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Abstract
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its components) and introduce a new tail factor. This tail factor has no incremental predictive
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predicting future market equity and variance risk premia. Our findings suggest a wide wedge
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1 Introduction

Equity markets are subject to pronounced time-variation in volatility as well as abrupt shifts,

or jumps. Moreover, these risk features are related in intricate ways, inducing a complex equity

return dynamics. Hence, the markets are incomplete and derivative securities, written on the equity

index, are non-redundant assets. This partially rationalizes the rapid expansion in the trading of

contracts offering distinct exposures to volatility and jump risks. From an economic perspective,

it suggests that derivatives data contain important information regarding the risk and risk pricing

of the underlying asset. Indeed, recent evidence, exploiting parametric models, e.g., Christoffersen

et al. (2012) and Santa-Clara and Yan (2010), or nonparametric techniques, e.g., Bollerslev and

Todorov (2011), finds the pricing of jump risk, implied by option data, to account for a significant

fraction of the equity risk premium.

Standard no-arbitrage and equilibrium-based asset pricing models imply a tight relationship

between the dynamics of the options and the underlying asset. This arises from the assumptions

concerning the pricing of risk in the no-arbitrage setting and the endogenous pricing kernels implied

by the equilibrium models. A prominent example is the illustrative double-jump model of Duffie

et al. (2000) in which the return volatility itself follows an affine jump diffusion. In this context,

the entire option surface is governed by the evolution of market volatility, i.e., the dynamics of all

options is driven by a single latent Markov (volatility) process.

Recent empirical evidence reveals, however, that the dynamics of the option surface is far more

complex. For example, the term structure of the volatility index, VIX, shifts over time in a manner

that is incompatible with the surface being driven by a single factor, see, e.g., Johnson (2012).

Likewise, Bates (2000) documents that a two-factor stochastic volatility model for the risk-neutral

market dynamics provides a significant improvement over a one-factor version. Moreover, Bollerslev

and Todorov (2011) find that even the short-term option dynamics cannot be captured adequately

by a single factor as the risk-neutral tails display independent variation relative to market volatility,

thus driving a wedge between the dynamics of the option surface and the underlying asset prices.

The objective of the current paper is to characterize the risk premia, implied by the large

panel of S&P 500 index options, and its relation with the aggregate market risks in the economy.

As discussed in Andersen et al. (2013), the option panel contains rich information both for the

evolution of volatility and jump risks and their pricing. Consequently, we let the option data speak

for themselves in determining the risk premium dynamics and discriminating among alternative

hypotheses regarding the source of variation in risk as well as risk pricing.

The standard no-arbitrage approach starts by estimating a parametric model for the evolution of
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the underlying asset price. Risk premia are then introduced through a pricing kernel which implies

that risk compensation is obtained through parameter shifts. This ensures, conveniently, that

the risk-neutral dynamics remains within the same parametric class entertained for the statistical

measure. However, this approach tends to tie the equity market and option surface dynamics closely

together. In particular, the equity risk premia are typically linear in volatility. In contrast, we find

the options to display risk price variation that is largely unrelated to, and effectively unidentifiable

from, the underlying asset prices alone.

This motivates our “reverse” approach of directly estimating a parametric model for the risk-

neutral dynamics exclusively from option data along with no-arbitrage restrictions based on non-

parametric model-free volatility measures constructed from high-frequency data on the underlying

asset. In this manner, we avoid letting a (possibly misspecified) parametric structure for the P-

dynamics impact the identification of option risk premia. Our goal is to synthesize the option

surface dynamics in a low-dimensional state vector without imposing ad hoc restrictions based on

the actual return dynamics, and then proceed to explore the risk premia dynamics by combining

the extracted state vector with high- and low-frequency data on the equity index.

Following Andersen et al. (2013), we specify a general parametric model for the risk-neutral

return dynamics that allows for a separate left tail jump factor to impact the volatility surface.

Simultaneously, we include two distinct volatility factors and accommodate co-jumps between re-

turns and volatility as well as return asymmetries induced by (negative) correlation between both

diffusive and jump innovations. Moreover, we explore both Gaussian and double-exponential spec-

ifications for the jump distributions. As such, we incorporate all major features stressed in prior

empirical option pricing studies and allow for various novel features. In particular, we model the

tail factor as purely jump driven, with one component jointly governed by the volatility jumps

while another is independent of spot volatility. This feature allows the jump intensity to escalate

– through so-called cross-excitation of the jumps – in periods of crises when price and volatility

jumps are prevalent, thus amplifying the response of the jump intensity to major (negative) mar-

ket shocks. The extended model remains within the popular class of affine jump-diffusion models

of Duffie et al. (2000) and exemplifies the flexibility of such models for generating intricate, yet

analytically tractable, dynamic interactions between volatility and jump risks.

Of course, any tractable and parsimonious parametric model is bound to suffer from some

degree of misspecification. What is crucial for our analysis, however, is to avoid systematic biases

in representing the information embedded in the option panel. We do this by allowing for a flexible

state vector driving different components of the conditional risk-neutral return distribution. Most

2



importantly, by introducing the left tail factor, we capture systematic variation in the corresponding

part of the option surface which is missed by traditional model specifications. Thus, one can view

the time series realizations of our novel tail factor as a succinct quantification of dynamic features

not accommodated by existing parametric asset pricing models.

Relative to Andersen et al. (2013), the system is generalized to allow the left tail factor to enter

directly into the spot volatility process. In addition, all three state variables may impact the jump

intensities. Consequently, we can explicitly test for the presence of the tail factor in volatility,

and we can gauge the significance of the different state variables in driving separately the positive

and negative jump intensities. Inference for the general model is feasible through the approach

developed in Andersen et al. (2013). However, we modify the criterion function by including a term

minimizing, not the squared, but the relative squared option pricing error across the sample. This

reduces the weight assigned to turbulent periods where the bid-ask spreads increase sharply.

The estimation of the general system establishes that the left tail factor is an insignificant

contributor to spot volatility, even if it is correlated with the level of volatility. Moreover, it has

no presence in the right jump tail, while the left jump intensity is exclusively governed by the

tail factor and the more volatile and less persistent of the volatility components. Overall, the tail

factor improves the characterization of the option surface dynamics very significantly, both in- and

out-of-sample. In particular, the new model no longer systematically undervalues out-of-the-money

put options following crises. Given the much improved fit to the option surface, our extended model

provides a more suitable basis for studying the dynamics of the market risk premia.

Methodologically, the presence of the separately evolving tail factor implies that part of the risk

premium dynamics cannot be captured by the volatility state variables driving the underlying asset

price dynamics. This suggests that the tail factor may have predictive power for risk premia over

and above spot volatility. This is, indeed, what we find. Our tail factor is important for forecasting

the variance risk premium in conjunction with one of the volatility components. In addition, the

tail factor is significant in predicting excess market returns for horizons up to one year, while the

volatility factors are insignificant. These findings rationalize why the variance risk premium is a

superior return predictor relative to volatility itself, as documented in Bollerslev et al. (2009). The

key is the presence of a separate factor driving the left jump tail of the risk-neutral distribution.

At the same time, the tail factor provides substantially better return forecasts than the variance

risk premium, or any other standard return predictor, over our sample.

Importantly, while the new tail factor has predictive power for risk premia, it contains no incre-

mental information regarding the future evolution of volatility and jump risks for the underlying
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asset relative to the traditional volatility factors. Hence, our findings indicate that option markets

embody critical information about the market risk premia and its dynamics which is essentially

unidentifiable from stock market data alone. Moreover, the option surface dynamics contains in-

formation that can improve the modeling and forecasting of future volatility and jump risks, but

such applications necessitate an initial untangling of the components in the risk premia that are not

part of the volatility process. Overall, our empirical results suggest that there is a wedge between

the stochastic evolution of risks in the economy and their pricing, with the latter typically having

a far more persistent response to (negative) tail events than the former.

Our finding of a substantial wedge between the dynamics of the option and stock markets

presents a challenge for structural asset pricing models. Specifically, the standard exponentially-

affine equilibrium models with a representative agent equipped with Epstein-Zin preferences imply

that the ratio of the risk-neutral and statistical jump tails is constant. On the contrary, the new

factor, extracted from the option data, drives the risk-neutral left jump tail but has no discernable

impact on the statistical jump tail. We conjecture that this wider gap between fundamentals

and asset prices may be accounted for through an extension of the preferences via some form for

time-varying risk aversion and/or ambiguity aversion towards extreme downside risk.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 presents

our three-factor model which, apart from the modeling of the jump distributions, encompasses most

existing models in the empirical literature. Section 4 introduces the estimation methodology and

discusses the parameter estimates. Section 5 explores model fit and presents different robustness

checks. This analysis brings out some of the mechanisms behind the improved fit of our model.

Section 6 is dedicated to an out-of-sample analysis. In Section 7 we exploit the estimation results

to study the risk premium dynamics and its implication for return and variance predictability.

Our findings are contrasted to corresponding predictability results implied by popular structural

equilibrium models. Section 8 concludes. Details on various aspects of the analysis are collected in

an Appendix. A number of additional robustness checks and further details on the estimation are

provided in a Supplementary Appendix.

2 Data and Preliminary Analysis

We use European style S&P 500 equity-index (SPX) options traded at the CBOE. We exploit the

closing bid and ask prices reported by OptionMetrics, applying standard filters and discarding all

in-the-money options, options with time-to-maturity of less than 7 days, as well as options with zero

bid prices. For all remaining options, we compute the mid bid-ask Black-Scholes implied volatility
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(IV). The data spans January 1, 1996–April 23, 2013. It is further divided into an in-sample

period covering January 1, 1996–July 21, 2010, and an out-of-sample period consisting of July 22,

2010–April 23, 2013. Following earlier empirical work, e.g., Bates (2000) and Christoffersen et al.

(2009), we sample every Wednesday.1 The in-sample period includes 760 trading days, and the

estimation is based on an average of 234 bid-ask quotes per day. The out-of-sample period contains

142 trading days and features a much higher number of active quotes at any point in time, so we

exploit an average of 708 option contracts daily from this sample. The nonparametric estimate of

volatility used for penalizing the objective function below is constructed from one-minute data on

the S&P 500 futures covering the time span of the options. The same data are used to construct

measures of volatility and jump risks for the predictive regressions in Section 7. Finally, we employ

the returns on the SPY ETF traded on the NYSE, which tracks the S&P 500 index portfolio, and

the 3-month T-bill rate to proxy for the risk-free rate, when implementing these regressions.

2.1 The Option Panel

We denote European-style out-of-the-money (OTM) option prices for the asset X at time t by

Ot,k,τ . Assuming frictionless trading in the options market and denoting with Q the risk-neutral

measure, the option prices at time t are given as,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(2.1)

where τ is the tenor of the option, K is the strike price, Ft,t+τ is the futures price for the underlying

asset at time t referring to date t + τ , for τ > 0, k = ln(K/Ft,t+τ ) is the log-moneyness, and rt is

the instantaneous risk-free interest rate. Finally, we denote the annualized Black-Scholes implied

volatility corresponding to the option price Ot,k,τ by κt,k,τ . This merely represents an alternative

notational convention, as the Black-Scholes implied volatility is a strictly monotone transformation

of the ratio
ert,t+τOt,k,τ

Ft,t+τ
, where rt,t+τ denotes the risk-free rate over the period [t, t+ τ ].

The empirical work explicitly accounts for measurement error in the option prices. We denote

the average of the bid and ask quotes (expressed in Black-Scholes implied volatility units) by κt,k,τ ,

and view this as a noisy observation of underlying value. To the extent the measurement errors

are not strongly correlated across a large fraction of the surface, we improve the efficiency of the

inference by incorporating the full option cross-section in our estimation and testing procedures,

effectively averaging out idiosyncratic observation errors. The size of the spread varies over time

and is positively correlated with the volatility level. In addition, there are systematic differences

1Due to extreme violations of no-arbitrage-conditions, we replaced October 8, 2008, with October 6, 2008.

5



in the relative spread across moneyness. For example, the spread is about 8% of the mid-quote for

deep OTM puts, on average, implying that a typical implied volatility reading of 40% is associated

with bid and ask quotes of 38.4% and 41.6%. Similarly, for an IV of 18% for at-the-money (ATM)

options, the quotes are generally around 17.6%-18.4%, while a typical set of quotes for far OTM

calls are 18.8%-21.2% for a mid-point value of 20%.

The options underlying the IV surface are highly heterogeneous in terms of moneyness and

tenor across time. To facilitate comparison, we create a uniform set of regions based on the option

characteristics. Specifically, we define the volatility-adjusted moneyness, m, at time t for tenor τ ,

by standardizing the log-moneyness with the ATM IV,

m =
ln(K/Ft,t+τ )

κt,0,τ ·
√
τ
.

Table 1 shows how the observations in our sample are distributed across the option surface. The

four regions of moneyness represent deep OTM put options, OTM put options, ATM options and

OTM call options, while the two categories for time-to-maturity provide a rough split into short

versus long dated options. Not surprisingly, there is particularly good coverage for ATM options,

which represent over 44% of the in-sample observations. The quotes for the OTM call options are

somewhat limited and amount to almost 16% of the total options quotes, roughly matching the

proportion of deep OTM put options.

1996:1-2010:7 2010:7-2013:4

τ <= 60 τ > 60 τ <= 60 τ > 60

m ≤ −3 10.36 5.23 18.46 8.62

−3 < m ≤ −1 12.34 11.89 12.31 11.03

−1 < m ≤ 1 19.58 24.77 14.58 17.90

m > 1 8.71 7.13 10.34 6.76

All 50.98 49.02 55.69 44.31

Table 1: Relative Number of Contracts. We report the percentage of option contracts that,
on average, fall within the different combinations of moneyness and tenor for the indicated sample.

In the out-of-sample period, the daily number of active quotes is much higher, especially for

deep OTM options. Since we would like to compare model performance across the two samples, we

have truncated the set of OTM options included in the recent period to lie within the boundaries

of -7.1 for the puts and 2.4 for the calls. These cut-offs correspond to the average minimum and
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maximum moneyness of the option quotes for our in-sample period. This standardization limits the

heterogeneity across the samples. The relative proportion of OTM calls and puts is stable, but we

observe a non-trivial shift from ATM to deep OTM put options, with the former now representing

about 32.5% and the latter 27% of the overall observations. To the extent variation in the pricing

of deep OTM put option prices is harder to accommodate than for ATM prices, this composition

effect will – all else equal – imply a worse out-of-sample fit than would otherwise be observed.

2.2 The Option Surface Characteristics

The option IV surface displays a highly persistent and nonlinear dynamics which is difficult to

convey effectively through a few summary measures. We provide a couple of alternative depictions

that highlight different aspects of the dynamics. The first approach emphasizes the evolution

of separate option surface characteristics, as defined below. The second approach consists of a

standard principal components analysis of the IV surface.

The option characteristics are plotted on Figure 1. The level captures the average IV for ATM

short-dated options, the term structure reflects the difference between the IV of long and short

maturity ATM options, the skew measures the IV gap between short-dated OTM put and OTM

call options, and, finally, the skew term structure is the difference between the skew computed

from long- and short-dated options. The exact definitions are provided in the caption to Figure 1.

Note, in particular, that we define the short- and long-term skew symmetrically with respect to the

degree of volatility-adjusted moneyness for the left and right tail, as advocated by Bates (1991).

The IV level displays occasional erratic spikes to the upside, but also displays strong persistence,

as expected for a series reflecting the general level of volatility. Inspecting the remaining three

panels, we notice a considerable degree of commonality. Every major spike in the IV level is visible

in the other characteristics.

Table 2 supplements Figure 1 with summary statistics for the IV surface characteristics. The

correlation matrix confirms the strong covariation between the IV level and the remaining features.

Moving to the other characteristics, we see that the IV term structure is moderately positive, apart

from episodic large negative outliers. The skew is consistently positive, exceeding 5% over the vast

majority of the sample and averaging 10%. The skew also displays pronounced persistence and

is particularly elevated when markets are turbulent. Finally, the skew term structure is mostly

positive, but spikes downward during steep market declines, indicating a dramatic flattening of the

“smirk” at the onset of market crises. This feature accounts for a great deal of variation in the

surface, as the skew is negatively correlated with the skew term structure. Specifically, when the
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Figure 1: Implied Volatility (IV) Surface Characteristics. Top left Panel: The IV Level is
the average IV for short ATM options. Top Right Panel: The IV Term Structure is the difference in
IV between long- and short-dated ATM options. Bottom left Panel: The IV Skew is the difference
between the IV of short-dated OTM put and OTM call options. Bottom right Panel: The Skew
Term Structure is the difference between the long- and short-dated skew, with the long skew defined
analogously to the short skew. Short-dated options are those with 0.1 years to maturity and long-
dated options have 0.8 year to maturity. ATM options have volatility-adjusted moneyness m equal
to zero; OTM put options have m = −2; OTM call options have m = 2.
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skew steepens drastically, the effect is much less pronounced at longer maturities. Hence, this type

of excitement of the short left part of the IV surface must be associated with shocks to volatility

and jump intensities of moderate persistence.

While there is a clear dependence between the option characteristics, both Figure 1 and Table

2 suggest that the dynamics of the IV level cannot account for the overall surface dynamics. For

example, the 1997 and 1998 crises have a much more pronounced and persistent effect on the

skew than the IV level. Likewise, the aftermath of the 1998 Russian crisis is associated with a

historically high upward-sloping term structure, while the IV level is close to its historical mean.

In contrast, other periods with similar IV levels feature much flatter IV term structures. Hence,

we need a multi-factor model to capture the dynamic dependencies between the option surface

characteristics, as also concluded in Christoffersen et al. (2009).

Summary statistics Correlation Matrix

Mean Median Std Level TS Skew Skew TS

Level 0.19 0.18 0.08 1.00 -0.69 0.89 -0.24

TS 0.01 0.02 0.03 - 1.00 -0.57 0.69

Skew 0.10 0.09 0.05 - - 1.00 -0.31

Skew TS 0.04 0.04 0.03 - - - 1.00

Table 2: Summary Statistics and Correlation Matrix for Option Characteristics. The
statistics for the implied volatility Level, Term Structure (TS), Skew, and Skew Term Structure
are computed over the in-sample period, January 1996–July 2010.

Turning to the principal component (PC) analysis, Figure 2 depicts the in-sample realizations

of the first four PCs of the IV surface. It is evident that the first PC is closely related to the IV

level, while the second PC displays commonality with the IV term structure. However, the last

two PCs appear largely unrelated to the characteristics depicted in Figure 1. The first PC captures

about 96.4% of the total variation, while the following PCs account for, respectively, 2.1%, 0.7%

and 0.3%. Clearly, there is a dominant level type effect, but this “factor” also accounts for a great

deal of variation in the skew, term structure and skew term structure, leaving, relatively speaking,

only minor residual variation to explain for the remaining PCs.

To further explore how the PCs interact with the IV surface characteristics, Table 3 reports

on the in-sample regression of characteristics on PCs. The table confirms the strong association
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Figure 2: Principal Components of the Implied Volatility Surface. The panels depict the
first four principal components extracted from the S&P 500 IV surface from January 1996 to July
2010. On each day we interpolate the IV surface to generate standardized options with the same
volatility-adjusted moneyness, m, and tenor across the sample. Specifically, we obtain option prices
for m in the set {−4,−3,−2,−1,−0, 1, 2} and tenor equal to three values, {0.1, 0.3, 0.8} (in years).
This produces a total of 21 synthesized option contracts per day. For each panel, we also report
the percentage of the overall variation explained by the given principal component.
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of the first PC with the IV level, featuring a t-statistic beyond 300. For this PC, we also obtain

the negative association with the IV and skew term structures and positive relation with the skew,

matching the correlation patterns for the IV level in Table 2. In addition, we find the second PC to

be associated with the IV term structure, corroborating the visual impression from Figure 2. The

third PC is associated with the skew as well as the skew term structure and level. However, the

skew is much more strongly associated with the first PC so, effectively, the third PC captures only

residual skew variation that is largely orthogonal to the level. Finally, the fourth PC has no clear

association with any of the characteristics. In particular, the variation in the skew term structure

is effectively accounted for through the first two or three PCs.

Level TS Skew Skew TS

PC1 0.19 (343.79) -0.04 (-60.84) 0.11 (133.05) -0.01 (-6.42)

PC2 -0.24 (-63.65) 0.40 (87.14) -0.05 (-9.19) 0.41 (41.04)

PC3 -0.14 (-21.49) -0.08 (-10.48) 0.45 (43.81) -0.21 (-11.82)

PC4 -0.05 (-5.07) -0.08 (-6.88) -0.36 (-23.36) 0.03 (1.06)

R2 0.99 0.94 0.96 0.71

AC(1) 0.66 0.60 0.32 0.44

AC(2:10) 0.39 0.26 0.21 0.26

AC(11:20) 0.27 0.16 0.12 0.16

Table 3: Relating Option Characteristics and Principal Components. We report the
coefficients with t-statistics (in parentheses) and the R2 from the linear regression of different
options characteristics (level, term structure, slope, and slope term structure) on the first four
principal components extracted from the S&P 500 implied volatility surface from January 1996
to July 2010. We also report the first sample autocorrelation coefficient and the average sample
autocorrelation coefficient over two-to-ten and eleven-to-twenty lags of the regression residuals.

These observations have a number of implications. First, there is no simple mapping between

PCs and characteristics. The latter are intrinsically interconnected and covary strongly, so factors

associated with the PCs will generally exert a significant joint impact on multiple characteristics.

Second, the difficulty of separating the forces driving the individual characteristics is, of course,

a general feature of systems with pronounced nonlinearities. We see further evidence of potential

nonlinearity in the strong serial correlation in the residuals of the regressions in Table 3. The first

order autocorrelation coefficient is very large across all the characteristics and die out extremely

slowly, suggesting highly persistent deviations from the linear approximation associated with the
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regression analysis. Third, the persistent residuals may be due to missing factors and, indeed, we

find standard tests for the number of factors, see, e.g., Bai and Ng (2002), to indicate 7 to 8 factors.

However, given the nonlinear association between option IV and (latent) factors, this likely reflects

the failure of the linear approximation rather than the true number of underlying (linear) factors.2

In summary, accounting for a given model’s ability to track the IV surface dynamics provides

an intuitive way to highlight the implications of model misspecification. Indeed, we later illustrate

the quality of fit by comparing the model-implied and observed IV surface characteristics. On the

other hand, there is no direct association between the inability to fit the dynamics of a specific set

of characteristics and the lack of a given factor, because the factors’ impact on the option IVs are

highly nonlinear and create correlated dynamic interactions across the characteristics.

3 Parametric Modeling of the Option Panel

We turn next to parametric modeling of the options with the goal of succinctly capturing the

IV surface dynamics via a low-dimensional state vector. We adopt a general-to-specific approach.

The proposed model subsequently serves as the basis for our analysis of the equity and variance

risk premia. The initial decision concerns the number of latent state variables to include. The

vast majority of empirical option pricing studies employs a single stochastic volatility factor, but

the literature on estimating the return dynamics under the physical measure as well as a few

option pricing studies, e.g., Bates (2000), Christoffersen et al. (2009), Christoffersen et al. (2012),

and Andersen et al. (2013), point to a minimum of two factors. This is also consistent with

our descriptive analysis of the IV surface in Section 2. Hence, we follow Andersen et al. (2013) in

proposing a general three-factor model which, apart from the specification of the jump distribution,

embeds most existing continuous-time models in the literature as special cases. We document below

that exponentially distributed price jumps provide a superior fit relative to the more commonly

adopted Gaussian specification, justifying the alternative representation in our benchmark model.

Our three-factor model for the risk-neutral equity index dynamics is given by the following

extension of the representation in Andersen et al. (2013),

2For a simple illustration, we calibrated a one-factor Heston model and derived the sensitivity of the IV surface to
the volatility factor. For a given location in the surface, i.e., a given mildly OTM option, the sensitivity (derivative
of the option IV with respect to volatility) will typically vary dramatically with the level of volatility. Thus, strongly
correlated approximation errors will arise from linearizing the dependence of the surface characteristics to factors, as
the true sensitivities fluctuate strongly over time. This illustration is provided in our Supplementary Appendix.
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dXt

Xt−
= (rt − δt) dt +

√
V1,t dW

Q
1,t +

√
V2,t dW

Q
2,t + η

√
Ut dW

Q
3,t +

∫
R2

(ex − 1) µ̃Q(dt, dx, dy),

dV1,t = κ1 (v1 − V1,t) dt + σ1

√
V1,t dB

Q
1,t + µ1

∫
R2

x2 1{x<0} µ(dt, dx, dy),

dV2,t = κ2 (v2 − V2,t) dt + σ2

√
V2,t dB

Q
2,t,

dUt = − κu Ut dt + µu

∫
R2

[
(1− ρu)x2 1{x<0} + ρu y

2
]
µ(dt, dx, dy),

(3.1)

where (WQ
1,t,W

Q
2,t,W

Q
3,t, B

Q
1,t, B

Q
2,t) is a five-dimensional Brownian motion with corr

(
WQ

1,t, B
Q
1,t

)
=

ρ1 and corr
(
WQ

2,t, B
Q
2,t

)
= ρ2, while the remaining Brownian motions are mutually independent.

In addition, µ is an integer-valued measure counting the jumps in the price, X, as well as the

state vector, (V1, V2, U). The corresponding (instantaneous) jump intensity, under the risk-neutral

measure, is dt⊗νQt (dx, dy). The difference µ̃Q(dt, dx, dy) = µ(dt, dx, dy)−dtνQt (dx, dy), constitutes

the associated martingale jump measure.

The jump specification involves two separate components, x and y. The former captures co-

jumps that occur simultaneously in the price, the first volatility factor, V1 , and, potentially, in

the U factor (if ρu < 1), while the y jumps represent independent shocks to the U factor.3 The

compensator characterizes the conditional jump distribution and is given by,

νQt (dx, dy)

dxdy
=


(
c−(t) · 1{x<0}λ−e

−λ−|x| + c+(t) · 1{x>0}λ+e
−λ+x

)
, if y = 0,

c−(t)λ−e
−λ−|y|, if x = 0 and y < 0.

The first term on the right hand side, referring to the x 6= 0, y = 0 case, reflects co-jumps

in price and volatility, while the second term, x = 0, y < 0, captures independent shocks to the

U factor. Hence, the individual (strictly positive) jumps in U are either independent from V1 or

proportional to the (simultaneous) jump in V1. Following Kou (2002), we model the price jumps

as exponentially distributed, with separate tail decay parameters, λ− and λ+, for negative and

positive jumps. Moreover, for parsimony, the independent shocks to the U factor is distributed

identically to the negative price jumps. Finally, the time-varying jump intensities are governed by

the c−(t) and c+(t) coefficients. These coefficients evolve as affine functions of the state vector,

c−(t) = c−0 + c−1 V1,t− + c−2 V2,t− + Ut−, c+(t) = c+0 + c+1 V1,t− + c+2 V2,t− + c+uUt− .

This representation involves a large set of parameters that can be hard to identify separately. At the

estimation stage, we eliminate those that are insignificant and have no discernible impact on model

fit. However, generality along this dimension is important, as the jump specification turns out to

be critical for a suitable representation of the IV surface dynamics. We note that for identification

3The latter can also generate a jump in return volatility if η > 0.
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purposes, we set the coefficient in front of U in c−(t) to unity, and hence the value of U directly

signifies its contribution to the negative jump intensity.4

Our three-factor model possesses a number of distinctive features. The factors (V1, V2, U) drive

both the diffusive volatility and the jump intensities. V1 and V2 are always present in the diffusive

volatility, as in traditional multi-factor volatility models, while U contributes to diffusive volatility

only if η > 0. In fact, the constrained model arising for η = 0 is of separate interest. It implies that

the factor U affects only the jump intensities, with no impact on diffusive volatility. Furthermore,

in an extension to existing option pricing models, we allow positive and negative jump intensities

to have different loadings on the latent factors. In particular, some factors affect only positive or

only negative jump intensities. Such flexibility in modeling the jump intensities is important given

the nonparametric evidence in Bollerslev and Todorov (2011).

The jump modeling also involves several novel features. First, the price jumps are exponentially

distributed. This is unlike most earlier studies which rely on Gaussian price jumps, following

Merton (1976).5 Next, the jumps in the factor V1 are linked deterministically to the price jumps,

with squared price jumps impacting the volatility dynamics in a manner reminiscent of discrete

GARCH models.6 For parsimony and ease of identification, we allow only the negative price jumps

to impact the volatility dynamics. Finally, U is driven in part by the squared negative price jumps

and in part by independent jumps, with the parameter ρu controlling the contribution of each

component in the dynamics of U . As such, the model accommodates both perfect dependence

(ρu = 0) and full independence (ρu = 1) between the jump risks of V1 and U . Moreover, these

state variables, governing critical features of the option surface dynamics, are related through the

time-variation in the jump intensity. Our specification allows for “cross-excitation” in which jumps

4The formal inference in Andersen et al. (2013) provides strong evidence for the presence of a separately evolving
left jump tail factor like U in the risk-neutral return dynamics, while it is unclear if U also directly impacts spot
volatility. As such, we let U enter the left jump intensity with a unitary coefficient. This resolves identification issues
that arise regarding the scale of U versus the loading coefficient for U in the jump intensity. It is analogous to the
imposition of a unitary coefficient for the volatility components in the return dynamics in equation (3.1).

5Bates (2012) studies the option pricing implications of models with exponential and Gaussian jumps. He finds
them to be broadly similar for short-maturity options that are not deep OTM.

6Our modeling of the volatility jumps, and their dependence with the price jumps, deviates from earlier empirical
option pricing studies, e.g., Duffie et al. (2000), who model volatility jumps as exponentially distributed. In our case,
they are the squares of exponentially distributed random variables, and hence much fatter tailed. This enhances the
reaction of volatility to large price shocks. Finally, our modeling implies a nonlinear deterministic link between price
and volatility jumps, unlike Duffie et al. (2000). Of course, there is overwhelming empirical support for GARCH like
dynamics in volatility, similar to the continuous time specification adopted here.
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in V1 enhance the probability of future jumps in U , and vice versa.7

Differences in the jump distributions aside, our model nests most existing models. For the

one-factor setting, with V2 and U absent, we recover the double-jump volatility model of Duffie

et al. (2000), estimated using options data by Broadie et al. (2007). In the two-factor setting, with

U absent and excluding volatility jumps, we obtain the Bates (2000) jump-diffusion, and further

ruling out price jumps leads to the two-factor diffusive model of Christoffersen et al. (2009). The

key difference in our model from existing work is the separation of the left jump intensity from the

volatility (and its components) and the right jump intensity (through the U factor).

We know of only two prior instances where this type of separation is contemplated. Santa-

Clara and Yan (2010) model jump intensity by a separate diffusive factor that can be correlated

with volatility, which itself follows a diffusion. Hence, the model does not include volatility jumps,

critical for fitting the option surface, as noted by Broadie et al. (2007) and further confirmed here.

Christoffersen et al. (2012) consider a discrete-time GARCH model with conditionally Gaussian and

non-Gaussian innovations (“jumps” of Merton type) where conditional volatility and jump intensity

are driven by past squared innovations. This model does not allow for closed-form solutions for

the option prices, complicating inference from the option surface. Our model differs from these

two papers along several dimensions crucial for the analysis of risk premia. First, we only model

the risk-neutral distribution and do not assume any structure under P. Thus, we do not import

information from the physical return dynamics (other than no-arbitrage restrictions). This is

critical for our subsequent findings regarding the drivers of risks and risk premia in Section 7.

Second, we separate the dynamics of the left and right jump intensities which is important for the

pricing of short maturity OTM puts and calls. Third, we adopt the double-exponential return jump

distribution, providing a superior fit to the short maturity OTM options. Fourth, our specification

involves cross-excitation in the jump and volatility dynamics, leading to improved characterization

of longer maturity options, particularly in the aftermath of volatile episodes in the sample.

In summary, the main departure from prior work stems from the inclusion of the new U factor.

Given the rather unconventional representation, we briefly discuss how this factor enhances the

features of the risk-neutral dynamics. It is best seen by focusing on a restricted model where we

eliminate U from the diffusive volatility, i.e., set η = 0, and further let ρu = 0, so that there is

7We stress that the model (3.1) still belongs to the affine family covered by Duffie et al. (2003) and, as shown in
Andersen et al. (2013), the following parameter constraints ensure covariance stationarity of the latent factors,

κ1 >
2c−1 µ1

λ2
−

, and κu >
2κ1µu

κ1λ2
− − 2c−1 µ1

, and κ2 < 0, and σ2
i ≤ 2κivi, i = 1, 2.
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no independent jump component driving U . In this scenario, there is no distinct source of risk

impacting U – it is driven solely by the squared negative price jumps. Nonetheless, U affects the

jump intensities, and hence the option surface, separately from V1. That is, to convey the current

state of the system, U must be included among the components of the state vector.8 In other

words, even if the source of risk in U is spanned by the jumps in X and V1, U is still necessary

for characterizing the conditional risk-neutral distribution of future log returns or predicting the

future evolution of the factors, even after controlling for the current values of V1 and V2. Of course,

the role of U only expands, if it is subject to independent shocks as well. In the empirical section

below, we detail how the U factor impacts the IV surface characteristics over time.

The model in equation (3.1) pertains to the risk-neutral dynamics of X. However, due to the

equivalence of Q and P, the assumed dynamics have implications for the dynamics of X under P as

well. In general, these implications are limited to those features of model (3.1) which hold almost

surely. They consist of the following. First, the spot diffusive variance is invariant to the change

of measure. In the model, this is given by

Vt = V1,t + V2,t + η2 Ut .

Second, regarding the jumps, the only property that applies almost surely is the identity of the

realized jumps in the returns and state variables. In particular,

∆V1,t = µ1(∆ log(X))2 1{∆ log(X)<0},

and, if ρu = 0, we also have,

∆Ut = (∆ log(X))2 1{∆ log(X)<0},

under both measures.

In most empirical option pricing applications, additional assumptions are invoked when changing

measure from P to Q. For example, it is commonly assumed that the model class is identical, and

affine, under both measures. This is convenient as affine models offer a great deal of tractability.

However, this approach severely restricts the dynamics of the risk premiums. In addition, such

“structure preserving transformations” (SPTs) impose auxiliary restrictions, extending to the model

parameters. In particular, in our affine setting, the SPT assumption implies that σ1, σ2, η, ρ1, ρ2,

ρu, µ1 and κ3 are identical under P and Q, while the remaining parameters may differ.

8This is a reflection of the fact that there is no direct association between the dimensionality of the sources of
risk and the dimension of the state vector required to characterize the conditional dynamics of the system. This
phenomenon arises naturally in continuous-time ARMA models, see, e.g., Brockwell (2001). It is also a well-known
feature of the so-called quadratic term structure models, see, e.g. Ahn et al. (2002) and Leippold and Wu (2002).
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Given the above discussion, it is clear that data on the underlying equity-index values can

be helpful in the estimation of the risk-neutral model. Below, we impose the pathwise (almost

sure) restriction regarding the spot variance in estimation. Given the difficulty in recovering spot

volatility jumps from high-frequency data – due both to estimation uncertainty and lack of overnight

observations – we do not impose restrictions regarding the pathwise (realized) price and volatility

jump relationship implied by our risk-neutral model. Finally, if one constrains the pricing of risk

through a SPT from P to Q, additional information from the P dynamics can be “imported” from

the underlying return data during estimation of the risk-neutral dynamics. This comes, however,

with the risk of severe model misspecification. As we document below, the option panel is very

informative about the risk-neutral dynamics, so we avoid auxiliary restrictions that may induce

model misspecification with unpredictable impact on our inference for the risk premia.

4 Estimation

4.1 Estimation Approach

The development of formal tools for parametric inference in the context of an option panel is

challenging. There are pronounced time series dependencies in the latent volatility components

and, potentially, the jump intensities. At the same time, sizeable bid-ask spreads influence the

observed prices and quotes for the options. These measurement errors are strongly heterogeneous

and correlated with the overall return variation. Finally, there are no-arbitrage constraints that,

one, at any point in time link the individual option prices across strikes, and, two, equate the spot

diffusive volatility for the underlying asset (imperfectly observable from high-frequency returns)

with the volatility implied by the contemporaneous state vector (also extracted with a degree of

statistical error) for every option cross-section. Consequently, we adapt the parametric estimation

and inference approach put forth in Andersen et al. (2013) that is designed to deal with this type

of environment. It exploits in-fill asymptotics in the option cross-section, i.e., it operates under the

assumption that, for a small set of maturities which may vary from day to day, option prices are

observed across a broad range of strikes with only small gaps between the exercise prices.

The approach provides consistent period-by-period estimates for the state vector along with

valid asymptotic inference for the state vector and model parameters as well as the fit to specific

regions of the IV surface on any given day. This is possible due only to the adoption of the in-fill

asymptotic scheme for the option cross-section.9 In practice, this reflects the actual structure of

9Alternative inference techniques can potentially generate unbiased estimates for the state vector realizations, de-
termining the values of the volatility components and jump intensities, but cannot achieve consistency, thus rendering
formal inference regarding the state vector and IV surface fit on a period-by-period basis infeasible.
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our panel. The option quotes are clustered closely in the strike range, while we use only weekly

observations of the option cross-section. Thus, the well-recognized advantages of inference via

“high-frequency” data apply naturally to the cross-section, not the time series, in our setting.

The wealth of information embedded in the option cross-section is, of course, well-recognized.

It is known to facilitate nonparametric extraction of the conditional risk-neutral density for the

underlying asset returns across the maturities available on a given day. Through the imposition

of a general parametric structure and inference procedure, we let the dynamic evolution of the

conditional densities speaks to the number of factors as well as the intertemporal variation in

volatility and jump intensities. Given the identified factors and model parameters, the individual

cross-section identifies the current state vector. In fact, theoretically, the entire system can be

identified and estimated consistently from a single cross-section. However, the identification from a

single option surface is weak. The use of a large number of surfaces, i.e., an option panel, allows the

variation in the state vector over time to assist in identifying the underlying structure governing

the option prices and also helps diversify the idiosyncratic measurement errors.10

We denote the parameter vector of model (3.1) by θ and the state vector at time t by Zt =

(V1,t V2,t Ut). Further, the model-implied Black-Scholes IV is given by κ(k, τ,Zt, θ) and the model-

implied diffusive spot variance by V (Zt , θ) = V1,t+V2,t+η2Ut. Letting n denote the (equidistant)

frequency by which we sample the high-frequency asset returns, our estimator takes the form,

(
{V̂ n1,t, V̂ n2,t, Ûnt }t=1,...,T , θ̂

n
)

= argmin
{Zt}t=1,...,T , θ∈Θ

T∑
t=1

{
Option Fitt + λ×Vol Fitt

V ATMt

}
, (4.1)

Option Fitt =
1

Nt

Nt∑
j=1

(
κt,kj ,τj − κ(kj , τj ,Zt, θ)

)2
, Vol Fitt =

(√
V̂

(n,mn)
t −

√
V (Zt , θ)

)2

,

where V̂
(n,mn)
t is a nonparametric estimator of the diffusive spot variance constructed from the

underlying intraday asset prices, as detailed in the Appendix, and V ATM
t is the squared short term

ATM Black-Scholes IV.11 Finally, λ is a tuning parameter which we set to 0.2.12

The estimator (4.1) minimizes the weighted mean squared error in fitting the panel of observed

option IVs, with a penalization term that reflects the deviation of the model-implied spot variance

10On the other hand, one year of option data – along with the high-frequency returns used to enforce the (statistical)
equality of spot volatility across the P to Q measures – usually suffices for reasonable identification.

11This measure is obtained for the shortest available maturity on day t and for the option closest to at-the-money,
with the associated forward rate deduced from put-call parity.

12In general, given the noise in the high-frequency spot volatility estimate, we should pick a relatively low value
for λ. In the Supplementary Appendix, we report further evidence corresponding to different values of λ.
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from a model-free spot variance estimate. The presence of the volatility fit in the objective function

not only facilitates the incorporation (statistically) of the no-arbitrage constraint, but also serves as

a regularization device for the estimation by penalizing parameter values that imply “unreasonable”

volatility levels. Moreover, the standardization by V ATM
t implies we weigh observations on high

and low volatility days differently. This improves efficiency as the measurement errors in the option

prices and the estimation errors for the state vector generally rise with market volatility.13

The estimator (4.1) is derived via joint optimization over parameters and state vector real-

izations. This high-dimensional problem is tractable due to the particular form of our objective

function: the terms corresponding to a given observation time depend on the state vector only

through the option prices and nonparametric spot volatility estimate for that particular day. Thus,

given a candidate θ vector, we trivially obtain the corresponding state vector realization. Hence,

we concentrate, or profile, the state vector and optimize over the model parameters via MCMC

based estimation, using a chain of length 10, 000, following Chernozhukov and Hong (2004).

4.2 Estimation Results

As noted in Section 3, we follow a general-to-specific approach to estimation. Consequently, model

(3.1) is very richly parameterized, particularly regarding the specification of the jump intensities.

The idea is to allow for full generality and then eliminate the insignificant features in the model.

For brevity, we defer the estimation results for the general case to the Supplementary Appendix.

It turns out that the jump loading parameters, c−0 , c−2 , c+
u , are statistically insignificant, and the

same applies for η. Hence, our more parsimonious model constrains these parameters to zero. For

the negative jump intensity coefficients, this is readily interpreted. It implies that the frequency of

jumps are governed exclusively by the level of the two factors, V1 and U . The η = 0 and c+
u = 0

restrictions are more fundamental. First, η = 0 implies that U is a pure jump intensity factor

which does not contribute directly to the diffusive volatility. This represents a major departure

from existing continuous-time models, which are built from stochastic volatility factors.14 Second,

the elimination of c+
u means that U is constrained to only affect the negative jumps. Again,

this is an important departure from existing asset pricing models. These features are precluded

in the typical approach to empirical option pricing, because the latter is built around multi-factor

volatility models with a single (Gaussian) price jump component. These models rule out pure jump

dynamic factors and do not allow for factors to impact the negative and positive jump intensities

13Our specific weighting scheme stems from an analysis of the option pricing errors, showing that their volatility
is roughly linear in the level of market volatility.

14Instead, our specification shares critical features with the discrete-time GARCH type model of Christoffersen
et al. (2012).
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differentially. In our case, by letting the option panel determine the fit, we find the risk-neutral

dynamics to involve a non-volatility factor that operates only on the negative jump intensity.

The estimation results for the general model (3.1) further reveal that the parameters controlling

the risk-neutral law of U are not estimated very precisely. This result is largely due to the fact

that the persistence of U is rather extreme with a half-life of approximately 8 years. With such

a low degree of mean reversion, the parameters κu, µu and ρu cannot be recovered precisely as

they play an insignificant role in determining the values of options with maturities of up to one

year. A precise estimation of κu, µu and ρu requires far longer-dated options than available in

our sample. This issue also arises in the analogous case of recovering the risk-neutral volatility

parameters from options data if the volatility is very persistent, see, e.g., Broadie et al. (2007)

and the references therein. Nonetheless, we have compelling evidence for the presence of U in the

risk-neutral dynamics. First, note that the hypothesis that U is absent is a joint hypothesis that

µu = 0 as well as that the vector {Ut} is not present, and such a hypothesis is strongly rejected by

the data.15 Second, a constrained model in which U is absent performs significantly worse, both

in- and out-of-sample, as documented in the Supplementary Appendix. Finally, even though the

individual parameters κu, µu and ρu are poorly identified, the realizations of the tail factor U are

well identified. As discussed previously, the latter is crucial for our analysis of the risk-premium

dynamics, as U represents the component of the left tail dynamics that is not tied to volatility.

The case of ρu is particularly interesting as this parameter is not endowed with a natural

boundary condition that eliminates an associated feature from the model. Instead, it indicates the

relative jump size in U stemming from (squared) co-price jumps versus a separate source of jumps.

As such, the parameter is restricted to the [0, 1] interval, with the boundary values indicating

either that U does not co-jump with the price process (ρu = 0) or that U is not subject to separate

jump shocks (ρu = 1). Our estimation results suggest that ρu is sufficiently poorly identified that,

at standard significance levels, we cannot rule out any value in [0, 1]. However, as we document

below, ρu turns out to be largely irrelevant for the extracted state vector realization throughout

the sample.16 Thus, we only constrain ρu to fall within the unit interval.

We now turn to the results for the restricted model obtained after zeroing out c−0 , c−2 , c+
u and

η.17 Table 4 reports the point estimates and associated standard errors. As expected, the volatility

factors differ significantly in their degree of mean reversion, with V2 having a half life of about 5

15More formally, under the null that µu = 0, the factor realization {Ut} as well as the parameters κu and ρu are not
identified, and hence testing such a hypothesis using a standard t-test (or Wald test) is invalid, see Andrews (2001).

16Specifically, we verify that imposing ρu = 0 or ρu = 1 has no material impact on any of our qualitative conclusions.
17A standard Wald test for the four parameters jointly taking the value of zero generates a p-value of 27.25%,

confirming that we cannot reject this restriction at any standard level of significance.

20



months versus 3 weeks for V1. V2 is also generally larger and has a lower volatility-of-volatility

coefficient than V1, implying we have a smaller and rapidly moving volatility factor and a larger,

less volatile, but more persistent second volatility factor. Both display a strong negative association

with the return innovations, generating an overall correlation between return and spot volatility

innovations of around -0.95.18

Table 4: Estimation Results

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.959 0.093 v2 0.010 0.000 c+
0 0.372 0.029

v1 0.003 0.000 κ2 1.864 0.103 c−1 111.061 4.446

κ1 10.989 0.193 σ2 0.170 0.006 c+
1 25.855 4.971

σ1 0.249 0.028 µu 7.124 24.096 c+
2 81.719 6.947

µ1 12.158 0.247 κu 0.0877 0.123 λ− 25.944 0.196

ρ2 −0.979 0.033 ρu 0.513 4.404 λ+ 36.620 0.857

Note: Parameter Estimates of Model (3.1). The model is estimated using S&P 500 equity-index
option data sampled every Wednesday over the period January 1996-July 2010 and the parameters η, c+u ,
c−0 and c−2 are all set to zero. Parameters are reported in annualized return units.

Turning to the left tail factor, we find U to have an estimated half-life of 8 years under the

risk-neutral measure, thus far exceeding those of the volatility factors. Hence, this pure jump factor

has the potential to impact the option prices substantially across both short and long maturities.

Comparing our results with option-based estimation of multi-factor volatility models, reported in

Bates (2000) and Christoffersen et al. (2009), we find that the mean-reversion of the volatility in

our model is far stronger than reported in the above-mentioned papers. This is “compensated” by

the presence of the very persistent U factor. We recall that in the traditional volatility models,

the left and right jump intensities are proportional to the volatility factors. In our case, through

the introduction of U , we drive a wedge between volatility and jump intensity and the option data

identifies the latter as the more persistent one. Intuitively, since U controls the left jump tails, this

result stems from the relative expensiveness of the OTM long maturity puts across our sample, i.e.,

the comparatively slow flattening out of the IV skew at long maturities.

18The value of this correlation coefficient varies with the relative size of the two factors. The reported value is
obtained for the spot variances equaling their unconditional time series means. In light of the reported standard
errors, this strongly negative coefficient is consistent with recent evidence exploiting an entirely different approach
based on joint high-frequency data for volatility indices and underlying asset returns, see, e.g., Andersen et al. (2014).
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5 Diagnostic of the Option Panel Fit and Model Performance

In this section, we explore whether model (3.1) provides a satisfactory characterization of the option

surface dynamics. For this purpose, we first consider a sequence of more standard specifications

as competitor models. They range from an extended version of the one-factor double-jump model

of Duffie et al. (2000) to a model including three stochastic volatility factors. The one-factor

model (1FGSJ) features square-root volatility, correlation between Gaussian return and exponen-

tial volatility co-jumps, and has a time-varying jump intensity given as an affine function of the

volatility state. To allow additional flexibility, we also consider the two (stochastic volatility) factor

version of the double-jump model, and we explore both a Gaussian (2FGSJ model) and a double-

exponential (2FESJ model) jump distribution for the return jumps. Finally, we expand the most

successful in-sample two-factor model into a three-factor return-volatility co-jump model (3FESJ-

V) by introducing a third square-root volatility factor, thus expanding the number of factors in

the traditional manner. The exact specifications for each of the alternative models and the cor-

responding in-sample parameter estimates and RMSE fit to the option panel are provided in the

Supplementary Appendix. Generally speaking, they represent more elaborate specifications than

estimated in the literature, and thus afford an improved in-sample fit to the option surface relative

to many of the models considered in prior studies.

At this stage, we simply note that model (3.1) has a considerably lower overall RMSE to the

option panel of 1.71% compared to RMSE values ranging from 3.14% for the one-factor Gaussian

double-jump model to 1.86% for the three-factor return-volatility co-jump model.19 Thus, model

(3.1) provides a comparatively good fit to the surface. However, it is less evident whether this

translates into an improved characterization of the key dynamic factors determining the evolution

of, and associated risks related to, the IV surface as well as the corresponding risk premiums.

To this end, in this section, we provide additional details concerning the model fit to the option

characteristics as well as the fit to the nonparametric volatility estimates from high-frequency data.

We conclude the section with various robustness checks.

5.1 State Vector Dynamics, Volatility Surface Dynamics, and Jump Intensities

We first analyze the state vector in our model. Table 5 reports summary statistics for the extracted

time series of the three factors. We find that the jump volatility factor, V1, is the dominant

component of the diffusive volatility under the physical probability measure, contributing roughly

19Using the asymptotic theory developed in Andersen et al. (2013), these differences in RMSE are highly statistically
significant.
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2/3 to its total mean. The two volatility factors also exhibit some negative correlation (of order

−0.3), while V1 is only slightly less persistent than V2 under the statistical measure. Next, the

mean of U implies it contributes an average of 3.7 negative jumps per year to the negative jump

intensity. Thus, given the average negative jump arrival of 5.6, U is the dominant driver of the

negative jump tail. Moreover, the sample standard deviation of U indicates a substantial degree of

variation over time, inducing significant fluctuations in the negative jump tail and the associated

(high) price for market downside protection. In addition, we find that, also under P, U is, by far,

the most persistent of the three state variables. Finally, U exhibits nontrivial positive correlation

with V1 and slight negative correlation with V2. This is consistent with our risk-neutral model (3.1)

in which V1 and U are connected through the jumps and the feedback effect induced by the jump

intensities of the two state variables.20

Summary statistics

Mean Std Skew Kurt AC(1) AC(15) AC(30) Q(0.25) Q(0.50) Q(0.75)

V1 0.017 0.035 5.037 36.687 0.884 0.250 -0.006 0.0001 0.0053 0.0162

V2 0.012 0.009 0.737 3.363 0.840 0.369 0.102 0.0052 0.0103 0.0180

U 3.710 3.347 1.861 7.372 0.973 0.591 0.360 1.2538 2.8982 4.9409

Table 5: Summary Statistics for the Recovered State Vector. AC denotes autocorrelation
and Q signifies quantile. Sample averages are for the period January 1996 - July 2010.

To gain further insight into the dynamics implied by the model estimates, on Figure 3, we plot

the model-implied spot diffusive volatility, given by
√
V1 + V2, and the corresponding high-frequency

nonparametric estimate in the upper panel, while the model-implied estimates of
√
U is depicted

in the lower panel. The plots are intriguing along several dimensions. First, the option-implied

estimate of the diffusive volatility has approximately the same sample mean as the nonparametric

high-frequency estimate, but it is far less noisy, illustrating the potential gains from incorporating

option information into volatility inference. Second, we notice spikes in market volatility and –

even more strikingly – in U around well-known crises. Third, the negative jump intensity factor U

portrays a very different picture than the diffusive volatility. For example, the peaks of U in the

1997 and 1998 crises as well as the European sovereign debt crisis match or exceed those observed

from 2000 through 2003, yet the model-implied volatility is substantially higher in the latter than

20However, Table 5 concerns the statistical measure while model (3.1) characterizes the risk-neutral measure. In
general, no-arbitrage does not restrict the relation between the moments under the two measures.
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the former episodes. That is, the alternating shapes of the option surface signal that these events

represent very different types of exposure to volatility and negative jump risks. Fourth, as expected,

the financial crisis stands out from the rest. Moreover, the jump intensity factor U mean-reverts

much slower than volatility following this crisis. The identical pattern is observed across all the

episodes identified above in which the jump intensity rises strongly relative to volatility. This

implies that U contributes (relatively) more to the expensiveness of OTM puts in the aftermaths

of the Asian, Russian, and European crises than market volatility. The opposite is true for the

turbulent episodes surrounding 9-11 and the Second Gulf War in 2002, where market volatility

clearly is the dominant force. Likewise, the initial spike in the jump intensity during the financial

crisis was not caused solely by the U factor. Instead, U is accountable for the subsequent slow

mean reversion. Fifth, we notice that, even during the quiet period 2004-2006, the negative jump

intensity factor U remains at a nontrivial level, implying approximately 1 jump per year.
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Figure 3: Spot Volatility and the U Factor. The top panel displays the spot diffusive volatility
estimated from the high-frequency data (the dark line) and from the option panel (the light-colored line).
The bottom panel displays the estimate of

√
U .
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5.2 Fitting the Option Characteristics

Next we investigate the model’s success in capturing the dynamics of the option panel. Recall

from Section 2, that the first principal component of the option surface explains more than 96% of

the total variation, but the PCs fail to succinctly capture the dynamic dependencies of the option

characteristics. The first principal component provides a fit (in RMSE) to the set of standardized

options used in the PC analysis of 3.38%. We can compare this RMSE to the ones obtained by

our parametric no-arbitrage models, reported in Table 6 below. Even, the simplest one-factor

1FGSJ model provides a significantly improved fit of 2.67% and this further drops to 1.40% for

our preferred three-factor model. This is due to the nonlinear factor structure for the option panel

implied by the parametric models (recall footnote 2). For the remainder of this section, we analyze

the success of the parametric models in tracking the dynamics of the IV surface by focusing on

their ability to fit the option characteristics.

On Figure 4 we plot the characteristics along with the model-implied fit. Perhaps not surpris-

ingly, the model provides a near perfect fit to the IV level, both for periods of turmoil and relative

tranquility. The fit to the IV skew is also quite satisfactory, although the model slightly overesti-

mates the skew during 1999 and tends to underestimate it at peaks of financial crises. Nonetheless,

there is no evidence of major systematic biases and the relative errors are small except for the Fall

of 2008.21 Turning to the IV term structure, we observe, from the top right panel of Figure 4, that

our model provides an almost perfect fit to this characteristic. Finally, the most challenging feature

of the surface is the IV skew term structure. Nonetheless, the model fits this feature well except for

two noticeable periods, namely the aftermaths of the 1998 Russian crises and the recent financial

crisis. During these episodes, our model predicts a somewhat steeper IV skew term structure than

actually observed. Intuitively, this is indicative of negative jump tails that need to be even more

persistent, during these two periods, than the model implies to deliver the slower thinning of the

risk-neutral tails along the maturity dimension of the conditional return distribution.

To benchmark the success of our model (3.1) in capturing the option surface characteristics,

we now compare it to the fit provided by the alternative stochastic volatility models discussed at

the beginning of this section. The results are presented in Table 6. We stress that our estimation

21Our finding of underestimation of the skew during highly turbulent periods is consistent with recent nonparametric
evidence in Bollerslev and Todorov (2013) of time-variation in the shape of the jump tails. Accounting for such feature
of the data will alleviate the slight mispricing during such periods, observed on Figure 1, but it will take us outside
the tractable generalized affine framework. Note that some of the time variation in the shape of jump tails can be
partially offset by very high values of the U factor, as the latter is not constrained to be part of volatility. Furthermore,
the measurement errors in the option prices during crises periods are exceptionally large, so gauging model quality
by the size of the pricing errors during these periods is potentially misleading.
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Figure 4: The Model-Implied Fit to the Option Characteristics. The dark line corresponds
to the data and the light-colored line refers to the fit by model (3.1).
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does not minimize the distance between the observed and model-implied option characteristics.

Nevertheless, our model provides a superior fit to each of the four option characteristics. The

improvement is quite significant compared to one- and two-factor models with Gaussian price

jumps. Moreover, the improved fit offered by our model is not solely attributable to the addition

of an extra factor. Indeed, the alternative three-factor model performs significantly worse at fitting

the term structure of the IV level and skew. Furthermore, removing U (leading to the model

2FESJ) produces a significant deterioration in the fit to the IV skew. Finally, our model improves

substantially on 1FGSJ and 2FGSJ models in fitting the spot volatility and is essentially on par

with the rest of the alternative specifications in this regard.

Model Fit

1FGSJ 2FGSJ 2FESJ 3FESJ-V 3F

IV Level 1.73 1.01 0.88 0.68 0.64

IV Term Structure 2.72 1.42 1.06 1.30 0.86

IV Skew 3.81 2.88 2.54 2.13 1.96

IV Skew Term Structure 2.79 3.70 2.01 2.57 2.40

Spot Volatility 5.199 4.130 3.944 3.945 3.977

Options with Fixed m, τ 2.67 2.10 1.89 1.58 1.40

All Options 3.14 2.56 2.07 1.86 1.71

Table 6: Fit to Options, Characteristics and Spot Volatility. The numbers in the table
are the RMSEs (in percent) from fitting the IV surface characteristics (first four rows), the spot
volatility (fifth row), the implied volatilties for fixed moneyness m ∈ {−4,−3,−2,−1,−0, 1, 2}
and tenor τ ∈ {0.1, 0.3, 0.8} (sixth row), and all options used in the estimation (seventh row).
The models in the comparison are defined as follows. 1FGSJ (2FGSJ) refer to the One (Two)
Factor Gaussian Jump model with time-varying jump intensity; 2FESJ refers to the Two-factor
Exponential jump model with time-varying jump intensity; 3FESJ-V refers to the Three-Factor
Exponential jump model with time-varying jump intensity; 3F refers to the Three-factor Expo-
nential jump model with the separate jump factor, U in equation (3.1). All models are explicitly
defined in the Supplementary Appendix.

The distinguishing feature of model (3.1) is the presence of U which resides only in the negative

risk-neutral jump intensity. We now explore the specific role of U in driving the surface dynamics.

To this end, on Figure 5, we plot the fitted IV surface characteristics as well as their sensitivity with

respect to U at the current values of the state vector for each day in the sample. These sensitivities

are measured via the change of the characteristics stemming from increases and decreases in U by
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50% from its estimated value. For the IV level, U has a limited impact except for crises periods

when volatility is very high. This is to be expected as short-term ATM IV is primarily determined

by the level of the diffusive volatility (recall, U is absent from the latter). On the other hand, U has

a very pronounced and more uniform impact on the IV skew. That is, the significance of U for the

skew is ubiquitous and remains nontrivial, even during the tranquil period of 2004-2006. Turning

to the IV term structure in the top right panel of Figure 5, we observe strong time-variation in

the impact of U , with the effect being most substantial following the Asian, Russian and recent

Financial crises. In contrast, U has a very limited effect on the IV term structure during 2004-

2006. This is not surprising. The intensity of the volatility jumps in model (3.1) depends on U .

Hence, a higher value of U today triggers higher expected future diffusive volatility, and given the

persistence of U under Q, this effect is long-lasting and tends to elevate the IV term structure

following the crises of 1997, 1998 and 2008. Finally, U has a relatively small impact on the IV skew

term structure, except when U is very high. Overall, Figure 5 documents that U has a significant

impact on both the term structure and the skew. The impact on the skew is largely immune to the

state of the system, while the impact on the term structure is concentrated in extended periods

following some of the crises in the sample. This effect of U on the surface helps account for the

dynamic interdependencies among the characteristics documented in Section 2.

5.3 Robustness of Estimation Results and Inference

We next explore the robustness of our empirical findings. First, we check the sensitivity with

respect to the penalization term for the volatility fit in the objective function. We vary λ around

the original choice of 0.2 by 50% in either direction. It is useful when interpreting the results below

to keep in mind that a misspecified model will face tension in simultaneously fitting the option

surface and matching the high-frequency based estimate of spot volatility. The results are reported

in the Supplementary Appendix. We note the remarkable stability of the parameters with the

exception of σ2 and c+
0 for which the changes are somewhat large compared with the precision in

their recovery. Hence, there is some evidence for misspecification, but the critical features of the

system remain virtually unchanged. Most significantly, the extracted tail factor U is unaffected

which is crucial for our analysis of the risk premium dynamics later on.

Second, the Supplementary Appendix reports results for subsample estimation covering 1996-

2006 and 2007-2010. The fit is excellent for the longer 1996-2006 subsample, with an overall RMSE

of 0.99%. While this sample excludes the financial crisis, and thus poses less of a challenge to the

option pricing model, the sample still covers some dramatic episodes around 1997, 1998 and the

28



98 00 02 04 06 08 10

0.2

0.4

0.6

Implied Volatility Level

98 00 02 04 06 08 10

−0.2

−0.1

0

0.1
Implied Volatility Term Structure

98 00 02 04 06 08 10

0.1

0.2

0.3

0.4

Implied Volatility Skew

98 00 02 04 06 08 10

−0.2

−0.1

0

Implied Volatility Skew Term Structure

Figure 5: The effect of U on the Option Characteristics. The line corresponds to the fitted
characteristics and the shaded area indicates the change in the characteristics stemming from a
decrease versus an increase in U by 50% relative to the current estimated value. To better capture
the effect of U on the option characteristics, we use only the days in the sample for which the
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internet bubble, along with some extremely low volatility levels during 2004-2006. The shorter and

extremely turbulent 2007-2010 period is much harder to accommodate, and the RMSE is now 2.16%.

We do observe some degree of parameter instability, mainly impacting the risk-neutral means of

the two volatility factors, v1 and v2, which tend to move in opposite directions, as well as the

loadings on the volatility factors in the jump intensities. This is indicative of some misspecification

in the modeling of diffusive volatility. Nonetheless, the parameters λ− and λ+, governing the jump

tail decays, are remarkably stable across subsamples. Likewise, the estimates of µ1, controlling the

volatility jumps, are stable. And most importantly for our analysis, the extracted realization of U ,

across the entire sample, remain near invariant regardless of whether the full sample or subsample

parameter estimates are employed.

6 Out-of-Sample Performance

Our model (3.1) is quite richly parameterized, containing three state variables along with the 18

separate parameters reported in Table 4. This may raise concerns regarding potential in-sample

overfitting. We address this issue by exploring the out-of-sample performance vis-a-vis the more

parsimoniously parameterized alternatives introduced previously in Section 5. If the dynamic fea-

tures extracted from the option surface through model (3.1) are genuine and stable, the model

should continue to provide a superior fit also for the options observed beyond the in-sample period.

To assess the robustness of model (3.1) relative to the alternative specifications, we use the

parameters for each model estimated over the period January 1st 1996 - July 21st 2010 to price the

options week-by-week over the subsequent period from July 22nd 2010 to April 23rd 2013, using

the criterion function from equation (4.1), but optimizing only over the state vector. This out-of-

sample period contains quotes for over 100,000 separate options, representing more than 56% of

the number of in-sample observations.22 The average IV (across all options) in the out-of-sample

period equals 24.17%, while the average ATM IV is 18.40%.

From Figure 3, we note that spot volatility filtered from model (3.1) in the out-of-sample period

continues to provide an excellent fit to the spot volatility estimated from high-frequency returns.

Thus, effectively, we decompose the factors governing the option surface into current spot volatility

and a separate left jump tail factor, U . The extracted volatility states provide an excellent basis for

22The sharp increase to over 700 quotes per day for the out-of-sample analysis is due to two factors. One, there are
more options quoted at a given tenor - thus filling gaps in the moneyness dimension. Two, the introduction of weekly
options increases the number of tenors available on each day - thus enriching the data in the maturity dimension.
Weekly options were introduced in 2005, but only by 2011 did the associated volume become a significant fraction
(almost 20%) of the total trading volume for SPX options. As a reference, for January 1996 – December 1998, we
have 158 contracts per day, while we have 490 contracts per day between January 2008 and July 2010.
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forecasting future realized return volatility and jumps, thus freeing U to accommodate the portion

of the risk premium dynamics that is not tightly related to the volatility states.

The out-of-sample fit to the option surface for the various models are summarized in Table 7.

Panel A provides the overall root-mean-squared error (RMSE) and Panel B indicates the perfor-

mance for specific regions of the surface. On the right in Panel B, the RMSE for model (3.1) is

given, while the remaining entries provide the percentage excess RMSE of the alternative specifica-

tions relative to model (3.1). Thus, positive entries signify the degree to which the models perform

worse than model (3.1) for that part of the option surface during the out-of-sample period.

The results are striking. The superiority of model (3.1) is more pronounced out-of-sample

than in-sample. Moreover, we see that the exponential specification for return jumps performs

significantly better than the Gaussian, while two-factor models offer nontrivial improvements over

one-factor representations. However, none of these more standard specifications come close to

matching the performance of model (3.1). Furthermore, we observe that the traditional three-

factor stochastic volatility model performs comparatively poorly out-of-sample, with the two-factor

model doing equally well or slightly better, reflecting some degree of in-sample overfit for the former

model. Thus, in fact, there is a danger of over-parameterizing the in-sample specification, but this

does not manifest itself for model (3.1). Moving to the individual regions of the surface, Panel B

documents that model (3.1) outperforms every other model for each single region of the surface, so

the superior out-of-sample fit is uniform. Finally, in Panel C we observe that we fit, out-of-sample,

the spot volatility far better than any of the alternative models. We conclude that the risk-neutral

dynamics obtained from the in-sample period remains stable and continue to capture the salient

features of the option surface dynamics beyond the estimation period.

To illustrate the type of scenarios for which the improvement of model (3.1) relative to the more

standard one-factor Gaussian jump model, 1FGSJ, is particularly significant, Figure 6 depicts the

fit of the two models to the IV skew and term structure on two separate trading days. December

19, 2012, represents a fairly typical day with an about average skew and term structure. For this

day, the fit of either model is quite satisfactory, and there is no major discrepancy between the two.

In contrast, for September 8, 2010, the skew is elevated although the level of volatility is moderate.

It represents a quite common occurrence in the aftermath of turbulent market conditions – in

this case associated with the initial European sovereign debt crisis. On this date, the one-factor

model misses the ATM IV level quite badly, and it provides a very poor fit to the term structure.

The problem is that the steep skew only can be accommodated through a high jump intensity

which, in the standard model, is only feasible if volatility is high. Hence, the fit to the ATM
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Panel A: Overall Option RMSE

1FGSJ 2FGSJ 2FESJ 3FESJ-V 3F

RMSE RMSE RMSE RMSE RMSE

3.28 2.66 2.25 2.26 1.77

Panel B: Sorting by Moneyness and Maturity

1FGSJ 2FGSJ 2FESJ 3FESJ-V 3F

RRMSE RRMSE RRMSE RRMSE RMSE

τ ≤ 60 > 60 ≤ 60 > 60 ≤ 60 > 60 ≤ 60 > 60 ≤ 60 > 60

m ≤ −3 0.68 1.16 0.60 0.48 0.09 0.33 0.14 0.30 2.28 2.76

−3 < m ≤ −1 0.49 0.71 0.32 0.34 0.14 0.33 0.03 0.47 1.53 1.95

−1 < m ≤ 1 1.43 0.39 0.99 0.30 0.74 0.08 0.67 0.16 0.91 1.36

m > 1 1.77 0.70 0.89 0.38 0.98 0.15 0.82 0.07 1.24 1.86

Panel C: Spot Volatility RMSE

1FGSJ 2FGSJ 2FESJ 3FESJ-V 3F

RMSE RMSE RMSE RMSE RMSE

6.23 5.01 4.05 4.27 3.82

Table 7: Out-of-sample Option Pricing Performance and Volatility Fit. We report RMSEs
in implied volatility (in percent). The abbreviations for the different models are as in Table 6.
RRMSE is the ratio of the RMSE of a given model over that of the 3F model minus one.

volatility is sacrificed in order to fit the OTM put options. Moreover, at an elevated volatility

level, the mean-reversion in volatility prevents the term structure from being sufficiently steep.23

In contrast, with the flexibility afforded by U , model (3.1) can readily accommodate a persistent

state with an elevated intensity for the left jump tail. Furthermore, the cross-excitation between

jumps and volatility is sufficient to generate an increase in the expected return variation over time,

thus adapting to the relatively steep slope of the term structure.

The key to the success of our model is the severance of the linkage between jump intensity and

volatility which is, a priori, imposed in most prior work, as discussed in Section 3. In using standard

models for the analysis of risk premia, one will inevitably treat the systematic mispricing of the IV

skew and term structure, documented in the bottom panels of Figure 6, as persistent observation

23We have confirmed that identical problems plague, e.g., the 2FESJ model in this type of scenario.
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error. This problem is recurring. Throughout the in-sample period, we observe similar qualitative

developments following the Asian and Russian crises, and the 2008-2009 financial crisis, while for

the out-of-sample period, the second round of the European debt crisis in late 2011 also generates

this type of persistent dynamic in the surface. Hence, using the standard modeling framework will

induce systematic biases in the inference for risk premia.

7 Risk Premia Dynamics and Predictability

This section relates our findings based on the option panel to the underlying return data. In

particular, we study the links between the state vector, or risk factors, extracted from the option

panel and the volatility and jump risks inferred from the underlying stock returns. This sets the

stage for direct exploration of the equity and variance risk premiums and their association with

the option-implied factors. Given our analysis, we rely on model (3.1) for tracking the IV surface

dynamics. We continue to avoid making strong assumptions regarding the evolution of the actual

market risks. Consequently, this part of our analysis is fully nonparametric, and we invoke only

minimal stationarity conditions regarding the P-law.

7.1 Connecting the Information in the Option Panel and the Underlying Asset

To define risk premia, we must develop consistent notation concerning the pricing of each source

of risk in model (3.1). We define,

W P
1,t = WQ

1,t −
∫ t

0
λW1
s ds, W P

2,t = WQ
2,t −

∫ t

0
λW2
s ds,

BP
1,t = BQ

1,t −
∫ t

0
λB1
s ds, BP

2,t = BQ
2,t −

∫ t

0
λB2
s ds,

(7.1)

where W P
1,t, W

P
2,t, B

P
1,t and BP

2,t are P Brownian motions and λW1
t , λW2

t , λB1
t and λB2

t denote the

associated prices of risk. The compensator of the jump measure, µ, under the P measure is given

by dt⊗ νPt (dx, dy), and the mapping νPt (dx, dy) → νQt (dx, dy), defined for every jump size x and

y and every point in time t, reflects the compensation for jump risk.

The dynamics of the stock price process under the physical probability measure P is then,

dXt

Xt−
= αt dt +

√
V1,t dW

P
1,t +

√
V2,t dW

P
2,t +

∫
R2

(ex − 1) µ̃P(dt, dx, dy), (7.2)

where

αt − (rt − δt) = λW1
t

√
V1,t + λW2

t

√
V2,t +

∫
R2

(ex − 1) νPt (dx, dy) −
∫
R2

(ex − 1) νQt (dx, dy), (7.3)
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Figure 6: Out-of-sample Fit to IV Skew and Term Structure. The figure plots the fit to the
IV skew and term structure for the trading days December 19, 2012 (upper row) and September
8, 2010 (bottom row). The circles represent the observed Black-Scholes implied volatilities; the
continuous line is the fit from model 3F; the dashed line is the fit from model 1FGSJ.
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is the spot equity risk premium, reflecting compensation for diffusive and (price) jump risks.

The conditional cum-dividend equity risk premium over the horizon τ is thus given by,24

ERPτt ≡ 1

τ
EP
t

(∫ t+τ

t
(αs − (rs − δs)) ds

)
. (7.4)

We next define the quadratic variation over [t, t+ τ ] which we denote QVt,t+τ . It captures the

return variation over the given horizon and is given by,

QVt,t+τ = QV c
t,t+τ + QV j

t,t+τ ,

QV c
t,t+τ =

∫ t+τ

t
(V1,s + V2,s) ds, QV j

t,t+τ =

∫ t+τ

t

∫
R2

x2 µ(ds, dx, dy),
(7.5)

where we decompose the return variation into terms generated by the continuous and jump com-

ponent of X, QV c
t,t+τ and QV j

t,t+τ . Further, note that the quadratic variation is independent of

the probability measure. The variance risk premium is defined as,

VRPτt ≡
1

τ

[
EP
t (QVt,t+τ )− EQ

t (QVt,t+τ )
]
, (7.6)

and is compensation for the variance risk in X.

We are also interested in assessing directly the risks and risk premiums associated with jumps.

In particular, we want to gauge the compensation for large price jumps and to allow for a separate

risk premium for the negative versus positive jumps. We obtain direct measures of the jump risks

by simply counting the number of “big” jumps over the relevant horizon,

LTKt,t+τ ≡
∫ t+τ

t

∫
R2

1{x≤−K} µ(ds, dx, dy), RTKt,t+τ ≡
∫ t+τ

t

∫
R2

1{x≥K} µ(ds, dx, dy), (7.7)

where K is a prespecified threshold. We set K = 0.5% in the subsequent analysis.25

The risk measures we have introduced, including QV c
t,t+τ , QV j

t,t+τ , LTKt,t+τ and RTKt,t+τ , are not

directly observable, but we can estimate them using high-frequency and overnight futures returns.

Naturally, since intraday data are available only during active trading, our high-frequency measures

pertain exclusively to the trading intervals within [t, t+ τ ]. We denote the latter with superscript i

(for intraday based measures), e.g., QV i
t,t+τ =

∑t−1+τ
s=t QVs+π,s+1, where π denotes the fraction of

the day corresponding to the overnight period, and 1 − π indicates the length of the trading day.

QV c,i
t,t+τ , QV j,i

t,t+τ , LTK,it,t+τ and RTK,it,t+τ are defined analogously. By now, there are standard methods

for constructing estimates for these risk measures as well as the corresponding equity and variance

risk premia. We provide the details regarding our empirical implementation in the Appendix.

24Notice that since a long position in the market index involves a commitment of capital, a part of the wedge in the
P and Q expectations of the cum-dividend equity returns reflects compensation for the time-variation in the risk-free
rate. This term is, of course, absent if we instead define the equity risk premium using futures on the market index.

25This (fixed) threshold K is large enough that we can separate returns exceeding this (absolute) level from diffusive
volatility using 1-minute observations. Experiments with alternative cutoffs produced similar results.
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7.2 The Predictability of Equity and Variance Risk and Risk Premia

We now explore the relationship between the option-implied factors, V1, V2 and U , driving the option

surface dynamics, and the various risk measures and risk premia associated with the underlying

asset. We rely on alternative versions of the following predictive regression,

yt = α0 + α1V1,t + α2V2,t + α3Ut + εt, (7.8)

where the left hand side represents, in turn, the empirical jump and diffusive variance risk mea-

sures and the risk premia, i.e., yt = L̂T
K,i

t,t+τ , R̂T
K,i

t,t+τ , Q̂V
c,i

t,t+τ , Q̂V t,t+τ , log
(
Xt+τ
Xt

)
− 1

τ

∫ t+τ
t (rs −

δs)ds and V̂RP
τ

t . Given the relationships explicated in Section 9.2 of the Appendix, it is ev-

ident that the regressions based on the alternative yt variables, asymptotically in sample size,

yield estimates identical to those based on the corresponding infeasible measures of interest, i.e.,∑t−1+τ
s=t

∫ s+1
s+π

∫
R 1{x≤−K}ν

P
s (dx, dy),

∑t−1+τ
s=t

∫ s+1
s+π

∫
R 1{x≥K}ν

P
s (dx, dy), QV c,i

t,t+τ , QVt,t+τ , ERPτt and

VRPτt . Thus, the predictive regression in equation (7.8) speaks directly to the linkages between

the option surface dynamics and the risks and risk premia associated with the equity index.

In general, if the premia for the diffusive and jump risks are spanned by the factors V1, V2 and U ,

then the expectation of yt conditional on time t information will be functionally related to V1,t, V2,t

and Ut. Moreover, in the standard case, almost universally adopted in option pricing applications,

the measure change preserves the affine structure, so the conditional mean of yt is linear in V1,t, V2,t

and Ut. Hence, the regression in equation (7.8) produces optimal (mean-square error) predictors

for the volatility and jump risks at time t. Furthermore, conceptually, our extraction of V1,t, V2,t

and Ut provides a richer information set for forecasting the volatility and jump realizations than

the history of underlying asset returns. The latter, at best, generates estimates of the path for

{V1,s + V2,s}s≤t as well as associated jump variation measures.

We summarize the results from the predictive regressions in Figures 7 and 8. Since we are

particularly interested in the incremental role of the novel factor U , we initially project U linearly

onto the two volatility factors and denote the residual by Ũ . Consequently, Ũ reflects the features of

the system not associated with the traditional volatility factors. Given our relatively short sample,

we compute the predictive regressions for horizons up to one year only. Figure 7 shows that the

state variables, extracted from the option panel, have significant explanatory power for the future

evolution of risks. In particular, the plot pertaining to the count of positive and negative jumps

reveals that the jump intensities display highly predictable time-variation under the statistical

measure, P, i.e., νPt (dx, dy) is truly a function of t. Moreover, the state variables differ greatly in

their ability to forecast the future volatility and jump intensity. Specifically, once we control for
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Figure 7: Predictive Regressions for Volatility and Jump Risks. The volatility and jump risk
measures are defined in (9.11)-(9.12). For each regression, the top panels depict the t-statistics for the
individual parameter estimates while the bottom panels indicate the regression R2. The predictive variables
are V1 (dashed-dotted line), V2 (dashed line) and Ũ (solid line), where Ũ is the residual from the linear
projection of U on V1 and V2. The regression standard errors are constructed to also account for the
estimation error in the projection generating Ũ . The dashed lines in the R2 plots correspond to constrained
regressions, including only V1 and V2.

the volatility factors, Ũ provides no incremental explanatory power. This is evident both from the

insignificant t-statistics corresponding to Ũ and the trivial drop in R2 when we exclude Ũ from

the regressions. Hence, Figure 7 is consistent with a model for which the jump intensity, under P,

depends only on the volatility factors V1 and V2, but not Ũ .26 Finally, since the empirical detection

26In general, since V1 contains jumps of time-varying intensity that load on all the factors, V1, V2 and U , the
conditional forecast of future volatility V1,t + V2,t still depends (critically) on the current value of the third factor U .
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of jumps inevitably is subject to some degree of measurement error and literally is infeasible during

the overnight period, we also display the predictability regarding the combined quadratic return

variation. Since the jump and overnight return variation is less predictable, the overall explanatory

power drops slightly relative to the results for the continuous variation, but the qualitative pattern is

identical. In short, the distinct return variation components are highly predictable, yet the forecast

power of Ũ is insignificant across all alternative constellations. Of course, the lack of statistical

significance does not imply that U has no impact on the P dynamics of volatility and jump risks,

but rather that the effect is marginal compared to that of the volatility factors.
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Figure 8: Predictive Regressions for Equity and Variance Risk Premia. For each regression, the
top panels depict the t-statistics for the individual parameter estimates while the bottom panels indicate
the regression R2. The predictive variables are V1 (dashed-dotted line), V2 (dashed line) and Ũ (solid line),

where Ũ is the residual from the linear projection of U on V1 and V2. The regression standard errors are
constructed to also account for the estimation error in the projection generating Ũ . The dashed lines in the
R2 plots correspond to constrained regressions, including only V1 and V2.

We now turn to the predictability of the equity and variance risk premia. Figure 8 indicates

that our three factors, extracted from the option panel, now take on very different roles. In

particular, a significant part of the predictability of both the equity and variance risk premia is

due to the U factor. For the variance risk premia, V1 also contributes strongly at shorter horizons,

while, importantly, for the equity risk premium Ũ is the single dominant explanatory factor for

all horizons. The importance of U for predicting both the equity and variance risk premia is

consistent with Bollerslev and Todorov (2011) who find the equity and variance risk premia to

embed a common component stemming from compensation of left jump tail risk. The fact that

both the equity and variance risk premia depend on U , coupled with the significant persistence of
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the latter, rationalizes the predictive power of the variance risk premium for future excess returns,

documented in Bollerslev et al. (2009) and Drechsler and Yaron (2011). The limited role for the two

volatility factors mirrors the conclusions of many prior studies on the risk-return tradeoff, going

back to, e.g., French et al. (1987) and Glosten et al. (1993). Finally, we note that our results are

not driven by the events surrounding the financial crisis. Qualitatively identical results apply for

subsamples that end prior to 2007.27

Another way to gauge the importance of U , and proper model specification in general, for pre-

dicting the equity and variance risk premia is to contrast our evidence above to findings generated

by standard jump-diffusive models. Since the results are entirely consistent with our prior conclu-

sions, we briefly summarize the results and refer to the Supplementary Appendix for details. If we

omit U from the model, we are still left with an elaborate model which, besides the two volatility

state variables driving the dynamics of the option surface, incorporates both diffusive and jump

leverage effects, co-jumps in returns and volatility, and separate decay rates for the left and right

(exponential) jump tails.28 We find that the forecast performance regarding the future evolution of

volatility and jump risks is similar to the corresponding results in Figure 7. Given that Ũ plays only

a minimal role in forecasting these quantities within model (3.1), this is quite intuitive. Moreover,

as before, when considering the equity risk premium, the volatility factors are largely insignificant

(and as likely to be negative as positive), and the R2 of the predictive regression for the future

excess returns is dramatically reduced. In short, the evidence for predictability of the equity risk

premium vanishes when the option surface dynamics is modeled in the common jump-diffusive

framework, and driven exclusively by volatility factors. Hence, the inclusion of the U factor, allow-

ing for the left risk-neutral tail to have a separate source of variation, is pivotal for capturing the

predictability in the equity risk premium. Finally, for the variance risk premium, both volatility

factors are significant in the two-factor model, but the R2 of the variance risk premium regression

is notably lower than for our three-factor model (3.1).

To summarize, consistent with prior findings, we document a substantial time variation in

the pricing of market risks. However, in a key departure from existing work, we provide strong

evidence that the factors driving risks and risk premia differ in a systematic way. This is ruled out,

a priori, through the structure preserving measure transformations adopted in most prior option

pricing studies. Thus, our results point towards the importance of allowing for nonlinearities in the

pricing kernel and have implications for the ability of structural economic models to rationalize the

predictability of the equity and variance risk premia. We discuss this next.

27The documentation of these results are available upon request.
28The corresponding two-factor model with Gaussian jumps performs less well along all dimensions.
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7.3 Structural Implications of the Predictive Power of the Option Surface

Figures 7 and 8 demonstrate that the factor U , driving a substantial part of the OTM short maturity

put option dynamics, has no impact on the actual volatility and jump dynamics of the underlying

asset. In contrast, the factor has a critical effect on the pricing of volatility and jump risk. In other

words, it resembles a risk premium and not a risk factor. Can we rationalize this finding from an

economic perspective? To guide intuition, we compare the findings in Figures 7 and 8 with those

from recent structural models that link option prices to fundamental macroeconomic risks, such as

aggregate consumption and dividends. This emerging literature has made important progress in

tackling the challenging, yet critical, task of jointly explaining the equity return and risk premium

dynamics in a coherent general equilibrium setting. For concreteness, we initially explore a couple

of specific models featuring a representative agent with Epstein-Zin preferences exposed to risks in

real consumption growth, namely Wachter (2013) and Drechsler and Yaron (2011).

In the one-factor model of Wachter (2013), the consumption growth is subject to infrequent, but

large, negative jumps (rare disasters) with a time-varying arrival rate, resembling the mechanism in

Gabaix (2012).29 This type of equilibrium model can account for many critical empirical features

such as the correlation between volatility and jump risks, the time-varying jump arrival as well as

the ability of the market variance risk premium to predict future equity excess returns.

The model of Drechsler and Yaron (2011) specifies consumption growth as conditionally Gaus-

sian with a time-varying conditional mean (long-run risk) and conditional volatility.30 The system

has three factors, with one driving the conditional mean and two governing the conditional volatility

of consumption growth.31 Drechsler and Yaron (2011) show that the time-varying jump intensity

– in turn governed by the volatility state – explains a significant part of the predictability in the

variance risk premia of future excess returns.

Figures 9 and 10 summarize the findings from predictive regressions for future volatility and

jump risks as well as equity and variance risk premia in the models of Wachter (2013) and Drech-

sler and Yaron (2011), using the concurrent level of the relevant state variables in each model as

predictors. Not surprisingly, given the one-factor structure, the Wachter (2013) model faces some

challenges in accommodating the evidence laid out in Figures 7 and 8. Importantly for our anal-

ysis, the predictability of future excess returns and variance risk premia is linked closely to the

predictability of the future return variation, and the underlying pattern of significance is identical

29These papers generalize work by Barro (2006) and Barro and Ursua (2008) in which rare disasters are i.i.d.
30This model builds on Eraker and Shaliastovich (2008) and generalizes many prior models in which consumption

growth contains a small predictable persistent component, including the original work of Bansal and Yaron (2004).
31One of the state variables that we label volatility factors directly controls the conditional variance of consumption

growth, while the other captures the variation in the long run variance of consumption growth.
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in all cases (flat line), and the degree of explanatory power rises roughly linearly with maturity.

Compared to Figure 7, the predictability in the Wachter (2013) model is inverted, as the return

variation is forecast with relatively higher precision over long rather than short horizons. Further-

more, the explanatory power is uniformly too low. Likewise, referencing Figure 8, the model fails to

capture the degree and pattern of predictability in the excess returns and variance risk premium.32

Turning to Figure 10, it is evident that the more flexible volatility structure of Drechsler and

Yaron (2011) is useful in accommodating some of the stylized features of the data. Nonetheless,

it is equally clear that the long-run risk factor helps predict neither the future volatility and jump

risks nor the equity and variance risk premia. In this structural setting, essentially all predictability

stems from the two volatility factors. They provide the channel through which past variance risk

premia generate predictable movements in the equity risk premium. Thus, relative to our empirical

finding, captured by Figures 7 and 8, this structural model also ties the predictability of future

volatility and jump risks too closely to the predictability of the equity and variance risk premia.

Equivalently, the structural model implies a tight relationship between the dynamics of the option

panel and the return dynamics of the underlying equity market. In contrast, our empirical results

based on model (3.1) document a partial, and critical, decoupling between the factors driving the

equity return dynamics and those governing the pricing of risk, and thus the equity and variance

risk premia.

There is a fundamental reason for the discrepancy between our empirical findings and the

implications of the structural models of Wachter (2013), and its extension in Seo and Wachter

(2013), as well as Drechsler and Yaron (2011). Although the models generate risk premia through

different channels – the presence of rare disasters and uncertainty about their arrival (Wachter

(2013) and Seo and Wachter (2013)) versus long-run risk and stochastic volatility in consumption

growth (Drechsler and Yaron (2011)) – they share a critical feature in the pricing of jump tail

risk. They both imply that the ratio
νQt (dx,dy)

νPt (dx,dy)
is time-invariant. That is, the risk-neutral jump

intensity is proportional to that under the actual probability measure, so the two jump intensities

are equivalent in terms of their time variation. Therefore, the jump risk premia are generated

by changing the distribution of the jump size only. This implies that the variation in the jump

intensity is “inherited” under the equivalent change of measure. Consequently, these equilibrium

based pricing kernels cannot “generate” new state variables in addition to those that drive the

fundamental risks in the economy. In turn, this necessarily generates the tight link between the

32A two-factor extension, like in Seo and Wachter (2013), in which rare disaster probability is driven by two
factors, can potentially generate dynamic patterns more consistent with the data. However, as we discuss below in
more general terms, such an extension will still produce a close link between the predictability of future risks and
risk premia unlike what we find in the data.
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Figure 9: Predictive Regressions Implied by the Wachter (2013) Structural Model. The predictive
variable is the time-varying intensity of a rare disaster in consumption growth.

dynamics of the underlying asset and the option surface within these models.

In fact, this tight linkage of the physical and risk-neutral jump intensities is operative for a wide

class of popular structural models with representative agents having Epstein-Zin preferences. The

part of the density dQ
dP due to the change of the jump measure is characterized by,

E
(∫ t

0

∫
Rn

(Y (ω, s,x)− 1)µ̃P(ds, dx)

)
, (7.9)

where the jump component of the state vector in the economy under the P probability measure is

given as a (multivariate) integral of the form
∫ t

0

∫
Rn x µ̃P(ds, dx); Y (ω, t,x) =

νQt (dx)

νPt (dx)
is the measure
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Figure 10: Predictive Regressions Implied by the Drechsler and Yaron (2011) Structural Model.
The predictive variables are the conditional mean of consumption growth (solid line), stochastic volatility
of consumption growth (dotted line) and central tendency of stochastic volatility (dashed line). The dashed
lines in the R2 plots correspond to constrained regressions including only the volatility state variables.

change for the jump intensity, and E is the Doleans-Dade exponential.33 In general, Y (ω, t,x)

will be stochastic. However, within an equilibrium setting, stipulating an affine dynamics for

the fundamentals along with a representative agent with Epstein-Zin preferences generates the

restriction that the expression in equation (7.9) is exponentially affine in the state vector, see, e.g.,

equation (2.22) of Eraker and Shaliastovich (2008). In turn, this implies that Y (ω, s,x) must be

non-random and time-invariant, i.e., depend only on x.34 Hence, the equilibrium implied statistical

33For the expression in (7.9) and the definition of the Doleans-Dade exponential, see Jacod and Shiryaev (2003),
Corollary III.5.22 and I.4.59, respectively.

34The restriction on Y (ω, s,x) is actually stronger. In the equilibrium model, Y (ω, s,x) is an exponential function
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and risk-neutral intensities of the price and volatility jumps (which are mixtures of the jumps in

the state variables driving the fundamentals in the equilibrium model) will be affine functions of

the same state vector.35 In contrast, for our extended three-factor model, in which νPt (·) loads, at

most, very marginally on Ut−, there is a natural wedge between the time variation in statistical

and risk-neutral jump intensities.

There are several ways in which the link between the asset and option price dynamics may be

relaxed within a representative agent equilibrium setting to potentially account for our empirical

evidence. They all involve generalizing the preferences in some form. One approach is to allow

the representative agent’s coefficient of risk aversion to vary over time. Du (2010) proposes a

generalization of a habit formation model in which consumption growth is i.i.d. with rare jumps,

building on the equilibrium models of Campbell and Cochrane (1999) and Barro (2006). In this

model, and consistent with our findings, there is a wedge between the time-variation of the P and

Q jump intensities of the market return distribution. The nonlinearity of the pricing kernel will

amplify the effect of time-varying risk-aversion on the risk-neutral jump intensity relative to the

statistical one. Note that the risk-neutral jump intensity is nonlinearly related with volatility in

this setting, and our U factor will naturally serve as a proxy for such nonlinearities. Nevertheless, it

remains an open question whether a model with external habit formation can decouple the option

and asset price dynamics in a manner reminiscent of our empirical findings. It is also unclear

whether the frequency and intensity of stock market jumps can be mapped into corresponding

jumps in the consumption growth rate as implied by this model of habit formation.

A second approach to relax the link between the option and asset price dynamics is to recognize

that agents do not directly observe the state vector and therefore need to filter the states from

observables. The absence of perfect information plus aversion to ambiguity (particularly about ex-

treme negative risks), like in Hansen and Sargent (2008), or lack of confidence in the estimate of the

state vector, like in Bansal and Shaliastovich (2010), can make investors appear more risk averse

than they would be in a perfect information setting. The key question is whether the ambiguity

aversion or confidence risk variation can generate the required gap between the dynamics of the

statistical and risk-neutral jump intensities.36 For example, the excessively tight link between the

jump intensity under P and Q remains within the generalization of the Drechsler and Yaron (2011)

of jump size, see Theorem 1 of Eraker and Shaliastovich (2008). Hence, the jump measure change is implemented by
exponential tilting (in Laplace transform space), with the degree of tilting determined by the preference parameters
of the representative agent.

35In the models of Wachter (2013), Seo and Wachter (2013) and Drechsler and Yaron (2011), the jump intensities
are even more tightly connected, as they are directly proportional.

36Recall that, according to the estimates for (3.1), U does not covary perfectly with stochastic volatility.
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model, developed by Drechsler (2013), in which agents are ambiguous about part of the dynamics,

including the jumps in the conditional mean and variance of consumption growth. The representa-

tive agent’s ambiguity drives an additional wedge between fundamental risks and asset prices and

helps explain why variance risk premia have superior predictive power, relative to volatility itself,

for future returns. Nonetheless, the linearity of the pricing kernel with respect to the state vector

implies that no new state variable is “generated” going from P to Q, thus ultimately rendering the

model predictions incompatible with our empirical findings.

Moving beyond the strict representative agent framework, parts of the literature has also con-

sidered the potential impact of the intermediary sector for the pricing of derivative securities,

particularly following crises; see, e.g., Bates (2003), Hu et al. (2013) and Chen et al. (2014). The

main intuition is that major financial shocks may impose losses on market makers and reduce their

effective risk bearing capacity. Can we explain the wedge between the factors driving the risks and

the risk premia with the health of the financial sector? To informally explore this question, we now

relate our U factor to standard measures viewed as proxies for stress in the financial sector. In

particular, we incorporate the noise (liquidity) measure of Hu et al. (2013), the 3-month LIBOR

minus Treasury (TED) spread, and the default spread defined as the difference between Moodys

BAA and AAA bond yield indices (DFSPRD), while also controlling explicitly for volatility. In

Table 8, we report the related regression results.

Interestingly, we find the noise factor of Hu et al. (2013) to be quite strongly correlated with

our U factor, even after controlling for volatility. While the default spread also has relatively good

explanatory power, it is highly correlated with the noise factor, and the individual t-statistics drop

substantially when all the variables are included in the (multivariate) regression reported in the

last column. Finally, compared to the other factors, the TED spread plays a minimal role. Overall,

we conclude that the critical component of U , not correlated with volatility, arguably is associated

with proxies for stress in the financial sector. Hence, our procedure, extracting risk premium

information directly from the option panel, generates evidence that qualitatively conforms with

prior observations in the literature. We leave further explorations along these lines to future work.

8 Conclusion

We document that the standard exponentially-affine jump-diffusive specifications used in the empir-

ical option pricing literature are incapable of fitting critical features of the option surface dynamics

for the S&P 500 index, especially in scenarios involving significant shifts in the volatility smirk.

We extend the risk-neutral volatility model to include a separate state variable which is crucial
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Constant 2.233 0.941 2.632 -0.854 0.976 0.296

(9.279) (5.599) (10.071) ( -0.854) (5.222) (1.016)

V 60.834 20.255 19.057

(6.204) (2.192) (2.480)

Noise Fct 0.907 0.727 0.618

( 20.679) (10.466) (6.721)

TED 2.279 -1.043

( 4.357) (-2.960)

DFSPRD 4.616 1.593

(17.407) (4.117)

R2(%) 0.349 0.487 0.094 0.437 0.506 0.549

Table 8: U factor and the health of the financial sector. Univariate and multivariate regres-
sions of the U factor on volatility and variables that proxy for the health of the financial sector
(t-statistics in parenthesis). V is the variance extracted from the time-series of options panels,
Noise Factor refers to the liquidity factor proposed by Hu et al. (2013); TED is the spread between
the 3-month LIBOR and the Treasury yield; DFSPRD is the difference between BAA and AAA
Moodys bond yield indices.

in capturing the time variation of priced downside tail risk. This new factor has no incremental

explanatory power, beyond the traditional volatility factors, for the future evolution of volatility

and jump risks. On the other hand, relative to the volatility components, the new factor provides

critical, and superior, information for the time variation in the equity and variance risk premia.

Our findings demonstrate that the pricing in the option market is closely integrated with the

underlying asset market. Moreover, the option panel embodies critical information regarding equity

risk pricing that cannot be extracted directly from the underlying asset price dynamics. The wedge

between the two probability measures arises primarily from the varying degree of compensation

for downward tail jump risk. Our results suggest that time-varying risk aversion and/or ambiguity

aversion, driven in part by the presence of large shocks, must be incorporated into structural asset

pricing models if they are to explain the joint dynamics of the equity and option markets.
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9 Appendix

9.1 Nonparametric High Frequency Measures

For ease of notation we normalize the time unit to be a day. Each day is then divided into a trading

and a non-trading part and by convention a day starts with the close of trading on the previous day

and ends at the closing of the following day trading period. The resulting daily interval [t− 1, t] is

divided into [t− 1, t− 1 + π] overnight period and [t− 1 + π, t] active part of the trading day. Over

the trading part, we observe the futures price at n + 1 equidistant times, resulting in n intraday

increments, each over a time interval of length ∆n ≡ 1−π
n . The intraday increments are given by

∆n,t
i f = ft−1+π+i∆n − ft−1+π+(i−1)∆n

for i = 1, ..., n and t = 1, ..., T .

V̂
(n,mn)
t is a nonparametric estimator of the diffusive return variation constructed from the

intraday record of the log-futures price of the underlying asset, f , as follows,

V̂
(n,mn)
t =

n

mn

n∑
i=n−mn+1

(∆n,t
i f)2 1{ |∆n,t

i f | ≤ υ∆$
n }
, (9.10)

where υ > 0, $ ∈ (0, 1/2), and mn denotes some deterministic sequence. For mn/n→ 0, V̂
(n,mn)
t is

a consistent estimator of the spot variance at t and corresponds to the truncated variation (Mancini

(2009)) computed over an asymptotically shrinking fraction of the day just prior to the option quote.

In our implementation, we sample every minute over a 6.75 hours trading day, excluding the initial

five minutes, resulting in n = 400. We employ mn = 300 for V̂
(n,mn)
t in (4.1).

Similarly, we introduce the following measures of jump and variance risks for our analysis in

Section 7, 
L̂T

K,i

t,t+τ =
t+τ∑
s=t+1

n∑
i=1

1{∆n,s
i f <−K∨(υ∆$

n )},

R̂T
K,i

t,t+τ =

t+τ∑
s=t+1

n∑
i=1

1{∆n,t
i f >K∨(υ∆$

n )},

(9.11)
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Q̂V
i

t,t+τ =

t+τ∑
s=t+1

n∑
i=1

|∆n,t
i f |2 , Q̂V

c,i

t,t+τ =

t+τ∑
s=t+1

n∑
i=1

|∆n,t
i f |2 1{ |∆n,t

i f | ≤ υ∆$
n }
, (9.12)

where recall K is the constant jump threshold given in (7.7).

Under general conditions, see, e.g., Jacod (2008),

L̂T
K,i

t,t+τ
P−→ LTK,it,t+τ , R̂T

K,i

t,t+τ
P−→ RTK,it,t+τ , Q̂V

i

t,t+τ
P−→ QV it,t+τ , Q̂V

c,i

t,t+τ
P−→ QV c,it,t+τ .

For the overnight periods within [t, t+ τ ], we cannot separate the diffusive volatility from jumps,

and we simply estimate the total (realized) overnight variance via,

Q̂V
o

t,t+τ =
t+τ∑
s=t+1

(fs−1+π − fs−1)2 . (9.13)

Our estimate for the total variation, QVt,t+τ , is then given by Q̂V t,t+τ = Q̂V
i

t,t+τ + Q̂V
o

t,t+τ .

Theoretically, for all of the above estimators, any υ > 0 and $ ∈ (0, 1/2) will work. We fix

$ = 0.49. The computation of υ is more involved and takes into account the fact that volatility

varies over time and displays a strong diurnal pattern over the trading day. To account for the

latter, we estimate, nonparametrically, a time-of-day factor TODi, i = 1, ..., n,

TODi = NOIi

∑T
t=1(∆n,t

i f)21{|∆n,t
i f |≤ῡ∆0.49

n }∑T
t=1

∑n
j=1(∆n,t

j f)21{∆n,t
j f≤ῡ∆0.49

n }
, , (9.14)

where ῡ is

ῡ = 3

√
π

2

√√√√ 1

T

T∑
t=1

n∑
i=2

|∆n,t
i−1f ||∆

n,t
i f | ,

and the number of increments factor NOIi is defined as

NOIi =

∑T
t=1

∑n
j=1 1{|∆n,t

j f |≤ῡ∆0.49
n }∑T

t=1 1{|∆n,t
i f |≤ῡ∆0.49

n }
.

The latter ensures that the numerator and denominator in (9.14) are given in identical units. The

truncation level ῡ is based on the average in-sample volatility obtained from the bipower variation

measure of Barndorff-Nielsen and Shephard (2004). The TOD factor is depicted in Figure 11.
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Figure 11: Time-of-day factor.

To account for time-varying volatility across days, we use the estimated continuous component of

volatility for the previous day (for the first day we use ῡ). Finally, our time-varying threshold is

υt,i = 3

√
V̂ n,n
t−1

1− π̂
× TODi ×∆0.49

n ,

where π̂ is given by,

π̂ =

∑T
t=1(ft+π − ft)2∑T
t=1(ft+1 − ft)2

.

9.2 Linking Risks and Risk Premia with their Feasible Counterparts

From the properties of the compensator for a jump measure, we have,

LTKt,t+τ =

∫ t+τ

t

∫
R2

1{x≤−K} ν
P
s (dx, dy) ds + εLt,t+τ , EP

t (εLt,t+τ ) = 0,

RTKt,t+τ =

∫ t+τ

t

∫
R2

1{x≥K} ν
P
s (dx, dy) ds + εRt,t+τ , EP

t (εRt,t+τ ) = 0.

(9.15)

Hence, up to martingale difference sequences, LTKt,t+τ and RTKt,t+τ measure the P jump intensity of

“large” jumps.37

37Empirical estimates for the number of “large” negative and positive jumps across our sample are provided in
Section C of the Supplementary Appendix.
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Turning towards the equity and variance risk premia, we first note that, from an application of

Itô formula, log(Xt) has the following representation under P,

d log(Xt) =
[
αt − qPt

]
dt +

√
V1,t dW

P
1,t +

√
V2,t dW

P
2,t +

∫
R2

x µ̃P(dt, dx, dy), (9.16)

where qPt = 1
2V1,t + 1

2V2,t +
∫
R2(ex − 1 − x) νPt (dx, dy), and similarly under Q with αt replaced by

rt − δt and all superscripts P replaced with Q in the expression above.

Hence, we have the following relations for the feasible measures of the equity and variance risk
premia,

log

(
Xt+τ

Xt

)
− 1

τ

∫ t+τ

t

(rs − δs) ds = ERPτt +
1

τ
EP
t

(∫ t+τ

t

qPsds

)
+ εEt,t+τ , EP

t (ε
E
t,t+τ ) = 0,

V̂RP
τ

t =
1

τ

[
Q̂V t,t+τ − EQ

t (QVt,t+τ )
]

= VRPτt + εVt,t+τ , EP
t (ε

V
t,t+τ ) = 0,

(9.17)

where EQ
t (QVt,t+τ ) can be measured in model-free fashion via the VIX index. Equation (9.17)

shows that a martingale difference sequence separates V̂RP
τ

t from VRPτt , and, likewise, a martingale

difference sequence separates the log excess cum-dividend returns on the underlying asset from the

unobservable ERPτt + 1
τ E

P
t

(∫ t+τ
t qPs ds

)
. In principle, we can remove the term stemming from the

convexity adjustment, i.e., 1
τ E

P
t

(∫ t+τ
t qPs ds

)
, via a consistent estimator for

∫ t+τ
t qPs ds (again up to

a martingale difference term) obtained from high-frequency data, e.g.,38

∫ t+τ

t
q̂ Ps ds =

∑
i: i
n
∈(t,t+τ ]

[
1

2
|∆n

i f |2 1{ |∆n
i f | ≤ υt,i } +

(
e∆n

i f − 1−∆n
i f
)

1{ |∆n
i f |>υt,i }

]
.

In practice, this adjustment is minute and the results are virtually unchanged if we implement it.39

38For the overnight periods we just take one half of the squared return.
39We do not report results adjusting for this term to conserve space. They are available upon request.
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