain invariant across the sample. The longer the time span covered by the

sample, the more restrictive is this invariance condition for the risk-neutral measure. Another

major distinction stems from the penalization term constructed from high-frequency data, as this

term involves only the state vector and not directly the risk-neutral parameters.

Finally, we note that the role of the penalization varies across alternative scenarios for the

penalization weight sequence {λn}. First, if λn → λ > 0, we need the high-frequency estimator V̂ n
t

to be consistent for Vt. Second, if λn → 0, we have considerable flexibility regarding the asymptotic

behavior of V̂ n
t . In particular, we can accommodate the situation where V̂ n

t is only asymptotically

bounded in probability and not necessarily consistent. This is very convenient from an empirical

perspective as we can apply the estimation procedure, even in settings where V̂ n
t may be mildly

biased due to microstructure noise, without having to perform noise-robust corrections.17

4.3 The Limiting Distribution of the Estimator

In analogy to the high-frequency based realized volatility estimators, which also rely on in-fill

asymptotics, our limiting distribution results involve stable convergence. We use the symbol
L−s−→

to indicate this form of convergence. It is an extension of the standard notion of convergence in

law to the case where the limiting sequence converges jointly with any bounded variable defined on

the original probability space. It is particularly useful when the limiting distribution depends on

FT , as in our setting. For further analysis of this concept, see, e.g., Section VIII.5.c. in Jacod and

Shiryaev (2003). The stable convergence result in the following theorem is critical for enabling our

feasible inference as well as the development of our diagnostic tests in Section 5.

17We are grateful to a referee for pointing this out. Nonetheless, for our empirical application, we exploit sufficiently
sparse high-frequency return observations that the bias stemming from microstructure noise is minimal.
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Theorem 2 Assume A1-A4 hold and κ(k, τ,Z, θ) is twice continuously-differentiable in its argu-

ments. Then, if

√
V̂ n
t −

√
V n
t = Op(ηn) for t = 1, ..., T and a deterministic nonnegative sequence

ηn, N →∞ and n→∞, with λn → 0 and further λ2
nη

2
n (N ∨ η2

n)→ 0, we have,



√
N1 (Ŝ1 − S1)

...
√
NT (ŜT − ST )√
N/T (θ̂ − θ0)


L−s−→ H−1

T (ΩT )1/2


E1

...

ET

E′

 , (9)

where E1,...,ET are p× 1 vectors and E′ is q× 1 vector, all defined on an extension of the original

probability space, independent of F , and being i.i.d. with standard normal distribution, and for

Φ = H or Φ = Ω, we define

Φ =


Φ1,1
T . . . 0p×p Φ1,T+1

T
...

. . .
...

...

0p×p . . . ΦT,T
T ΦT,T+1

T

ΦT+1,1
T . . . ΦT+1,T

T ΦT+1,T+1
T

 , (10)

with the blocks of H and Ω for t = 1, ..., T given by
Ht,t
T =

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

HT+1,T+1
T =

∑T
t=1

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ht,T+1
T =

(
HT+1,t
T

)′
=
∑

τ π
τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ωt,t
T =

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

ΩT+1,T+1
T =

∑T
t=1

1
Tςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ωt,T+1
T =

(
ΩT+1,t
T

)′
= 1√

Tςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk.

Several comments are in order. First, the limit is mixed-Gaussian, with a mixing matrix, H−1
T (ΩT )1/2,

adapted to FT .18 The random asymptotic variance of the estimator signifies that the precision in

recovering the state vector varies from period to period, and that the quality of inference in general

18More formally, the matrices should be denoted HT (ω(0)) and ΩT (ω(0)) to highlight the fact that they depend on
the particular realization on the original probability space.
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depends on the values of the state vector and asset prices as well as the number and characteristics

of the options, i.e., tenor and moneyness. This provides important flexibility as the features of

the option data change from day to day. It also allows us to formally compare estimates across

different time periods and we make frequent use of this fact in the next section. We stress that

Theorem 2 does not require any form of stationarity or ergodicity of the state vector, respectively

volatility, under the statistical distribution. As noted previously, many aspects of the limiting

distributional theory established above resemble the corresponding theory for volatility estimators

based on high-frequency data, see, e.g., Barndorff-Nielsen et al. (2006).19

To implement feasible inference, we must obtain the requisite consistent estimate of the (con-

ditional) asymptotic variance of
(
{Ŝt}t=1,...,T , θ̂

)
, which in turn, can be done using a consistent

estimator of the observation error, εt,k,τ . The formal result is stated in the following theorem.

Theorem 3 Under the conditions of Theorem 2, consistent estimates for HT and ΩT are given

by ĤT and Ω̂T , where for the same partition of the matrixes as in (10), we set
Ĥt,t
T = 1

Nt

∑Nt
j=1 ∇Sκ(kj , τj , Ŝt, θ̂)∇Sκ(kj , τj , Ŝt, θ̂)

′,

ĤT+1,T+1
T =

∑T
t=1

1
Nt

∑Nt
j=1 ∇θκ(kj , τj , Ŝt, θ̂)∇θκ(kj , τj , Ŝt, θ̂)

′,

Ĥt,T+1
T =

(
ĤT+1,t
T

)′
= 1

Nt

∑Nt
j=1 ∇Sκ(kj , τj , Ŝt, θ̂)∇θκ(kj , τj , Ŝt, θ̂)

′,

(11)


Ω̂t,t
T = 1

Nt

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝt, θ̂)

)2

∇Sκ(kj , τj , Ŝt, θ̂)∇Sκ(kj , τj , Ŝt, θ̂)
′,

Ω̂T+1,T+1
T = (

∑T
t=1Nt
T )

∑T
t=1

1
N2
t

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝt, θ̂)

)2

∇θκ(kj , τj , Ŝt, θ̂)∇θκ(kj , τj , Ŝt, θ̂)
′,

Ω̂t,T+1
T =

(
Ω̂T+1,t
T

)′
=

√∑T
t=1Nt
TN3

t

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝt, θ̂)

)2

∇Sκ(kj , τj , Ŝt, θ̂)∇θκ(kj , τj , Ŝt, θ̂)
′.

(12)

We may combine Theorem 3 with equation (9) to construct pivotal tests such as t-tests for the

parameters. This follows from the stable convergence in (9), ensuring that the result holds jointly

with the convergence in probability of ĤT and Ω̂T to their (random) asymptotic limits.

We also note that Theorem 2 allows for conditional heteroskedasticity in the option price error.

When the latter is present, the estimator in (7) is inefficient in the sense that the observations are

not weighted optimally. The next theorem accommodates the use of weighted least squares (WLS).

19Our setup may be contrasted to the cross-sectional regressions with common shocks analyzed by Andrews (2005);
see also Kuersteiner and Prucha (2013) for extensions. Andrews (2005) analyzes cross-sectional least squares estima-
tors where both the errors and regressors, conditional on an F0-adapted random vector, are i.i.d. In our setting, the
role of the regressors is taken on by the state vector, St, but it is not directly observable and, critically, it exhibits
strong temporal dependence. Most importantly, the stable convergence results of Theorem 2 are valid for a much
wider σ-field than (a subfield of) F0 – as in Andrews (2005) – enabling feasible inference from option prices that are
highly correlated with the evolving return and volatility innovations. Further, in Theorem 5 below, we show that
the stable convergence of Theorem 2 holds jointly with that of a high-frequency estimator for spot volatility, another
result for which our general stable convergence result is indispensable.
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Theorem 4 In the setting of Theorem 2, assume there exist,

φ̂t,k,τ
P−→ φt,k,τ > 0, uniformly on [k(t, τ), k(t, τ)], (13)

for τ ∈ Γ and t = 1, ..., T , as N →∞ and n→∞ (φt,k,τ is given in A4). Define

(
{St}t=1,...,T , θ

)
= argmin
{Zt}t=1,...,T , θ∈Θ

T∑
t=1


Nt∑
j=1

(κ̃t,k,τ − κ(kj , τj ,Zt, θ))
2

N φ̂t,k,τ
+ λn

(√
V̂ nt −

√
ξ1(Zt)

)2
 .

(14)

Then
(
{St}t=1,...,T , θ

)
is consistent and further,

√
N


S1 − S1

...

ST − ST

θ − θ0


L−s−→ Λ

−1/2
T


E1

...

ET

E′

 , (15)

where E1,...,ET are p× 1 vectors and E′ is q× 1 vector, all defined on an extension of the original

probability space and jointly constituting an i.i.d. standard normal vector, independent of F , and

for the same partitioning of ΛT as in equation (10), the ΛT matrix is defined by,

Λt,t
T = ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

ΛT+1,T+1
T =

∑T
t=1 ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Λt,T+1
T =

(
ΛT+1,t
T

)′
= ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk.

A consistent estimate for ΛT is given by Λ̂T where, for the identical partition of the matrices as

used in equation (10), we set,

Λ̂t,t
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇Sκ(kj , τj ,St, θ)∇Sκ(kj , τj ,St, θ)

′,

Λ̂T+1,T+1
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇θκ(kj , τj ,St, θ)∇θκ(kj , τj ,St, θ)

′,

Λ̂t,T+1
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇Sκ(kj , τj ,St, θ)∇θκ(kj , τj ,St, θ)

′.

The weighting of the observations in (14) renders the (conditional) expected Hessian of the objective

function equal to the limiting (conditional) covariance matrix of the gradient or score of the objective

function, evaluated at ({St}t=1,...,T , θ0). This implies that the asymptotic conditional covariance

matrix of
(
{St}t=1,...,T , θ

)
is Λ−1

T . As in the classical theory for M-estimators, the proof exploits

Slutsky’s theorem which implies (Xn, Yn)
L−→ (X,Y ) for two sequences Xn

L−→ X and Yn
P−→ Y ,
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but, importantly, only when Y is non-random. This result may be extended to the case where the

limit Y is random only under the stable form of convergence, see, e.g., equation (2.2.5) in Jacod

and Protter (2012). For our WLS estimator, the limits of the weights and the elements of the

Hessian matrix are random, unlike the classical WLS estimator for which they are non-random.

Theorem 4 references a generic consistent estimator of the conditional asymptotic variance of

the (option) observation error, φt,k,τ . A consistent estimate for the conditional variance of εt,k,τ , as

a function of k (parametric or nonparametric), for each pair (t, τ), may be constructed in a manner

similar to standard WLS estimators, see, e.g., Robinson (1987) and Newey and McFadden (1994).

As a simple example, though still of practical import, we may assume that the F (0)-conditional

asymptotic variance of the observation errors is random and depends on time and tenor, i.e.,

φt,k,τ = αt,τ , where αt,τ are some F (0)
t -adapted random variables that differ across tenors. In this

case, φ̂t,k,τ is simply 1
Nτ
t

∑Nτ
t

j=1 ε̂
2
tj ,kj ,τ

, where ε̂t,k,τ are the errors based on the estimates in (7).

The assumption, λ2
nη

2
n (N ∨ η2

n) → 0, in Theorems 2 and 4 ensures that the penalty terms in

(7) and (14) have no first-order asymptotic effect in the estimation.20 It is obviously stronger than

the corresponding one in Theorem 1 needed for the consistency of the estimator. Like Theorem

1, Theorems 2 and 4 allow for the use of an estimator, V̂ n
t , which is only asymptotically bounded

in probability (and not necessarily consistent). Of course, λ2
nη

2
n (N ∨ η2

n) → 0 is an asymptotic

rate condition. In practice, as mentioned in Section 2, λn should be set taking into account the

volatility of the (option) observation error and that of the high-frequency volatility estimator.21 For

the value of N in our option panel and the specific high-frequency estimator used in our empirical

application, we find λn = 0.05 to have a minimal impact. Finally, we can further relax the condition

λ2
nη

2
n (N ∨ η2

n)→ 0 by allowing for the penalization to have an asymptotic effect in the estimation.

We provide this type of extension in Theorem 6 of the appendix.

We finish this section by introducing two specific high-frequency volatility estimators and deriv-

ing their joint asymptotic behavior with their option-based counterpart. These results are needed

subsequently for our diagnostic tests as well as for Theorem 6 in the appendix that allows for

first-order asymptotic effect from the penalization. The high-frequency estimators are,

V̂ ±,nt =
n

kn

∑
i∈I±,n

(∆t,n
i X)2 1

(
|∆t,n

i X| ≤ αn−$
)
, ∆t,n

i X = log
(
Xt+ i

n

)
− log

(
Xt+ i−1

n

)
, (16)

20The assumption λn → 0 in Theorems 2 and 4 is not necessary. We can allow λn → λ > 0. In this case HT is
replaced by HT +DT , where the random matrix DT is given in Theorem 6. However, λn → λ > 0 and λ2

nη
2
nN → 0

corresponds to a scenario in which the underlying high-frequency data are more informative for spot volatility than
the option data, i.e., ηn = o(1/

√
N). In our application, however, we tend to find the opposite, i.e., the options

appear more informative. Hence, we defer the general result, clarifying the asymptotic role of the penalization, to
the Appendix.

21This can be clearly seen from Theorem 6 which allows for the penalization to have an asymptotic effect.
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where α > 0, $ ∈ (0, 1/2), kn denotes a deterministic sequence and,

I−,n = {−kn + 1, ..., 0} and I+,n = {1, ..., kn} .

V −,nt and V +,n
t are estimators for the spot variance from the left and right, respectively, and may be

viewed as “localized” versions of the truncated variation estimator proposed originally by Mancini

(2001). In the construction of V̂ ±,nt , kn plays the role of the bandwidth in nonparametric kernel

regressions. Larger kn implies less noisy but more biased nonparametric estimators V̂ ±,nt . In fact,

setting kn = n turns V̂ ±,nt into daily truncated variance measures which consistently estimate (with

an associated CLT) the integrated volatilities
∫ t
t−1 Vsds and

∫ t+1
t Vsds, respectively. Since V̂ ±,nt is

asymptotically negligible in the estimation, the user may favor this type of large bandwidth which

leads to more reliable high-frequency estimators in practice.22

We let J = {s : ∆Vs > 0} denote the set of jump times for the variance process. Then, under

weaker regularity conditions than in Assumption A0 and provided kn/n → 0, V +,n
t and V −,nt are

both consistent for Vt, if t /∈ J. We only estimate spot volatility for a finite number of points in

time. Since the jump compensator, controlling the discontinuities in Vt, is absolutely continuous in

t, the probability of having jumps at any discrete time point is zero, so, almost surely, t /∈ J.

Turning to the practical selection of tuning parameters governing the truncation, it is optimal

to set $ as close as possible to 1/2 (see Theorem 5 below) and we fix $ = 0.49 for our empirical

applications. While any value of the truncation parameter α in (16) can work, a constant value

typically performs poorly in finite samples. Thus, we follow Bollerslev and Todorov (2011) and set

α = 4
√
BVt−1

∧
RVt−1, where BVt−1 is the Bipower Variation estimator of Barndorff-Nielsen and

Shephard (2006), which is a nonparametric jump-robust estimator of integrated volatility (and,

importantly, free of tuning parameters), and RVt−1 is the realized volatility measuring the total

quadratic variation over [t− 1, t]. These estimators are defined as,

BVt−1 =
π

2

n∑
i=2

|∆t−1,n
i−1 X||∆t−1,n

i X|, RVt−1 =
n∑
i=1

|∆t−1,n
i X|2. (17)

We are now in position to characterize the joint asymptotic distribution of these high-frequency

volatility estimators with the ones for the state vectors obtained via our option-based procedure.

Theorem 5 We define the coefficient, γ = (2−β)$
∧ [

( 1
β ∧ 1)− 1/2 + ( [(1− β)$] ∨ 0 )

] ∧
1/4,

with β given as in A0(iii). Then, under Assumption A0, provided kn →∞ with
√
kn / n

γ → 0,

22This argument does not apply for the diagnostic test, that requires a consistent and asymptotic normal high-
frequency estimate of spot volatility, or for Theorem 6, where V̂ ±,nt has first order asymptotic effects on the estimation.
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we have for T ∈ N,

√
kn


V̂ +,n

1 − V1

...

V̂ +,n
T − VT

 L−s−→


√

2V1 . . . 0
...

. . .
...

0 . . .
√

2VT




Ẽ1

...

ẼT

 , (18)

where
(
Ẽ1, ..., ẼT

)′
is a T×1 standard normal vector independent of F and defined on an extension

of the original probability space.

If the conditions of Theorem 2 hold, the vector
(
Ẽ1, ..., ẼT

)′
is independent from the vector

(E1, ...,ET ,E
′)′ determining the limit distribution of

(
Ŝ1, ..., ŜT

)′
and of

(
S1, ...,ST

)′
.

Moreover, If (1, ..., T ) ∩ J = ∅, the results remain valid for V̂ −,nt replacing V̂ +,n
t , t = 1, ..., T .

It is optimal to choose kn close to n1/2, provided the jumps are not too active, i.e., their activity

index satisfies β < 4/3 which is a fairly mild restriction.23 Of most importance for our analysis,

the theorem reveals that the convergence of V̂ ±,nt holds jointly with that of Ŝt (and of St) and they

are asymptotically independent conditional on F .

5 Pathwise Model Diagnostics

The null hypothesis that our model for the risk-neutral dynamics is valid has numerous implications.

The previous section develops the limit theory necessary to devise formal specification tests. We

propose a battery of diagnostics, falling into three categories: the first concerns the fit to the option

surface, the second checks for stability of the risk-neutral parameters, and the third assesses the

equality between the option-implied volatility and a nonparametric volatility estimate based on

high-frequency data. The tests are all pathwise as they involve restrictions on the observed path of

the option surface and the underlying asset price. Importantly, they do not restrict the statistical

law for X, beyond what is implied by the risk-neutral law. As such, they do not rely on a joint

hypothesis that the model is correctly specified under both the P and Q measures.

5.1 Option Price Fit

We first develop a test based on the fit afforded by the parametric model. The previous section

supplies us with tools to separate observation errors from model misspecification errors in fitting

the option prices. The corollary below provides a t-test that captures the quality of the model fit

to the option surface at a specific point in time for a given tenor.

23The relative speed condition between kn and n in Theorem 5 can be weakened slightly, if β ≥ 1, at the cost of
more lengthy derivations.
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Corollary 1 Let K ⊂
(
k(t, τ∗) k(t, τ∗)

)
be a set with positive Lebesgue measure and denote by NKt

the number of options on day t with tenor τ∗ and log-moneyness belonging to the set K. Then,

under the assumptions of Theorem 2, we have,

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)

√
Π̂′T Ξ̂T Π̂T

L−s−→ N (0, 1), Ξ̂T =

Ĥ−1
T Ω̂T (Ĥ−1

T )′ Ĥ−1
T Υ̂1,T

Υ̂′1,T (Ĥ−1
T )′ Υ̂2,T

 , (19)

Υ̂1,T =



0(t−1)p×1

1√
NtNKt

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)2

∇Sκ(kj , τ
∗, Ŝt, θ̂)

0(T−t+1)p×1

1√
NKt Nt

√∑T
t=1Nt
T

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)2

∇θκ(kj , τ
∗, Ŝt, θ̂)


,

Υ̂2,T =
1

NKt

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)2

,

Π̂T =

01×(t−1)p
−1√
Nt

∑
j:kj∈K

∇Sκ(kj , τ
∗, Ŝt, θ̂)

′ 01×(T−t+1)p −
√

T∑T
t=1Nt

∑
j:kj∈K

∇θκ(kj , τ
∗, Ŝt, θ̂)

′
√
NKt

 .

The logic behind the test in Corollary 1 is straightforward. By aggregating the model-implied

option fit spatially, we “average out,” and thus alleviate, the effect due to the observation error in

the options but we retain the error due to inadequate model fit. Hence, for the result in equation

(19) to apply, it is necessary that K has positive Lebesgue measure and that κ(k, τ,Z, θ) is a smooth

function of log-moneyness. The t-statistics implied by the asymptotic limit result in equation (19)

resemble the conditional moment tests proposed by Newey (1985) and Tauchen (1985).

The asymptotic variance of the option fit
∑

j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)

, is estimated fea-

sibly by Π̂′T Ξ̂T Π̂T . It accounts for the effect of the estimation error of
(
Ŝt, θ̂

)
. It is critical for the

derivation of Corollary 1 that the convergence in equation (9) holds stably so that the standardiza-

tion of the model fit in equation (19) yields a variable with a limiting standard normal distribution.

The test in equation (19) can, of course, be extended to pool together the estimated errors across

options with different tenors as well as for options observed on different days.

The test will be powerful against alternatives for which the errors in fitting the options in

the region K tend to be highly correlated, as this “blows up” the numerator without affecting

the denominator of the ratio in (19). This will typically be the case, as standard models imply

smoothness in option prices as a function of moneyness. That is, if the fit is poor for a given strike,

due to model misspecification, the model-implied option prices will tend to deviate in the same
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direction for nearby strikes. Furthermore, the test of Corollary 1 allows us to check the model fit

over shorter periods of time. This is more informative about potential sources of model failure than

assessing the time-averaged option price fit, as is common practice. For example, we may be able

to associate specific types of model failure with broader economic developments that point towards

omitted state variables in the model or a fundamental lack of stability in the risk-neutral measure.

5.2 Time-Variation in Parameter Estimates

Our second test focuses on potential variation in the risk-neutral model parameters over distinct

time periods. Typically, model misspecification will imply that the estimator converges to a pseudo-

true parameter vector, see, e.g., White (1982) and Gourieroux et al. (1984). However, in our

setting the state variables change from period to period, inducing a corresponding movement in

the pseudo-true parameter vector. That is, under misspecification, the time-variation in the option

prices cannot be “rationalized” by shifts in the state variables, so we should expect “spill-over” in

terms of intertemporal variation in the (pseudo-true) risk-neutral parameter estimates.

Designing a test for parameter variation is straightforward using Theorem 2, as the estimates

obtained from option panels spanning disjoint time periods should be asymptotically independent

when conditioned on F .24

Corollary 2 In the setting of Theorem 2, denote the risk-neutral parameter estimates from two

option panels covering disjoint time periods by θ̂1 and θ̂2. If the risk-neutral model is valid for both

of these distinct time periods, we have,

(
θ̂1 − θ̂2

)′ (
Âvar(θ̂1) + Âvar(θ̂2)

)−1 (
θ̂1 − θ̂2

)
L−s−→ χ2(q), (20)

where Âvar(θ̂1) and Âvar(θ̂2) denote consistent estimates of the asymptotic variances of θ̂1 and θ̂2

based on equations (11)-(12) in Theorem 3, and q denotes the dimension of the parameter vector.

The analogous result applies for a subset of the parameter vector of dimension r < q, but with r

replacing q in equation (20).

5.3 Distance between Model-Free and Option-Implied Volatility

Our final diagnostic tests whether the spot volatility estimated nonparametrically from high-

frequency data on the underlying asset equals the one implied by the option data given the model

24Of course, this can be generalized to the case of overlapping estimation periods by appropriately accounting for
the conditional covariance of the two parameter estimates.
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for the risk-neutral distribution of X. This restriction follows from the fact that the diffusion co-

efficient of X is invariant under an equivalent measure change, so the two estimates should not be

statistically distinct.25 This is, of course, the identical constraint that we exploit in our penalization

term during estimation. Nonetheless, the condition may be formally tested if we account suitably

for the specification of the objective function in (7).

To render the test feasible, we use the two nonparametric jump-robust volatility estimators

V̂ ±,nt defined in (16) in the previous section. Using the joint asymptotic convergence result for

(V̂ ±,nt , Ŝt) in Theorem 5, we can derive the asymptotic behavior of the difference ξ1(Ŝt) − V̂ ±,nt .

We state this important result in the following corollary.

Corollary 3 Under the conditions of Theorems 2 and 5, we have,

 ξ1(Ŝt)− V̂ −,nt√
∇Sξ1(Ŝt)′χ̂t∇Sξ1(Ŝt)

Nt
+

2(V̂ −,nt )2

kn


t=1,...,T

L−s−→


Ĕ1

...

ĔT

 , (21)

where χ̂t is the part of Ĥ−1
T Ω̂T (Ĥ−1

T )′ corresponding to the variance-covariance of Ŝt and where

(Ĕ1, ..., ĔT )′ is a vector of standard normals independent of each other and of F .

Yet again, we stress that we do not need a parametric model for Vt under the statistical measure, P,

to test the equality of the spot volatility implied by the underlying asset dynamics and the model-

dependent option-implied dynamics. However, the test does hinge critically on the characterization

of the joint stable asymptotic law in Theorem 5. Consequently, this pathwise restriction on the spot

volatility cannot be tested under the usual approach to option-based parametric inference which

precludes the application of this type of limit theory.

The test in Corollary 3 compares two alternative estimators of the spot diffusive volatility: a

parametric one based on the option data and a nonparametric one based on the high-frequency

record for X. As discussed after Theorem 6 in the Appendix, depending on the relative growth

rate of the option data and the high-frequency increments used in estimation of V̂ ±,nt , we can have

25Unfortunately, we cannot design a similar test regarding the distance between the option-based estimate of the
jump intensity ξ2(Ŝt) and a nonparametric one derived from high-frequency data. First, while high-frequency data
for X allows us to estimate the “realized” jumps on a given path, it does not produce an estimate of their intensity.
The jump intensity depends on the probability measure, and reliable estimation will require applying large time span
asymptotics under the P measure. Secondly, since the jump intensity is tied to the probability distribution, the jump
intensities under the risk-neutral and statistical distribution are generally different. In fact, there is strong parametric
and nonparametric evidence indicating that they differ significantly. The aspects of the risk-neutral model for jumps
in X we can test from the underlying asset data are those that hold Q-almost surely. This includes the so-called
jump activity index, which should be identical under P and Q. However, to uncover the latter nonparametrically
from high-frequency data, we must sample X very finely and this renders the inference highly sensitive to market
microstructure effects. Hence, we abstain from testing this restriction.
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either the option-based or the high-frequency based estimator be more efficient for recovery of Vt.

In typical applications with a rich set of derivatives data (as in our empirical application in Section

7 below), however, the option-based estimator tends to dominate and hence the second term in

the denominator on the left side of (21) is usually substantially larger than the first one. In this

case, i.e., for N � kn, our test in Corollary 3 is reminiscent of the Hausman (1978) specification

test.26 Under the null of correct risk-neutral model specification, ξ1(Ŝt) is more efficient than V̂ ±,nt

while V̂ ±,nt is a robust estimator of the spot volatility, which remains valid (i.e., consistent and

asymptotically normal) even when the risk-neutral parametric model is misspecified.27

Finally, to increase power, the tests in Corollaries 1-3 should be applied in parallel. For example,

a misspecified model might generate spot volatility estimates that are close to the model-free ones,

but in so doing provide a poor fit to option prices or induce parameter instability. Likewise, a

faulty model may fit parts of the option panel well – the vector {St}t=1,...,T provides flexibility in

this regard – but this typically produces implausible volatility estimates or unstable parameters.

6 Numerical Experiments

6.1 Model Specification and Parameter Identification

This section provides evidence on the finite sample performance of our inference procedures in the

context of the double-jump model given in (1). To ensure that our numerical experiments reflect

empirically relevant features of the asset and option price dynamics, we fix the parameters to the

consensus values from the literature provided by Broadie et al. (2007). Although our inference

procedure only requires a full characterization of the data generating process under the risk-neutral

measure, in the simulation experiment, we still need to generate the dynamics of the state variables

from the actual probability measure. Hence, we adopt the standard approach of the empirical

option pricing literature, see, e.g., Singleton (2006), chapter 15, and assume that X follows the

same general model under both the P and Q measures, but with differing values for some key

parameters, reflecting the presence of risk premiums. The full set of parameter values, adapted

from Broadie et al. (2007), is reported in Table 2. We also follow them in fixing ρj = 0, leaving

eight parameters to be estimated for each Monte Carlo sample.

26We thank a referee for pointing out this connection.
27Note that in this situation, i.e., for N � kn, ξ1(Ŝt) is converging at a faster rate than V̂ ±,nt , so that the asymptotic

behavior of ξ1(Ŝt)− V̂ ±,nt is driven by V̂ ±,nt .
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Table 2: Parameter Setting for the Numerical Experiments

Under P Under Q
Parameter Value Parameter Value Parameter Value Parameter Value

ρd −0.4600 λj 1.0080 ρd −0.4600 λj 1.0080
v 0.0144 µx −0.0284 v 0.0144 µx −0.0501
κd 4.0320 σx 0.0490 κd 4.0320 σx 0.0751
σd 0.2000 µv 0.0315 σd 0.2000 µv 0.0930

6.2 Monte Carlo Experiments

We now present the findings from an extensive simulation study based on the double-jump model

with parameters fixed at the values given in Table 2. We apply our inference procedures on a total

of 1, 000 Monte Carlo replications.28

The simulation set-up is designed to broadly mimic the features of the data used in our empirical

application. We simulate the underlying asset for a year and sample the options every fifth day,

corresponding to weekly observations, as is common in empirical work (time is measured in business

days). For each such day, we calculate option prices for four maturities: τ = 10, τ = 45, τ = 120 and

τ = 252 days, which resemble the available maturities in the actual data. Finally, for each maturity

we compute 50 OTM option prices for an equispaced log-moneyness grid, covering the range [−4, 1]·
σ
√
τ , where σ is the ATM BSIV on the given day. This corresponds to using a time-varying

coverage of moneyness depending on the level of volatility, again roughly mimicking the available

strike ranges in the actual data.29 For the option error we assume εt,k,τ = σt,k,τZt,k,τ , where

Zt,k,τ are standard normal variables, independent across time, moneyness and time-to-maturity,

and σt,k,τ = 0.5ψk/Q0.995 for ψk denoting the relative bid-ask estimate from the kernel regression

on the actual data, plotted on Figure 2, and Q0.995 denoting the 0.995-quantile of the standard

normal distribution. This noise structure allows for significant time-variation of the (conditional)

noise variance depending on both the level of volatility and moneyness. Finally, we set λn = 0 in

(7), i.e., no penalization, and for the nonparametric volatility estimator, relevant here only for the

28The computational burden is very significant, but a variety of improvements to the speed in computing option
prices within this framework and the use of a network of computers renders the exercise feasible. To the best of our
knowledge, it constitutes the first comprehensive simulation study of inference procedures for the double-jump model
at this level of complexity. An account of our computational approach is provided in the supplementary appendix.

29On average, over 230 bid-ask quotes with positive bid prices for OTM options are reported daily, at the end-of-
trading, for the S&P 500 options at the CBOE over 1996− 2010, and the number is significantly higher in the second
half of the sample. In the simulation, we would garner more precise inference using samples beyond one year, but
this horizon provides a sensible compromise, in practice, between the joint objectives of accuracy in estimation and
minimization of the period over which we assume invariance of the risk-neutral measure.
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diagnostic tests, we use V̂ −,nt with n = 400, equivalent to sampling every 1-minute over about 6.5

hours of trading, and kn = 120, corresponding to a window of 2 hours. α and $ were calculated as

discussed after the definition of the estimator in (16).

In Table 3, we report the results from the Monte Carlo for the parameter vector. The parameter

estimates display no significant biases and most are estimated with good precision. The more

challenging parameters to estimate, based on the relative size of the inter-quantile range, are ρd

and σd. Given the relatively short one-year samples and the close relation between the option

sensitivities for these two parameters, this finding is not surprising. Of course, longer samples and

different underlying parameter values may render it easier to separately identify the two parameters.

Table 3: Monte Carlo Results: Estimation of the Risk-Neutral Parameters

Parameter True Value Median IQR Parameter True Value Median IQR

ρd −0.4600 −0.4564 0.3911 λj 1.0080 1.0080 0.1798
v 0.0144 0.0144 0.0035 µx −0.0501 −0.0501 0.0134
κd 4.0320 4.0321 0.1939 σx 0.0751 0.0751 0.0057
σd 0.2000 0.2022 0.1240 µv 0.0935 0.0935 0.0055

Turning next to the diagnostics, Table 4 reports on the size of the tests developed in Section 5.

Generally, the small sample behavior is satisfactory. The tests for the fit to the option panel is

near perfectly sized, while there is a mild degree of under-rejection for the volatility test as well

as the omnibus test for parameter stability. The test in Panel C of Table 4 (recall λn = 0 in the

estimation) indicates that, even in the presence of observation error, the option panel alone recovers

the path of stochastic volatility with good precision. In addition, we note that the accuracy of the

option-implied volatility estimator far exceeds that of the nonparametric high-frequency estimator.

Corollary 2 can also be used to test for stability of the individual parameters. This is likely a

less powerful test, as it fails to exploit the information about the joint fit across the full parameter

vector and it does not account for the correlation among the estimates. It is evident from Table 5

that the tests for those parameters, which are estimated relatively imprecisely, e.g., ρd and σd, tend

to be particularly undersized in small samples. In comparison, the omnibus test in Table 4 performs

considerably better. We conclude that, overall, our diagnostic tests appear to be reasonably sized,

even for small samples, given parameters calibrated to commonly observed values.
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Table 4: Monte Carlo Results: Diagnostic Tests

Test Nominal size of test
1% 5% 10%

Panel A: Fit to Option Panel

Out-of-the-money, short-maturity puts 0.88% 4.80% 10.03%
Out-of-the-money, short-maturity calls 0.89% 4.95% 10.00%
Out-of-the-money, long-maturity puts 1.00% 4.93% 9.96%
Out-of-the-money, long-maturity calls 0.93% 5.15% 10.47%

Panel B: Parameter Stability

1.48% 6.33% 10.55%

Panel C: Distance implied-nonparametric volatility

1.68% 4.10% 6.45%

Note: Panel A reports rejection frequencies across the full sample for the option fit
to specific portions of the option surface on a given Wednesday. This test is based
on the result in Corollary 1, using the first two maturities for the first two tests and
the last two maturities for the remainder of the tests in this panel. The test in Panel
B is given in Corollary 2, and the test in Panel C is provided in Corollary 3.

7 Empirical Application

We now return to our empirical application initiated in Section 2. Recall that our estimate of

the risk-neutral return dynamics is obtained largely from the option panel but also requires an

auxiliary nonparametric volatility estimator. We rely on V̂ −,nt defined in (16) along with the choice

of truncation parameters indicated below equation (16), while we set kn = n = 400.30

We start with a formal diagnostic analysis of the double-jump model estimated in Section 2.

Figure 3 depicts the weekly series of Z-scores from Corollary 1. The model faces difficulties in

several dimensions. First, not surprisingly, it struggles over the crisis period 2008-2010. Second,

the fit to OTM short-maturity options is relatively good with the exception of the crises, 1998-1999

and 2008-2010. Third, and most importantly, there is a distinct temporal pattern in the directional

pricing errors for specific regions of the surface as well as strong dependence in the mispricing

across the different parts of the surface. For example, from the end of 1997 till the end of 1999,

the model mostly underprices short-maturity OTM puts and, simultaneously, it overprices short-

30Recall, for the penalization, a mild bias in the estimator is allowed. For the volatility test, however, we do need
consistency of the high-frequency estimator. Therefore, we are more conservative in the bandwidth choice and set
kn = 120 for the volatility test, exactly as in the Monte Carlo experiments. In addition, we rescale the high-frequency
increments to account for the pronounced intraday volatility pattern.
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Table 5: Monte Carlo Results: Tests for Stability of Individual Parameters

Parameter Nominal Size Parameter Nominal Size
1% 5% 10% 1% 5% 10%

ρd 0.00% 0.42% 1.90% λj 1.90% 6.96% 10.97%
v 1.48% 6.96% 10.97% µx 0.63% 6.33% 11.39%
κd 1.48% 6.96% 12.66% σx 0.84% 5.06% 8.65%
σd 0.63% 4.43% 8.86% µv 0.63% 5.70% 9.49%

Note: The parameter stability test is given in equation (20).

maturity ATM options and OTM calls (albeit not always in a statistically significant manner).

Furthermore, during parts of this period we observe pronounced and persistent underpricing of

long-maturity OTM put options. Similar patterns of mispricing across the option surface emerges

in early 2009 and lasts through the end of our sample. On the other hand, during the tranquil

period of 2004-2007, we observe difficulties in fitting OTM calls and long-maturity OTM puts. In

summary, the model specification is strained in the aftermath of market crises and during unusually

quite periods.31 From an econometric perspective, the model is strongly rejected.

Given the failings of the one-factor double-jump model, we explored extensions involving two

stochastic volatility factors and alternative specification for the price jumps, namely a double-

exponential rather than Gaussian distribution for the jump size.32 We further generalized the

model by allowing the jump intensity to be proportional to the volatility factors. Finally, we

extended these specifications to encompass three volatility factors. Generally, the more elaborate

specifications perform better, but the main qualitative conclusions remain, as the extended models

struggle with systematic mispricing across the option surface in the years following major market

disruptions. Evidently, the use of a broad option cross-section enables us to exploit information

from diverse regions of the surface as well as over time, ensuring a more powerful test for empirical

option pricing models than applied hitherto. And the verdict is clear. The standard models fail

statistically in important dimensions.33 In terms of the economic interpretation, the ramifications

are less clear, but we take a first step in addressing this issue below.

31Rejection rates from the remaining diagnostic tests developed in Section 5 – including tests for the fit to specific
regions of the option surface as well as for parameter stability and coherence between the option-implied and time
series estimates of spot volatility – are provided in the supplementary appendix.

32This specification allows for power law jump tail decay which better reflects the nonparametric option-based
evidence in Bollerslev and Todorov (2011).

33The estimation results and diagnostic tests for the general three-factor model is available in the supplementary
appendix, while the corresponding evidence for the remaining more constrained models is available upon request.
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Figure 3: Option Panel Fit for the One-factor Model. The short-maturity options are those with
the two shortest tenors on a given day and the long-maturity options are all remaining options with
tenor of less than one year. OTM puts are those with moneyness [−4,−1] × σ

√
τ , ATM options

are those with moneyness [−1, 1] × σ
√
τ , and OTM calls are those with moneyness [1, 3] × σ

√
τ ,

where σ is the ATM BSIV on the given day.

What is the main source of option mispricing across these models? The Z-scores provide guid-

ance. The persistent bias in the fit to specific regions of the option surface suggests that part of the

problem stems from the dynamic links between the different sources of risk within the model. This

intuition arises from the fact that short-maturity OTM put option prices are determined largely

by the left tail of the jump risk, while the short-maturity ATM options (quoted in BSIV) are

determined largely by the current level of diffusive volatility. Hence, the tension in fitting, simulta-

neously, short maturity OTM puts and ATM options, evident in Figure 3, reflects the inability of

the model to capture the relation between jump risk and the volatility level implied by the observed

option prices. In model (1), this feature is tied to the jump intensity which is a linear function of

the persistent component of the diffusive (spot) variance.34 Instead, it seems more promising to

34For the standard two-factor stochastic volatility model, we find the transient factor in spot volatility to play only
a minor role. Thus, the close association between jump intensity and volatility remains in this extended setting.
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consider a mechanism that enables the left tail of the volatility surface to display variation that is

not linked so tightly to the level of the volatility factors. Thus, we consider an extension which –

beyond a second volatility factor – includes an additional factor in the risk-neutral jump intensity

that, importantly, is not a component of spot volatility. This alternative model takes the form,

dXt

Xt−
= (rt − δt) dt +

√
V1,t dW1,t +

√
V2,t dW2,t +

∫
R2

(ex − 1) µ̃(dt, dx, dy),

dV1,t = κ1 (v1 − V1,t) dt + σ1

√
V1,t dB1,t + µ1

∫
R2

x2 1{x<0} µ(dt, dx, dy),

dV2,t = κ2 (v2 − V2,t) dt + σ2

√
V2,t dB2,t,

dUt = − κ3 Ut dt + µu

∫
R2

[
(1− ρ3)x2 1{x<0} + ρ3 y

2
]
µ(dt, dx, dy),

(22)

where (W1,t,W2,t, B1,t, B2,t) is a four-dimensional Brownian motion with W1,t ⊥W2,t, W1,t ⊥ B2,t,

and W2,t ⊥ B1,t and corr (W1,t, B1,t) = ρ1 as well as corr (W2,t, B2,t) = ρ2. The jump measure µ

has a compensator given by dt⊗ νQt (dx, dy), where,

νQt (dx, dy) =
{(
c−1{x<0}λ−e

−λ−|x| + c+1{x>0}λ+e
−λ+x

)
1{y=0} + c−1{x=0, y<0}λ−e

−λ−|y|
}
dx⊗dy,

c− = c−0 + c−1 V1,t− + c−2 V2,t− + c−3 Ut−, c+ = c+
0 + c+

1 V1,t− + c+
2 V2,t− + c+

3 Ut− .

Before commenting on the modifications and extensions relative to model (1), we remark on a few

changes in notation motivated by the new specification of the jump processes. The first term in the

expression for the jump measure controls price-volatility co-jumps, exactly as in model (1), while

the second term governs the independent jumps in the new factor, U . Furthermore, the jumps in

U are either directly proportional to the volatility jumps (in V1) or independent from them. Both

jump components of U have the same marginal distribution - they only differ in their interaction

with the other jump components of the model. To retain notational symmetry between the jump

components of U , we define the second term of the jump measure, µ, over the squared negative

realizations. In particular, this implies that all jumps in U are positive.

The distinct features of the extended model may be summarized as follows. First, the distri-

bution of the price jumps is now exponential, so we enforce an empirically realistic decay in the

jump intensity as a function of the jump size. Moreover, we allow the left and right jumps to have

different tail decay parameters, i.e., we break the dependence between the two tails. Second, the

price and volatility co-jumps are now perfectly dependent, with the squared price jumps impacting

the volatility dynamics. This is reminiscent of a GARCH specification for the volatility dynam-

ics in discrete time. In addition, we allow only the negative price jumps to impact the volatility

dynamics, as a more general dependence structure between volatility and price jumps cannot be
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well identified from the option panel. Third, the negative jumps now have an additional source

of time variation, captured by the process U .35 U is driven, in part, by the negative price jumps

which allows for crisis periods to elevate the jump intensity of the system. It may also contain

an independent source of variation, where the degree of dependence between jumps in U and X is

captured by ρ3. Finally, the extended model (22) allows for separate time-variation in the intensity

of positive and negative jumps via discrepancies in the parameters c±1 and c±2 .36

The parameter estimates for the three-factor model (22) are reported in Table 6. The first

volatility factor – containing the volatility jumps – is the more transient component, while the

second factor is fairly persistent, and both factors have strongly negative leverage coefficients.

Turning to the jump parameters, we note that the jump intensity loadings c±1 and c±2 are statistically

distinct, reflecting differences in the time-variation of the left and right jump tails. Moreover, the

loading c−3 on the new jump intensity factor is highly significant, indicating a strong role for this

factor in the model dynamics. Furthermore, the tail decay parameters λ± imply that negative jumps

have significantly fatter jump tails than positive jumps, as also established by nonparametric means

in Bollerslev and Todorov (2011). The implied negative and positive mean jumps sizes are −5.33%

and 1.71%, and the average frequencies are 2.43 and 4.29 jumps per year, respectively. Finally, the

new jump intensity factor is estimated to be quite persistent, while the coefficient ρ3, reflecting the

link between the jumps in U and V1, is estimated imprecisely.

We turn now to the analysis of model performance. Figure 4 displays the weekly model-

implied Z-scores for the fit to the different regions of the volatility surface. We observe a dramatic

improvement compared with the one-factor model for the OTM put and especially the ATM options.

In contrast, the gains are moderate for the short maturity OTM calls and non-existent for the

long maturity OTM calls. This is not surprising as we decided, for parsimony, not to include

a separate jump intensity factor for the right tail in the three-factor model, focusing instead on

improving performance in the critical left tail. Overall, the mispricing of the OTM puts and the

ATM options in the three factor model is now substantially less persistent, indicating that the

dynamic interactions among the different risk factors are better accommodated by our extended

35This feature can also be incorporated into the dynamics for the intensity of the positive price jumps, but since
the relevant parameter is not significant, we end up imposing the constraint c+3 = 0 in our final specification.

36From an implementation standpoint, it is critical that the model (22) remains within the general affine class of
Duffie et al. (2003). We refer to that paper for the ODE system of equations that must be satisfied by the coefficients
of the associated conditional characteristic function. During estimation, we impose the following conditions on the
parameters to guarantee covariance stationarity and admissibility of the three latent factors,

κ1 >
2c−1 µ1

λ2
−

, and κ3 >
2c−3 κ1µu

κ1λ2
− − 2c−1 µ1

, and κ2 < 0, and σ2
i ≤ 2κivi, i = 1, 2.
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Table 6: Parameter Estimates for the Three-Factor Model

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.9818 0.0459 σ2 0.1078 0.0058 c−2 0.8802 2.7463
v1 0.0084 0.0005 µu 0.9238 0.3982 c+

2 72.5628 20.3159
κ1 9.7196 0.2557 κ3 0.5967 0.1227 c−3 41.4017 6.2519
σ1 0.3924 0.0176 ρ3 0.0005 0.5979 λ− 18.7455 0.3613
ρ2 −0.8707 0.0361 c+

0 1.5713 0.2555 λ+ 58.2399 2.8908
v2 0.0391 0.0061 c−1 25.3536 2.2890 µ1 13.4143 0.4286
κ2 0.1680 0.0281 c+

1 92.4094 29.9010

Note: Parameter estimates of the three-factor model (22) for S&P 500 equity-index options sampled
every Wednesday over January 1996-July 2010.

model. In particular, we observe that the periods 1998-1999 and 2009-2010 no longer are associated

with systematic overpricing of short-maturity ATM options and underpricing of OTM put options.

Additional diagnostics for model performance are collected in the supplementary appendix.37

To gain further insight into the success in capturing the evolution of the option surface over

time, we plot, on Figure 5, the fit to the observed model-implied “volatility smirk,” i.e., the implied

volatility as a function of moneyness, along with a 95% confidence band. For illustration, we

pick two very different episodes: year 1999 represents a turbulent time for the market, following

on the heels of the Fall 1998 crisis, while 2004 is characterized by quiet conditions. These years

represent the most problematic instances of model performance. In the supplementary appendix,

we provide similar plots for each individual year in our sample. For all the remaining years, the fit

to the implied volatility skew is satisfactory. The problematic episodes, plotted on Figure 5, serve

to highlight the power of our option-based in-fill asymptotic inference. For both of the selected

years, we observe overpricing of the short-maturity and underpricing of the long-maturity OTM put

options. We also note the large difference in the width of the standard error bands across the years

and across tenors. Considering the discrepancy in scale for the two years, it is evident that bands

are wider for 1999 than 2004. This primarily reflects the heterogeneity of the measurement errors

for the option prices across volatile and tranquil market conditions and the associated precision of

inference for the state vector over the course of the year. Similarly, the bands are narrower for ATM

than deep OTM options, reflecting the relative bid-ask spreads and liquidity across moneyness.38

37These diagnostics include the tests for parameter stability and equality of the high-frequency and model-implied
volatility estimators.

38Time-averaging across the year renders the width slightly non-monotonic, as the number of options within each
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Figure 4: Option Price Fit for the Three-factor Model. Notation as for Figure 3.

Finally, for the longer maturities, the implied volatility curve is often less sensitive to the current

value of the state vector and more dependent on the parameter vector, θ. Since the estimation

of θ exploits information across the full sample, we infer its value with greater precision than the

current state vector which can lead to narrower confidence bands for the more distant maturities,

in spite of the bid-ask spreads typically being larger.

Figures 4 and 5 capture complementary aspects of the fit to the option panel. First, note that

Figure 4 indicates no systematic mispricing during 1999 or 2004 for the ATM options. Hence,

in Figure 5, the model-implied prices fall well within the gray standard error bands around the

ATM strikes (k = 0). In contrast, the strongest indications of model failure in Figure 5 is the

overpricing of short-maturity and underpricing of long-maturity OTM put options in both years,

as noted above. This reflects the highly correlated Z-scores close to the boundary for the OTM

puts depicted in Figure 4 for 1999 and 2004. These persistent biases in the pricing error signal

deficiencies in the fit, even if most of the individual Z-scores fall just within the confidence band.

moneyness category changes over time, leading to some randomness in estimation precision, which is also reflected in
the relative width.
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Figure 5: Average Implied Volatility Curves for 1999 and 2004. The dots represent averages of the
observed BSIV with moneyness within specific ranges. The shaded regions on the plots correspond
to a 95% confidence region constructed using Corollary 1 and the three-factor model (22). The sold
line represents the fitted values from the model. The top panels represent 1999 and the bottom
panels 2004, while the left panels refer to the shorter and the right panels to the longer maturities.

38



While the pattern of mispricing is similar across these two very different periods, we remind the

reader that they are exceptional, as the remaining years all provide a better fit.
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Figure 6: Spot Variance and Negative Jump Intensity from the three factor model (22).

Figure 6 depicts the recovered spot variance and the risk-neutral intensity of the negative

jumps from our three-factor model (22). It is evident that the volatility process shares common low

frequency features with the intensity of the left risk-neutral jump tail. At the same time, the figure

reveals pronounced differences as well. In particular, over the period following the 1997 Asian and

the 1998 Russian crises, the intensity of the left jump tail remains elevated for an extended period

and mean-reverts much more slowly than the volatility. A similar pattern emerges following the

Fall 2008 crisis as well as the European crisis in August 2010. On the other hand, following the

collapse of the 2002 tech bubble and during the quiet period of 2004-2007, the market volatility

and the intensity of the left risk-neutral jump tail are quite closely aligned. Thus, overall, there is

a striking heterogeneity in the dynamic relation between the two processes across time.

How do we synthesize and interpret the empirical evidence? A tight link between volatility

(components) and the risk-neutral jump intensity also arises naturally in equilibrium models with

a representative agent, equipped with Epstein-Zin preferences, who faces jump risk either directly

in consumption growth or in its conditional mean and variance. Our findings suggest that, following

periods of crises like in 1998 or the Fall of 2008, the compensation demanded for bearing negative

jump tail risk rises by a disproportional amount, rendering it incompatible with the relatively

fast reversion of stock volatility towards its pre-crises level. Intuitively, OTM put options are too
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expensive for too long following such episodes to be rationalized by the concurrent level of risk as

captured by market volatility. Thus, our evidence suggests that the dynamic pricing of jump tail

risk is complex and falls outside the standard mean-variance paradigm, for which prices of risk are

proportional to volatility and its factors. Consequently, the latter is unable to rationalize the joint

dynamics of the stock market and the options written on it.39

8 Conclusion

In this paper we consider the problem of estimating the parameters of the risk-neutral distribution

and the latent state variables from a panel of options, observed with error, with fixed time span

and increasing cross-sectional dimension. We prove consistency of the estimators and show that

they converge stably to mixed Gaussian laws. We further propose and implement feasible inference

based on the developed limit theory. We design novel tests for the observed option trajectories by

evaluating the option price fit and the parameter stability over time as well as the pathwise dis-

tance between the volatility implied by the option-based estimation and a nonparametric estimate

constructed from high-frequency data for the underlying asset.

An extensive Monte Carlo study confirms that the inference techniques work well over relatively

short time spans for realistically calibrated parameter settings. In an empirical application to S&P

500 equity-index options, we extend existing one- and two-factor stochastic volatility models by

allowing the left jump tail intensity to depend on an additional factor that is not a component of

the stochastic volatility process. This extension of the traditional asset pricing models is crucial for

explaining the observed dynamic dependencies between the short maturity OTM puts and ATM

options. Our estimation results imply that priced jump tail risks have a much more persistent

reaction to large negative shocks in the economy than the market volatility.

9 Appendix

9.1 Penalization with Asymptotic Effect

Using Theorem 5, we can extend Theorem 2 to the case where the penalization has an asymptotic
effect on the estimation (an analogous extension holds for the WLS estimator in Theorem 4).

Theorem 6 Assume A1-A4 are satisfied and κ(t, τ,Z, θ) is twice continuously-differentiable in its

arguments. Let V̂ n
t = V̂ −,nt for V̂ −,nt defined in (16) and the conditions of Theorem 5 hold. Then,

if N →∞ and n→∞, such that λn → λ ≥ 0 and λn
√
N/kn → λ ≥ 0, we have:

39Similar points may apply to popular structural models of the equity market volatility and jump dynamics. We
can directly explore the fit of such models to the option surface dynamics with our diagnostic tools.
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
√
N1 (Ŝ1 − S1)

...√
NT (ŜT − ST )√
N/T (θ̂ − θ0)

 L−s−→ (HT + DT )−1 (ΩT + ΣT )1/2


E1
...

ET

E′

 , (23)

where E1,...,ET are p × 1 vectors and E′ is a q × 1 vector, all defined on an extension of the
original probability space, independent of F , and all mutually independent standard normal vectors.
Furthermore, with the same partitioning of DT and ΣT as in equation (10), we define,

Dt,t
T = λ∇S

√
ξ1(St)∇S

√
ξ1(St)′, Σt,t

T = λ
2
ςt
Vt
2
∇S

√
ξ1(St)∇S

√
ξ1(St)′, t = 1, ..., T,

where λ = limn λn and the remainder of the elements in DT and ΣT are zero. Consistent estimates
for DT and ΣT are given by D̂T and Σ̂T where, for the same partition of the matrixes as in (10),

D̂t,t
T = λn∇S

√
ξ1(Ŝt)∇S

√
ξ1(Ŝt)′, Σ̂t,t

T =
λ2
nNt

kn

V̂ n
t

2
∇S

√
ξ1(Ŝt)∇S

√
ξ1(Ŝt)′, t = 1, ..., T,

and the rest of the elements of D̂T and Σ̂T are zero.

We note that for V̂ −,nt , ηn = 1/
√
kn. Therefore, under the conditions for λn in Theorem 2, the

limiting constant λ in Theorem 6 is zero. Hence, Theorem 6 extends Theorem 2 by allowing for
λ > 0 (for the particular high-frequency volatility estimator V̂ −,nt ).

Theorem 6 allows us to study the effect of the penalization in the objective function more
formally. We distinguish two cases. First, N � kn. Then we have λ = 0 and thus DT = 0.
Consequently, the penalty term in the objective function increases the covariance matrix of the
estimator. Hence, it is optimal to pick λn to ensure λ = 0, i.e., choose λn such that the penalization
has no first-order asymptotic effect on the estimator. This is intuitive. Since N � kn, the recovery
of the volatility state is done more efficiently via the options data. Comparatively speaking, the
high-frequency data only infuse noise into the estimation procedure.

For N � kn or N ∼ kn , it may be preferable to have λ > 0. The logic is transparent in the
(infeasible) case of kn = ∞ (and N � kn), i.e., a continuous record of X, from which Vt may be
recovered without error. Then option prices (observed with error) are suboptimal for recovering
Vt. Of course, the diffusive volatility is only a minor part of the full state and parameter vector,
({St}t=1,...,T , θ0), that we seek to estimate, so options remain critical for the inference.

9.2 Proofs

We first establish some preliminary results and then provide proofs for the theorems and corollaries.
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9.2.1 Preliminary results

Lemma 1 Under the conditions of Theorem 2, we have

1√
N1

∑N1
j=1∇Sκ(kj , τj ,S1, θ0)ε1,kj ,τj

...
1√
NT

∑NT
j=1∇Sκ(kj , τj ,ST , θ0)εT,kj ,τj

1√
N1

∑N1
j=1∇θκ(kj , τj ,S1, θ0)ε1,kj ,τj

...
1√
NT

∑NT
j=1∇θκ(kj , τj ,ST , θ0)εT,kj ,τj


L−s−→

(
Ω̃T

)1/2



E1
...

ET

E′1
...

E′T


, (24)

where {Et}t≥1 are defined in Theorem 2, {E′t}t≥1 are vectors of standard normal variables, each of
size q × 1, independent of each other and of F as well as the vector {Et}t≥1 and

Ω̃ =



Ω̃1,1
T . . . 0p×p Ω̃1,T+1

T . . . 0p×q
...

. . .
...

...
. . .

...

0p×p . . . Ω̃T,T
T 0p×q . . . Ω̃T,2T

T

Ω̃T+1,1
T . . . 0q×p Ω̃T+1,T+1

T . . . 0q×q
...

. . .
...

...
. . .

...

0q×p . . . Ω̃2T,2T
T 0q×q . . . Ω̃2T,T

T


.

The block components of Ω̃T are defined as follows:

Ω̃t,t
T = Ωt,t

T , Ω̃t,T+t
T = (Ω̃T+t,t

T )′ =
∑
τ

πτt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ω̃T+t,T+t
T =

∑
τ

πτt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk, t = 1, ..., T.

Proof of Lemma 1. We denote

χ
(t)
j =

(
∇Sκ(kj , τj ,St, θ0)εt,kj ,τj
∇θκ(kj , τj ,St, θ0)εt,kj ,τj

)
, t = 1, ..., T, (25)

which is a (p+ q)× 1 vector. We further denote the filtration F̃j = σ ({εt,ki,τi}t=1,...,T,i=1,...,j)∪F (0)
T

for j = 0, 1, ... (recall from A1 that the sequence of observation grids on the moneyness dimension
is nested). With this notation we will show

ΥNt
t =

1√
Nt

Nt∑
j=1

χ
(t)
j

L−s−→ Υt, t = 1, ..., T, (26)

where Υt is a F (0)
T -conditionally centered Gaussian process with F (0)

T -conditional variance of(
Ω̃t,t
T Ω̃t,T+t

T

Ω̃T+t,t
T Ω̃T+t,T+t

T

)
.
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We have that 1√
Nt

∑Nt
j=1 χ

(t)
j is adapted to F̃Nt , for Nt ∈ N. Moreover, due to the nesting property

of the filtration, we have F̃N ⊂ F̃N+1 for N ∈ N, and furthermore FT =
∨
j F̃j . Therefore, we can

apply Theorem VIII.5.42 of Jacod and Shiryaev (2003). To establish (26) above it now suffices to
prove,

E
(
χ

(t)
j |F̃j−1

)
= 0,

1

Nt

Nt∑
j=1

E
(
χ

(t)
j χ

(t)′

j |F̃j−1

)
P−→

(
Ω̃t,t
T Ω̃t,T+t

T

Ω̃T+t,t
T Ω̃T+t,T+t

T

)
,

1

N2
t

Nt∑
j=1

E||χ(t)
j |F̃j−1||4

P−→ 0.

(27)

The first and the third result of (27) follow immediately upon making use of A4(i) and A4(iv). To
prove the second claim we apply assumption A4(ii) and A4(iii) as well as assumption A1, concerning
the mesh of the grid in the log-moneyness dimension of the options, the smoothness of the φt,k,τ
function in A4(iii), and the smoothness of κ(k, τ,Z, θ) in its first argument. In fact, we even have
the convergence holding almost surely.

Now we will prove that the convergence in (26) holds jointly for t = 1, ..., T with the limits

being F (0)
T -conditionally independent. For this it suffices show

E

(
Y

T∏
t=1

ft

(
ΥNt
t

))
−→ E

(
Y

T∏
t=1

E (ft (Υt) |FT )

)
, (28)

for ft(·) being Lipschitz functions on Rp+q, Y denoting a bounded random variable on FT , and Υt

indicating the limits in (26) (this follows from Corollary 1.4.5 of van der Vaart and Wellner (1996)).

We look first at the case when Y is adapted to F (0)
T . In this case, using A4(iii), we have

E

(
Y

T∏
t=1

ft

(
ΥNt
t

))
= E

(
Y

T∏
t=1

E
(
ft

(
ΥNt
t

)
|F (0)
T

))
.

Next, using Theorem VIII.5.25 of Jacod and Shiryaev (2003), we have

Q̂N
P−→ Q, (29)

where Q̂N (ω(0), ·) is the conditional distribution of the process ΥNt
t , which is a transitional proba-

bility kernel from (Ω(0),F (0)) into (Rp+q,B(Rp+q)) and Q is the conditional probability associated
with the limiting process Υt (conditional on the event ω(0) ∈ Ω(0)). This convergence is in the space
of probability measures equipped with the weak topology, therefore we have

E
(
ft(Υ

Nt
t )
∣∣F (0)

T

)
P−→ E

(
ft(Υt)

∣∣F (0)
T

)
. (30)

From here, since the functions ft(·) and the variable Y are bounded, we have

E

(
Y

T∏
t=1

E
(
ft

(
ΥNt
t

)
|F (0)
T

))
−→ E

(
Y

T∏
t=1

E
(
ft(Υt)|F (0)

T

))
, (31)

and therefore (28) holds when Y is F (0)
T -adapted.

We are left with the case when Y is adapted to F (1)
T . Due to separability of the σ-field F (1)

T , we
can proceed exactly as in step 4 of the proof of Theorem IX.7.28 in Jacod and Shiryaev (2003) and
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look only at the case when Y = h({εm}m∈M ) where M is a finite set of triplets (t, k, τ). Now, we let

Υ̃Nt
t denote a variable constructed from ΥNt

t by excluding the options corresponding to the triplets

(t, k, τ) ∈M . Since this is a finite number, the differences Υ̃Nt
t −ΥNt

t are obviously negligible. So,

we only need to verify (28) for the case where Υ̃Nt
t is replaced by ΥNt

t . However, due to assumption

A4(iii), we have that Υ̃Nt
t and Y are independent conditional on F (0)

T . From here, we can proceed

exactly as in the proof for the case when Y is adapted to F (0)
T . �

Lemma 2 Under the conditions of Theorem 5, we have

√
kn


V1

{
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2
− 1

}
...

VT

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2
− 1

}
 L−s−→


√

2V1 . . . 0
...

. . .
...

0 . . .
√

2VT


 Ẽ1

...

ẼT

 , (32)

where {Ẽt}t≥1 are defined in Theorem 5.

Proof of Lemma 2. Since kn/n → 0, it is no limitation to assume kn/n < 1, and we do so
henceforth. In particular, this implies that the sets {t + i

n}i∈I±,n for t = 1, ..., T are disjoint. The
validity of the Lemma now follows if we can show,√
kn

( {
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2

− 1

}
. . .

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2

− 1

} )
L−s−→

√
2
(
Ẽ1 . . . ẼT

)
.

The convergence in law follows from a standard central limit theorem, as

{
n
kn

∑
i∈I+,n

(
∆t,n
i W

)2
− 1

}
are independent of each other for different values of t, and further each of them equals

{
1
kn

∑kn
i=1 (Zi)

2 − 1
}

in probability, where Zi are i.i.d. standard normal variables. Thus we only need show that the
convergence holds stably, and for this it suffices to consider all bounded variables adopted to the
filtration generated by the Brownian motion Wt. We are now in position to directly apply Steps 3
and 4 of the proof of Proposition 8.2 of Jacod and Todorov (2010) to establish the result. �

Lemma 3 If the conditions of Theorem 2 and Theorem 5 hold, then the convergence in Lemma 1
and Lemma 2 holds jointly and further the vectors (E1, ...,ET ,E

′
1, ...,E

′
T )′ and (Ẽ1, ..., ẼT )′ in

Lemma 1 and Lemma 2 are independent.

Proof of Lemma 3. Exploiting the same notation as in the proof of Lemmas 1 and 2, we further
denote,

X
N
1 =

(
ΥN1

1 . . . ΥNT
T

)′
,

Xn
2 =

√
kn

(
V1

{
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2

− 1

}
. . . VT

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2

− 1

} )′
,

where, recall, N = mint=1,...,T Nt. In this notation, we must prove

E
(
Y f(X

N
1 )g(Xn

2 )
)
−→ E (Y E (f(X1)|FT )E (g(X2)|FT )) , (33)

for f(·) and g(·) being Lipschitz functions on RT (p+q) and RT , respectively, Y denoting a bounded
random variable on FT , and X1 and X2 representing the limits in (24) and (32), respectively.
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First we consider the case where Y is adapted to F (0)
T . Exactly as in the proof of Lemma 1, we

can show
E
(
f(X

N
1 )
∣∣F (0)

T

)
P−→ E

(
f(X1)

∣∣F (0)
T

)
. (34)

From here, for every sufficiently small ε > 0, there exists Ñ > 0 such that for N > Ñ , we have

E
{
Y g(Xn

2 )
∣∣∣E(f(X

N
1 )
∣∣F (0)

T

)
− E

(
f(X1)

∣∣F (0)
T

)∣∣∣} ≤ Kε, (35)

for some positive constant K (that does not depend on ε and Ñ), where we also exploited the

boundedness of Y , f(X
N
1 ) and g(Xn

2 ). Next, using the fact that E
(
f(X1)

∣∣F (0)
T

)
Y is F (0)

T -adapted,

the definition of stable convergence, and the result of Lemma 2, we obtain the limit result in (33)

for the case where Y is F (0)
T -adapted.

We are left with the case where Y is adapted to F (1)
T . The proof is identical to the analogous

case for the proof of Lemma 1. Hence, the proof is omitted. �

Lemma 4 Under the conditions of Theorem 5 we have

n√
kn

T∑
t=1

∑
i∈I+,n

∣∣∣(∆t,n
i X)21

(
|∆t,n

i X| ≤ αn−$
)
− Vt(∆t,n

i W )2
∣∣∣ P−→ 0. (36)

Proof of Lemma 4. First, via a localization argument similar to that in, e.g., Lemma 4.6 of
Jacod (2008), it suffices to consider the case where the processes αt, Vt and at, as well as the jumps
of the process X, are bounded. Thus, we impose this condition for the remainder of this proof.

Applying Itô lemma, we have

d log(Xt) =

(
αt −

1

2
Vt

)
dt+

√
VtdWt +

∫
x>−1

xµ̃(dt, dx) +

∫
x>−1

(log(1 + x)− x)µ(dt, dx), (37)

note that log(1 + x)− x ∼ x2 for x→ 0 and therefore the last integral above is well defined in the
usual Riemann-Stieltjes sense. We further denote

At =

∫ t

0

(
αs −

1

2
Vs

)
ds, Zt =

∫ t

0

√
VsdWs, Yt =

∫ t

0

∫
x>−1

xµ̃(ds, dx)+

∫ t

0

∫
x>−1

(log(1 + x)− x)µ(ds, dx).

In this notation, we obtain the following decomposition for any i ∈ I+,n and t = 1, ..., T ,

(∆t,n
i X)21{|∆t,n

i X|≤αn−$} − Vt
(

∆t,n
i W

)2

= (∆t,n
i X)21{|∆t,n

i X|≤αn−$} − (∆t,n
i X)21{|∆t,n

i Y |≤α
2
n−$} + |∆t,n

i X −∆t,n
i Z|21{|∆t,n

i Y |≤α
2
n−$}

+ 2(∆t,n
i X −∆t,n

i Z)∆t,n
i Z1{|∆t,n

i Y |≤α
2
n−$} − (∆t,n

i Z)21{|∆t,n
i Y |>α

2
n−$}

+ (∆t,n
i Z)2 − Vt+ i−1

n

(
∆t,n
i W

)2
+ (Vt+ i−1

n
− Vt)

(
∆t,n
i W

)2
.

(38)

We now derive bounds for moments of each of the terms of the decomposition. These bounds will,
in combination, prove convergence of their (scaled) sums either in the L1 or L2 norms. Henceforth,
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in the proof of the lemma, K denotes a positive constant which is independent of n and typically
will take on different values across the different equations. First, we have,

|(∆t,n
i X)21{|∆t,n

i X|≤αn−$} − (∆t,n
i X)21{|∆t,n

i Y |≤α
2
n−$}| ≤ (∆t,n

i X)21{|∆t,n
i X−∆t,n

i Y |≥α
2
n−$}, (39)

and then using the Hölder inequality, the boundedness of αt and Vt , and the Burkholder-Davis-
Gundy inequality, we get

E
∣∣∣(∆t,n

i X)21{|∆t,n
i X|≤αn−$} − (∆t,n

i X)21{|∆t,n
i Y |≤α

2
n−$}

∣∣∣ ≤ Kn−ζ , ∀ζ > 0. (40)

Next, by applying the Burkholder-Davis-Gundy inequality and/or the algebraic inequality |
∑

i |ai||p ≤∑
i |ai|p for any p ∈ (0, 1], we obtain

E|∆t,n
i Y |ζ ≤ Kn−1, ∀ζ ≥ β. (41)

Exploiting the above inequality, we deduce

E
{
|∆t,n

i X −∆t,n
i Z|21{|∆t,n

i Y |≤α
2
n−$}

}
≤ Kn−1−(2−β)$. (42)

Next, we decompose Yt depending on the value of β in Assumption A0. Yt =
∫ t

0

∫
x>−1 log(1 +

x)µ̃(ds, dx) +
∫ t

0 asds
∫
x>−1(log(1 + x)− x)νP(dx) when β in assumption A0 cannot be chosen less

than 1 and Yt =
∫ t

0

∫
x>−1 log(1+x)µ(ds, dx)−

∫ t
0 asds

∫
x>−1 xν

P(dx) otherwise. Then, upon making
use of the elementary inequality 1(|a+ b| < c) ≤ 1(|a| > c) + 1(|b| < 2c) for any a, b ∈ R and c > 0,
we get

E
∣∣∣(∆t,n

i X −∆t,n
i Z)∆t,n

i Z1{|∆t,n
i Y |≤α

2
n−$}

∣∣∣ ≤ Kn−1/2− 1
β
∧1−(1−β)$∨0

. (43)

Moreover, applying the Hölder inequality and the inequality (41) yields,

E
{

(∆t,n
i Z)21{|∆t,n

i Y |>α
2
n−$}

}
≤ Kn−1−(1−β$). (44)

Finally, using the boundedness of Vt from both below and above, along with Assumption A0(i),
and the Itô isometry, we obtain,

E
∣∣∣∣(∆t,n

i Z)2 − Vt+ i−1
n

(
∆t,n
i W

)2
∣∣∣∣ ≤ Kn−1/2

√√√√∫ t+ i
n

t+ i−1
n

E(Vs − Vt+ i−1
n

)2ds ≤ Kn−3/2. (45)

E
{(
Vt+ i−1

n
− Vt

)
(∆t,n

i W )2
}
≤ Kn−3/2

√
i− 1. (46)

Combining these findings, we validate the convergence result in (36). �

9.2.2 Proof that Assumption A3′ implies A3

The proof consists of verifying the conditions of Theorem 21 of Ibragimov and Has’minskii (1981)
for uniform convergence on the space of functions vanishing at infinity equipped with the uniform
topology. We use the shorthand notation

ηNtθ (Zt) =

∑Nt
j=1 ζt(kj , τj) [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt

j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

,
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and we further fix some ε > 0. Using the continuous differentiability of κ(k, τ,Zt, θ) in its last two

arguments, as well as the integrability of εt,k,τ (conditional on F (0)
T ) together with the Burkholder-

Davis-Gundy inequality for discrete martingales (applied successively), as well as the conditional
integrability conditions for the error εt,k,τ in A3′(iii), we have for Nt sufficiently large

E
(
|ηNtθ (Zt)− ηNtθ (Zt + h)|p+ι

∣∣∣∣F (0)
T

)
≤ K(ω(0))||h||p+ι, E

(
|ηNtθ (Zt)|p+ι

∣∣∣∣F (0)
T

)
≤ K(ω(0)), (47)

for either ||θ − θ0|| > ε or ||Zt − St|| > ε and where K(ω(0)) is F (0)
T -adapted finite-valued random

variable (recall that p is the dimension of the state vector St). Next, for every Zt, we have

E

(
sup

θ∈Θ: ||θ−θ0||>ε
|ηNtθ (Zt)|

∧
1

∣∣∣∣F (0)
T

)
−→ 0, a.s., (48)

using a criterion for uniform convergence on compact sets.
By Cauchy-Schwartz inequality, we have

|ηNtθ (Zt)| ≤ K̃(ω(0))

√√√√ 1
Nt

∑Nt
j=1 ε

2
t,kj ,τj

1
Nt

∑Nt
j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]

2
,

for K̃(ω(0)) = supj=1,...,Nt ζt(kj , τj) which is finite-valued F (0)
T -adapted random variable. From here

and our assumption for the behavior of κ(k, τ,Zt, θ) as ||Zt|| → ∞, together with Chebyshev’s
inequality, provided Nt is sufficiently big so that we have at least one observation in the range for
which assumption A3′(ii) holds, we have for some ι ∈ (0, 1)

lim
y→∞

sup
Nt,θ

P

(
sup
||Zt||>y

|ηNtθ (Zt)| > %(y)1−ι
∣∣∣∣F (0)

T

)
= 0, a.s. (49)

Combining (47)-(49), we have by an application of Theorem 21 of Ibragimov and Has’minskii (1981)

E

(
sup

{||Zt−St||>ε} ∪ {||θ−θ0||>ε}
|ηNtθ (Zt)|

∧
1

∣∣∣∣F (0)
T

)
→ 0, a.s. (50)

From here we have the asymptotic negligibility of Assumption A3. �

9.2.3 Proof of Theorem 1

We fix an arbitrarily small ε > 0. We make use of the following decomposition, for t = 1, ..., T and
j = 1, ..., Nt:(

κ̂t,kj ,τj − κ(kj , τj ,Zt, θ)
)2

=ε2t,kj ,τj + (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ))
2

+ 2εt,kj ,τj (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)) .
(51)

Assumption A2 implies that for some δ > 0 that depends on the realization ω and some sufficiently
high Ñ1 > 0, which again depends on ω, we have for N > Ñ1 :

inf
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

1

Nt

Nt∑
j=1

(κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ))
2 > δ. (52)
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Now, assumption A3 implies that, for every infinite subsequence of N , there exists a further sub-
sequence, denoted N ′, along which we have,

sup
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

∣∣∣∣∣
∑T

t=1
1
Nt

∑Nt
j=1 (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)) εt,kj ,τj∑T

t=1
1
Nt

∑Nt
j=1 (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ))

2

∣∣∣∣∣ −→ 0, a.s,

where N in the above almost sure convergence is an element of the subsequence N ′. Therefore, for

some ι ∈ (0, 1), there exists Ñ2, such that for N > max{Ñ1, Ñ2}, along the subsequence N ′, we
have on ω

sup
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

1

Nt

Nt∑
j=1

(
κ̂t,kj ,τj − κ(kj , τj ,Zt, θ)

)2
>

T∑
t=1

1

Nt

Nt∑
j=1

ε2t,kj ,τj + δ(1− ι), (53)

where, again, N is an element of the subsequence N ′ and we also exploited (52). Next, in the

case when {V̂ n
t }t=1,...,T is consistent for {Vt}t=1,...,T , we have, for every infinite subsequence of n, a

further subsequence, denoted n′, along which we have almost sure convergence, i.e.,

V̂ n′
t → Vt, t = 1, ..., T, a.s.

Then, since λn converges to a finite λ, there exists n > 0 such that, for n > n along the subsequence
n′ and on the same ω for which (53) is true, we have,

λn sup
t=1,...,T

∣∣∣∣√V̂ n′
t −

√
Vt

∣∣∣∣2 ≤ δ(1− ι)
2

. (54)

The same inequality can be shown to hold in exactly the same way in the case when

√
V̂ n
t −
√
Vt =

Op(ηn) for t = 1, ..., T and λnη
2
n → 0, as in this case we have λn

(√
V̂ n
t −
√
Vt

)2

= op(1).

Combining (53) and (54) implies that, along the subsequences N ′ and n′, we have for N and n
sufficiently high,

sup
t=1,...,T

||Ŝt − St|| < ε and ||θ̂ − θ0|| < ε, a.s. (55)

Therefore, since convergence in probability is equivalent to almost sure convergence on a subse-
quence to any infinite subsequence of the original series, see, e.g., Lemma 4.2 of Kallenberg (2002),
we have from (55),

P

(
sup

t=1,...,T
||Ŝt − St|| > ε ∪ ||θ̂ − θ0|| > ε

)
−→ 0.

Since, the choice of ε was arbitrary, the above proves the consistency result of the theorem. �

9.2.4 Proof of Theorem 2

Exploiting that the implied volatility function is differentiable with respect to the state variables
and the parameters of the risk-neutral distribution along with the consistency result in Theorem 1,

we have that {Ŝt}t=1,...,T and θ̂, with probability approaching 1, solve

1
N1

∑N1

j=1

(
κ̂1,kj ,τj − κ(kj , τj , Ŝ1, θ̂)

)
∇Sκ(kj , τj , Ŝ1, θ̂) + λn∇Sξ1(Ŝ1)(V̂ n1 − ξ1(Ŝ1)) = 0,

...
1
NT

∑NT
j=1

(
κ̂T,kj ,τj − κ(kj , τj , ŜT , θ̂)

)
∇Sκ(kj , τj , ŜT , θ̂) + λn∇Sξ1(ŜT )(V̂ nT − ξ1(ŜT )) = 0,∑T

t=1
1
Nt

∑Nt
j=1

(
κ̂t,kj ,τj − κ(kj , τj , Ŝt, θ̂)

)
∇θκ(kj , τj , Ŝt, θ̂) = 0.

(56)
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Using a first-order Taylor series expansion we obtain,

H̃T


Ŝ1 − S1

...

ŜT − ST
θ̂ − θ0

 =


1
N1

∑N1

j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...

1
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T

t=1
1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

+ op

(
1√
N

)
, (57)

where H̃T denotes the analogue of ĤT in which {Ŝt}t=1,...,T is replaced by {S̃t}t=1,...,T and θ̂ with

θ̃ for {S̃t}t=1,...,T lying between {Ŝt}t=1,...,T and {St}t=1,...,T and θ̃ residing in the interval between

θ̂ and θ0. The op term in the expansion stems from the presence of terms depending on V̂ n
t in

the first-order conditions, the fact that
(
Ŝt, θ̂

)
is consistent (and hence asymptotically bounded

in probability), the fact that

√
V̂ n
t −

√
Vt = Op(ηn) for t = 1, ..., T and the assumed relation

λ2
nη

2
nN → 0 in the theorem.
Since the mesh of the grid on the log-moneyness of the options decreases with N τ

t ∆t,τ (i) →
ψt,τ (k) uniformly on the interval (k(t, τ), k(t, τ)), we trivially have, pathwise,

1

Nt

Nt∑
j=1

∇Sκ(kj , τj ,Z, θ)∇Sκ(kj , τj ,Z, θ)
′ →

∑
τ

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
∇Sκ(k, τ,Z, θ),∇Sκ(k, τ,Z, θ)′dk,

for any finite Z and θ. Moreover, since ∇Sκ(k, τ,Z, θ) is continuous in the arguments Z and θ,

the above convergence also holds locally uniformly in Z and θ. Therefore, since θ̃
P−→ θ0 and

S̃t
P−→ St for t = 1, ..., T , we have H̃T

P−→ HT . Combining this result with the limit result in
Lemma 1, we establish the asymptotic distribution result in (9). �

9.2.5 Proof of Theorem 3

We only show the consistency of the block Ω̂t,t
T , as the proofs for the other blocks of Ω̂T and ĤT

proceed in an identical fashion. Moreover, it suffices to prove consistency for each of the elements
of Ω̂t,t

T . First, using Assumptions A4(ii), A4(iii) and A4(iv), we have,

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2 ∣∣∣∣F (0)


=

1

N2
t

Nt∑
j=1

%t,kj ,τj

(
A(ι1,ι2)(kj , τj ,St, θ0)

)2
−→ 0, a.s., ι1, ι2 = 1, ..., p,

(58)

where A(ι1,ι2)(k, τ,Z, θ) denotes the (ι1, ι2) element of the matrix∇Sκ(k, τ,Z, θ)∇Sκ(k, τ,Z, θ)′, and

where %t,k,τ = E
(

(ε2t,k,τ − φt,k,τ )2|F (0)
)

, which by Assumption A4(iv) is finite. The almost sure

convergence in (58) follows because of the pathwise boundedness of the functions A(ι1,ι2)(k, τ,Z, θ)
and %t,k,τ on the range of moneyness (k(t, τ), k(t, τ)). The convergence in (58) implies,

E

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2 ∣∣∣∣F (0)

∧ 1

 −→ 0. (59)
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Using Jensen’s inequality and (59), as well as law of iterated expectations, we further have,

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2∧
1

 −→ 0, (60)

which is equivalent to

1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
∇Sκ(kj , τj ,St, θ0)∇Sκ(kj , τj ,St, θ0)′

P−→ 0. (61)

Finally, using the fact that κ(k, τ,Z, θ) is twice continuously differentiable in all its arguments, we
have for some ε > 0, S = {S1, ...,ST }, k = mint=1,...,T minτ k(t, τ) and k = maxt=1,...,T maxτ k(t, τ),

sup
k∈(k,k)

sup
Z∈(S−ε,S+ε)

sup
θ∈(θ0−ε,θ0+ε)

{ ||∇Sκ(k, τ,Z, θ)||+ ||∇SSκ(k, τ,Z, θ)|| } < ∞ , a.s. (62)

Therefore, since for Nt sufficiently high, we will have Ŝt sufficiently close to St and θ̂ sufficiently
close to θ0 , it follows that,

Ω̂t,t
T −

1

Nt

Nt∑
j=1

ε2t,kj ,τj ∇Sκ(kj , τj ,St, θ0)∇Sκ(kj , τj ,St, θ0)′
P−→ 0. (63)

Combining (61) and (63) with the the smoothness of φt,k,τ in its second argument and the smooth-

ness of ∇Sκ(k, τ,Z, θ) in the first argument, we conclude, Ω̂t,t
T

P−→ Ωt,t
T . �

9.2.6 Proof of Theorem 4

Consistency. The proof proceeds in exactly the same way as that of Theorem 1, once the following
is established

sup
||{Zt−St||>ε} ∪ {||θ−θ0||>ε}

{∑Nt
j=1 φ̂

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt
j=1 φ̂

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

−
∑Nt

j=1 φ
−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt
j=1 φ

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

}
P−→ 0.

(64)

The asymptotic negligibility result in (64) is obtained by combining the following results:

(a) Using the uniform convergence in (13), we have

sup
j=1,...,Nt

|φ̂−1
t,kj ,τj

− φ−1
t,kj ,τj

| P−→ 0, as Nt →∞.

(b) By Cauchy-Schwartz inequality

1

Nt

Nt∑
j=1

φ−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj

≤

√√√√ 1

Nt

Nt∑
j=1

φ−2
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

√√√√ 1

Nt

Nt∑
j=1

ε2t,kj ,τj .
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(c) Using Assumption A4, exactly as in (58)-(61), we have

1

Nt

Nt∑
j=1

ε2t,kj ,τj
P−→

∑
τ

πτ

∫ k(t,τ)

k(t,τ)

φt,k,τ
ψt,τ (k)

dk.

(d) From Assumption A1 and A2, we have

sup
||{Zt−St||>ε} ∪ {||θ−θ0||>ε}

 1

Nt

Nt∑
j=1

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

−1

,

is almost surely bounded in probability, i.e., for ω ∈ Ω̃ with P(Ω̃) = 1, there exists Ñ and K > 0
(depending on ω) such that the above is smaller than K for N > N .

Combining the results in (a)-(d) above, we readily have the asymptotic negligibility in (64) and
from here the consistency of

(
{St}t=1,...,T , θ

)
.

Asymptotic Normality. We proceed exactly as in the proof of Theorem 2. A first-order Taylor
series expansion of the first-order conditions yields

(Λ̃T + R̃T )


S1 − S1

...
ST − ST
θ − θ0

 =
1

N


∑N1

j=1 φ
−1
1,kj ,τj

ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...∑NT

j=1 φ
−1
T,kj ,τj

εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T
t=1

∑Nt
j=1 φ

−1
t,kj ,τj

εt,kj ,τj∇θκ(kj , τj ,St, θ0)

+ op

(
N−1/2

)
, (65)

where Λ̃T denotes the analogue of Λ̂T in which {St}t=1,...,T is replaced by {S̃t}t=1,...,T and θ with θ̃

for {S̃t}t=1,...,T lying between {St}t=1,...,T and {St}t=1,...,T and θ̃ residing in the interval between θ

and θ0. R̃T is a matrix containing the second-order derivatives of κ(k, τ,Z, θ). From the assumption

of the theorem, the latter are continuous, and since θ̃
P−→ θ0 and S̃t

P−→ St for t = 1, ..., T ,

we easily have R̃T
P−→ 0. Finally, the op term in the expansion stems from the presence of

terms depending on V̂ n
t in the first-order conditions, the fact that

(
St, θt

)
is consistent (and hence

asymptotically bounded in probability), the fact that

√
V̂ n
t −
√
Vt = Op(ηn) for t = 1, .., T , and the

assumed relation λ2
nη

2
nN → 0 in the theorem as well as the consistency result for φ̂t,k,τ in (13) and

the asymptotic result in (66) below.

The consistency of Λ̃T is proved in exactly the same way as the consistency of H̃T in Theorem 2.
Hence, to prove (15), we need to show stable convergence of the (scaled) term on the right-hand
side of (65). The latter is given by

1√
N


∑N1

j=1 φ
−1
1,kj ,τj

ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...∑NT

j=1 φ
−1
T,kj ,τj

εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T
t=1

∑Nt
j=1 φ

−1
t,kj ,τj

εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 L−s−→ Λ
−1/2
T


E1
...

ET

E′

 , (66)

and is proved exactly the same way as Lemma 1, since φt,k,τ is F (0)
T -adapted.

The consistency of Λ̂T is shown exactly in the same way as the consistency of ĤT in the proof
of Theorem 3. �
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9.2.7 Proof of Theorem 5

The results follows directly from combining Lemmas 2-4. �

9.2.8 Proof of Theorem 6

The proof of the theorem follows the same steps as the proof of Theorem 2. Using a first-order
Taylor series expansion of the first-order condition in (56) we obtain,

(H̃T+D̃T+R̃T )


Ŝ1 − S1

...

ŜT − ST
θ̂ − θ0

 =


1
N1

∑N1

j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0) + λn∇S

√
ξ1(S1)(

√
V̂ n1 −

√
V1)

...

1
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0) + λn∇S

√
ξ1(ST )(

√
V̂ nT −

√
VT )∑T

t=1
1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 ,

(67)

where H̃T and D̃T denote the analogues of ĤT and D̂T in which {Ŝt}t=1,...,T is replaced by

{S̃t}t=1,...,T and θ̂ with θ̃ for {S̃t}t=1,...,T lying between {Ŝt}t=1,...,T and {St}t=1,...,T and θ̃ residing in

the interval between θ̂ and θ0; R̃T is a matrix containing the second-order derivatives of κ(k, τ,Z, θ)

and
√
ξ1(Z). From the assumption of the theorem, the latter are continuous and since θ̃

P−→ θ0

and S̃t
P−→ St for t = 1, ..., T , we easily have R̃T

P−→ 0. From the proof of Theorem 2, we have

H̃T
P−→ HT and we can prove analogously D̃T

P−→ DT .
Hence to prove the convergence in (23), we are left with the term on the right-hand side of (67).

Recall our high-frequency volatility estimators are V̂ n
t = V̂ −,nt . First, since the convergence result

in Lemma 2 is stable, we also have (making use in addition of Lemma 4)

√
kn


∇S

√
ξ1(S1)(

√
V̂ −,n1 −

√
V1)

...

∇S

√
ξ1(ST )(

√
V̂ −,nT −

√
VT )

 L−s−→


√

V1
2 ∇S

√
ξ1(S1)Ẽ1

...√
VT
2 ∇S

√
ξ1(ST )ẼT

 , (68)

where {Ẽt}t≥1 are defined in Theorem 5. Now, exactly as in Lemma 3, we have that the stable
convergence in (68) holds jointly with that in (24) of Lemma 1. Combining this with the convergence

in probability of H̃T +D̃T +R̃T , together with the properties of the stable convergence (Proposition
VIII.5.33 in Jacod and Shiryaev (2003)), we have the result in (23).

Finally, the consistency of D̂T and Σ̂T can be proved exactly in the same way as the consistency
of ĤT and Ω̂T in the proof of Theorem 3. �

9.2.9 Proof of Corollary 1

The proof follows from a trivial extension of Lemma 1, the smoothness of the function κ(k, τ,Z, θ)

in its arguments, the consistency of {Ŝt}t=1,...,T and θ̂, as well as the properties of the stable
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convergence. First, a Taylor series expansion yields

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)

=
∑
j:kj∈K

εt,kj ,τ∗ −

 ∑
j:kj∈K

∇Sκ(kj , τ
∗, S̃t, θ̃)

(Ŝt − St

)

−

 ∑
j:kj∈K

∇θκ(kj , τ
∗, S̃t, θ̃)

(θ̂ − θ0

)
,

where {S̃t}t=1,...,T is between {Ŝt}t=1,...,T and {St}t=1,...,T and θ̃ lies between θ̂ and θ0. Therefore,

using the consistency of {Ŝt}t=1,...,T and θ̂, as well as the smoothness of κ(k, τ,Z, θ) (and its
derivatives with respect to Z and θ) in the log-moneyness, we obtain,

1√
NKt

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)

= ΠT



√
N1(Ŝ1 − S1)

...√
NT (ŜT − ST )√

N1+...+NT
T (θ̂ − θ0)

1√
NKt

∑
j:kj∈K εt,kj ,τ∗


+ op(1), (69)

where

ΠT =

(
01×(t−1)p −

∫
K

1

ψt,τ (k)
∇Sκ(k, τ,St, θ)

′dk 01×(T−t+1)p −
√
Tςt

∫
K

1

ψt,τ (k)
∇θκ(k, τ,St, θ)

′dk 1

)
.

Next, using the Taylor series expansion in (57) and the consistency of {Ŝt}t=1,...,T and θ̂, we get,

1√
NKt

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝt, θ̂)
)

= ΠT

(
H−1
T 0pT+q×1

01×pT+q 1

)(
ζ{Nt}t=1,...,T

1√
NKt

∑
j:kj∈K εt,kj ,τ

∗

)
+ op(1), (70)

where we denote

ζ{Nt}t=1,...,T
=


1√
N1

∑N1
j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)

...
1√
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)√∑T

t=1 Nt
T

∑T
t=1

1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 .

Then, upon following exactly the same steps as in the proof of Lemma 1, we obtain,(
ζ{Nt}t=1,...,T

1√
NKt

∑
j:kj∈K εt,kj ,τ∗

)
L−s−→ ZT , (71)

where ZT , defined on an extension of the original probability space, is F (0)
T -Gaussian with a F (0)

T -
conditional covariance matrix given by

(
ΩT Υ1,T

Υ′1,T Υ2,T

)
, Υ1,T =


0(t−1)p×1

1√∫
K

1
ψt,τ (k)

dk

∫
K

1
ψt,τ (k)φt,k,τ∇Sκ(k, τ,St, θ0)dk

0(T−t+1)p×1
1√
Tςt

1√∫
K

1
ψt,τ (k)

dk

∫
K

1
ψt,τ (k)φt,k,τ∇θκ(k, τ,St, θ0)dk

 ,
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Υ2,T =
1∫

K
1

ψt,τ (k)dk

∫
K

1

ψt,τ (k)
φt,k,τdk.

Then, using the same techniques as in the proof for consistency of Ω̂T (see (58)-(63) above), we can

show that, 1
NKt

Π̂′T Ξ̂T Π̂T
P−→ Π′T ΞT ΠT , where ΞT is defined exactly as Ξ̂T , but with each matrix

replaced by its analogue matrix without the hat. Now, using the definition of stable convergence,
we obtain the requisite limit result in (19). �

9.2.10 Proof of Corollary 2

The proof follows from an extension of Lemma 1 and Theorem 2 for two panels with disjoint time
intervals. �

9.2.11 Proof of Corollary 3

By Lemma 3, we have that { 1√
Nt

(
Ŝt − St

)
}t=1,...,T and

√
kn{V̂ −,nt −Vt}t=1,...,T are, conditionally on

FT , asymptotically independent and normally distributed. Since the limit results of Lemma 3 hold
stably with respect to FT , and from Theorem 2, the corresponding part of the matrix Ĥ−1

T Ω̂T (Ĥ−1
T )′

provides a consistent estimator for the asymptotic variance of { 1√
Nt

(
Ŝ1 − S1

)
}t=1,...,T , then by

applying the Delta method (recall that ξ1 is continuously differentiable), we obtain the limit result
of the Corollary. �
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