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This supplementary appendix contains the following items: (1)
limit results for the integrated squared error of the nonparametric
estimator, (2) lower bounds for the minimax risk of recovering Lévy
density from noisy option data with heteroskedastic Gaussian obser-
vation errors, and (3) alternative Lévy density estimator based on the
second derivatives of the characteristic function of the asset return
estimated from the option data.

1. Limit Results for the Integrated Squared Error of ĥt. In this
section, we derive the probability limit of the part of the integrated squared
error of ĥt which is due to the estimation error. More specifically, using
Parseval’s identity, the integrated squared error might be decomposed as
(A.1)∫
R

(ĥt(x)−ht(x))2dx =
1

2π

∫
|u|≤uN

|ĥ∗t (u)−h∗t (u)|2du+
1

2π

∫
|u|>uN

|h∗t (u)|2du,

and our focus here will be the convergence in probability of the first term
on the right hand side of the above equality. The result of this section shows
that the bound of Theorem 1 on the integrated squared error is sharp.

We will work in this section in a simplified setting in which x is a Lévy
process and hence we will drop the subscript t in the notation of its charac-
teristics. For stating the result, we will make use of the following notation

(A.2) Od(k) =

{ ∫
R(ek − ez)+ν(z)dz, if k ≤ 0,∫
R(ez − ek)+ν(z)dz, if k > 0.

With this notation, we have the following result.

Theorem 2. Suppose that X is a Lévy process under Q with
∫
R(|ep|z|−

1| ∨ 1)ν(z)dz < ∞ for some p > 4. In addition, let Assumption A5 hold
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metric density estimation, options, stochastic volatility.

1

http://www.imstat.org/aos/


2 LIKUAN QIN AND VIKTOR TODOROV

with η = 1, and assume εi = σεOT (ki)zi, where {zi} is a sequence of i.i.d.
random variables with E(zi) = 0, E(z2i ) = 1 and E(z4i ) < ∞, and σε is a
finite positive constant.

If ∆ � Tα, K � T−β, K � T γ, for some α > 0, β > α/6 and γ > α/6,
and if further uN = −uN,l = uN,h satisfies uN → ∞, u2NT | lnT |2 → 0 and
u5N∆→ 0, then we have

1

u5N∆

(∫
R

(ĥt(x)− ht(x))2dx− 1

2π

∫
|u|>uN

|h∗t (u)|2du

)
P−→ σ2ε

5π

∫
R
e−2kk6Od(k)2dk.

(A.3)

Theorem 2 shows that the bound on the integrated squared error of ĥt in
Theorem 1 in the paper is sharp. Indeed, the quantity

∫
R e
−2kk6Od(k)2dk is

strictly positive as soon as the Lévy measure ν has support outside of zero.
An interesting aspect of the above result is that the probability limit of the
integrated squared error of ĥt does not depend on the diffusive part of the
price even though the latter is present in x. This is because for T ↓ 0, the
option prices with k away of zero are dominated by the jump part of the
process. On the other hand, the option prices with k in vicinity of zero (more
precisely a neighborhood around zero of order O(

√
T )) are dominated by the

diffusive component of x. However, ĥt puts asymptotically smaller weight on
these options and hence this dependence on the diffusive component becomes
of higher asymptotic order only.

Remark 1.1. We note that in the case when uN � ∆
− 1

2r+5 , then we
have ∫

R
(ĥt(x)− ht(x))2dx− 1

2π

∫
|u|>uN

|h∗t (u)|2du = Op

(
∆

2r
2r+5

)
,

and since from Assumption A1

1

2π

∫
|u|>uN

|h∗t (u)|2du = O
(

∆
2r

2r+5

)
,

we get altogether ∫
R

(ĥt(x)− ht(x))2dx = Op

(
∆

2r
2r+5

)
,

and hence ĥt achieves the optimal rate of recovering ht in a minimax sense
as we show in the next section (see Theorem 3 below).
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2. Minimax Risk for Recovering Lévy Density from Short-Dated
Options. We will now derive a lower bound for the minimax risk for re-
covering the Lévy density from option data. This result will show that the
nonparametric estimator ĥt is rate-efficient, provided uN is chosen optimally.
The analysis in this section will be performed in a simplified setting in which
the process x does not contain a diffusion and further when its jumps are
of finite activity (but the jump intensity is allowed to vary over time). We
will additionally simplify the analysis by assuming that the observation er-
rors are Ft-conditionally Gaussian and independent. We will further assume
that the relative option error, that is the ratio of the error over the true
(unobservable) option price is Op(1). Since the true option price decreases
in value as T ↓ 0, the size of the observation error shrinks at the same rate
as the option price it is attached to.

We will now introduce the necessary notation for stating the formal result.
For some constants R > 0 and r ≥ 0, we define the set Gr(R) of risk-
neutral probability measures Q (under which the true option prices OT (k)
are computed according to (2.2)) under which x is an Itô semimartingale
with characteristics triplet with respect to the identity truncation function
([3], Definition II.2.6) given by

(A.4)

(
−
∫ t

0

∫
R

(ez − 1− z)νs(z)dzds, 0, F (t, z)

)
,

where F (dt, dz) = dtνt(z)dz and we further have for ht(x) = x3νt(x):

(A.5) max
0≤k≤r

||h(k)t ||L2(R) ≤ R, ||h
(r)
t ||L∞(R) ≤ R,

and in addition

(A.6) EQ
t |as|4 ≤ R, EQ

t

(∫
R

(
(e3|z| − 1) ∨ 1

)
νs(z)dz

)4

≤ R,

(A.7) EQ
t |as − at|p ≤ R|s− t|, ∀p ∈ [2, 4],

(A.8) EQ
t

(∫ s

t

∫
R

(
ez∨0|z| ∨ z2

)
|νs(z)− νt(z)|dz

)p
≤ R|s− t|, ∀p ∈ [2, 3],

for some t > t and ∀s ∈ [t, t].
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The set Gr(R) corresponds to risk-neutral probability laws for x with no
diffusion and jumps of finite activity whose Lévy measure is allowed to vary
over time.

The option observations are given by

(A.9) ÔT (ki) = OT (ki) + (OT (ki) ∨ T )εi, i = 1, ..., N,

where {ε}i≥1 is a sequence of i.i.d. N(0, 1) random variables defined on a

product extension of (Ω(0),F (0), (F (0)
t )t≥0,P(0)) and independent of F (0).

Note that, since x is assumed to have no diffusion and further since the
jumps are of finite activity, OT (k) is of asymptotic order Op(T ). Therefore,
the truncation from below in the scale of the option error does not change
its asymptotic order.

The grid of log-strikes is given by

(A.10) k ≡ k1 < k2 < · · · < kN ≡ k,

with ki−ki−1 = ∆ (equidistant log-strike grid) and we further denoteK = ek

and K = ek.

In what follows, we will denote with ET expectations under which the
true (unobservable) option prices OT (k) are computed according to the risk-
neutral probability measure T . We will also use the notation an & bn and
an . bn to mean the respective inequality up to a constant independent of
the parameter n.

Theorem 3. With the notation in (A.4)-(A.10), assume further that
∆ � Tα, K � T−β and K � T γ, for α ∈ (0, 1) and β, γ > 0 as T → 0.

We then have almost surely

(A.11) inf
ĥt

sup
T ∈Gr(R)

ET
(
||ĥt − ht||2L2(R)

∣∣F (0)
)
& ∆

2r
2r+5 ,

where ĥt is any estimator of ht based on the option data {ÔT (ki)}i=1,...,N .

3. Alternative Estimator based on Second Derivatives. As men-
tioned in the main text, an alternative strategy for recovering the Lévy
density is to use second derivatives of f̂T (u). Given the approximation in
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equation (4.4) in the paper, however, in this case we will also need an esti-
mator for σt. In addition, when using the second derivative of f̂T (u), instead
of recovering ht(x) = x3νt(x) we will estimate

(A.12) gt(x) = x2νt(x).

Since gt dampens the Lévy measure νt less around zero than ht does, this
approach can potentially yield better recovery of the Lévy measure for the
“small” jumps.

Formally, our estimator is defined as follows. We first set

(A.13) ĝ∗t (u) =
1

T

f̂
(1)
T (u)2

f̂T (u)2
− 1

T

f̂
(2)
T (u)

f̂T (u)
,

and with σ̂t denoting an estimator of σt, our inference for gt is based on

(A.14) ĝt(x) =
1

2π

∫
u∈[uN,l,uN,h]

e−iux(ĝ∗t (u)− σ̂2t )du.

The asymptotic bound on the integrated squared error of gt is given in the
following theorem.

Theorem 4. Suppose Assumptions A1-A6 in the main text hold, with
h replaced by g for A1, and in addition ∆ � Tα, K � T−β, K � T γ, for
some α > 1

2 , β > 0 and γ > 0 and where ∆ is the mesh of the log-strike
grid. Let −uN,l � uN,h � uN be such that:

(A.15) uN →∞ and u2N (T + ∆)| lnT |2 → 0,

and

(A.16) σ̂2t − σ2t = Op(vN ),

for some vN → 0. Then, we have

(A.17)

∫
R

(
ĝt(x)− gt(x)

)2
dx = Op

(
u−2rN

∨
uNv

2
N

∨
uN

∆√
T

∨
u5N Γ̃N

)
,

where r is the constant in Assumption A1 and

(A.18) Γ̃N = ∆
∨
T (ln6 T )(e−2k|k|4 ∧ T−1/3)

∨
e6k|k|4

∨
e−6k|k|4.
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The result in Theorem 4 is similar to that in Theorem 1 for ĥt with a few
notable differences. First, the last three terms of Γ̂n are somewhat smaller
than their counterparts in Γn. Recall that these terms are due to the ap-
proximation error resulting from the time variation in σt and νt as well as
from the finite strike range of the options used in the estimation. This ap-
proximation error is slightly larger for the higher-order derivatives of f̂T (u)
and hence the difference in the corresponding terms in Γ̃n and Γn.

Second, the bound for the size of the integrated squared error of ĝt in
probability in (A.17) contains the additional term uN∆/

√
T which is not

present in the bound for integrated squared error of ĥt we derived in The-
orem 1. The reason for the presence of this additional bound here is the
observation error in the options with k in the vicinity of zero. Relative to
ĥt, ĝt loads more heavily on these options. This is to be expected as these
options contain stronger signal for the “small” jumps. At the same time,
since the option error is assumed to be proportional to the option price it is
attached to (see Assumption A6), this means that the option error for the
options with log-strikes around zero will be bigger in absolute terms than
the one for options with log-strikes away from zero.

Third, and quite naturally, given the debiasing of ĝ∗t (u) by σ̂2t in the
construction of ĝt(x), the integrated squared error of ĝt depends on the size
of the estimation error in σ̂2t . This is captured by the second term on the
right hand side of (A.17). There are different volatility estimators that can
be used. One option is given by −2<(ln f̂T (uN ))/(Tu2N ) in an analogy to the
integrated volatility estimator of [4] constructed from high-frequency returns
of x. Another alternative is the Black-Scholes implied volatility constructed
from the options with log-strikes in the vicinity of zero. Yet another option
is to use high-frequency returns in a local neighborhood of the observation
time of the options and construct a spot volatility estimator, see e.g., Section
9.4 of [2].

4. Proofs of Theorems 2-4.

4.1. Proof of Theorem 2. In the proof, it suffices to restrict attention to
the set Ωc

n (Ωn is defined in the proof of Theorem 1) as we have shown in
the proof of Theorem 1 that P(Ωn) → 0. It is also no restriction to assume
T < t − t, for t being the constant in Lemmas 2-6. We will do so without
further mention.

Given the Plancherel’s identity, it suffices to provide a lower bound for∫
|u|≤uN |ĥ

∗
t (u)−h∗t (u)|2du. We will use the notation of the proof of Theorem
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1 in what follows (see the decomposition in (8.10) in particular and note
that due to our Lévy assumption for x here, f̂T,2(u) is zero). Using Taylor
series expansion, we have

ĥ∗t (u)− h∗t (u) =
i

T

f̂
(3)
T,1(u)

fT (u)
− i

T

f
(3)
T (u)f̂T,1(u)

fT (u)2
− 3i

T

f̂
(1)
T,1(u)f

(2)
T (u)

fT (u)2

− 3i

T

f
(1)
T (u)f̂

(2)
T,1(u)

fT (u)2
+

6i

T

f
(1)
T (u)f

(2)
T (u)f̂T,1(u)

fT (u)3

+
6i

T

f
(1)
T (u)2f̂

(1)
T,1(u)

fT (u)3
− 6i

T

f
(1)
T (u)3f̂T,1(u)

fT (u)4
+ rt(u),

(A.19)

where rt(u) is a residual term for which using the results in (8.11), (8.14),

the fact that sup|u|≤uN |f̂
(j)
T,3(u)| = o(1) and sup|u|≤uN |f̂

(j)
T,4(u)| = o(1), for

j = 0, 1, 2, 3 (because of (8.16)-(8.18) and the assumptions for α, β and γ of
the theorem), the bounds in (8.16)-(8.18) as well as u2NT | lnT | → 0 and the
assumptions for α, β and γ of the theorem, we have

T |rt(u)| ≤ ηN,1(u)
∑
k=3,4

∑
j=0,1,2

|f̂ (j)T,k(u)|+ ηN,2(u)
∑
k=3,4

|f̂ (3)T,k(u)|

+ ηN,3(u)
∑

j=0,1,2,3

|f̂ (j)T,1(u)|2,
(A.20)

for some nonnegative-valued ηN,1(u), ηN,2(u) and ηN,3(u) satisfying

sup
|u|≤uN

ηN,1(u) = Op

(√
T ∨ u2NT | lnT | ∨ uN

√
T∆| lnT |

)
,

and
sup
|u|≤uN

ηN,2(u) = op(1) and sup
|u|≤uN

ηN,3(u) = op(1).

To bound this residual term rt(u), we will then make use of the following
inequality for p = 0, 1, 2, 3:

E
( N∑
j=2

cos(ukj−1)e
−kj−1kpj−1εj∆

)4

≤ C
( N∑
j=2

e−2kj−1k2pj−1O
2
T (kj−1)∆

2
)2

+ C

N∑
j=2

e−4kj−1k4pj−1O
4
T (kj−1)∆

4
,

(A.21)
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which follows from the i.i.d. assumption for the sequence {zi}i, successive
application of Burkholder-Davis-Gundy inequality as well as E(z4i ) < ∞.
From here, making use of the integrability condition for the Lévy measure
in the theorem as well as Lemmas 2 and 5, we have

(A.22) sup
u∈R

E

 N∑
j=2

cos(ukj−1)e
−kj−1εj∆

4

= O
(
T 3∆

2 ∨ T 5/2∆
3
)
,

(A.23) sup
u∈R

E

 N∑
j=2

cos(ukj−1)e
−kj−1kpj−1εj∆

4

= O
(
T 4∆

2
)
, p = 1, 2, 3,

and the same two bounds hold obviously with the cosine replaced by sine.
Making use of these bounds as well as the bounds in (8.11)-(8.18) in the
proof of Theorem 1 and the rate conditions u5N∆ → 0 in the theorem, we
have

(A.24)

∫
|u|≤uN

|rt(u)|2du = op
(
u5N∆

)
,

and

(A.25)

∫
|u|≤uN

|ĥ∗t (u)− h∗t (u)− rt(u)|2du = Op
(
u5N∆

)
.

From here, applying Cauchy-Schwarz inequality, we have∫
|u|≤uN

|ĥ∗t (u)− h∗t (u)|2du =

∫
|u|≤uN

|ĥ∗t (u)− h∗t (u)− rt(u)|2du

+ op
(
u5N∆

)
.

(A.26)

Using the definition of fT (u) in (8.7), we have for |u| ≤ uN that |f (1)T (u)| ≤
C
√
T , |f (2)T (u)| + |f (3)T (u)| ≤ CT , because u2NT → 0. Making use of this

fact, Lemma 8 as well as u2NT → 0 again, we have

(A.27)

∫
|u|≤uN

|ĥ∗t (u)− h∗t (u)|2du =

∫
|u|≤uN

|h̃∗t (u)|2du+ op
(
u5N∆

)
,

where

(A.28) h̃∗t (u) =
u2

T

N∑
j=2

e(iu−1)kj−1k3j−1εj∆j .
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Furthermore, we can write

(A.29)

∫
|u|≤uN

|h̃∗t (u)|2du = 2

∫ uN

0

[
<(h̃∗t (u))2 + =(h̃∗t (u))2

]
du,

and given the assumption for εi in the theorem,

E
(
<(h̃∗t (u))2

)
+ E

(
=(h̃∗t (u))2

)
=
u4

T 2
σ2ε

N∑
j=2

e−2kj−1k6j−1O
2
T (kj−1)∆

2
j .

(A.30)

By application of Burkholder-Davis-Gundy inequality (due to the fact that
{z2i − 1}i is i.i.d. sequence with mean zero and finite second moment) and
then Lemma 2, we have

E

(∫
|u|≤uN

(|h̃∗t (u)|2 − E|h̃∗t (u)|2)du

)2

≤ C
u10N
T 4

N∑
j=2

e−4kj−1k12j−1O
4
T (kj−1)∆

4
j ≤ Cu10N ∆

3
(|k|+ k).

(A.31)

Therefore,

(A.32)

∫
|u|≤uN

(|h̃∗t (u)|2 − E|h̃∗t (u)|2)du = Op(u
5
N∆

3/2| lnT |),

and hence this term is op(u
5
N∆). We are thus left with analyzing the term∫

|u|≤uN E(|h̃∗t (u)|2)du which we can write as

(A.33)

∫
|u|≤uN

E(|h̃∗t (u)|2)du =
2u5N
5T 2

σ2ε

N∑
j=2

e−2kj−1k6j−1O
2
T (kj−1)∆

2
j .

Using Lemmas 2 and 7 and taking into account ∆(|k|+ k)→ 0, we further
have

(A.34)

∫
|u|≤uN

E(|h̃∗t (u)|2)du =
2u5N
5T 2

σ2ε∆

∫
R
e−2kk6O2

T (k)dk+O
(
u5N∆

2
)
.

Therefore, we are left with analyzing
∫
R e
−2kk6O2

T (k)dk for which we will
first derive an expansion of OT (k) for T ↓ 0.
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Since jumps are of finite activity and the process x is Lévy, we have
P(µ([t, t+ T ],R) > 1) ≤ CT 2, where recall µ denotes the counting measure
for the jumps in x. Using this fact, the inequalities in the proof of Lemma
2, as well as Hölder’s inequality and the integrability assumption in the
theorem for ν, we have for some 0 < ι < p−4

2 (where p is the constant in the
statement of the theorem)

(A.35) EQ
t [(ek − ext+T )+1(µ([t, t+ T ],R) > 1)] ≤ C e2kT

2+2ι
2+ι

(e−k − 1)
, for k < 0,

(A.36) EQ
t [(ext+T − ek)+1(µ([t, t+ T ],R) > 1)] ≤ C T

2+2ι
2+ι

(ek − 1)
, for k > 0,

where the constant C > 0 does not depend on k. Similarly, by an application
of Burkholder-Davis-Gundy inequality twice, we have for ι ∈ (0, 2):

EQ
t

∣∣∣∣∫ t+T

t

∫
R
η(s, z)µ(ds, dz)

∣∣∣∣2+ι ≤ CEQ
t

∣∣∣∣∫ t+T

t

∫
R
η(s, z)dsν(z)dz

∣∣∣∣2+ι +

CEQ
t

∣∣∣∣∫ t+T

t

∫
R
η2(s, z)dsν(z)dz

∣∣∣∣1+ι/2 + CEQ
t

(∫ t+T

t

∫
R
|η(s, z)|2+ιdsν(z)dz

)
,

(A.37)

for arbitrary predictable in s function η(s, z), and therefore by application
of Hölder’s inequality for some sufficiently small ι > 0, we have

EQ
t

[∫
R

(ek − ez+x
c
t+T )+µ(ds, dz)1(µ([t, t+ T ],R) > 1)

]
≤ Ce2kT

2+2ι
2+ι /(e−k − 1), for k < 0,

(A.38)

EQ
t

[∫
R

(ez+x
c
t+T − ek)+µ(ds, dz)1(µ([t, t+ T ],R) > 1)

]
≤ CT

2+2ι
2+ι /(ek − 1), for k > 0,

(A.39)

where recall xcs denotes the continuous component of x and where we made
use of the independence of the processes xc and xd due to the Lévy as-
sumption for the process x of the current theorem. In addition, using direct
computations, it is easy to show

EQ
t (ek − ex

c
t+T )+ ≤ Ce−p

k2

T , if k ≤ −
√
T ,

EQ
t (ex

c
t+T − ek)+ ≤ Ce−p

k2

T , if k ≥
√
T ,

(A.40)
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for some constants C > 0 and p > 0 that depend on the values of a, σ and
t. From here, if we denote

(A.41) Õd(k) =

 EQ
t

(∫
R(ek − ez+x

c
t+T )+ν(z)dz

)
, if k ≤ 0,

EQ
t

(∫
R(ez+x

c
t+T − ek)+ν(z)dz

)
, if k > 0,

we have

(A.42)

∫
R
e−2kk6O2

T (k)dk − T 2

∫
R
e−2kk6Õd(k)2dk ≤ CT ι,

for some ι > 0 sufficiently small. We further have
(A.43)

|Õd(k)−Od(k)| ≤ EQ
t

[
|ex

c
t+T − 1|

∫
z∨(z+xct+T )>k

ezν(z)dz

]
, for k > 0,

with an analogous inequality holding for the case k ≤ 0 as well. Therefore,
we have

(A.44)

∫
R
e−2kk6Õd(k)2dk −

∫
R
e−2kk6Od(k)2dk = O(

√
T ).

From here, the claim of the theorem follows.

4.2. Proof of Theorem 3. Since T ↓ 0, it is no restriction to assume
T < t − t and we will do so in the proof without further mention. We will
also define with K some positive constant which can change from line to
line and depends on R in (A.5)-(A.8).

The idea of the proof is to perturb locally the time-t Lévy measure and
then derive the order of magnitude of the Kullback-Leibler divergence of
the resulting two probability distributions of the observed option prices. For
this, we use similar set of functions to those used in the proof in Section 7.1
of [1] which are given as follows. We let ψ(j) ∈ C∞(R) be a function with
support in [0, 1] and further satisfying ||ψ(j)||L2 = 1,

∫
R ψ

(j)(x)dx = 0 and∫
R ψ

(j)(x)e−2
−jxdx = 0. We then introduce the functions

(A.45) ψjk(x) = 2j/2ψ(j)(2jx− k), j ≥ 0, k = 0, ..., 2j − 1.

Finally, let % = (%k) ∈ {−1,+1}2j . Then, the local perturbation of the time-t
Lévy measure ν0t we consider (which we take to be such that infx∈[1,2] ν

0
t (x) >

0), is given by

(A.46) ν%t (x) = ν0t (x) + ζ2−j(r+1/2)e−x
2j−1∑
k=0

%kψjk(x− 1), x ∈ R,
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for some ζ > 0. For sufficiently small ζ, the risk-neutral probability measure
T% corresponding to ν%t will satisfy (A.4)-(A.8), and hence will belong to
Gr(R), provided that T0, corresponding to ν0t , is picked in the interior of
Gr(R) which we assume to be the case henceforth.

Then, by an application of Assouad’s lemma (Lemma 2.12 and Example
2.2 in [5]), we have

(A.47) inf
ĥt

sup
T ∈Gr(R)

ET
(
||ĥt − ht||2L2(R)

∣∣F (0)
)
& 2j ||h%t − h

%′

t ||2L2(R) ∼ 2−2jr,

where h%t (x) = x3ν%t (x) and h%
′

t (x) = x3ν%
′

t (x), and provided that the
Kullback-Leibler (KL) divergence between T% and T%′ remains uniformly
bounded by a constant, where % and %′ are equal for every k = 0, ..., 2j − 1
except one k0. The rest of the proof is devoted to determining the order of
magnitude of the KL divergence in our setting which in turn will allow us
to pick the minimal rate at which 2j →∞ and such that the KL divergence
stays uniformly bounded.

The KL divergence between the F (0)-conditional probability measures for

the observed noisy option prices, corresponding to T with h
(1)
t and h

(2)
t is

given by

KL(h
(1)
t , h

(2)
t ) = ET1

(
N∑
i=1

(ÔT (ki)−OT,2(ki))2

2(OT,2(ki) ∨ T )2

∣∣∣∣F (0)

)

− ET1

(
N∑
i=1

(ÔT (ki)−OT,1(ki))2

2(OT,1(ki) ∨ T )2

∣∣∣∣F (0)

)

+ ET1

(
N∑
i=1

log

(
OT,2(ki) ∨ T
OT,1(ki) ∨ T

) ∣∣∣∣F (0)

)
,

(A.48)

where T1 corresponds to true option prices being generated from the risk-

neutral probability with x3νt(x) equal to h
(1)
t (x). We have

ET1
(

(ÔT (ki)−OT,2(ki))2
∣∣F (0)

)
= (OT,1(ki)−OT,2(ki))2 + (OT,1(ki) ∨ T )2,

and
ET1

(
(ÔT (ki)−OT,1(ki))2

∣∣F (0)
)

= (OT,1(ki) ∨ T )2.

Using these results, we can further simplify the expression forKL(h
(1)
t , h

(2)
t )
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to:

KL(h
(1)
t , h

(2)
t ) =

N∑
i=1

(OT,1(ki)−OT,2(ki))2

2(OT,2(ki) ∨ T )2

+
1

2

N∑
i=1

((
OT,1(ki) ∨ T
OT,2(ki) ∨ T

)2

− 1− log

(
OT,1(ki) ∨ T
OT,2(ki) ∨ T

)2
)
,

(A.49)

where the option prices corresponding to h
(j)
t are denoted with OT,j(k) for

j = 1, 2.
Using second-order Taylor expansion and the fact that OT (k) ≤ K × T

for Q ∈ Gr(R) and T small enough (which follows by taking into account
that there is no diffusion and then applying Lemma 1), we have

(A.50) KL(h
(1)
t , h

(2)
t ) .

1

T 2

N∑
i=1

(OT,1(ki)−OT,2(ki))2.

Using Lemma 3 (note that in the special case here OT (k) = ÕT (k) for
Q ∈ Gr(R)), we have

KL(h
(1)
t , h

(2)
t ) .

1

T 2

N∑
i=1

(ÕT,1(ki)− ÕT,2(ki))2

+
| lnT |√
T

N∑
i=1

|ÕT,1(ki)− ÕT,2(ki)|+ TN | lnT |2.

(A.51)

Next, by using the notation µx and δx of Section 8.1, we set A = {s ∈
[t, t + T ] : ∆x̃s 6= 0}. Then, Ft-conditionally, µx(A) is the count of jumps
in the interval [t, t + T ] of a compound Poisson process with compensator
dsνt(x)dx (this follows using Grigelionis representation, see e.g., Theorem
2.1.2 of [2]), and therefore we have

(A.52) Qt (µx(A) > 1) ≤ KT 2.

Using the inequality (ex̃t+T − ek)+ ≤ eatT
(
|ex̃

d
t+T − 1|+ |e−atT − 1|

)
for

k > 0 and analogous one for (ek−ex̃t+T )+ for k < 0 (recall here x̃cs = at(s−t)
for s ≥ t), as well as EQ

t |e
x̃dt+T − 1|3 + EQ

t |e
−x̃dt+T − 1|3 ≤ KT which follows

from Lemma 1, we have

(A.53) EQ
t [(ek − ex̃t+T )+]3 ≤ KT, k < 0,
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(A.54) EQ
t [(ex̃t+T − ek)+]3 ≤ KT, k > 0.

From here, by applying Hölder’s inequality (with powers 3 and 3/2 for the
first and second term, respectively), we have for Q ∈ Gr(R):

(A.55) EQ
t [(ek − ex̃t+T )+1(µx(A) > 1)] ≤ KT 5/3, k < 0,

(A.56) EQ
t [(ex̃t+T − ek)+1(µx(A) > 1)] ≤ KT 5/3, k > 0.

We similarly have

EQ
t

[∫ t+T

t

∫
E

(ek − eδx(t,z)+atT )+µx(ds, dz)1(µx(A) > 1)

]
≤ KT 5/3, k < 0,

(A.57)

EQ
t

[∫ t+T

t

∫
E

(eδ
x(t,z)+atT − ek)+µx(ds, dz)1(µx(A) > 1)

]
≤ KT 5/3, k > 0.

(A.58)

In addition∣∣∣∣∫
R

(ek − ez+atT )+νt(z)dz −
∫
R

(ek − ez)+νt(z)dz
∣∣∣∣

≤ |eatT − 1|
∫
R
ezνt(z)dz ≤ KT, k < 0,

(A.59)

and a similar inequality holds for the corresponding difference in the case
k > 0.

From here, by looking separately on the events in which there is at most
one jump in x in the interval [t, t + T ] and its complement, we have for
Q ∈ Gr(R):

(A.60)

∣∣∣∣ÕT (k)− T
∫
R

(
ek − ex

)+
νt(x)dx

∣∣∣∣ ≤ KT 5/3, k < 0,

(A.61)

∣∣∣∣ÕT (k)− T
∫
R

(
ex − ek

)+
νt(x)dx

∣∣∣∣ ≤ KT 5/3, k > 0.

Furthermore, for h
(1)
t = h%t and h

(2)
t = h%

′

t , and using the above bounds as

well as
∫
R ψ

(j)(x)dx = 0 and
∫
R ψ

(j)(x)e−2
−jxdx = 0, we have

(A.62)

|ÕT,1(x)−ÕT,2(x)| ≤


KT 5/3, for x ≤ 1 + k0

2j
or x ≥ 1 + k0+1

2j
,

KT 5/3 +KT2−jr−2j , for x ∈
[
1 + k0

2j
, 1 + k0+1

2j

]
.
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Therefore, altogether we get

(A.63) KL(h%t , h
%′

t ) .
2−j(2r+5)

∆
+ | lnT |

√
T

∆
2−jr−3j + TN | lnT |2.

From here, by taking into account the restrictions for α, β and γ in the

theorem, we have boundedness for KL(h%t , h
%′

t ) if we set 2−j(2r+5) ∼ ∆, and
hence the result of the theorem follows.

4.3. Proof of Theorem 4. The proof follows the same steps as the proof
of Theorem 1 and as in that proof we set for simplicity uN = −uN,l = uN,h.
By Plancherel’s identity we can decompose

∫
R

(ĝt(x)− gt(x))2 dx

=
1

2π

∫
|u|≤uN

∣∣ĝ∗t (u)− g∗t (u) + σ̂t
2 − σ2t

∣∣2 du︸ ︷︷ ︸
IV

+
1

2π

∫
|u|>uN

|g∗t (u)|2du︸ ︷︷ ︸
IB

.

(A.64)

By Assumption A1 with h replaced by g, for the bias due to the truncation of
the higher frequencies, we have IB = O(u−2rN ). Using triangular inequality
we have,

(A.65) IV ≤ 1

π

∫
|u|≤uN

|ĝ∗t (u)− g∗t (u)|2 du+ 2
uN
π

(
σ̂t

2 − σ2t
)2
.

Therefore, we are left with the analysis of
∫
|u|≤uN |ĝ

∗
t (u)− g∗t (u)|2 du. For

it, using the notation of the proof of Theorem 1, it suffices to restrict at-
tention to the set Ωc

n on which we have inf |u|≤uN |f̂T (u)| ≥ ε/2 for some
fixed ε > 0. We will further restrict attention to a subset of Ωc

n on which

sup|u|≤uN
∑4

k=1

∑
j=0,1,2 |f̂

(j)
T,k(u)| < ε (recall the notation f̂

(j)
T,k(u) from the

proof of Theorem 1). The probability of this subset of Ωc
n is going to one

due to the bounds for f̂
(j)
T,k(u) derived in the proof of Theorem 1 as well as

the condition u2N (T + ∆)| lnT |2 → 0 of the theorem. Finally, we will assume
that T < t− t, for t being the constant in Lemmas 2-6.

Given the above and upon using Taylor expansion, we have

T |ĝ∗t (u)− g∗t (u)| ≤ Ct|f (1)T (u)||f̂ (1)T (u)− f (1)T (u)|+ Ct|f̂ (1)T (u)− f (1)T (u)|2

+ Ct|f̂ (2)T (u)− f (2)T (u)|+ Ct|f (1)T (u)|2|f̂T (u)− fT (u)|2

+ Ct(|f (1)T (u)2fT (u)|+ |f (2)T (u)|)|f̂T (u)− fT (u)|, |u| ≤ uN ,

(A.66)
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for some Ft-adapted and finite valued positive Ct (which depends on ε).

Taking into account the bounds for f
(j)
T (u), with j = 0, 1, 2, from the proof

of Theorem 1 as well as the fact that we are constraining attention to the

set on which sup|u|≤uN
∑

j=0,1,2 |f̂
(j)
T (u)| < ε, this bound simplifies further

to

T |ĝ∗t (u)− g∗t (u)| ≤ Ct
√
T |f̂ (1)T (u)− f (1)T (u)|+ Ct|f̂ (1)T (u)− f (1)T (u)|2

+ Ct|f̂ (2)T (u)− f (2)T (u)|+ CtT |f̂T (u)− fT (u)|, |u| ≤ uN .

(A.67)

Further, using notation as in the proof of Theorem 1, we have

T |ĝ∗t (u)− g∗t (u)| ≤ CtT
4∑

k=1

|f̂T,k(u)|+ Ct

4∑
k=1

|f̂ (2)T,k(u)|

+ Ct

(
√
T +

4∑
k=1

sup
|u|≤uN

|f̂ (1)T,k(u)|

)
4∑

k=1

|f̂ (1)T,k(u)|, |u| ≤ uN .

(A.68)

From here, the result of the theorem follows by application of the bounds

on f̂
(j)
T,k(u) for j = 0, 1, 2, and k = 1, 2, 3, 4 derived in the proof of Theorem

1 and taking into account the restriction α > 1
2 and (A.15).
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