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Abstract

We develop an efficient mixed-scale estimator for jump regressions using high-frequency asset
returns. A fine time scale is used to accurately identify the locations of large rare jumps in
the explanatory variables such as the price of the market portfolio. A coarse scale is then used
in the estimation in order to attenuate the effect of trading frictions in the dependent variable
such as the prices of potentially less liquid assets. The proposed estimator has a non-standard
asymptotic distribution that cannot be made asymptotically pivotal via studentization. We
propose a novel bootstrap procedure for feasible inference and justify its asymptotic validity.
We show that the bootstrap provides an automatic higher-order asymptotic approximation by
accounting for the sampling variation in estimates of nuisance quantities that are used in ef-
ficient estimation. The Monte Carlo analysis indicates good finite-sample performance of the
general specification test and confidence intervals based on the bootstrap. We apply the method
to a high-frequency panel of Dow stock prices together with the market index defined by the
S&P 500 index futures over the period 2007–2014. We document remarkable temporal stabil-
ity in the way that stocks react to market jumps. However, this relationship for many of the
stocks in the sample is significantly noisier and more unstable during sector-specific jump events.
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1 Introduction

The availability of high-frequency data has led to new ways of estimating an asset’s exposures

to systematic risks such as the aggregate stock market return in the standard CAPM. The high-

frequency estimation approach (Andersen, Bollerslev, Diebold, and Vega (2003); Barndorff-Nielsen

and Shephard (2004a); Andersen, Bollerslev, Diebold, and Wu (2006); Mykland and Zhang (2009))

uses realized variation measures to infer beta over a fixed period of time, usually a day or a month,

and then tracks these estimates over non-overlapping sample periods. More recent practice is to

conduct estimation using jump-robust measures of variation and covariation (Todorov and Boller-

slev (2010); Gobbi and Mancini (2012)). All of the above mentioned beta measures (with or without

truncation) mainly pertain to the locally Gaussian diffusive moves in the market, because the large

number of small diffusive moves are known to account for a major part of the market variation.

Economically speaking, these small moves in part reflect the market’s gradual price discovery pro-

cess of distilling minor news on fundamentals from noise trading (Kyle (1985)) which can lead to

a situation with low signal to noise ratio and temporal instability.1 Li, Todorov, and Tauchen

(2016), on the other hand, suggest an opposite approach that mainly uses abrupt and locally large

jump moves to generate an effective measure of beta.2,3 Such moves are typically related to impor-

tant market-wide shocks which include, but are not limited to, macro announcements, geopolitical

events and natural disasters. [See Chapter 8 of Hasbrouck (2015) for more discussion.]

The use of large rare jumps in a regression setting requires new ways of thinking about regression

and inference. On the one hand, in any given fixed span of time, there are only a finite number

of jumps. This means that the number of informative observations in a jump regression is finite

and does not increase to infinity asymptotically.4 Therefore, the common intuition underlying the

law of large numbers does not apply here. On the other hand, we recognize that the jumps are of

fixed size regardless of the sampling frequency, whereas the diffusive moves are on the order ∆
1/2
n ,

where ∆n is the sampling interval which goes to zero asymptotically. The diffusive moves in the

1Indeed, Kalnina (2013) and Reiss, Todorov, and Tauchen (2015) document that spot betas remain constant only
over very short periods of time, usually a week or, at best, a month.

2Jump betas have been first introduced in Todorov and Bollerslev (2010). Todorov and Bollerslev (2010) use
higher order power variations to identify the jump betas from the high-frequency data. This approach, unlike Li,
Todorov, and Tauchen (2016), makes use of all of the high-frequency increments. Of course, the role of the increments
without jumps vanishes asymptotically in the higher order power variations.

3Theoretically, the betas at jump and non-jump times do not need to coincide.
4Even if the asset price process has infinitely active jumps, the number of jumps that have sizes greater than any

fixed level remains finite.
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vicinity of jumps can be viewed as measurement errors induced by discrete sampling, and they

play the role of random disturbances in classical regressions. The magnitude of such measurement

error shrink at the parametric rate with well-behaved asymptotic properties, which can be further

used for studying the asymptotics of our estimators. In the same vein, the correct specification of

a linear jump regression model amounts to a perfect fitting (i.e., R2 = 1) of the dependent jumps

in the continuous-time limit. This test can be carried out by examining whether the observed R2

is statistically significantly below unity.

This paper develops a new mixed-scale strategy for jump regressions, which addresses a natural

asymmetry between the explanatory and dependent variables seen in applications.5 On the one

hand, the explanatory variables are often returns of highly liquid assets such as market index

futures. We sample these variables at a fine scale (1-minute in our application), which greatly

improves the accuracy of jump detection. On the other hand, the dependent variables are typically

returns of less liquid assets such as individual stocks, which are subject to a slower price discovery

process for incorporating large bits of new information. Realistically speaking, due to the trading

mechanisms on the exchanges, a jump typically cannot be observed instantly. Rather, it is often

realized through a sequence of transactions. See Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2009) for a discussion of what they term “gradual jumps.” It is therefore prudent to sample the

asset prices for the dependent variables at a coarse scale when estimating the jump regression

model, at the cost of statistical efficiency. The mixed-scale approach provides a flexible way of

using data that play distinct roles in the jump regression. The fact that the jump detection step

and the jump regression step are performed under two (possibly) distinct scales also leads to novel

asymptotic results (cf. Li, Todorov, and Tauchen (2016)). In addition, we present all theory here

in a multivariate setting so as to facilitate applications to multi-factor models of risk exposure.

We further extend the analysis of Li, Todorov, and Tauchen (2016) by providing a refined

inference for the mixed-scale jump regression which is beneficial, particularly when sampling at

coarser frequencies. We first derive a higher-order asymptotic approximation for the jump regression

estimates. This expansion accounts for the error in the volatility estimation around the jump times

(which is of higher order). We then propose a bootstrap method which we show is asymptotically

valid. The bootstrap provides a conceptually different alternative to the higher-order asymptotic

expansion. The latter is based on direct higher-order asymptotic approximations while the current

5Our mixed-scale strategy is designed to improve the accuracy of jump detection for a subvector of a multivariate
semimartingale process, so the goal here is to reduce the misclassification (i.e., jump or non-jump) error. This is
fundamentally different from the multi-scale method of Zhang, Mykland, and Aı̈t-Sahalia (2005), which conducts a
jackknife bias-correction using realized variances computed at subsamples with different frequencies in the estimation
of integrated volatility.
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bootstrap method is aimed at approximating the finite sample distribution of the estimator using

simulated data. Our motivation for using the bootstrap is that the asymptotic distribution of the

estimator of jump beta is non-standard because volatility may co-jump at the jump times of the

explanatory variable(s); see, for example, Jacod and Todorov (2010), Todorov and Tauchen (2011)

and Bandi and Renó (2016). In fact, the limiting distribution of the estimator is not Gaussian

even conditional on the underlying information set. The asymptotic covariance matrix alone is

thereby insufficient for asymptotically valid inference; in particular, the conventional t-statistic

is not asymptotically pivotal. We therefore propose a bootstrap method that is very simple to

implement. The user only needs to repeatedly compute the estimator in a bootstrap sample that

consists of small sub-samples within local windows of the detected jump times. The bootstrap

sample size is much smaller than the original sample size, resulting in a significant reduction in

computational time. The same bootstrap sample can also be used to compute critical values for the

specification test. The bootstrap procedure achieves a higher-order refinement over the asymptotic

approximations to the usual order. Our bootstrap refinement is atypical because it does not concern

Edgeworth expansions for asymptotically pivotal statistics; instead, here, the refinement accounts

for the higher-order sampling variability in the weights of the efficient regression procedure. Monte

Carlo evidence shows good finite-sample performance of the bootstrap.

The bootstrap has been first introduced to the high-frequency literature by Gonçalves and

Meddahi (2009) in the context of estimating integrated volatility. Since we focus on the inference

about jumps, which is well known to be very different from the inference about volatility, the

proposed bootstrap method and the associated asymptotic theory deviate significantly from prior

work. To the best of our knowledge, the current paper is the first to study the bootstrap inference

for jumps using high-frequency data. Although the bootstrap method is presented in the context

of jump regressions, it can be readily extended to many other contexts concerning jumps as well.

We apply the mixed-scale jump regression method to a high-frequency one-minute panel of

Dow stock prices together with the S&P 500 E-mini futures price for the market index over the

period 2007–2014. We start with concrete examples of how individual asset prices react, either

promptly or gradually, to news events generating market jumps, so as to illustrate the empirical

relevance of the mixed-scale approach. We further provide evidence that using a coarse scale of 3–5

minutes around jump times is sufficiently conservative in the jump regression step for these blue-

chip stocks; our evidence also indicates that using the fine scale is still appropriate for tasks like

estimating local volatility which depend on price increments away from the problematic intervals

with gradual jumps. We then proceed to conduct stock-by-stock tests of the key hypothesis that
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R2 = 1.6 A striking finding is that by sampling the data on a slightly coarse scale in the regression

step, the null hypothesis is rejected much less frequently. This reduction cannot be fully explained

by pure statistical reasons. Instead, it reaffirms the usefulness of the mixed-scale approach in the

testing context. Using the efficient estimator, we document how the market jump risk exposure

varies across stocks and over time. Lastly, we study the sensitivity of various stocks to market

risk at alternative jump times defined by sector-specific jumps in the nine industry ETFs for the

S&P 500 composite index. For many of the stocks in our sample, we find the relationship between

individual stocks and the market to be significantly noisier and more unstable at the sector-specific

jump times than it is at the market-wide jump times.

The rest of the paper is organized as follows. Section 2 describes the econometric framework

and Section 3 presents the main theorems. Section 4 contains the Monte Carlo evaluation and

Section 5 shows the empirical results. Section 6 concludes. All proofs are given in Section 7.

2 The setting for mixed-scale jump regressions

We describe the formal high-frequency asymptotic setting in Section 2.1 and the mixed-scale jump

regression setting in Section 2.2. The following notation is used in the sequel. We denote the

transpose of a matrix A by A> and denote its (j, k) component by Ajk. All vectors are column

vectors. For notational simplicity, we write (a, b) in place of (a>, b>)>. For two vectors a and

b, we write a ≤ b if the inequality holds component-wise. The Euclidean norm of a linear space

is denoted by ‖ · ‖. The cardinality of a (possibly random) set P is denoted by |P|. The largest

smaller integer function is b·c. For two sequences of positive real numbers an and bn, we write

an � bn if bn/c ≤ an ≤ cbn for some constant c ≥ 1 and all n. All limits are for n → ∞. We use
P−→ and

L-s−→ to denote convergence in probability and stable convergence in law, respectively.

2.1 The formal setup

We proceed with the formal setup. Let Y and Z be defined on a filtered probability space

(Ω,F , (Ft)t≥0,P) which take values in R and Rdz , respectively. Throughout the paper, all pro-

cesses are assumed to be càdlàg (i.e., right continuous with left limit) adapted. Let X ≡ (Y, Z) and

d ≡ dz+1. The d-dimensional process X is observed at discrete times i∆n, for i ∈ {0, . . . , bT/∆nc},
within the fixed time interval [0, T ], where the sampling interval ∆n → 0 asymptotically. We denote

6Earlier work by Roll (1987) have documented relatively low R2-s of time series regressions of stocks’ returns
on their systematic risk exposures, even after excluding days with firm-specific news (and hence more idiosyncratic
noise).
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the increments of X by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i ∈ In ≡ {1, . . . , bT/∆nc} . (2.1)

Our basic assumption is that X is a d-dimensional Itô semimartingale (see, e.g., Jacod and

Protter (2012), Section 2.1.4) of the form
Xt = Xc

t + Jt,

Xc
t = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (continuous component),

Jt =

∫ t

0

∫
R
δ (s, u)µ (ds, du) (jump component),

(2.2)

where the drift bt takes value in Rd; the volatility process σt takes value in Md, the space of

d-dimensional positive definite matrices; W is a d-dimensional standard Brownian motion; δ(·) ≡
(δY (·), δZ(·)) : Ω × R+ × R 7→ Rd is a predictable function; µ is a Poisson random measure on

R+ ×R with its compensator ν (dt, du) = dt⊗ λ (du) for some measure λ on R. The jump of X at

time t is denoted by

∆Xt ≡ Xt −Xt−, where Xt− ≡ lim
s↑t

Xs. (2.3)

We denote the spot covariance matrix of X at time t by ct ≡ σtσ>t . Our basic regularity condition

for X is the following.

Assumption 1. (a) The process (bt)t≥0 is locally bounded; (b) ct is nonsingular for t ∈ [0, T ]

almost surely; (c) ν ([0, T ]× R) <∞.

The only nontrivial restriction in Assumption 1 is the assumption of finite-activity jumps in X.

This assumption is used mainly to simplify our technical exposition because our empirical focus

in this paper are the big jumps. Technically speaking, this means that we can drop Assumption

1(c) and focus on jumps with size bounded away from zero. Doing so automatically verifies the

finite-activity assumption, but with very little effect on the empirical investigation in the current

paper.

2.2 Mixed-Scale Jump Regressions

The jump regression is based on the following (population) relationship between the jumps of Y

and Z:

∆Yτ = β∗>g (∆Zτ ) , τ ∈ T , (2.4)

where g(·) : Rdz 7→ Rq is a deterministic function, τ is a jump time of the process Z, and T collects

these jump times. We stress that the restriction (2.4) is only postulated at the jump times of Z.
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In particular, we allow Y to have idiosyncratic jumps, i.e., jumps that do not occur at the same

times as those of Z. Therefore, in general (provided g(0) = 0) we have

∆Yt = β∗>g (∆Zt) + ∆εt, ∆Zt∆εt = 0, t ∈ [0, T ], (2.5)

with εt capturing the idiosyncratic jump risk in the asset Y . We note that this type of model for

the jump parts of assets naturally arises in economies in which the market-wide pricing kernel is

specified as a function of systematic factors (containing jumps) and the cash flows of the assets

contain in addition idiosyncratic jump shocks in the sense of Merton (1976). We refer to Li,

Todorov, and Tauchen (2016) for more discussion of our jump model.

We refer to the coefficient β∗ as the jump beta, which is the parameter of interest in our

econometric analysis. As in Li, Todorov, and Tauchen (2016), we are mainly interested in the

linear specification g(∆Zτ ) = ∆Zτ because it turns out to deliver quite good fitting in practice.

That being said, the general form (2.4) is also of economic interest. For example, with g(∆Zτ ) =(
∆Zτ1{∆Zτ>0},∆Zτ1{∆Zτ<0}

)
, (2.4) conveniently allows for asymmetric response of Y with respect

to positive and negative jumps in Z. Assumption 2, below, ensures the identification of the jump

beta. It also imposes some mild smoothness condition on g(·) that facilitates the asymptotic

analysis.

Assumption 2. (a) The matrix
∑

τ∈T g (∆Zτ ) g (∆Zτ )> is nonsingular almost surely.

(b) For each t, the measure defined by A 7→ λ({u : δZ (t, u) ∈ A \ {0}}) is atomless. Moreover,

g(·) is twice continuously differentiable almost everywhere.

In finite samples, neither the times nor the magnitudes of jumps are directly observable. Em-

pirically, we need to use discretely sampled data ∆n
i X = (∆n

i Y,∆
n
i Z) to make statistical inference

based on model (2.4). Since (2.4) only concerns the jump moves of the asset prices, it is concep-

tually natural to first select observed returns that contain jumps. We do so using a thresholding

method (Mancini (2001)) as follows. We consider a sequence of thresholds (un)n≥1 ⊂ Rdz such that

uj,n � ∆$
n , for some $ ∈ (0, 1/2) and all 1 ≤ j ≤ dz.

We then collect the jump returns using

Jn ≡ In \ {i : −un ≤ ∆n
i Z ≤ un} . (2.6)

Time-invariant choice for un, although asymptotically valid, leads to very bad results in practice

as it does not account for the time-varying diffusive spot covariance matrix ct. Hence, a sensible

choice for un should take into account the variation of ct in an adaptive, data-driven way. We refer

7



to our application in Sections 4 and 5 for the details of such a way of constructing un using the

bipower variation estimator of Barndorff-Nielsen and Shephard (2004b).

Under Assumption 1, it can be shown that Jn consistently locates the sampling intervals that

contain jumps.7 That is,

P (Jn = J ∗n )→ 1, where J ∗n≡{i : τ ∈ ((i− 1) ∆n, i∆n] for some τ ∈ T } . (2.7)

Parallel to (2.4), the jump regression equation is then given by

∆n
i Y = β∗>g (∆n

i Z) + εni , i ∈ Jn, (2.8)

with the error term εni being implicitly defined by (2.8).

Despite the apparent similarity between the jump regression equation (2.8) and the classical

regression, there are fundamental differences. We first observe that (2.8) only concerns a finite

number of large jump returns even asymptotically (recall (2.7)). This means, the intuition under-

lying the classical law of large numbers and the central limit theorem does not apply here. The

reason is that the finite number of error terms (εni )i∈Jn would not “average out.” However, we

observe that these error terms are actually asymptotically small. Indeed, under (2.4), we have for

each i ∈ J ∗n ,

εni = ∆n
i Y

c − β∗> (g (∆Zτ + ∆n
i Z

c)− g (∆Zτ )) ,

where τ is the unique (which holds true at high frequency) jump time that occurs in ((i− 1) ∆n, i∆n].

Since the diffusive moves (∆n
i Y

c,∆n
i Z

c) are of order Op(∆
1/2
n ), so is εni . In addition, these small er-

ror terms have well-behaved asymptotic properties, which we use to derive the asymptotic property

of our inference procedures.

In empirical work, the use of high-frequency data is confounded by various trading frictions

that make the transaction price deviate from the efficient price, with the latter being typically the

object of interest. The deviation of the observed from efficient (fundamental) price is commonly

referred to as microstructure noise. Typical sources of microstructure noise are bid-ask bounces

and rounding error. A standard assumption in the literature is to assume that the noise is centered

at zero and it has some form of weak dependence across observation times. There is a large body of

work dealing with microstructure noise of this type, see e.g., chapter 16 of Jacod and Protter (2012)

and the many references therein. The earlier literature has “dealt” with the potential presence of

noise by sampling sparsely, with the idea being that at the coarser frequencies the importance of

the noise in relative terms is rather small and can be ignored. Subsequent work has developed

7See, for example, Proposition 1 of Li, Todorov, and Tauchen (2016).
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formal statistical methods for dealing with the microstructure noise. Although the methods differ,

they are all based on averaging the noise in some way. In other words, the existing methods all rely

on weak dependence of the noise at observation times and apply law of large numbers to purge the

high frequency based measures from it.

There is another type of microstructure noise, which stems from staleness and infrequent trading.

Mainly, for assets which are not very liquid, the price can be relatively slow to react to news. In

particular, when there is a big jump on the stock market, less liquid individual assets can be

slow to react and adjust fully to the new (latent) efficient price level that corresponds to the new

information. There can be various sources for this type of price staleness. One typical example is

the presence of stale limit orders in the limit order book which get “hit” as the price is adjusting to

the new equilibrium level. The staleness in prices causes a phenomenon referred to by Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2009) as gradual jumps. Obviously, this type of noise is

very difficult to deal with formally as by its very nature it has a lot of dependence across observation

times and also it depends very strongly on the actual fundamental price. Hence, local averaging

type procedures will not work for it. Also, it is clear that this type of trading friction has a rather

nontrivial impact on the analysis of jumps since, by their very nature, jumps are rare events.

In this paper we are mainly concerned with the second type of noise, i.e., the one that is due to

staleness.8 To mitigate its impact, we will sample sparsely. The proper sampling scheme of course

depends on the asset of interest as staleness and liquidity are asset specific. For example, in our

applications, we take Y to be the price of a blue-chip stock and Z to be the price of a futures

contract on a major market index, with Z expected to be more liquid than Y .

The difference in liquidity of the left- and the right-hand side assets around market jump times

creates an interesting tradeoff in the choice of the sampling scheme. On the one hand, sampling

at high frequency (e.g., 1 minute) greatly increases the accuracy for jump detection and, hence,

reduces jump-misclassification bias in finite samples. On the other hand, sampling at such frequency

is unlikely to be conservative enough for mitigating the microstructure effect of gradual jumps in

Y . Indeed, as we shall illustrate with concrete examples in Section 5, individual stocks may take

longer time than the market to fully incorporate new information that leads to a visible jump

in the market index. See Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) for additional

discussions on this type of gradual jumps.

We propose to break the tension between these two conflicting effects using a mixed-scale jump

regression procedure: we maintain the jump detection (2.6) at the fine sampling scale ∆n, but

8For the frequencies we use in our empirical work, the first type of noise has relatively small impact, see Section 5
for further details.
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implement the jump regression at a (possibly) coarser scale k∆n for some k ≥ 1. By doing so, we

maintain high precision in detecting market jumps and reduce the concern of “breaking” gradual

jumps. More precisely, we denote ∆n
i,kX = (∆n

i,kY,∆
n
i,kZ), where

∆n
i,kX = X(i−1+k)∆n

−X(i−1)∆n
.

The mixed-scale jump regression is then given by, with εni,k implicitly defined below,

∆n
i,kY = β∗>g

(
∆n
i,kZ

)
+ εni,k, i ∈ Jn. (2.9)

Clearly, (2.8) is a special case of (2.9) with k = 1. The fact that the jump detection and the

jump regression are performed at different sampling scales leads to notable differences between

the inference procedures proposed below and those in the single-scale setting of Li, Todorov, and

Tauchen (2016), mainly because of the presence of volatility-price co-jumps. We now turn to the

details.

3 Asymptotic theory

3.1 The efficient estimation of jump beta

In this subsection, we describe a class of mixed-scale estimators for the jump beta and derive their

asymptotic properties. In view of (2.9), a natural estimator of β∗ is the mixed-scale ordinary least

squares (OLS) estimator given by

β̂n ≡

(∑
i∈Jn

g
(
∆n
i,kZ

)
g
(
∆n
i,kZ

)>)−1(∑
i∈Jn

g
(
∆n
i,kZ

)
∆n
i,kY

)
.

However, since the error terms (εni,k)i∈Jn can exhibit arbitrary heteroskedasticity due to both time-

varying volatility and jump size, the mixed-scale OLS estimator is not efficient. Following Li,

Todorov, and Tauchen (2016), we consider efficient estimation using a semiparametric two-step

weighted estimator.

To construct the weights, we first nonparametrically estimate the spot covariance matrices

before and after each detected jump. To this end, we pick an integer sequence kn of block sizes

such that

kn →∞ and kn∆n → 0. (3.1)

We also pick a Rd-valued sequence u′n of truncation thresholds that satisfies

u′j,n � ∆−$n , for some $ ∈ (0, 1/2) and all 1 ≤ j ≤ d.
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We then set the index set of the diffusive returns to be

Cn =
{
i ∈ In : −u′n ≤ ∆n

i X ≤ u′n
}
. (3.2)

For each i ∈ Jn, we estimate the pre-jump and the post-jump spot covariance matrices using
ĉn,i− ≡

∑kn−1
j=0 (∆n

i−kn+jX)(∆n
i−kn+jX)>1{i−kn+j∈Cn}

∆n
∑kn−1

j=0 1{i−kn+j∈Cn}
,

ĉn,i+ ≡
∑kn−1

j=0 (∆n
i+k+jX)(∆n

i+k+jX)>1{i+k+j∈Cn}

∆n
∑kn−1

j=0 1{i+k+j∈Cn}
.

(3.3)

We note that these spot covariance estimates are constructed using returns sampled at the “fine”

scale which, in our empirical analysis in Section 5, is set to be 1 minute. At such frequency, the

microstructure noise due to bid-ask bounces and rounding has a negligible impact on volatility

estimation for liquid stocks (we provide empirical evidence for that in the empirical section). That

being said, one may also estimate spot volatilities at coarser sampling intervals to further guard

against microstructure noise but at the cost of higher sampling variability in finite samples. This

results in notational changes only in the theory that follows and we omit the details for brevity.

We consider a weight function w : Md ×Md × Rdz × Rq 7→ (0,∞) such that w (c−, c+, z, β)

is continuously differentiable at β = β∗, all c−, c+ ∈ Md and almost every z ∈ Rdz . To simplify

notation, we denote

ŵn,i = w
(
ĉn,i−, ĉn,i+,∆

n
i,kZ, β̂n

)
.

The mixed-scaled WLS estimator is then given by

β̂n (w) ≡

(∑
i∈Jn

ŵn,ig
(
∆n
i,kZ

)
g
(
∆n
i,kZ

)>)−1(∑
i∈Jn

ŵn,ig
(
∆n
i,kZ

)
∆n
i,kY

)
. (3.4)

In order to describe the asymptotic behavior of β̂n (w), we introduce some auxiliary random

variables. Let (τp)p≥1 denote the successive jump times of Z. We consider random variables

(κp, ξp−, ξp+)p≥1 that are mutually independent and are independent of F such that κp is uniformly

distributed on [0, 1] and the variables (ξp−, ξp+) are d-dimensional standard normal. We then

denote, for p ≥ 1, ςp ≡
(

1,−β∗>∂g
(
∆Zτp

))(√
κpστp−ξp− +

√
k − κpστpξp+

)
,

wp ≡ w
(
cτp−, cτp ,∆Zτp , β

∗) . (3.5)

Finally, we set

Ξ (w) ≡
∑
p∈P

wpg
(
∆Zτp

)
g
(
∆Zτp

)>
, Λ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
ςp.

Theorem 1, below, describes the stable convergence in law of β̂n (w).

11



Theorem 1. Under Assumptions 1 and 2, ∆
−1/2
n (β̂n (w)− β∗) L-s−→ Ξ (w)−1 Λ (w).

Theorem 1 shows that β̂n (w) is a ∆
−1/2
n -consistent estimator of the jump beta, with F-

conditional asymptotic covariance matrix given by

Σ (w) ≡ Ξ (w)−1

∑
p∈P

w2
pE
[
ς2
p |F

]
g
(
∆Zτp

)
g
(
∆Zτp

)>Ξ (w)−1 ,

where

E
[
ς2
p |F

]
=
(

1,−β∗>∂g
(
∆Zτp

))(1

2
cτp− +

(
k − 1

2

)
cτp

)(
1,−β∗>∂g

(
∆Zτp

))>
.

It is easy to see that Σ (w) can be minimized using the weight function

w (c−, c+, z, β) ≡ 1

(1,−β>∂g (z))
(

1
2c− +

(
k − 1

2

)
c+

)
(1,−β>∂g (z))

> .

We refer to the associated estimator as the optimally weighted estimator. By construction, it is

more efficient than an unweighted estimator. Moreover, Li, Todorov, and Tauchen (2016) establish

the semiparametric efficiency bound for estimating the jump beta in the case without volatility-price

cojumps. In this case, the optimally weighted estimator defined above attains the efficiency bound

computed for the coarsely sampled data. The reason for using the coarser frequency in the analysis

of the semiparametric efficiency of the jump beta estimation is that the limiting distribution of

the jump regression coefficient is determined only by the high-frequency increments containing the

jumps. However, recall that these increments are aggregated to a coarser scale in order to guard

against the gradual jump phenomenon. In this regard, we should stress that the frequency used for

jump detection as well as for the estimation of volatility has no bearing on the efficiency statement.

The reason is that the error coming from the jump detection as well as volatility measurement is

of higher order in the jump regression.

3.2 Higher-order refinement and bootstrap inference

We now develop refined inference for the jump regression estimate of β∗. We first derive a higher-

order asymptotic result and then propose a bootstrap procedure which we show achieves the asymp-

totic refinement.

To motivate, we observe that while the weighted estimator β̂n (w) depends on the spot covariance

estimates (ĉn,i−, ĉn,i+), the sampling variability of the latter is not reflected in the asymptotic

distribution described by Theorem 1. The reason is that the local volatility estimates enter only the

weights and their sampling errors are annihilated in the second-order asymptotics. In finite samples,

12



the sampling variability of the spot covariance estimates may still have some effect, because the

latter enjoy only a nonparametric convergence rate. To account for such effects, we need a refined

characterization of the asymptotic behavior of the weighted estimator which we now provide. For

the analysis here we need the following additional assumption for the volatility process.

Assumption 3. The process σt is also an Itô semimartingale of the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖>1}µ (ds, du)

+

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖≤1} (µ− ν) (ds, du) ,

where the processes b̃t and σ̃t are locally bounded and for a sequence of stopping times (Tm)m≥1

increasing to infinity and a sequence (J̃m)m≥1 of λ-integrable bounded functions, ‖δ̃ (t, u) ‖2 ∧ 1 ≤
J̃m (u) for all t ≤ Tm and u ∈ R.

Assumption 3 is needed for characterizing the stable convergence of the spot covariance es-

timates. This assumption is fairly unrestrictive and is satisfied by many models in finance. In

particular, it allows for “leverage effect,” that is, the Brownian motions W and W̃ can be corre-

lated. Moreover, Assumption 3 allows for volatility jumps, and it does not restrict their activity

and dependence with the price jumps. However, this assumption does rule out certain long-memory

volatility models driven by a fractional Brownian motion (see Comte and Renault (1996)).

We also need some additional notation. We consider d×d random matrices (ζp−, ζp+)p≥1 which,

conditional on F , are centered Gaussian, mutually independent and independent of (κp, ξp−, ξp+)p≥1,

with conditional covariances given by E[ζjkp−ζ
lm
p−|F ] = cjlτp−c

km
τp− + cjmτp−c

kl
τp−,

E[ζjkp+ζ
lm
p+|F ] = cjlτpc

km
τp + cjmτp c

kl
τp ,

1 ≤ j, k, l,m ≤ d.

We denote the first differential of w by dw (c−, c+, z, b) = ẇ(c−, c+, z, b; dc−, dc+, dz, db) and then

set, for p ≥ 1,

w̃p ≡ ẇ
(
cτp−, cτp ,∆Zτp , β

∗; ζp−, ζp+, 0, 0
)
.

Finally, for notational simplicity, we set
Ξ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
g
(
∆Zτp

)>
, Λ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
ςp,

Ξ̃ (w) ≡
∑
p∈P

w̃pg
(
∆Zτp

)
g
(
∆Zτp

)>
, Λ̃ (w) ≡

∑
p∈P

w̃pg
(
∆Zτp

)
ςp.

The higher-order asymptotic expansion for ∆
−1/2
n (β̂n (w)−β∗) is given in the following theorem.
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Theorem 2. Suppose Assumptions 1, 2 and 3, and kn � ∆−an for some a ∈ (0, 1/2).

(a) We can decompose

∆−1/2
n

(
β̂n (w)− β∗

)
= Ln (w) + k−1/2

n Hn (w) + op(k
−1/2
n ), (3.6)

such that

(Ln (w) ,Hn (w))
L-s−→ (L (w) ,H (w)) ,

where  L (w) ≡ Ξ (w)−1 Λ (w) ,

H (w) ≡ Ξ (w)−1 Λ̃ (w)− Ξ (w)−1 Ξ̃ (w) Ξ (w)−1 Λ (w) .

(b) If, in addition, there are no price-volatility cojumps and W is independent of (σ, J), then

supx |P(Ln (w) ≤ x|σ, J)− P(L (w) ≤ x|σ, J)| = Op(∆
1/2
n ).

The leading term Ln (w) in (3.6) is what drives the convergence in Theorem 1. The higher-order

term k
−1/2
n Hn (w) is Op(k

−1/2
n ) and hence is asymptotically dominated by Ln (w). The limiting

variable Hn (w) involves not only (ςp)p≥1 but also (w̃p)p≥1, where the latter sequence captures the

sampling variability in the weights due to the spot variance estimates. Part (b) of Theorem 2

further shows that the conditional law of the leading term converges at a (fast) parametric rate

under the uniform metric.

Because of the higher-order asymptotic effect played by ĉn,i± in the efficient beta estimation,

the user has a lot of freedom in setting the block size kn. Indeed, as seen from Theorem 2, we

need only kn � ∆−an with a in the wide range of (0, 1/2). This is unlike the block-based volatility

estimators, see e.g., Jacod and Rosenbaum (2013), where one has significantly less freedom in

choosing kn. Having the refined asymptotic result in Theorem 2 helps since if kn is relatively small,

the higher-order term k
−1/2
n Hn (w) might have nontrivial finite sample effect.

We now introduce a bootstrap algorithm and show that (see Theorem 3 below) it provides the

higher-order approximation described in Theorem 2. With a mild adjustment, the same bootstrap

sample can also be used to compute critical values for the specification test developed in Section

3.3. The bootstrap was first introduced to the high-frequency setting by Gonçalves and Meddahi

(2009) and Dovonon, Gonçalves, and Meddahi (2013) for making inference for integrated variance

and covariance matrices; also see Hounyo (2013) and Dovonon, Hounyo, Gonçalves, and Meddahi

(2014). We apply here the bootstrap to make inference for jumps, which is therefore very different

from prior work that concerns volatility inference.9

9Dovonon, Hounyo, Gonçalves, and Meddahi (2014) consider an application of the bootstrap for approximating
the null asymptotic distribution of jump tests, which mainly concerns the jump-robust inference for the integrated
variance, rather than the jump process itself.
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Algorithm 1 (Bootstrapping β̂n(w)).

Step 1. In each bootstrap sample, we generate a d-dimensional standard Brownian motion W ∗ and

random times (τ∗i )i∈Jn which are mutually independent and independent of the data, such that

each τ∗i is drawn uniformly from [(i− 1)∆n, i∆n].10 Set the diffusive return for each i ∈ Jn as

∆n
i,kX

∗c ≡

 ∆n
i,kY

∗c

∆n
i,kZ

∗c

 = ĉ
1/2
n,i−(W ∗τ∗i −W

∗
(i−1)∆n

) + ĉ
1/2
n,i+(W ∗(i−1+k)∆n

−W ∗τ∗i ). (3.7)

Step 2. Set ∆n
i,kZ

∗ = ∆n
i,kZ + ∆n

i,kZ
∗c and ∆n

i,kY
∗ = β̂n (w)> g(∆n

i,kZ) + ∆n
i,kY

∗c for i ∈ Jn.

Compute β̂∗n as the OLS estimator by regressing ∆n
i,kY

∗ on g(∆n
i,kZ

∗) in the subsample i ∈ Jn.

Step 3. For each i ∈ Jn, set

∆n
i−kn+jX

∗c = ĉ
1/2
n,i−∆n

i−kn+jW
∗, ∆n

i+k+jX
∗c = ĉ

1/2
n,i+∆n

i+k+jW
∗, 0 ≤ j ≤ kn − 1, (3.8)

and compute (ĉ∗n,i−, ĉ
∗
n,i+) as
ĉ∗n,i− ≡ 1

kn∆n

∑kn−1
j=0

(
∆n
i−kn+jX

∗c
)(

∆n
i−kn+jX

∗c
)>

,

ĉ∗n,i+ ≡ 1
kn∆n

∑kn−1
j=0

(
∆n
i+k+jX

∗c
)(

∆n
i+k+jX

∗c
)>

.

(3.9)

Step 4. Compute β̂∗n (w) in the bootstrap sample using (3.4) with
(

∆n
i,kY,∆

n
i,kZ, ŵn,i

)
i∈Jn

replaced

by (∆n
i,kY

∗,∆n
i,kZ

∗, ŵ∗n,i)i∈Jn , where ŵ∗n,i ≡ w(ĉ∗n,i−, ĉ
∗
n,i+,∆

n
i,kZ

∗, β̂∗n).

In summary, Algorithm 1 suggests computing β̂∗n (w) in the same way as β̂n(w) using the

bootstrap sample. One exception is that the computation of the spot covariances (see (3.9)) does

not require truncation, because we only use the diffusive returns in the bootstrap. It is important

to observe that the spot covariance matrices and the weights are also resampled so as to capture

their sampling variability in the higher-order asymptotics.

Theorem 3, below, describes the convergence in probability of the F-conditional law of the

bootstrap estimator β̂∗n (w). For a sequence of random variables An, we write An
L|F−→ A if the

F-conditional law of An converges in probability to that of A under any metric for the weak

convergence of probability measures.11

Theorem 3. Suppose the same conditions as in Theorem 2. Then we can decompose

∆−1/2
n

(
β̂∗n (w)− β̂n (w)

)
= L∗n (w) + k−1/2

n H∗n (w) + op(k
−1/2
n ), (3.10)

10We note that the Gaussian increments of W ∗ are only needed within two-sided kn-windows around the jump
returns. This fact is useful for reducing the computational cost in practice.

11We note that An
L|F−→ A amounts to the convergence of F-conditional law in a weak sense, namely the convergence

is in probability for measure-valued random elements. This convergence is weaker than the almost sure convergence
of the F-conditional law of An towards that of A, but is stronger than the stable convergence in law.
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such that

(L∗n (w) ,H∗n (w))
L|F−→ (L (w) ,H (w)) ,

where (L (w) ,H (w)) are defined as in Theorem 2.

Theorem 3 justifies using the F-conditional distribution of ∆
−1/2
n (β̂∗n (w)− β̂n (w)) to approxi-

mate the F-conditional limiting distribution of ∆
−1/2
n (β̂n (w)−β∗). Importantly, the approximation

not only captures the leading term L (w), but also the higher-order term k
−1/2
n H (w).12 We further

note that both L (w) and H (w) are F-conditionally symmetric. Therefore, the basic bootstrap and

the percentile bootstrap (see, e.g., Davison and Hinkley (1997)) can both be used for constructing

bootstrap confidence intervals.

To summarize, refined inference for the jump regression coefficients can be done either by the

use of the higher order asymptotic result in Theorem 2 or the bootstrap procedure based on the

result of Theorem 3. We provide no asymptotic justification for preferring one over the other. In

both methods the higher order asymptotic effect from the estimation of volatility around the jump

times is accounted for. In addition, both methods ignore errors in the jump regression which are

of even higher order (than the error due to the estimation of volatility), like the errors in detecting

the locations of the jump times as well as the error due to the time variation in the volatility in

the local blocks around the jump times. The difference between the inference based on the higher

order asymptotic result and the bootstrap method is that the latter is based on mimicking the

finite sample distribution of the regression estimator assuming jumps are located correctly and the

volatility does not vary over the local blocks. The inference based on the higher order asymptotic

result, on the other hand, is based on asymptotic expansion of the regression estimator in the above

simplified setting (i.e., when assuming jumps are located correctly and volatility is constant over

the local windows around the jump times). In that sense, the difference between the two methods

of refined inference for the jump regression is similar to the difference between inference based

on asymptotic theory and bootstrap in classical settings, see e.g., Section 2 of Horowitz (2001).13

Finally, on the practical side the bootstrap is conceptually simple to grasp in the sense that the

econometrician only needs to repeatedly compute the mixed-scale OLS or WLS estimator in the

12It is useful to note that the spot volatility estimates ĉn,i± in Algorithm 1 can be taken differently from those

used in the estimation of β̂n(w). In particular, if these spot volatility estimates attain the optimal ∆
−1/4
n rate, then

it can be shown that the F-conditional distribution L∗n(w) converges to that of L(w) under the uniform metric with

rate ∆
−1/4
n .

13The type of refinement offered by the bootstrap is nevertheless nonstandard and theoretically interesting because
our bootstrap is not applied to an asymptotically pivotal statistic, see Section 3.2 of Horowitz (2001) for a review of
standard results on the asymptotic refinement of the bootstrap for asymptotically pivotal statistics. Instead, here,
the refinement accounts for a higher-order sampling variability from the nonparametrically constructed weights (due
to spot covariance estimation) that are used for efficient estimation.
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bootstrap samples.

3.3 Specification testing and its bootstrap implementation

We proceed with a specification test for (2.4), which generalizes the test of Li, Todorov, and Tauchen

(2016) to a multivariate mixed-scale setting. Since (2.4) is no longer assumed to be correct, we

introduce the pseudo-true parameter

β̄ ≡

(∑
τ∈T

g (∆Zτ ) g (∆Zτ )>
)−1(∑

τ∈T
g (∆Zτ ) ∆Yτ

)
.

Clearly, β̄ coincides with β∗ whenever (2.4) is correctly specified, but β̄ remains well-defined even

under misspecification. Formally, the testing problem is to decide in which of the following two

sets the observed sample path falls:14 Ω0 ≡
{

∆Yτ = β̄>g (∆Zτ ) for all τ ∈ T
}
∩ {|P| > q} , (Null Hypothesis)

Ωa ≡
{

∆Yτ 6= β̄>g (∆Zτ ) some τ ∈ T
}
∩ {|P| > q} , (Alternative Hypothesis).

(3.11)

We note that the event {|P| > q} rules out the degenerate situation where (2.4) holds trivially

(recall that q is the dimension of g (·)). Like in the classical setting, this condition says that β∗ is

overidentified, so that a specification test is possible.

We carry out the test by examining whether the sum of squared residuals (SSR) of a linear

regression is “close enough” to zero. The SSR statistic is given by

SSRn ≡
∑
i∈Jn

(
∆n
i,kY − g

(
∆n
i,kZ

)>
β̂n

)2
. (3.12)

We reject the null hypothesis that (2.4) is correctly specified at significance level α ∈ (0, 1) if SSRn

is greater than a critical value cvαn that is described in Algorithm 2 below. In practice, it may be

useful to report the test in terms of the R2 of the regression (2.9), that is,

R2
n ≡ 1− SSRn∑

i∈Jn ∆n
i,kY

2
.

We reject the null hypothesis when 1−R2
n is greater than cvαn/

∑
i∈Jn(∆n

i,kY )2.

Algorithm 2 (Bootstrapping Critical Values for the Specification Test).

Step 1. Generate (∆n
i,kX

∗c)i∈Jn as in step 1 of Algorithm 1.

Step 2. Set ∆n
i,kZ

∗ = ∆n
i,kZ + ∆n

i,kZ
∗c and ∆n

i,kY
∗ = β̂>n g(∆n

i,kZ) + ∆n
i,kY

∗c for i ∈ Jn.

14Specifying hypotheses in terms of random events is unlike the classical setting of hypothesis testing (e.g.,
Lehmann and Romano (2005)), but is standard in the study of high frequency data; see Jacod and Protter (2012),
and references and discussions therein.
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Step 3. Set cvαn to be the (1 − α)-quantile of SSR∗n of the bootstrap sample, where SSR∗n is the

SSR obtained from regressing ∆n
i,kY

∗ on g(∆n
i,kZ

∗). �

Theorem 4. Under Assumptions 1 and 2, the following statements hold.

(a) In restriction to Ω0, ∆−1
n SSRn converges stably in law to

∑
p∈P

ς2
p −

∑
p∈P

g
(
∆Zτp

)
ςp

>∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)>−1∑
p∈P

g
(
∆Zτp

)
ςp

 .

In restriction to Ωa, SSRn converges in probability to

∑
p∈P

∆Y 2
τp −

∑
p∈P

g
(
∆Zτp

)
∆Yτp

>∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)>−1∑
p∈P

g
(
∆Zτp

)
∆Yτp

 .

(b) The test associated with the critical region {SSRn > cvαn} has asymptotic level α under the

null hypothesis and asymptotic power one under the alternative hypothesis, that is,

P (SSRn > cvαn |Ω0)→ α, P (SSRn > cvαn |Ωa)→ 1.

4 Simulation Results

We now examine the asymptotic theory above in simulations that mimic our empirical setting in

Section 5. We set the sample span T = 1 year, or equivalently, 250 trading days. Each day contains

m = 400 high-frequency returns, roughly corresponding to 1-minute sampling. Each Monte Carlo

sample contains n = 100, 000 returns, which are expressed in annualized percentage terms. We set

the fine scale ∆n = 1/n and implement the mixed-scale jump regression at the coarse scale k∆n,

for k = 3, 5 and 10. While our main focus is on results with mixed scales, we also report results

for k = 1 as a benchmark. There are 2,000 Monte Carlo trials.

We consider a data generating process that allows for important features such as leverage effect

and price-volatility co-jumps. For independent Brownian motions W1,t, W2,t, B1,t and B2,t, we set

d log
(
V ∗1,t
)

= −λNµFdt+ 0.5 (dB1,t + JV,tdNt) , V ∗1,0 = V̄1,

log
(
V ∗2,t
)

= log
(
V̄2 − β2

C V̄1

)
+B2,t,

V1,t = TODtV
∗

1,t, V2,t = TODtV
∗

2,t,

dZt =
√
V1,t

(
ρdB1,t +

√
1− ρ2dW1,t

)
+ ϕZ,tdNt,

dYt = βC
√
V1,t

(
ρdB1,t +

√
1− ρ2dW1,t

)
+
√
V2,tdW2,t + ϕY,tdNt,

(4.1)
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where TODt is a daily periodic function that captures the time-of-day effect in volatility.15 The

jump regression relationship is given by

ϕY,t = βJϕZ,t, (4.2)

and the parameters are, in annualized terms,

V̄1 = 182, V̄2 = 262, ρ = −0.7, βC = 0.89, βJ = 1,

JV,t
i.i.d.∼ Exponential (µF ) , µF = 0.1,

ϕZ,t|V1,t
i.i.d.∼ N

(
0,
φ2V1,t

n

)
, φ = 7.5, 10, or 12.5,

Nt is a Poisson process with intensity λN = 20.

(4.3)

These parameters are calibrated to match some key features of the data used in Section 5. In

particular, the signal-to-noise ratio parameter φ controls the relative size of price jumps with respect

to that of the (local) 1-minute diffusive returns, which is about 10.3 in our empirical sample. The

jump intensity λN is calibrated so that the average number of detected jumps in the simulation is

close to what we observe in the data, which is about 10.6 jumps per year. When φ = 7.5, 10 and

12.5, the average number of detected jumps in the simulation are 8.7, 11.9 and 14.2, respectively.

In order to examine the power of the specification test, we also implement the test under the

following alternative model:

ϕY,t = βJϕZ,t −
γ

φ
√
V̄1/n

ϕ2
Z,t1{ϕZ,t<0},

where the normalization via the average jump size φ
√
V̄1/n makes the interpretation of the param-

eter γ comparable across simulations. We note that the correctly specified model (4.2) corresponds

to γ = 0. We generate misspecified models by setting γ = 1 or 2.

Tuning parameters are chosen as follows. We set kn = 60, corresponding to a one-hour local

window for spot covariance estimation. For each trading day t ∈ {1, . . . , 250}, the truncation

thresholds for Z are chosen adaptively as

un,t = 7m−0.49
√
BVt, u′n,t = 4m−0.49

√
BVt.

Here, BVt is a slightly modified version of the bipower variation estimator of Barndorff-Nielsen and

Shephard (2004b):

BVt ≡
m

m− 4

∑
i

|∆n
i Z|

∣∣∆n
i+1Z

∣∣ ,
15The time-of-day effect is calibrated using the data in our empirical study by averaging across days for each fixed

sampling interval within a day.

19



where the sum is over all returns in day t but with the largest 3 summands excluded.16 The

truncation threshold for Y is computed similarly. Finally, we use the procedure detailed in the

supplemental material of Todorov and Tauchen (2012) to adjust for the time-of-day effect.

In Table 1, we report the finite-sample rejection rates of the specification test described in

Theorem 4. Under the null hypothesis (i.e., γ = 0), we see that the rejection rates are fairly close

to the nominal levels of the test across various jump sizes and mixed scales. Under the alternative

model (i.e., γ = 1 or 2), the rejection rates are well above the nominal level. Not surprisingly, the

finite-sample power decreases as we use coarser scale (i.e. larger k), but it is interesting to note

that the drop of power from k = 1 to k = 3 is not severe. As φ and γ increase, the rejection rates

approach one.

In Table 2, we report some summary statistics for the mixed-scale OLS and WLS estimators of

the jump beta. We see that the WLS estimator is always more accurate than the OLS estimator

as measured by the root mean squared error (RMSE). Moreover, the coverage rates of confidence

intervals (CI) constructed using Algorithm 1 and the percentile bootstrap are generally very close

to the nominal levels, regardless of the sampling scale and the jump size. Coverage results based

on the basic bootstrap are very similar to the percentile bootstrap and, hence, are omitted for

brevity.

5 Empirical application

We use the developed tools to study the systematic jump risk in the stocks comprising the Dow

Jones Industrial Average Index as of December 2014, except Visa Inc. (V) is replaced by Bank of

America (BAC) to make a balanced panel covering the period January 3, 2007 to December 12,

2014. The proxy for the market is the front-month E-mini S&P 500 index futures contract, which

is among the most liquid instruments in the world.17 In some of our analysis we also make use

of the ETFs on the nine industry portfolios comprising the S&P 500 index. We remove market

holidays and half trading days. We also remove the two “Flash Crashes” (May 6, 2010 and April

23, 2013) because the dramatic market fluctuations in these days are known to be due to market

malfunctioning. The resultant sample contains 1982 trading days. The intraday observations are

sampled at 1-minute frequency from 9:35 to 15:55 EST; the prices at the first and the last 5 minutes

are discarded to guard against possible adverse microstructure effects at market open and close.

16In empirical applications, there may be large consecutive returns with similar magnitude but opposite signs (i.e.,
bouncebacks). The bipower variation estimator is sensitive to such issues. Removing the largest three summands is
a simple but effective finite-sample robustification in this respect.

17Hasbrouck (2003) estimates that 90% of U.S. equity price formation takes place in the E-mini market futures
market.
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Table 1: Monte Carlo Rejection Rates of Specification Tests

γ = 0 γ = 1 γ = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%

φ = 7.5 k = 1 1.2 4.3 9.8 90.1 93.5 95.2 96.6 97.7 98.5

k = 3 1.5 5.3 9.7 75.9 83.5 87.0 92.3 94.5 95.8

k = 5 1.3 5.0 10.2 64.3 74.6 79.8 87.9 91.5 93.9

k = 10 1.3 5.1 9.7 46.1 59.9 67.3 75.3 82.8 87.2

φ = 10 k = 1 0.9 5.1 10.0 96.0 97.9 98.6 99.1 99.4 99.4

k = 3 1.5 5.5 9.8 86.9 91.8 93.7 97.5 98.4 98.8

k = 5 1.3 5.9 10.9 80.1 87.0 89.8 94.8 96.9 97.7

k = 10 1.5 6.3 10.4 64.1 75.3 80.3 87.1 92.3 94.3

φ = 12.5 k = 1 1.3 5.5 10.4 98.2 99.1 99.3 99.2 99.4 99.6

k = 3 1.4 5.6 10.4 93.3 95.5 96.8 97.8 98.3 98.8

k = 5 1.6 5.7 10.1 87.6 92.1 94.3 96.4 97.5 98.0

k = 10 1.4 5.8 10.6 74.2 83.6 86.7 91.6 94.4 96.1

Note: We report the Monte Carlo rejection rates of the specification test at signif-
icance level 1%, 5% and 10%. We report results under the null hypothesis (γ = 0)
and the alternative hypothesis (γ = 1, 2) for various mixed scales (k = 1, 3, 5 and
10) as well as various relative jump sizes (φ = 7.5, 10 and 12.5). The inference is
based on 1000 bootstrap draws. Each experiment has 2000 Monte Carlo trials.
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Table 2: Summary of Estimation and Coverage Results

Mixed-Scale OLS Mixed-Scale WLS

RMSE 99% CI 95% CI 90% CI RMSE 99% CI 95% CI 90% CI

φ = 7.5 k = 1 0.063 98.5 93.7 88.1 0.057 98.9 94.4 88.7

k = 3 0.111 98.2 92.9 88.4 0.101 98.3 92.7 88.8

k = 5 0.143 98.6 94.6 88.7 0.129 98.5 94.0 88.7

k = 10 0.194 98.5 94.9 89.3 0.182 98.6 93.9 88.9

φ = 10 k = 1 0.045 98.7 94.1 88.3 0.039 98.5 94.6 89.2

k = 3 0.075 98.7 94.2 88.8 0.065 98.5 94.6 89.5

k = 5 0.097 98.0 93.5 88.6 0.084 99.0 95.0 88.4

k = 10 0.131 98.9 95.1 91.0 0.116 98.9 95.6 90.4

φ = 12.5 k = 1 0.034 98.8 94.6 88.6 0.029 98.9 94.8 89.3

k = 3 0.062 98.7 93.0 87.9 0.051 98.7 94.8 89.2

k = 5 0.080 98.2 94.0 88.2 0.067 98.6 94.0 89.0

k = 10 0.110 98.5 93.0 88.2 0.095 98.8 93.6 88.3

Note: We report the root mean squared error (RMSE) and the Monte Carlo coverage rates of con-
fidence intervals (CI) at levels 99%, 95% and 90%. We report results for various mixed scales (k =
1, 3, 5 and 10) and relative jump sizes (φ = 7.5, 10 and 12.5) for both mixed-scale OLS and WLS
estimators. The CIs are constructed using Algorithm 1 and the percentile bootstrap based on 1000
bootstrap draws. Each experiment has 2000 Monte Carlo trials.
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Finally, the truncation and the window size for the local volatility estimation are set as in the

Monte Carlo. For this choice of the truncation (corresponding to a move slightly higher than 7

standard deviations), we detect a total of 85 market jumps in our sample.

To gauge the importance of microstructure noise that is weakly dependent in time, we com-

pare the average value of realized volatility at 1-minute (our sampling frequency) and the coarser

sampling frequency of 5-minutes. In presence of weakly dependent noise, the realized volatility

should be higher for the higher sampling frequency due to this type of noise. For our data set, the

median value of the ratio of 1-minute realized volatility over 5-minute realized volatility is 1.08.

This indicates a relatively modest impact of the noise at the frequency we use here for the local

volatility estimation around the jump times.

We start our empirical analysis with illustrating how stocks react to market jumps using four

representative market jumps in our sample (two positive and two negative). On Figure 1, we plot

the prices of the market and a set of selected stocks before and after the market jump event.

The top left panel shows the behavior around the market jump on September 18, 2013 which was

associated with the (positive) surprise by the Fed of not tapering its QE programs. In this case,

both the market and the BA stock reacted within the same minute and fully adjusted to their new

higher levels. A similar example, but in the opposite direction, is illustrated on the top right panel

of the figure. This panel plots the market and AXP prices around the market jump on August

5, 2014. There were growing fears on this day associated with the impact of geopolitical risks on

the economy along with concerns among investors that the Fed might raise interest rates sooner

than expected in the wake of signs that the economy is gaining strength. In this example, like the

previous one, both the market and the stock adjust to their lower level within the minute. Our

third example of a market jump is of October 1, 2008 in the midst of the recent financial crisis. In

this case, the CVX stock appeared to take more than one minute to fully incorporate the positive

market jump, a seemingly delayed reaction which could be driven by market microstructure issues

(e.g., stale limit orders). Another example of this type is the reaction of the WMT stock to the

market jump on February 23, 2010 which is displayed on the bottom right panel of Figure 1. This

market jump was associated with a surprisingly weak consumer confidence index reflecting the

pessimism among investors for the strength of the economic recovery. While the market reacted

within the minute of the release of the negative consumer confidence data, the WMT stock took at

least 2 minutes to fully incorporate the bad news.

Overall, the above four examples suggest that, in general, the stocks in our sample react quickly

to the news triggering the market jumps. However, in some instances staleness and lower liquidity
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Figure 1: Market Jump Events and Stock Reaction. Circle and diamond dots correspond to
cumulative (over the day) 1-minute log-returns on market and stock respectively. The connected
dots correspond to the minute interval in which a market jump is detected.

can confound the reaction of stocks to the market jumps. These market microstructure related

issues, however, seem to be fairly short-lived. To verify that this is indeed the case, in Table 3,

we report the jump beta estimates for all the stocks in the sample using aggregation of 3 and

5 minutes for the beta estimation (and using the whole sample). In the absence of confounding

market microstructure effects, the two beta estimates should not be statistically different from each

other. The results of the table show that this is largely the case. Indeed, the two beta estimates

are fairly close with the median difference between the 5-minute and 3-minute estimates being only

0.01. The largest difference of 0.14 in our data set is for the DD stock, and this difference is only

marginally statistically significant. Given this evidence, for the results that follow we will focus

attention on the beta estimates based on three minute aggregation of returns following the market

jump.

On Figure 2, we present scatter plots of stock jumps versus market jumps along with the fit

implied by a constant market jump beta model for the whole sample. Overall, we see a very good
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Table 3: Full sample WLS beta estimates

Ticker β 95% CI β 95% CI

k = 3 k = 5

AXP 1.15 [1.08; 1.20] 1.17 [1.09; 1.22]

BA 0.99 [0.92; 1.03] 1.02 [0.94; 1.07]

BAC 1.36 [1.27; 1.43] 1.36 [1.25; 1.44]

CAT 1.06 [0.99; 1.11] 1.08 [1.00; 1.13]

CSCO 0.84 [0.77; 0.90] 0.89 [0.82; 0.97]

CVX 0.99 [0.94; 1.03] 0.98 [0.92; 1.02]

DD 1.09 [1.03; 1.14] 1.23 [1.15; 1.27]

DIS 0.97 [0.92; 1.01] 0.98 [0.91; 1.02]

GE 1.16 [1.09; 1.21] 1.17 [1.08; 1.23]

GS 1.20 [1.12; 1.25] 1.21 [1.11; 1.27]

HD 1.05 [0.98; 1.09] 1.07 [0.99; 1.12]

IBM 0.81 [0.76; 0.84] 0.81 [0.75; 0.84]

INTC 0.88 [0.81; 0.94] 0.93 [0.85; 0.99]

JNJ 0.67 [0.62; 0.70] 0.67 [0.62; 0.70]

JPM 1.31 [1.24; 1.37] 1.29 [1.20; 1.34]

KO 0.70 [0.65; 0.74] 0.66 [0.60; 0.70]

MCD 0.51 [0.47; 0.54] 0.50 [0.46; 0.54]

MMM 1.00 [0.95; 1.03] 1.04 [0.97; 1.07]

MRK 0.94 [0.87; 0.97] 0.91 [0.84; 0.95]

MSFT 0.81 [0.75; 0.85] 0.81 [0.75; 0.87]

NKE 0.78 [0.72; 0.83] 0.82 [0.75; 0.87]

PFE 0.87 [0.80; 0.92] 0.88 [0.80; 0.94]

PG 0.68 [0.63; 0.71] 0.65 [0.59; 0.68]

T 0.84 [0.78; 0.88] 0.82 [0.75; 0.86]

TRV 0.94 [0.88; 0.97] 0.86 [0.79; 0.90]

UNH 0.86 [0.80; 0.91] 0.92 [0.84; 0.97]

UTX 1.02 [0.96; 1.05] 1.04 [0.97; 1.08]

VZ 0.72 [0.67; 0.76] 0.71 [0.65; 0.76]

WMT 0.64 [0.59; 0.67] 0.62 [0.57; 0.66]

XOM 0.98 [0.93; 1.02] 0.97 [0.91; 1.01]

Note: We report the efficient k-mixed-scale (k = 3 or 5) WLS estimates and their 95% confidence intervals
(CI) of the 30 Dow stocks over the full sample. The CIs are from the percentile bootstrap using 1000 draws.
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Figure 2: Scatter of Stock versus Market Returns at Market Jump Times of the Full Sample.

fit. Most of the jump observations are fairly close to the fit implied by the constant jump beta

model. Nevertheless, for some of the stocks, particularly those in the financial sector (bottom row),

we see somewhat non-trivial deviations from the linear jump regression model. Of course, this can

be merely due to the temporal variation in betas. In terms of levels, the jump betas of the stocks

in the banking industry are systematically above one, while those of the consumer and healthcare

sectors like MCD, WMT, JNJ and PG, are significantly below one.

Given the overwhelming prior evidence on time variation in market betas, we next present

results from testing for constancy of market jump betas over periods of years. The results are

reported in the top panel of Table 4. We conduct the test over different aggregation frequencies

ranging from one minute (no aggregation) to ten minutes. Naturally, more aggregation leads to

diminishing power of detecting the variation in jump betas. This is consistent with our Monte

Carlo results reported in the previous section. However, the drop of rejection rates going from one

to three minutes evident from Table 4 is too big to be solely explained by the statistical effect of

losing power when aggregating returns for the jump beta estimation. Instead, the relatively high

rejection rates of the test for one minute aggregation are likely due to market microstructure effects
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Table 4: Specification testing results for 30 DJIA stocks

2007 2008 2009 2010 2011 2012 2013 2014

Cross-Sectional Rejection Rate

k = 1 0.80 0.77 0.77 0.50 0.50 0.93 0.70 0.77

k = 3 0.50 0.43 0.07 0.17 0.10 0.40 0.33 0.17

k = 5 0.27 0.03 0.00 0.10 0.17 0.40 0.10 0.10

k = 10 0.17 0.10 0.10 0.00 0.00 0.17 0.07 0.03

Cross-Sectional Median of R2

k = 1 0.90 0.90 0.93 0.93 0.97 0.90 0.96 0.91

k = 3 0.86 0.80 0.87 0.92 0.95 0.88 0.95 0.86

k = 5 0.83 0.75 0.87 0.93 0.91 0.88 0.97 0.85

k = 10 0.82 0.81 0.93 0.86 0.87 0.82 0.97 0.81

Note: On the top panel, we report the cross-sectional rejection rate of
the specification test at 1% significance level for the k-mixed samples
year-by-year. On the bottom panel, we report the cross-sectional
median of the R2s of the 30 stocks for the k-mixed samples.

like the ones illustrated on the bottom panels of Figure 1. At the three minute aggregation level,

the rejection rates of the test are relatively low except for years 2007, 2008 and 2013. Some of

these rejections can be still due to microstructure issues. However, some of the rejections probably

reflect genuine variation of market jump betas, particularly during the period of the recent global

financial crisis.

To further gauge the performance of the year-by-year linear jump regression model, the second

panel of Table 4 reports the R2 of the model fit at the market jump events. As seen from the table,

the R2 numbers are generally very high. For example, the time series average of R2 at one- and

three-minute aggregation are 0.93 and 0.89 respectively. As expected from theory, when increasing

aggregation from one minute to ten minutes, the R2 drops because the volatility of the diffusive

aggregated increments around the jumps increases. Nevertheless, we see that with the exception
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Figure 3: Time Series of Yearly Jump Betas, 2007–2014. The dots correspond to the yearly WLS
beta estimates and the shaded areas correspond to the associated 95% confidence intervals.

of year 2008, the loss of R2 going from one-minute to three-minute aggregation is quite moderate.

Comparing the two panels of Table 4, we notice that there is no direct correspondence between the

rejection rates and the magnitude of the R2 of the linear jump regression. For example, focusing

at the three-minute aggregation results, we can see that year 2007 is associated with the highest

rejection rate of the linear jump regression model and yet has relatively high R2. On the other

hand, year 2008 is associated with high rejection rate and has the lowest R2 in the sample (using

again the three-minute aggregation results). This difference can be explained with the different

magnitude of the volatility around the jump event: it is relatively higher in 2008 than in 2007 and,

as a result, the inference in the latter is sharper than the former.

To better assess the time variation in market jump betas, we plot next yearly jump betas on

Figure 3. There are some clearly distinguishable time-series patterns evident from the figure. For

example, the market jump betas of stocks in the financial sector, such as AXP, BAC and JPM,

increase in the first two years in our sample and gradually decrease afterwards. On the other hand,

stocks such as INTC and WMT exhibit very little time variation.
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The analysis so far has been based at the market jump times. We next investigate how stocks

react to other systematic jump events. In particular, we focus attention on jump events in the nine

industries comprising the S&P 500 index (our proxy for the market index) which are not detected

as market jump events. In a market jump model in which the jumps in stocks are of two types,

idiosyncratic and market, aggregate portfolios, such as the nine industry portfolios, should contain

only jumps at the times when the market jumps (as the idiosyncratic jumps get diversified away).

However, some systematic jump events can have much bigger impact on a particular industry

sector than on the market as a whole and, hence, the magnitude of an industry jump can be much

bigger than that of the market co-jump. In such instances, given our discrete setting and high

truncation level, we can fail to detect such jump events on the market level but still find them in a

particular industry sector portfolio. Hence, we label jump events in an industry sector, which are

not detected as market jump times, as sector-specific jumps. These jumps have relatively much

bigger importance for the particular sector than for the market.

To study the reaction of stocks to sector-specific jump events, we first associate with each of the

stocks in our analysis the industry sector it belongs to.18 In Table 5 we report the R2 for a linear

jump regression model of the stock jump against the market jump at the sector-specific jump events

for each of the stocks based on the whole sample. For comparison we also report the corresponding

R2 for the linear market jump model at the market jump times. The results present a rather mixed

picture for the performance of the linear market jump model at the sector-specific jump events.

For some stocks such as BAC, JPM, MCD and MSFT, the performance of the linear regression

at the sector-specific jump events in terms of R2 is comparable to its performance at the market

jump events. However, for stocks like CVX, IBM, WMT and XOM, the R2 of the regression at the

sector-specific jump times is very low. Some of the loss of fit when comparing the performance of

the linear jump model at market-wide jump events and sector-specific jump events can be due to

the “signal” being smaller, that is, the market jump size at the sector-specific jump events being

smaller in absolute value. This, however, cannot be the sole explanation, since as explained above,

for some of the stocks in our sample the drop in R2 is quite small. Another reason for the worsening

fit at the sector-specific jump events can be due to larger “noise”, i.e., the diffusive volatility around

the sector-specific jump events can be much bigger than around market-wide jump events for some

of the stocks. Yet a third reason can be that the linear market jump model does not hold at the

sector-specific jump events.

To get further insight into the performance of the linear market jump model at the sector-

18The stocks in our study are all part of the S&P 500 index during the sample period. We, therefore, use the
industry classification that is used to split the stocks in the S&P 500 index into nine industry portfolio ETFs.
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Table 5: R2 of the market factor for two types of jumps.

R2 of Market-wide Jumps

AXP 0.81 HD 0.92 NKE 0.84

BA 0.75 IBM 0.84 PFE 0.84

BAC 0.81 INTC 0.87 PG 0.74

CAT 0.77 JNJ 0.73 T 0.87

CSCO 0.82 JPM 0.70 TRV 0.78

CVX 0.90 KO 0.83 UNH 0.71

DD 0.84 MCD 0.72 UTX 0.85

DIS 0.89 MMM 0.81 VZ 0.85

GE 0.84 MRK 0.81 WMT 0.87

GS 0.72 MSFT 0.84 XOM 0.85

R2 of Sector-specific Jumps

AXP 0.45 HD 0.35 NKE 0.39

BA 0.33 IBM 0.22 PFE 0.46

BAC 0.75 INTC 0.48 PG 0.61

CAT 0.46 JNJ 0.50 T 0.53

CSCO 0.72 JPM 0.83 TRV 0.42

CVX 0.29 KO 0.31 UNH 0.21

DD 0.32 MCD 0.68 UTX 0.52

DIS 0.49 MMM 0.62 VZ 0.58

GE 0.46 MRK 0.32 WMT 0.29

GS 0.45 MSFT 0.78 XOM 0.33
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specific jump events, we display on Figure 4 scatter plots of the stock jumps against the market

jumps at the sector-specific jump events for four representative (in terms of R2) stocks. As seen

from the figure, the performance of the model for IBM is very good with the observations being

very close to the linear fit. On the other hand, for GE we notice that the jump observations are

much more dispersed around the linear fit. This is suggestive of larger diffusive volatility around

the sector-specific jump events for GE which consequently lowers the R2 of the regression. Similar

reasoning can explain the low R2 for XOM. For this stock, however, we can also notice a few outliers

in the lower left corner of the plot which are indicative of model failure, i.e., that the market jumps

cannot solely explain the XOM jumps at the sector-specific jump events. Finally, the fit for WMT

is fairly poor with no strong association between the stock and market jumps at the sector-specific

jump events. This is in sharp contrast with the performance of the linear jump market model for

this stock at the market jump events.
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Figure 4: Scatter of Stock versus Market Returns at Sector-Specific Jump Times.

Overall, we can conclude that for some stocks the linear market jump model continues to work

well at the sector-specific jump events. For many of the stocks, however, this is also associated

with increased diffusive volatility around the sector-specific jump events which makes inference for
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the market jump beta at these events much noisier when compared with inference conducted at the

market-wide jump events. Finally, for some of the stocks, the linear market jump model fails to

account for behavior of the stock market jumps at the sector-specific jump events and other factors

are probably needed.

6 Conclusion

We propose a new mixed-scale jump regression framework for studying deterministic dependencies

among jumps in a multivariate setting. A fine time scale is used to identify with high accuracy the

times of large rare jumps in the explanatory variable(s). A coarser scale is then used to conduct

the estimation in order to attenuate the effects of trading friction noise. We derive the asymptotic

properties of an efficient estimator of the jump regression coefficients and a test for its specification.

The limiting distributions of the estimator and the test statistic are non-standard, but a simple

bootstrap method is shown to be valid for feasible inference. We further show that the bootstrap

provides a higher-order refinement that accounts for the sampling variation in spot covariance

estimates which are used to construct the efficient estimator. In a realistically calibrated Monte

Carlo setting, which features leverage effects and price-volatility co-jumps, we report good size and

power properties of the general specification test and good coverage properties of the confidence

intervals.

The empirical application employs a 1-minute panel of Dow stock prices together with the

front-month E-mini S&P 500 stock market index futures over the period 2007–2014. The 1-minute

market index is used to locate jump times, and subsequent 3-minute sampling around the jump

times is used to conduct the jump regression. We find a strong relationship between market jumps

and stock price moves at market jump times. The market jump betas exhibit remarkable temporal

stability and the jump regressions have very high observed R2s. On the other hand, for many of

the stocks in the sample, the relationship between stock and market jumps at sector-specific jump

times is significantly noisier, and temporally more unstable, than the tight relationship seen at

market jump times.

7 Appendix: Proofs

We now prove the theorems in the main text. Throughout this appendix, we use K to denote a

generic positive constant that may change from line to line; we sometimes emphasize the dependence

of this constant on some parameter q by writing Kq. Below, the convergence (ξn,p)p≥1 → (ξp)p≥1, as

n→∞, is understood to be under the product topology. We write w.p.a.1 for “with probability ap-
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proaching one.” Recall that (τp)p≥1 are the successive jump times of Z and P = {p ≥ 1 : τp ∈ [0, T ]}.
We use i (p) to denote the unique integer such that τp ∈ ((i− 1) ∆n, i∆n].

By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we can

respectively strengthen Assumptions 1 and 3 to the following stronger versions without loss of

generality.

Assumption 4. We have Assumption 1. The processes Xt, bt and σt are bounded.

Assumption 5. We have Assumption 3. The processes b̃t and σ̃t are bounded. Moreover, there

exists some bounded λ-integrable function J̃ such that ‖δ̃(t, u)‖2 ≤ J̃ (u) for all t ∈ [0, T ] and u ∈ R.

7.1 Proof of Theorem 1

Proof of Theorem 1. By Proposition 1 of Li, Todorov, and Tauchen (2016),

P
(
Jn = C̄n = J ∗n

)
→ 1, (7.1)

where C̄n is the complement of Cn. Since the jumps of X have finite activity, differences between

distinct indices in Jn can be bounded below by 2kn w.p.a.1 and, hence,
ĉn,i(p)− =

1

kn∆n

kn−1∑
j=0

(∆n
i(p)−kn+jX)(∆n

i(p)−kn+jX)>1{i(p)−kn+j∈Cn},

ĉn,i(p)+ =
1

kn∆n

kn−1∑
j=0

(∆n
i(p)+k+jX)(∆n

i(p)+k+jX)>1{i(p)+k+j∈Cn}.

Then, by Theorem 9.3.2 in Jacod and Protter (2012) and ∆n
i(p),kZ −→ ∆Zτp , we derive(

ĉni(p)−, ĉ
n
i(p)+,∆

n
i(p),kZ

)
P−→
(
cτp−, cτp ,∆Zτp

)
.

By (7.1), we see that the following holds w.p.a.1,

β̂n (w)− β∗

=

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆n

i(p),kZ)>

−1∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)εni(p),k

 .
(7.2)

By Assumption 2, g(·) is continuously differentiable at ∆Zτp almost surely. Then, noting that

∆n
i(p),kZ

c = Op(∆
1/2
n ), we use a second-order Taylor expansion to deduce

∆−1/2
n εni(p),k = ∆−1/2

n

(
∆n
i(p),kY

c − β∗>
(
g(∆Zτp + ∆n

i(p),kZ
c)− g(∆Zτp)

))
= ∆−1/2

n

(
∆n
i(p),kY

c − β∗>∂g
(
∆Zτp

)
∆n
i(p),kZ

c
)

+Op(∆
1/2
n ). (7.3)
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By a straightforward adaptation of Proposition 4.4.10 of Jacod and Protter (2012), we have

∆−1/2
n

(
∆n
i(p),kX

c
)
p≥1

L-s−→
(√

κpστp−ξp− +
√
k − κpστpξp+

)
p≥1

. (7.4)

By (7.3) and (7.4),

∆−1/2
n

(
εni(p),k

)
p≥1

L-s−→ (ςp)p≥1 . (7.5)

From (7.2) and (7.5), it is easy to see that β̂n
P−→ β∗. Hence, ŵn,i(p)

P−→ wp for each p ≥ 1. From

here, as well as (7.2) and (7.5), we derive

∆−1/2
n

(
β̂n (w)− β∗

)
L-s−→ Ξ (w)−1 Λ (w)

as asserted. Q.E.D.

7.2 Proof of Theorem 2

Proof of Theorem 2. (a) By Theorem 13.3.3 in Jacod and Protter (2012), we have(
k1/2
n (ĉn,i(p)− − cτp−), k1/2

n (ĉn,i(p)+ − cτp)
)
p≥1

L-s−→ (ζp−, ζp+)p≥1 . (7.6)

This convergence indeed holds jointly with (7.5) because ∆n
i,kX

c and (ĉn,i−, ĉn,i+) involve non-

overlapping returns. Let

ε̃ni(p),k ≡ ∆n
i(p),kY

c − β∗>∂g
(
∆Zτp

)
∆n
i(p),kZ

c.

From (7.3), we see that

∆−1/2
n εni(p),k −∆−1/2

n ε̃ni(p),k = Op(∆
1/2
n ) = op(k

−1/2
n ).

Recall that ẇ(·) is the first differential of w(·), that is, as
(
c′−, c

′
+, z

′, b′
)
→ 0,

w
(
c− + c′−, c+ + c′+, z + z′, b+ b′

)
− w (c−, c+, z, b)

= ẇ
(
c−, c+, z, b; c

′
−, c
′
+, z

′, b′
)

+ o
(∥∥c′−∥∥+

∥∥c′+∥∥+
∥∥z′∥∥+

∥∥b′∥∥) .
Recall that w̃p ≡ ẇ

(
cτp−, cτp+,∆Zτp , β

∗; ζp−, ζp+, 0, 0
)
. By the delta method, we derive from (7.5),

(7.6), ∆n
i(p),kZ = ∆Zτp +Op(∆

1/2
n ) and β̂n = β∗ +Op(∆

1/2
n ) that(

k1/2
n

(
ŵn,i(p) − wp

)
,∆−1/2

n ε̃ni(p),k

)
p≥1

L-s−→ (w̃p, ςp)p≥1 . (7.7)
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We now note that, w.p.a.1,

∆−1/2
n

(
β̂n (w)− β∗

)
=

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆n

i(p),kZ)>

−1∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)∆−1/2

n εni(p),k


=

Ξ (w) +
∑
p∈P

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
g
(
∆Zτp

)>
+ op(k

−1/2
n )

−1

×

∑
p∈P

wpg
(
∆Zτp

)
∆−1/2
n ε̃ni(p),k +

∑
p∈P

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
∆−1/2
n ε̃ni(p),k + op(k

−1/2
n )


= Ln (w) + k−1/2

n Hn (w) + op(k
−1/2
n ),

where 

Ln (w) ≡ Ξ (w)−1
∑
p∈P

wpg
(
∆Zτp

)
∆−1/2
n ε̃ni(p),k,

Hn (w) ≡ Ξ (w)−1
∑
p∈P

k1/2
n

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
∆−1/2
n ε̃ni(p),k

−Ξ (w)−1

∑
p∈P

k1/2
n

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
g
(
∆Zτp

)>Ξ (w)−1

×

∑
p∈P

wpg
(
∆Zτp

)
∆−1/2
n ε̃ni(p),k

 .

(7.8)

From (7.7), we have (Ln (w) ,Hn (w))
L-s−→ (L (w) ,H (w)) as asserted.

(b) Under the independence assumption, conditionally on (σ, J), ∆
−1/2
n ε̃ni(p),k are independent

centered Gaussian with conditional variance (1,−β∗>∂g
(
∆Zτp

)
)c̄n,p(1,−β∗>∂g

(
∆Zτp

)
)>, where

c̄n,p ≡
1

k∆n

∫ (i(p)−1+k)∆n

(i(p)−1)∆n

csds.

Since there is no price-volatility cojump, conditionally on (σ, J), the ςp variables are independent

centered Gaussian with conditional variance (1,−β∗>∂g
(
∆Zτp

)
)cτp(1,−β∗>∂g

(
∆Zτp

)
)>. There-

fore,

sup
x
|P(Ln (w) ≤ x|σ, J)− P(L (w) ≤ x|σ, J)| ≤ Op(1)

∑
p∈P

∥∥c̄n,p − cτp∥∥ .
Since the process c is an Itô semimartingale, the majorant side of the above display isOp(∆

1/2
n ).Q.E.D.

7.3 Proof of Theorem 3

Proof of Theorem 3. We consider the following set of sample paths

Ωn ≡ {Jn = C̄n = J ∗n} ∩ {|i− j| > 2kn for any i, j ∈ Jn with i 6= j} .
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From (7.1), it is easy to see that P (Ωn) → 1. Hence, we can restrict the calculation below on the

sample paths in Ωn without loss of generality.

Since ĉn,i(p)± = Op(1), E
[
‖∆n

i(p),kX
∗c‖2

∣∣∣F] = Op(∆n),

E
[
‖g(∆n

i(p),kZ
∗)− g(∆n

i(p),kZ)‖2
∣∣∣F] = Op(∆n).

(7.9)

Since β̂n − β̂n (w) = Op(∆
1/2
n ) and kn∆n → 0, we further have

k1/2
n

(
∆n
i(p),kY

∗ − β̂>n g(∆n
i(p),kZ

∗)
)

= op(1). (7.10)

Note that, w.p.a.1,

k1/2
n

(
β̂∗n − β̂n

)
=

∑
p∈P

g(∆n
i(p),kZ

∗)g(∆n
i(p),kZ

∗)>

−1

×

∑
p∈P

g(∆n
i(p),kZ

∗)k1/2
n

(
∆n
i(p),kY

∗ − β̂>n g(∆n
i(p),kZ

∗)
) .

From (7.10), we deduce

k1/2
n

(
β̂∗n − β̂n

)
= op(1). (7.11)

Next, we observe from (3.9) that ĉ∗n,i(p)± − ĉn,i(p)± are averages of F-conditionally independent

mean-zero variables with stochastically bounded fourth F-conditional moments. We further note

that

E
[(
ĉ∗jkn,i(p)± − ĉ

jk
n,i(p)±

)(
ĉ∗lmn,i(p)± − ĉ

lm
n,i(p)±

)∣∣∣F] =
1

kn

(
ĉjln,i(p)±ĉ

km
n,i(p)± + ĉjmn,i(p)±ĉ

kl
n,i(p)±

)
,

E
[(
ĉ∗jkn,i(p)± − ĉ

jk
n,i(p)±

)(
ĉ∗lmn,i(p)∓ − ĉ

lm
n,i(p)∓

)∣∣∣F] = 0.

Upon using a subsequence characterization of convergence in probability and applying Lindeberg’s

central limit theorem under the F-conditional probability, we derive

k1/2
n

(
ĉ∗n,i(p)− − ĉn,i(p)−, ĉ

∗
n,i(p)+ − ĉn,i(p)+

)
p≥1

L|F−→ (ζp−, ζp+)p≥1 . (7.12)

By (7.9), (7.11) and (7.12), we use the delta method to deduce

k1/2
n

(
ŵ∗n,i(p) − ŵn,i(p)

)
p≥1

L|F−→ (w̃p)p≥1 . (7.13)

We now set

εn∗i,k = ∆n
i,kY

∗c − β̂n (w)>
(
g
(
∆n
i,kZ

∗)− g (∆n
i,kZ

))
,

ε̃n∗i,k = ∆n
i,kY

∗c − β̂n (w)> ∂g
(
∆n
i,kZ

)
∆n
i,kZ

∗c.
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Note that εn∗i,k − ε̃n∗i,k = Op(∆n). Recall the F-conditional distribution of ∆n
i,kX

∗c from Algorithm

1. Since β̂n (w)
P−→ β∗ and ∂g(∆n

i(p),kZ)
P−→ ∂g

(
∆Zτp

)
, we further deduce

∆−1/2
n

(
ε̃n∗i(p),k

)
p≥1

L|F−→ (ςp)p≥1 . (7.14)

Note that, in restriction to Ωn, ĉ∗n,i(p)± and ε̃n∗i(p),k are F-conditionally independent because they do

not involve overlapping increments of W ∗. Hence, (7.13) and (7.14) hold jointly, yielding(
∆−1/2
n ε̃n∗i(p),k, k

1/2
n

(
ŵ∗n,i(p) − ŵn,i(p)

))
p≥1

L|F−→ (ςp, w̃p)p≥1 . (7.15)

For notational simplicity, we denote

Ξn ≡
∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆n

i(p),kZ)>,

Ξ∗n ≡
∑
p∈P

ŵ∗n,i(p)g(∆n
i(p),kZ

∗)g(∆n
i(p),kZ

∗)>,

Λ∗n ≡ ∆−1/2
n

∑
p∈P

ŵ∗n,i(p)g(∆n
i(p),kZ

∗)εn∗i(p),k.

Note that, w.p.a.1,

∆−1/2
n

(
β̂∗n (w)− β̂n(w)

)
= Ξ∗−1

n Λ∗n. (7.16)

By ŵ∗n,i(p) = Op(1) and (7.9), we have

Ξ∗n = Ξn +
∑
p∈P

(
ŵ∗n,i(p) − ŵn,i(p)

)
g(∆n

i(p),kZ)g(∆n
i(p),kZ)> +Op(∆

1/2
n ).

Therefore,

Ξ∗−1
n = Ξ−1

n − Ξ−1
n Ξ̃∗nΞ−1

n + op(k
−1/2
n ), (7.17)

where Ξ̃∗n ≡
∑

p∈P(ŵ∗n,i(p) − ŵn,i(p))g(∆n
i(p),kZ)g(∆n

i(p),kZ)>.

We decompose

Λ∗n =
∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗i(p),k

+
∑
p∈P

(
ŵ∗n,i(p) − ŵn,i(p)

)
g(∆n

i(p),kZ
∗)∆−1/2

n ε̃n∗i(p),k +Op(∆
1/2
n ). (7.18)

Note that Ξ̃∗n and the second term on the right-hand side of (7.18) are both Op(k
−1/2
n ). Therefore,

from (7.16), (7.17) and (7.18), we obtain the decomposition

∆−1/2
n

(
β̂∗n (w)− β̂n(w)

)
= L∗n (w) + k−1/2

n H∗n (w) + op(k
−1/2
n ),
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where

L∗n (w) ≡ Ξ−1
n

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗i(p),k,

H∗n (w) ≡ Ξ−1
n

∑
p∈P

k1/2
n

(
ŵ∗n,i(p) − ŵn,i(p)

)
g(∆n

i(p),kZ
∗)∆−1/2

n ε̃n∗i(p),k

−Ξ−1
n Ξ̃∗nΞ−1

n

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗i(p),k

 .

From (7.15), it is easy to deduce (L∗n (w) ,H∗n (w))
L|F−→ (L (w) ,H (w)) as asserted. Q.E.D.

7.4 Proof of Theorem 4

Proof of Theorem 4. (a) Since ∆n
i(p),kX

P−→ ∆Xτp , it is easy to see from (2.7) that

SSRn
P−→
∑
p∈P

∆Y 2
τp −

∑
p∈P

g
(
∆Zτp

)
∆Yτp

>

×

∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)>−1∑
p∈P

g
(
∆Zτp

)
∆Yτp

 .

In particular, the second assertion of part (a) holds. It remains to show the first assertion of part

(a). It is easy to see that

SSRn =
∑
i∈Jn

∆n
i,kY

2 −

(∑
i∈Jn

∆n
i,kY g

(
∆n
i,kZ

))>

×

(∑
i∈Jn

g
(
∆n
i,kZ

)
g
(
∆n
i,kZ

)>)−1(∑
i∈Jn

∆n
i,kY g

(
∆n
i,kZ

))
.

(7.19)

Plug (2.9) into (7.19). After some elementary algebra, we derive

SSRn =
∑
i∈Jn

(
εni,k
)2 −(∑

i∈Jn

εni,kg
(
∆n
i,kZ

))>

×

(∑
i∈Jn

g
(
∆n
i,kZ

)
g
(
∆n
i,kZ

)>)−1(∑
i∈Jn

εni,kg
(
∆n
i,kZ

))
.

(7.20)

By (2.7), (7.20) holds w.p.a.1 with Jn replaced by J ∗n . By (7.5) and g(∆n
i(p),kZ)

P−→ g
(
∆Zτp

)
, we

derive the first assertion of part (a).
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(b) Similar to (7.19), we have

SSR∗n =
∑
i∈Jn

∆n
i,kY

∗2 −

(∑
i∈Jn

∆n
i,kY

∗g
(
∆n
i,kZ

∗))>

×

(∑
i∈Jn

g
(
∆n
i,kZ

∗) g (∆n
i,kZ

∗)>)−1(∑
i∈Jn

∆n
i,kY

∗g
(
∆n
i,kZ

∗)) .
We now set

εn∗i,k ≡ ∆n
i,kY

∗ − β̂>n g
(
∆n
i,kZ

∗) .
After some elementary algebra, we can rewrite

SSR∗n =
∑
i∈Jn

(
εn∗i,k
)2 −(∑

i∈Jn

εn∗i,kg
(
∆n
i,kZ

∗))>

×

(∑
i∈Jn

g
(
∆n
i,kZ

∗) g (∆n
i,kZ

∗)>)−1(∑
i∈Jn

εn∗i,kg
(
∆n
i,kZ

∗)) . (7.21)

We further observe εn∗i,k = ∆n
i,kY

∗c − β̂>n (g(∆n
i,kZ

∗) − g(∆n
i,kZ)). It is easy to show that β̂n

P−→ β̄.

From the construction of ∆n
i,kX

∗c described in Algorithm 1, as well as the fact that ĉn,i(p)±
P−→ cτp±,

we deduce

∆−1/2
n

(
εn∗i(p),k

)
p≥1

L|F−→ (ς̄p)p≥1 , (7.22)

where ς̄p ≡
(
1,−β̄>∂g

(
∆Zτp

))
(
√
κpστp−ξp− +

√
k − κpστpξp+). By (7.21) and (7.22), we deduce

∆−1
n SSR∗n

L|F−→
∑
p∈P

ς̄2
p −

∑
p∈P

g
(
∆Zτp

)
ς̄p

>

×

∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)>−1∑
p∈P

g
(
∆Zτp

)
ς̄p

 .

(7.23)

In restriction to Ω0, the limiting distribution characterized by (7.23) coincides with the limiting

distribution of ∆−1
n SSRn. We further note that, conditionally on F , this limiting distribution is

atomless with positive density on (0,∞). Therefore, the F-conditional (1 − α)-quantile of this

limiting distribution can be consistently estimated by ∆−1
n cvαn . From here and part (a) of this

theorem, it readily follows that P (SSRn > cvαn |Ω0)→ α.

In restriction to Ωa, we see from part (a) that the probability limit of SSRn is strictly positive.

Moreover, the sequence ∆−1
n cvαn is still tight because of (7.23). The assertion P (SSRn > cvαn |Ωa)→

1 readily follows. Q.E.D.
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