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This paper develops a nonparametric estimator for the Lévy den-
sity of an asset price, following an Itô semimartingale, implied by
short-maturity options. The asymptotic setup is one in which the
time to maturity of the available options decreases, the mesh of the
available strike grid shrinks and the strike range expands. The esti-
mation is based on aggregating the observed option data into non-
parametric estimates of the conditional characteristic function of the
return distribution, the derivatives of which allow to infer the Fourier
transform of a known transform of the Lévy density in a way which
is robust to the level of the unknown diffusive volatility of the asset
price. The Lévy density estimate is then constructed via Fourier in-
version. We derive an asymptotic bound for the integrated squared
error of the estimator in the general case as well as its probability
limit in the special Lévy case. We further show rate optimality of our
Lévy density estimator in a minimax sense. An empirical application
to market index options reveals relative stability of the left tail decay
during high and low volatility periods.

1. Introduction. Option data provides a rich source of information to
study risks in the economy and their pricing, and in particular tail events
which are hard to measure from asset return data alone. Extracting in-
formation from option data, however, is challenging because option prices
are determined by various sources of risk (e.g., jumps as well as shocks to
stochastic volatility and jump intensity) which need to be explicitly mod-
eled. Therefore, most of the existing work using option data relies on fully
specified parametric models. This parametric based evidence, however, is
subject to significant misspecification risk, the effects of which are rather
unclear due to the highly nonlinear dependence of the option prices on the
various sources of risk.

At the same time, recent developments on derivatives markets enable
the development and practical implementation of nonparametric estimation
techniques, particularly the ones for studying the jump part of the asset
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returns. More specifically, over the last five years the trading in options
with very short time to expiration has increased significantly, see e.g., [1].
For example, for the S&P 500 market index, on each trading day there are
now actively traded options with at most two days to expiration.

In this paper we develop nonparametric estimators for the Lévy density of
asset returns from short-dated options. The Lévy density of the asset return
process “summarizes” the information about the jumps and has been the
main object of study of a large body of statistical work. In the finite activity
jump case, the Lévy density can be viewed as the conditional probability
of jump arrival of given size. When extracted from option data, the Lévy
density contains information both for future expected jump risk as well as
for the pricing of it (the Lévy density embedded in the option prices is
under the so-called risk-neutral probability measure). Hence, this quantity
is of major interest both from a theoretical and applied point of view.

Our nonparametric procedure can be described as follows. First, we aggre-
gate the short-maturity option data into portfolios that provide model-free
estimates of the conditional characteristic function of the asset return for
different values of the characteristic exponent. This construction follows gen-
eral results in [8] for replicating expected smooth transforms of the return
distribution via portfolios of options. In a next step we use the conditional
characteristic function of the returns to back out the Lévy density. This step
is based on the fact that over a short interval, the asset return is approxi-
mately like that of a Lévy process (process with i.i.d. increments) with the
value of the stochastic volatility and jump intensity “frozen” at their values
at the beginning of the interval. Hence, our problem reduces to the nonpara-
metric estimation of the Lévy density of a Lévy process from estimates for
the characteristic function of its increments. The main difficulty here is the
separation of the volatility from the Lévy density. To achieve this separa-
tion, we use the fact that higher order derivatives (from third and above) of
the characteristic exponent of a Lévy process are solely determined by the
Fourier transform of a known transform of the Lévy density. Hence, the non-
parametric estimation of the Lévy density can be done via Fourier inversion
of an estimate of the third (or higher order) derivative of the characteristic
exponent of the asset return. An alternative approach, which we analyze in
the supplementary appendix, is to use the second derivative of the character-
istic exponent. In this case, however, the diffusive spot volatility also plays
a role and therefore we need to perform bias correction using a preliminary
estimator for the latter.

We derive a bound on the order of magnitude of the integrated squared
error in recovering the Lévy density (or a certain known transform of it to
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be precise) in an asymptotic setting of increasing number of options, with
shrinking time to maturity and strike coverage that converges to the whole
positive part of the real line. In the special Lévy case, we further derive
the probability limit of the integrated squared error of the estimator, based
on the third derivative of the characteristic function, and we show that it
depends on the Lévy density of the asset price but not on its diffusion com-
ponent. We further establish rate optimality of our Lévy density estimator in
a minimax sense. We test the estimation procedure on simulated data and
we apply it to infer stock market risk-neutral Lévy densities from option
data on the S&P 500 market index.

The current paper is related to several strands of literature. First, Lévy-
based approximations of short-dated options have been studied with various
degrees of generality in earlier work, see e.g., [1], [6], [15], [16, 17] and [24],
and the many references therein. The results of these papers are typically
derived for a single option with a fixed strike while here we are interested in
the approximation across the whole range of strikes that cover the positive
real line. Unlike the current study, many of the above cited papers are not
interested in the size of the approximation error or analyze it in somewhat
restrictive settings (e.g., for part of the strike domain only and/or under
stronger assumptions for the underlying Itô semimartingale). The asymp-
totic order of the approximation error depends on the strike of the option
and, for the purposes of the analysis here, we need to assess its limiting be-
havior in a functional sense (in the strike). Second, there is a large literature
on the nonparametric estimation of the Lévy density from discrete observa-
tions of a Lévy process, see e.g., [9, 10], [14], [18], [21], [22] and [25]. Some of
these results are further extended to time-changed Lévy processes ([3]) and
affine models ([2]). The major difference between the current paper and this
strand of work, from a statistical point of view, is that we use option data
for the inference which results in a very different statistical setup. Third,
most closely related to the current paper is a body of work that considers
nonparametric Lévy density estimation in the context of exponential Lévy
models from options with fixed maturity, see e.g., [4, 5], [11], [28], [29] and
[30, 31]. The major differences between the current work and these papers
are two. First, our method applies to the very general Itô semimartingale
class of models which nests the exponential Lévy models but also allows
for models with time-varying volatility and jump intensity. Second, there
is a major difference in the asymptotic setup of the earlier work and the
current study: in our case, unlike the previous work, the maturity of the
options shrinks. This results in different methods of proofs and also differ-
ent asymptotic behavior of the estimators: the short maturity of the options
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here helps the separation of volatility from jumps and we can thus achieve
much faster rates of convergence (in probability) than what is feasible in the
fixed maturity case. These differences are explained in more detail later in
the text.

The rest of the paper is organized as follows. Section 2 describes the option
observation scheme and in Section 3 we state our assumptions. The Lévy
density estimator is given in Section 4 along with a bound on the asymptotic
order of its integrated squared error. Sections 5 and 6 present the results from
a Monte Carlo experiment and empirical application, respectively. Section 7
concludes. The proofs are given in Section 8. A supplementary appendix
contains additional theoretical results for the limit in probability of the
integrated squared error of the estimator, a lower bound for the minmax
risk of recovering Lévy density from short-dated noisy option data as well
as an alternative estimator (to the one in the main text) based on the second
derivative of the characteristic function and volatility debiasing.

2. Setup and Notation. We define with X an asset price on a filtered

probability space
(
Ω(0),F (0), (F (0)

t )t≥0,P(0)
)
. In this paper we will make non-

parametric inference on the basis of derivatives written on X, i.e., contracts
whose payoffs are sole functions of the trajectory of X from inception till
expiration. As known from finance theory (see e.g., [12]), in the absence of
arbitrage, the theoretical values of derivatives prices equal their expected
future discounted payoffs under the so-called risk-neutral probability, which
we henceforth denote with Q. The latter deviates from the true probabil-
ity because of the risk premia demanded by investors for bearing risk (it
overweights bad scenarios and underweights the good scenarios) and is of
major interest both for academic and practical applications. The log-price,
xt = lnXt, is an Itô semimartingale with the following dynamics under the
risk-neutral probability measure

(2.1) xt =

∫ t

0
asds+

∫ t

0
σsdWs +

∫ t

0

∫
R
xµ̃(ds, dx),

where W is a Brownian motion, µ is an integer-valued random measure on
R+×R, counting the jumps in x, with compensator νt(x)dt⊗dx and µ̃ is the
martingale measure associated with µ (W and νt are defined with respect
to Q). Our interest in this paper is the nonparametric estimation of νt(x)
at fixed points in time from option data.

We assume that we have observations of option prices written on X at
time t, which expire at t+T , for some T > 0. Since t will be fixed throughout,
we will henceforth suppress the dependence on t in the notation of the option
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prices and other related quantities. Also, without loss of generality, and in
order to further simplify notation, we will make the normalization Xt = 1.
For simplicity, we will also assume that the dividend yield of X and the risk-
free interest rate are both zero. With these normalizations, the theoretical
values of the option prices we will use in our analysis are given by

(2.2) OT (k) =

{
EQ
t (ek − ext+T )+, if k ≤ lnFT ,

EQ
t (ext+T − ek)+, if k > lnFT ,

where FT is the price at time t of a forward contract which expires at time
t + T , and K ≡ ek and k are the strike and log-strike, respectively, of the
option. Given the simplifying assumption of zero dividend yield and zero
interest rate and the normalization Xt = 1, we have FT ≡ 1. OT (k) is the
price of an out-of-the-money option (i.e., an option which will be worth zero
if it were to expire today). This is a call contract (an option to buy the
asset) if k > 0 and a put contract (an option to sell the asset) if k ≤ 0.

Our data consists of out-of-the-money options at time t, expiring at t+T ,
and having log-strikes given by

(2.3) k ≡ k1 < k2 < · · · < kN ≡ k,

with the corresponding strikes being

(2.4) K ≡ K1 < K2 < · · · < KN ≡ K.

We denote the gaps between the log-strikes with ∆i = ki − ki−1, for i =
2, ...., N . We note that we do not assume an equidistant log-strike grid, i.e.,
we allow for ∆i to differ across i-s. The asymptotic theory developed below
is of joint type, in which the time to maturity of the option T goes down to
zero, the mesh of the log-strike grid supi=2,...,N ∆i shrinks to zero and the

log-strike limits k and k increase to infinity in absolute value.
Finally, as common in empirical asset pricing, we allow for observation

error, i.e., instead of observing OT (ki), we observe:

(2.5) ÔT (ki) = OT (ki) + εi.

where the sequence of observation errors {εi}i is defined on a space Ω(1) =



k∈R
Ak, for Ak = R. This space is equipped with the product Borel σ-field

F (1) and with transition probability P(1)(ω(0), dω(1)) from the original prob-
ability space Ω(0) – on which X is defined – to Ω(1). We further define,

Ω = Ω(0)×Ω(1), F = F (0)×F (1), P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).
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3. Assumptions. We proceed with our formal assumptions for the pro-
cess x, the option observation scheme as well as the observation error. Below,
for a generic function f , we will denote with f∗ its Fourier transform, pro-
vided the latter is well defined.

A1. The function ht = x3νt(x) belongs to the class

Sr(Ct) =

{
f ∈ L1(R) ∩ L2(R) :

∫
R
|f∗(x)|2(1 + x2)rdx ≤ Ct

}
,

for some positive constant r and some positive and Ft-adapted random vari-
able Ct.

A2. The process σ has the following dynamics under Q:

(3.1) σt = σ0 +

∫ t

0
bsds+

∫ t

0
ηsdWs+

∫ t

0
η̃sdW̃s+

∫ t

0

∫
R
δσ(s, u)µσ(ds, du),

where W̃ is a Brownian motion independent of W ; µσ is a Poisson random
measure on R+×R with compensator νσ(ds, du) = ds⊗du, having arbitrary
dependence with the random measure µ; b, η and η̃ are processes with càdlàg
paths and δσ(s, u) : R+ × R→ R is left-continuous in its first argument.

A3. With the notation of A2, there exists an Ft-adapted random variable
t > t such that for s ∈ [t, t]:

(3.2) EQ
t |as|4 + EQ

t |σs|6 + EQ
t (e4|xs|) + EQ

t

(∫
R

(e3|z| − 1)νs(z)dz

)4

< Ct,

for some Ft-adapted random variable Ct, and in addition for some ι > 0

(3.3) EQ
t

(∫
R

(|δσ(s, z)|4 ∨ |δσ(s, z)|)dz
)1+ι

≤ Ct.

A4. With the notation of A2, there exists an Ft-adapted random variable
t > t such that for s ∈ [t, t]:

EQ
t |as − at|p + EQ

t |σs − σt|p + EQ
t |ηs − ηt|p + EQ

t |η̃s − η̃t|p

≤ Ct|s− t|, ∀p ∈ [2, 4],
(3.4)

and

(3.5) EQ
t

(∫
R

(ez∨0|z| ∨ |z|2)|νs(z)− νt(z)|dz
)p
≤ Ct|s− t|, ∀p ∈ [2, 3],
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for some Ft-adapted random variable Ct.

A5. The log-strike grid {ki}Ni=1 is F (0)
t -adapted and on a set with probability

approaching one, we have

(3.6) η∆ ≤ inf
i=2,...,N

∆i ≤ sup
i=2,...,N

∆i ≤ ∆,

where η ∈ (0, 1) is some positive constant and ∆ is a deterministic sequence
with ∆→ 0.

A6. We have: (1) E
(
εi
∣∣F (0)

)
= 0, (2) E

(
|εi|
∣∣F (0)

)
= OT (ki)ζt,i and E

(
ε2i
∣∣F (0)

)
=

OT (ki)
2σ2
t,i, where {ζt,i}i=1,...,N and {σ2

t,i}i=1,...,N are sequences of Ft-adapted

random variables with supi=1,...,N ζt,i = Op(1) and supi=1,...,N σ
2
t,i = Op(1),

and (3) εi and εj are F (0)-conditionally independent whenever i 6= j.

We briefly discuss each of the assumptions. Assumption A1 is a standard
assumption and the coefficient r controls the smoothness of the estimated
function. As we will see in the next section, our method recovers x3νt(x) and
hence A1 is an assumption for the smoothness of this function. Assumption
A2 assumes that the stochastic volatility process, σ, is an Itô semimartingale
with jumps of finite variation. This assumption is satisfied in many appli-
cations. Importantly, A2 allows for general forms of dependence between
the diffusion and jump components of x and σ. Our integrability assump-
tions are given in A3. We require existence of Ft-conditional moments of
the values of various processes evaluated at some, arbitrary close to t, time
in the future. We note that A3 imposes the restriction that jumps in x are
of finite variation. An extension to infinite variation jumps is possible but
at the cost of much slower rates of convergence than the one we get here
in Theorem 1 below. Assumption A4 is a “smoothness in expectation” as-
sumption. This assumption will be satisfied if the corresponding processes
are Itô semimartingales. Our assumption for the log-strike grid of the ob-
served options is given in A5 and it allows, in particular, for non-equidistant
sampling. Finally, A6 contains our assumption for the observation error. We
assume that the observation error is centered at zero and that the errors
are F (0)-conditionally independent. The latter assumption can be weakened
to require only no correlation of the errors and certain products of them. It
can be also weakened to allow for F (0)-conditional weak dependence between
the errors. Assumption A6 allows for F (0)-conditional heteroskedasticity of
the observation error. We note that A6 assumes that the F (0)-conditional
variance of the error is of the same order of magnitude as the squared option
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price it is attached to. This is consistent with the relative observation error
being of order Op(1).

4. Nonparametric Lévy Density Recovery. We now construct our
nonparametric estimator of νt(x) and characterize its asymptotic properties.
First, using results in [8] for spanning risk-neutral payoffs from portfolios of
options, we have that

(4.1) EQ
t

(
eiuxt+T

)
= eiu lnFT − (u2 + iu)

∫ ∞
−∞

e(iu−1)kOT (k)dk, u ∈ R.

Therefore, using a Riemann sum approximation for the integral in the above
expression, we have that

(4.2) f̂T (u) = eiu lnFT − (u2 + iu)
N∑
j=2

e(iu−1)kj−1ÔT (kj−1)∆j , u ∈ R,

is a consistent estimate of EQ
t

(
eiuxt+T

)
under very general assumptions for

the dynamics of the process x and provided k ↓ −∞, k ↑ +∞ and supi ∆i →
0. We note that similar option-spanning idea lies behind the construction
of the popular option-implied volatility index VIX which is widely used as
a measure of uncertainty and fear gauge. More specifically, the formula for
the squared VIX, up to a higher order term, is given by 2 lnFT − 2

i f̂
′
T (0).

If T is small, then xt+T −xt is approximately, Ft-conditionally, the incre-
ment of a Lévy process with generating (or characteristic) triplet (at, σ

2
t , νt)

(Definition 8.2 in [27]). Therefore, by applying Lévy-Khintchine formula
(Theorem 8.1 in [27]) and assuming

∫
R |x|νt(dx) < ∞ (which is implied by

our assumptions), we have for u ∈ R:
(4.3)

f̂T (u) ≈ exp

(
iu lnFT + iuTat −

u2

2
Tσ2

t + T

∫
R

(eiux − 1− iux)νt(x)dx

)
,

and in the proof we make the above statement formal. Recall that our goal
is to recover νt without any knowledge of at and σt. To achieve this, we
can consider derivatives of f̂T (u). In particular, due to the approximation
in (4.3), we have

(4.4)
f̂

(2)
T (u)

f̂T (u)
−
f̂

(1)
T (u)2

f̂T (u)2
≈ −Tσ2

t − T
∫
R
x2eiuxνt(x)dx,

where for a generic function g(x) we denote with g(p)(x) its p-th order deriva-
tive. Since the last integral above is the Fourier transform of x2νt(x), we can
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recover the latter via Fourier inversion from the expression on the left-hand
side of (4.4), provided we can estimate σt (a similar idea has been used by
[26] in the context of high-frequency data with increasing time span for a
Lévy process x). The estimation of σt, in turn, can be done either using the
option data at hand or high-frequency data on x in a local neighborhood of
the observation time of the options.

Yet another approach, which avoids estimation of σt, is to base the in-
ference on a derivative of the expression on the left-hand side of (4.4). A
similar idea has been used by [10] in the context of estimating the jump
density of a Lévy process from high-frequency observations of the process
with increasing time span. In particular, given the approximation in (4.3),
we have

(4.5)
f̂

(3)
T (u)

f̂T (u)
− 3

f̂
(2)
T (u)f̂

(1)
T (u)

f̂T (u)2
+ 2

f̂
(1)
T (u)3

f̂T (u)3
≈ −iT

∫
R
x3eiuxνt(x)dx,

and therefore

(4.6) ht(x) = x3νt(x),

can be recovered from the expression on the left-hand side of (4.5) by Fourier
inversion. One advantage of the estimation approach based on the expres-
sion on the left-hand side of (4.5) over the one based on the expression on
the left-hand side of (4.4) is that it avoids inference for σt and debiasing.
However, estimating x3νt(x) puts less emphasis on fitting νt(x) around zero
as compared to estimating x2νt(x).

For brevity, here we will present the analysis based on (4.5) only and in
the supplementary appendix we present the results for the estimator based
on (4.4). The nonparametric estimator using the approximation in (4.5) is
constructed as follows. We first define for u ∈ R

ĥ∗t (u) =
i

T

f̂
(3)
T (u)f̂T (u)− f̂ (2)

T (u)f̂
(1)
T (u)

f̂T (u)2

− 2i

T

f̂
(1)
T (u)(f̂

(2)
T (u)f̂T (u)− f̂ (1)

T (u)2)

f̂T (u)3
,

(4.7)

which, given our discussion above, is an estimate of the Fourier transform
of ht(x). Using ĥ∗t (u) our estimate for ht(x) is then given by

(4.8) ĥt(x) =
1

2π

∫
u∈[uN,l,uN,h]

e−iuxĥ∗t (u)du,
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where −uN,l and uN,h are deterministic sequences increasing to infinity as

the the size of the option data grows. ĥt(x) is truncated Fourier inverse of
ĥ∗t (u), where the highest frequencies have been removed since they are less
precisely recovered from the data.

A natural extension of the above estimator can be done by aggregating
option data at a fixed number of times t1, t2,...,tk, and using the average
characteristic function estimate over the observation times and its deriva-
tives. In this case, we recover the time average 1

k

∑k
i=1 hti(u). All the results

derived below trivially carry over to such an extension of ĥt and for simplic-
ity of exposition we do not state the formal result for this extension.

The following theorem derives the order of magnitude (in probability) of
the integrated squared error in recovering ht(x). In it, the notation an � bn
means that both sequences an/bn and bn/an are bounded.

Theorem 1. Suppose Assumptions A1-A6 hold and in addition ∆ �
Tα, K � T−β, K � T γ, for some α > 0, β > 0 and γ > 0 and where ∆ is
the mesh of the log-strike grid. Let −uN,l � uN,h � uN be such that:

(4.9) uN →∞ and u2
N (T + ∆)| lnT |2 → 0.

Then, we have

(4.10)

∫
R

(
ĥt(x)− ht(x)

)2
dx = Op

(
u−2r
N

∨
u5
NΓN

)
,

where r is the constant in Assumption A1 and

(4.11) ΓN = ∆
∨
T (ln8 T )(e−2k|k|6 ∧ T−1/3)

∨
e6k|k|6

∨
e−6k|k|6.

Remark 4.1. The short-maturity options can be also used to recover
nonparametrically σt. One possibility is to expand locally in T the option
prices with k close to zero and then make use of the leading role played by
σt in such an expansion. An alternative approach of recovering σt is to use
1
T <
(

ln f̂T (u)
)

for sufficiently large u where the signal for σt is strongest. In
both cases, the options with log-strikes close to zero play a leading role in
the estimation (which is unlike the case of the estimator ĥt). These options
are much larger asymptotically (as T ↓ 0) than the option prices with log-
strikes away from zero. Therefore, the effect of the observation error on the
estimation of σt will be in general bigger than on the recovery of ht.

Condition (4.9) in the theorem is a relatively weak upper bound on the
rate of growth of the sequence uN which guarantees that f̂T (u) is bounded
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from below in absolute value uniformly for |u| ≤ uN with probability ap-
proaching one. This is needed as ĥ∗t (u) involves division by f̂T (u). Note in
this regard that the argument of the exponent on the right hand side of (4.3)
is Op(Tu

2) as |u| → ∞ and T → 0.
Equation (4.10) gives the order of magnitude in probability of the inte-

grated squared error
∫
R
(
ĥt(x)− ht(x)

)2
dx. Since ĥ∗t (u) involves division by

f̂T (u) and some of the bounds for the options hold only in probability, we
characterize the behavior of the integrated squared error in probability and
not in (conditional) expectation.

The terms in (4.10)-(4.11) determining the order of magnitude of the inte-
grated squared error reflect the different sources of error in the estimation.
As standard for nonparametric density estimation, we have a bias due to
truncation of the high frequencies in the Fourier inversion in (4.8). Its con-
tribution in the integrated squared error is Op(u

−2r
n ), where the parameter

r captures the degree of smoothness of ht(x) (roughly the number of its
derivatives). Not surprisingly, the higher r is, the smaller this bias is.

The remaining terms on the right-hand side of (4.10) reflect the various
sources of error in approximating EQ

t

(
eiuxt+T

)
and its derivatives with the

available option data. The first term in ΓN in (4.11) is due to the measure-
ment error in the option prices. Its order of magnitude is determined by the
number of options used in the estimation as well as the order of magnitude
of the option error variance, which by Assumption A6 is proportional to the
option price that the error is added to. Since the option prices shrink asymp-
totically in magnitude as T ↓ 0, so do the errors attached to them. We note
in this regard that the option price OT (k) is of order Op(T ) for values of k
away from zero and is only of order Op(

√
T ) for k in the vicinity of zero (see

Section 8 for the precise statements). As a result, the option error for log-
strikes close to zero is asymptotically larger than the one for log-strikes that
are large in absolute value. Nevertheless, since the loading on the options
with k close to zero in our estimator is of asymptotically smaller order than
on those with k away from zero, the asymptotic effect of the observation
error on the estimation is determined by that in the observed options with
k away from zero. We further point out that the effect of the option error on
the recovery of ht dominates the error due to the smoothness of the option
price as a function of k. Recall in this regard that f̂T (u) involves a Riemann
sum approximation of the integral in (4.1).

The second term in ΓN is due to error in the option price stemming from
approximating xt+T − xt by the increment of Ft-conditionally Lévy process
with characteristic triplet (at, σ

2
t , νt). Naturally, this error depends on the

time to maturity T and not on the mesh of the observation grid of strikes ∆.
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Finally, the last two terms in ΓN are due to the use of options with a finite
span of strikes (recall that the integral in (4.1) involves integration with
respect to k over R while the strike range used in the estimation is [k, k]).
The size of this error is determined only by the order of magnitude of k and
k and the tail decay of the (risk-neutral) conditional return distribution.

The result in (4.10) is an upper bound for the estimation error in ĥt.
However, in the supplementary appendix we derive the limit in probability of
the integrated squared error of the estimator in the specialized setting where
the underlying process is Lévy. This result shows that the bound in (4.10)
for the effect of the observation error on the estimation (first term in (4.11))
is sharp. The limit in probability result also shows that the precision in the
estimation does not depend on the diffusive component of the underlying
asset price. This is because our estimator puts more weight (in relative
terms) to the options with k away from zero where the signal from the
diffusion is relatively weak and is of higher asymptotic order.

The magnitude of the effect on the precision of ĥt from the stochastic-
ity and time-variation of the drift, volatility and Lévy density as well as
from the finiteness of the strike range of the options used in the estimation
(last three terms in Γn) is derived under rather general conditions for the
process X. Under stronger assumptions for X, this bound on the effect of
this approximation error in the estimation can be further improved upon.
First, in the case when the Lévy measure has a finite support, then we do
not need k ↓ −∞ and k ↑ +∞ but finite [k, k], which covers the support of
the Lévy measure, would suffice. In this case, the last three terms in (4.11)
can be replaced with a term involving only T . Second, in the case when σt
and νt(x) are time-varying but deterministic, our nonparametric estimation

procedure recovers nonparametrically 1
T

∫ t+T
t hs(x)ds, and the only source

of error in this case stems from the approximation of the integral on the
right-hand side of (4.1) by a finite set of options.

For a given degree of smoothness r of ht, and provided the leading term in
Γn is ∆ (due to the observation error), the asymptotic size of the integrated

squared error of our estimator is Op

(
∆

2r/(2r+5)
)

whenever uN is chosen

optimally. This rate is achievable regardless of the presence of a diffusion
component in the price and regardless of the presence of time-variation in
σt and νt(x). In the supplementary appendix, we show that this is the best
achievable rate for an estimator of ht in a minimax sense in the specialized
setting of X being pure-jump process of finite activity and when the ob-
servation errors are Gaussian with standard deviations proportional to the
option prices.

We finish this section with a comparison of our method with existing
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nonparametric estimators of the Lévy measure from option data. [11] uses
penalized least squares while [4, 5], [28], [29] and [30, 31] use spectral-based
techniques for recovering the Lévy measure of exponential Lévy models from
options with fixed maturity T . We will restrict comparison to the existing
spectral-based estimators as their rates of convergence are explicitly derived.
These estimators are based on measures of the Fourier transform of the op-
tion price as a function of the strike. That is, they are based on option-based
estimates of EQ

t (eiuxt+T+xt+T ) which is very similar to our use of the charac-
teristic function EQ

t (eiuxt+T ). [4] and [28] work directly with EQ
t (eiuxt+T+xt+T )

in a setting of finite activity jumps while [29] and [30, 31] use derivatives
of it and allow for more general jump specifications similar to our use of
derivatives of f̂T .

There are two major differences between the existing option-based spec-
tral methods and our work. First, the earlier work applies only to the class
of exponential Lévy models while the developed method here is for a general
Itô semimartingale. Second, the asymptotic setup in the current work is one
in which T ↓ 0 simultaneously with ∆ ↓ 0 while for the existing option-based
methods T remains fixed. This results in a rather different asymptotic anal-
ysis as well as rates of convergence for the Lévy density estimate. Indeed, in
a setting in which T ↓ 0, OT (k) ↓ 0 but this does not happen uniformly in
the strike domain. This fact has a nontrivial impact on the analysis because
our estimator is a sum of options with different strikes. Furthermore, since
the option error is proportional to the unobservable true option price, the
magnitude of this error depends on T in a rather nontrivial way.

The decreasing maturity T of the options can be also utilized to separate
volatility from jumps which has nontrivial asymptotic effect. In our analysis,
similar to the previous spectral option-based estimators, we use increasing
uN but such that u2

NT → 0. Since, in our case T ↓ 0, we are effectively
evaluating the characteristic function of the return around zero (which is
unlike the fixed T case). This helps in the separation of volatility from jumps
similar to the case of separating volatility from jumps from high-frequency
data on x analyzed in [20]. This also allows to minimize the effect from the
time-varying characteristics of the Itô semimartingale on the estimation. As
a result, there is a difference in the rate of convergence in the fixed T and
decreasing T cases. Focusing on the optimal rates for a given smoothness
parameter r, and assuming the first term in Γn is leading, we have optimal

rate of convergence of ∆
−r/(2r+5)
n . This is exactly the same rate as for the

estimator of [4] but only in the case when x is compound Poisson. When x
contains a diffusion, on the other hand, the best possible rate for estimating
the Lévy measure in the case T fixed is only logarithmic while our estimator
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in the setting T ↓ 0 continues to converge at the fast rate ∆
−r/(2r+5)
n .

5. Monte Carlo Study. We next present results for the performance
of our nonparametric procedure on simulated data from the following model
for the risk-neutral dynamics of X:

(5.1) Xt = X0 +

∫ t

0

√
VsdWs +

∫ t

0

∫
R

(ex − 1)µ̃(ds, dx),

with W being a Brownian motion and V having the dynamics

(5.2) dVt = κ(θ − Vt)dt+ σ
√
VtρdWt + σ

√
Vt
√

1− ρ2dW̃t,

where W̃ is a Brownian motion orthogonal to W . The jump measure µ has
a compensator νt(x)dt⊗ dx, where

(5.3) νt(dx) = c−Vt
e−λ−|x|

|x|1+β
dx1{x<0} + c+Vt

e−λ+|x|

|x|1+β
dx1{x>0}.

The specification in (5.1)-(5.3) belongs to the affine class of models of [13]
commonly used in empirical option pricing work. Consistent with existing
empirical evidence, the jumps have time-varying jump intensity. The jump
size distribution is like the one of the tempered stable process of [7] which
is found to provide good fit to option data. The parameter β controls the
behavior of the jump measure around zero, with β < 0 corresponding to
finite jump activity and β ≥ 0 to infinite activity jump specifications. The
parameters λ±, on the other hand, control the behavior of the jump measure
in the tails. We set the model parameters in a way that results in option
prices similar to observed equity index option data. In particular, we set θ =
0.022, κ = 3.6124, σ = 0.2 and ρ = −0.5 (our unit of time is one year). We set
the jump tail parameters at λ− = 20 and λ+ = 100. We consider three cases
for β. In all cases the parameters c± are set so that the total expected jump
variation is equal to the expected diffusive variance, and further the ratio of
negative to positive jump variation is 10 to 1. The parameter specifications
are as follows. Case A: β = −0.5, c− = 1.2233×103 and c+ = 6.8387×103.
Case B: β = 0, c− = 3.6364×102 and c+ = 9.0909×102. Case C: β = 0.5,
c− = 0.9175× 102 and c+ = 1.0258× 102.

The strike grid, strike range and the total number of options per day
are calibrated to match roughly the data we use in the empirical appli-
cation. In particular, at time t, we set k = −8 × σATM

√
T + lnXt and

k = 2 × σATM
√
T + lnXt, where we denote with σATM the Black-Scholes
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implied volatility of the at-the-money option. We further use N = 60 op-
tions and assume equidistant grid for the log-strike k. The option observa-
tion error is set to εi = 1

2Zi × OT (ki)
ψ(ki)
Q0.995

, where {Zi}i is a sequence of
i.i.d. standard normal random variables, Qα denotes the α-quantile of the
standard normal and ψ(k) is a function of the log-strike determined by run-
ning a nonparametric kernel regression on the data used in the empirical
application of the relative option bid-ask spread (i.e, the bid-ask spread di-
vided by the mid-quote) as a function of the volatility-adjusted log-strike
(k − lnXt)/(σATM

√
T ).

The estimation is done on the basis of one month of short-maturity op-
tion data (20 trading days). As in the real data, the options are observed
during trading days at the time of market close. Similar to the available
data, the time to maturity of the options in the estimation window changes
in four cycles (each corresponding to one week) from 5 business days to ex-
piration to 1 business day to expiration. Finally, in the Monte Carlo study,
we consider three cases for the starting value of volatility: low, median and
high, corresponding to 25th, 50th and 75th quantiles, respectively, of the
unconditional distribution of V . For simplicity assume that the statistical
and risk-neutral probabilities for the volatility dynamics coincide.

The frequency cutoff parameter vector (uN,l, uN,h) is set according to

the following simple rule. We first compute
∑20

t=1 ĥ
∗
t (u) for a wide range

[−50, 50] of u. We then set uN,l = argminu∈[−50,0)|
∑20

t=1 ĥ
∗
t (u)| and uN,h =

argminu∈(0,50]|
∑20

t=1 ĥ
∗
t (u)|. The intuition behind this choice is that, while

lim|u|→∞ |h∗t (u)| = 0 due to the smoothness of ht(u), ĥ∗t (u) will not shrink to
zero for very large values of |u|, for a given N , due to the discreteness of the
strike grid of the available options. The above choice of uN,l and uN,h picks
the range of u which is roughly consistent with the asymptotic behavior of
h∗t (u) in the tails.

On Figure 1, we illustrate the performance of our estimator on one simu-
lated option data set for each of the cases and for the three different starting
values of the volatility. Overall the recovery of the Lévy density for the neg-
ative jumps seems quite satisfactory while the estimate of the Lévy density
for the positive jumps is relatively noisy. There are two explanations for this.
First, the available strike range for out-of-the-money calls (whose value is
determined predominantly by the positive jumps) is much smaller than for
the puts. Second, the Lévy density for the positive jumps is typically quite
small and as a result it becomes very steep around the origin (this is because
the Lévy density explodes at zero for the infinite activity jump cases). This
steep decay of the Lévy density for the positive jumps is hard to estimate
precisely with the given mesh of the log-strike grid.
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Fig 1. Estimated Lévy Density in the Monte Carlo Study. On each plot we display ln
(
1 +

1
x3
ĥt(x)

)
(dashed line) and ln(1 + νt(x)) (solid line) on one simulated option data set.
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On the other hand, the Lévy density for the negative jump size is recov-
ered well in all considered cases. In relative terms, the least precise results
are obtained for the low volatility regime. This is to be expected since when
volatility is rather low, the strike range is relatively narrow (remember our
log-strike grid is set proportional to the current level of volatility). Never-
theless, the deviations from the true Lévy density even in the low volatility
regime appear small.

The above observations are confirmed from the results of a Monte Carlo
study which are summarized in Table 1. We report the integrated squared
error as well as a measure of the variability of the function ht(x) over a
range for the jump size of [−0.3, 0.3]. This range is rather wide. Indeed, in
all considered cases we have

∫
|x|≤0.3 |x|νt(x)dx/

∫
R |x|νt(x)dx > 0.99. From

Table 1, we can notice that in all scenarios, the integrated squared error is
small relative to the variation of ht(x). As suggested from the analysis of
Figure 1 above, the low volatility regime is the most difficult for the recovery
of the Lévy density.

Model Case Vol Regime
∫
|x|≤0.3

h2
t (x)dx MISE

A Low 3.13 × 10−4 7.65 × 10−6

A Median 5.93 × 10−4 1.06 × 10−5

A High 1.04 × 10−3 1.61 × 10−5

B Low 7.11 × 10−6 6.86 × 10−7

B Median 1.36 × 10−5 6.86 × 10−7

B High 2.34 × 10−5 6.14 × 10−7

C Low 4.68 × 10−6 2.44 × 10−7

C Median 8.82 × 10−6 2.62 × 10−7

C High 1.52 × 10−5 2.84 × 10−7

Table 1
Monte Carlo Results. The MISE is the average of

∫
|x|≤0.3

(ĥt(x) − ht(x))2dx over 1000

replications.

Finally, we note that, similar to standard nonparametric kernel regres-
sions, estimation is less precise at the edges of the support of the Lévy
density, which here means for x around zero as well as for x approaching
±∞. In these regions, in finite samples we can even have negative estimates.
This is of course not surprising and is mere reflection of the weak signal in
the data about the Lévy density at zero and infinity. Most accurate results
for the recovery of νt(x) are obtained for values of x within the log-strike
range [k, k] and which in absolute value are slightly above zero (determined
by the mesh of the strike grid relative to the underlying asset price).

Overall, the results from the Monte Carlo study suggest satisfactory per-
formance of the Lévy density recovery in empirically realistic settings.
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6. Empirical Application. We now apply our nonparametric Lévy
density estimation method to data on short-maturity options written on
the S&P 500 market index. With the introduction of the weekly options
(i.e., options that expire on a weekly basis), the availability of short-dated
options have increased significantly, see the evidence in [1]. As a result, for
each trading day we have options written on the S&P 500 index that expire
on the Friday of the week. Therefore, the time to maturity of the closest to
expiration available options ranges from one business day to five business
days, resulting in an average time to maturity of our option data of 2.5
business days. Our data covers the period 2014 − 2015 but for brevity we
present only results for April 2015 and September 2015. These are two very
different periods in terms of market behavior: the first is a very calm period
with low market volatility and the second is a more turbulent one generated
in part by heightened global economic uncertainty.

We use mid-quotes at market close from OptionMetrics and remove strikes
with zero bids for the traded out-of-the-money options. The average number
of options per day in our sample is 64 and the average log-strike range is
[−9.14×σATM

√
T , 3.27×σATM

√
T ], which are similar to the corresponding

numbers we used in our Monte Carlo study. Finally, we set the value of the
frequency cutoff vector (uN,l, uN,h) used in the Fourier inversion exactly as
in the simulation study.

The results from the estimation are presented in Figure 2. We can make
several observations. First, in both periods, our estimates for the Lévy den-
sity of the positive jumps are very close to zero. This is consistent with earlier
empirical evidence and is also in line with our Monte Carlo study where we
found difficulty in accurately recovering the shape of the Lévy density of
the positive jumps due to its small magnitude ([1] report difficulty in its
recovery even in a parametric setting). Second, we recover a Lévy density
for the negative jumps which is monotone in the jump size. This is like the
parametric models we used in the Monte Carlo study but is unlike a Gaus-
sian model for the jump distribution (with negative mean) commonly used
in finance since the seminal work of [23]. Third, even though the two con-
sidered periods are very different in terms of volatility, the estimated shape
of the left tail appears quite stable and the change in the left jump tail from
April 2015 to September 2015 can be instead explained by a level shift.

7. Conclusion. In this paper we develop a nonparametric estimator
for the Lévy density of an asset price from noisy observations of short-dated
options written on it. We derive a (sharp) bound for the asymptotic or-
der of the integrated squared error of the estimator and we show its rate
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Fig 2. Empirical Estimates of Lévy Density. The lines represent estimate of ln(1 + νt(x))
for April 2015 (solid line) and September 2015 (dashed line).

optimality in the current asymptotic setting. The nonparametric Lévy den-
sity estimator can be used as an important diagnostic tool for building and
testing parametric models as well as for the construction of nonparamet-
ric measures of (risk-neutral) jump risk. Existing model specifications for
asset returns differ both in terms of dynamics of the stochastic volatility
and jump intensity as well as the jump distribution (Lévy density). The
current estimator applies to settings with time-varying Itô semimartingale
characteristics and can help the parametric modeling in a robust way.

8. Proofs. For ease of exposition, in the proofs we will set uN = −uN,l =
uN,h, with the more general asymmetric cutoff case being shown in exactly
the same way.

Furthermore, in the proofs we will denote with Ct a finite-valued Ft-
adapted random variable which might change from line to line. If the variable
depends on some parameter q, then we will use the notation Ct(q).

8.1. Decompositions and Notation. The jump part of the process xt can
be represented as an integral with respect to Poisson random measure. In
particular, using the so-called Grigelionis representation of the jump part
of a semimartingale (Theorem 2.1.2 of [19]), upon suitably extending the
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probability space, we can write

(8.1)

∫ t

0

∫
R
µ̃(ds, dx) ≡

∫ t

0

∫
E
δx(s, z)µ̃x(ds, dz),

where µx(ds, dz) is a Poisson measure on R+ × E with compensator dt ⊗
λ(dz), for some σ-finite measure on E, µ̃x is the martingale counterpart of
µx, and δx is a predictable and R-valued function on Ω×R+ ×E such that
νt(z)dz is the image of the measure λ under the map z → δx(t, z) on the set
{z : δx(ω, t, z) 6= 0}.

There are different choices for E, λ and the function δx. For the analysis
here it will be convenient to use E = R+×R, λ to be the Lebesgue measure,
and δx(t, z) = z21{z1≤νt(z2)} for z = (z1, z2).

We proceed with introducing some notation that will be used throughout
the proofs. By noting that xt = 0, we can split xs into

(8.2) xcs =

∫ s

t
audu+

∫ s

t
σudWu, xds =

∫ s

t

∫
E
δx(u, z)µ̃x(du, dz), s ≥ t.

We now introduce two approximations for xs. The first is x̃s = x̃cs + x̃ds ,
where for s ≥ t:

(8.3) x̃cs = at(s− t) + σt(Ws −Wt), x̃ds =

∫ s

t

∫
E
δx(t, z)µ̃x(du, dz).

The second approximation is given by xs = xcs + xds , where for s ≥ t:
(8.4)

xcs = at(s− t)+

∫ s

t
σudWu, xds = x̃ds , σs = σt+ηt(Ws−Wt)+ η̃t(W̃s−W̃t).

The option prices at time t associated with terminal value x̃t+T are denoted
with ÕT (k) and the ones with terminal value of xt+T are denoted with
OT (k).

8.2. Proof of Theorem 1. We set

(8.5) fT (u) = eiu lnFT − (u2 + iu)

∫ +∞

−∞
e(iu−1)kÕT (k)dk

From [8], we have

(8.6) fT (u) ≡ EQ
t

(
eiu ln X̃t+T

)
,
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and therefore, since ln X̃s is an Ft-conditional Lévy process for s ≥ t, by
applying Lévy-Khintchine formula (Theorem 8.1 in [27]), we can further
write

(8.7) fT (u) = exp

(
iuatT −

u2

2
Tσ2

t + T

∫
R

(
eiux − 1− iux

)
νt(x)dx

)
,

where we used the normalization ln X̃t = 1. From here, if we denote

(8.8) h∗t (u) =

∫
R
eiuxht(x)dx,

then we observe that h∗t (u) coincides with the second derivative in u of the

function (i/T )f
(1)
T (u)/fT (u) and ĥ∗t (u) is its sample analogue. Applying the

Plancherel’s identity, we can write∫
R

(
ĥt(x)− ht(x)

)2
dx

=
1

2π

∫
|u|≤uN

∣∣∣ĥ∗t (u)− h∗t (u)
∣∣∣2 du︸ ︷︷ ︸

IV

+
1

2π

∫
|u|>uN

|h∗t (u)|2du︸ ︷︷ ︸
IB

.(8.9)

By Assumption A1, for the bias due to the truncation of the higher fre-
quencies, we have IB = O(u−2r

N ). For the analysis of IV , we will suitably

decompose the difference ĥ∗t (u)−h∗t (u) and we will analyze the terms in the
decomposition separately. To this end, we split

(8.10) f̂T (u)− fT (u) = f̂T,1(u) + f̂T,2(u) + f̂T,3(u) + f̂T,4(u),

where f̂T,k(u) = −(u2 + iu)fT,k(u), for k = 1, 2, 3, 4, with

fT,1(u) =

N∑
j=2

e(iu−1)kj−1εj−1∆j ,

fT,2(u) =
N∑
j=2

e(iu−1)kj−1(OT (kj−1)− ÕT (kj−1))∆j ,

fT,3(u) =
N∑
j=2

∫ kj

kj−1

(
e(iu−1)kj−1ÕT (kj−1)− e(iu−1)kÕT (k)

)
dk,

fT,4(u) = −
∫ k1

−∞
e(iu−1)kÕT (k)dk −

∫ +∞

kN

e(iu−1)kÕT (k)dk.
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We decompose in a similar way f̂
(j)
T (u) − f (j)

T (u) =
∑4

k=1 f̂
(j)
T,k(u), for j =

1, 2, 3.

We now derive bounds for f̂
(j)
T,k(u) using the auxiliary lemmas in Sec-

tion 8.3. First, from Lemma 8, we have

(8.11) sup
u∈R

 1

(1 + |u|)2

3∑
j=0

∣∣∣f̂ (j)
T,1 (u)

∣∣∣
 = Op (T | lnT |) ,

and
(8.12)∫ uN

−uN

∣∣∣f̂T,1(u)
∣∣∣2 du = Op

(
u5NT

3/2∆
)
,

∫ uN

−uN

∣∣∣f̂ (1)
T,1 (u)

∣∣∣2 du = Op

(
u5NT

2∆ ∨ u3nT 3/2∆
)
,

(8.13)∫ uN

−uN

∣∣∣f̂ (2)
T,1 (u)

∣∣∣2 du = Op

(
u5NT

2∆ ∨ unT 3/2∆
)
,

∫ uN

−uN

∣∣∣f̂ (3)
T,1 (u)

∣∣∣2 du = Op
(
u5NT

2∆
)
.

In addition, taking into account u2
NT → 0, we also have for |u| ≤ uN :

(8.14) |f (1)
T (u)| ≤ C

√
T , |f (2)

T (u)|+ |f (3)
T (u)| ≤ CT.

Next, using Assumption A5 for the observation grid of strike prices, we have
for j = 0, 1, 2, 3:

∑
i:|eki−1−1|≤

√
T

∆i ≤
∫ ln(1+

√
T )

ln(1−
√
T )

dk + 2∆ = Op(
√
T ), if α > 1/2,

∑
i:|eki−1−1|∈(

√
T ,0.5∨

√
T ]

∆i

|ki−1|
≤
∫ ln(1−

√
T )+∆

ln(1−
√
T )∧ln(0.5)

dk

|k|
+

∫ ln(1+
√
T )∨ln(1.5)

ln(1+
√
T )−∆

dk

|k|

= Op(ln(1/T )), if α > 1/2,

and similarly∑
i:|eki−1−1|≤2∆

∆i = Op(∆),
∑

i:|eki−1−1|∈(2∆, 0.5]

∆i

|ki−1|
= Op(ln(1/T )), if α ≤ 1/2,

as well as

∑
i:|eki−1−1|>0.5∨

√
T

kji−11{ki−1>0}∆i ≤
∫ k+∆

ln(1+
√
T )∨ln(1.5)

kjdk = Op(k
j+1

),
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i:|eki−1−1|>0.5∨

√
T

e−ki−1 |ki−1|j1{ki−1∈( 1
6

lnT,0)}∆i ≤
∫ ln(1−

√
T )∧ln(0.5)

(ln(T 1/6)∨k)−∆
e−k|k|jdk

= Op(e
−k|k|j ∧ T−

1
6 | lnT |j),

and if further k < 1
6 lnT we have

∑
i:|eki−1−1|>0.5∨

√
T

e2ki−1 |ki−1|j1{ki−1∈[k, 1
6

lnT ]}∆i ≤
∫ ln(T 1/6)+∆

k
e2k|k|jdk

= Op(T
1
3 | lnT |j).

For k < 1
6 lnT , we have

|fT,2(u)| ≤
∑

i:ki−1∈[k,ln(T 1/6∧(1−0.5∨
√
T ))]

e−ki−1(OT (ki−1) + ÕT (ki−1))∆i

+
∑

i:ki−1>ln(T 1/6∧(1−0.5∨
√
T ))

e−ki−1 |OT (ki−1)− ÕT (ki−1)|∆i,

and using Lemma 2 for the first summand on the right-hand side of the
above inequality and Lemmas 3-4 for the other one, we have for k < 1

6 lnT :

|fT,2(u)| ≤ CtT
∑

i:ki−1∈[k,ln(T 1/6∧(1−0.5∨
√
T ))]

e2ki−1∆i

+ Ct| lnT |
∑

i:ki−1>ln(T 1/6∧(1−0.5∨
√
T ))

e−ki−1

(
T 3/2

∨(
T 3/2

|eki−1 − 1|
∧
T

))
∆i.

Similarly, for k ≥ 1
6 lnT , by application of Lemmas 3-4, we get

|fT,2(u)| ≤ Ct| lnT |
N∑
i=1

e−ki−1

(
T 3/2

∨(
T 3/2

|eki−1 − 1|
∧
T

))
∆i.

These bounds can be easily extended to ones for |f̂T,2(u)| by using |f̂T,2(u)| ≤
2(u2 ∨ 1)|fT,2(u)|, and analogous bounds can be derived also for |f̂ (j)

T,2 (u)|.
From here, by taking into account the orders of magnitude derived above
for various sums over functions of ki, ∆i and T , we have:
(8.15)∣∣∣f̂ (j)

T,2 (u)
∣∣∣ ≤ Ct(|u| ∨ 1)2[T

3
2 | lnT |j+1((|k|je−k ∧ T−

1
6 ) + k

j+1
) + | lnT |T∆].



24 LIKUAN QIN AND VIKTOR TODOROV

We turn next to f̂
(j)
T,3 (u). We first split fT,3(u) into

f
(a)
T,3(u) =

N∑
j=2

∫ kj

kj−1

(
e(iu−1)kj−1 − e(iu−1)k

)
ÕT (kj−1)dk,

f
(b)
T,3(u) =

N∑
j=2

∫ kj

kj−1

e(iu−1)k
(
ÕT (kj−1)− ÕT (k)

)
dk,

and we make similar separations of f
(j)
T,3(u), for j = 1, 2, 3. For f

(a,j)
T,3 (u), we

make use of the following algebraic inequalities∣∣∣e(iu−1)kj−1 − e(iu−1)k
∣∣∣ ≤ |e−kj−1 − e−k|+ e−kj−1 |eiukj−1 − eiuk|

≤ C(|u∆| ∧ 1)e−kj−1 , k ∈ [kj−1, kj ], j = 2, ..., N,

|kp − kpj−1| ≤ C∆(∆
p−1 ∨ |kj−1|p−1), p = 1, 2, 3, k ∈ [kj−1, kj ], j = 2, ..., N.

We then split the summation into three parts: the first part consists of the
summands for which the intervals of integration over k are over regions for
which |ek − 1| > 1/2, the second part consists of summands for which the
intervals of integration over k are with |ek − 1| ≤ (

√
T ∨ 2∆), and the third

part consists of the rest of the summands (see Lemma 5). The regions do not
overlap for T ≤ 1/2 which can be assumed without loss of generality as T
shrinks asymptotically. Using Lemma 6 for the first part of the summation
(provided T is sufficiently small so that kl,t > ln 1

2 and kh,t < ln 3
2) and

Lemma 5 for the other two parts, we then have

(8.16)
∣∣∣f̂ (a,j)
T,3 (u)

∣∣∣ ≤ Ct(|u| ∨ 1)2(|u∆| ∧ 1)T | lnT |, j = 0, 1, 2, 3.

For f
(b,j)
T,3 (u), we first consider the case α > 1/2. Then, we split the summa-

tion into three parts: the first part consists of the summands for which the
intervals of integration over k are over regions for which k is above 1 in ab-
solute value, the second part consists of summands for which the intervals of
integration over k are with |k| ≤

√
T , and the third part consists of the rest

of the summands (see Lemma 7). Then, using Lemma 7 and the condition
in (4.9), we have for j = 0, 1, 2, 3 and α > 1/2:

(8.17)
∣∣∣f̂ (b,j)
T,3 (u)

∣∣∣ ≤ Ct [(|u| ∨ 1)2(ln |k|+ ln k)∆T + α
(j)

T,∆
(u)
]
, |u| ≤ uN ,

where

α
(0)

T,∆
(u) = (|u| ∨ 1)2| lnT |∆

√
T , α

(1)

T,∆
(u) = (|u| ∨ 1)| lnT |∆

√
T ,
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α
(2)

T,∆
(u) = | lnT |∆

√
T , α

(3)

T,∆
(u) = | lnT |∆T | lnT |.

For the case α ≤ 1/2, we make similar decomposition as for the case α >
1/2, except that the second part now consists of summands for which the
intervals of integration over k are with |k| ≤ 2∆. For this part, we apply
Lemma 5 while for the other two we use Lemma 7 (we use the second bound
in Lemma 7 for the third part). This leads to the same bound as above also

to hold for
∣∣∣f̂ (b,j)
T,3 (u)

∣∣∣ when α ≤ 1/2.

Finally, applying Lemma 6, provided k < kl,t and k > kh,t (which will
eventually happen as k ↓ −∞ and k ↑ ∞ and kl,t and kh,t are Ft-adapted
constants that do not change as we add more option data), we have

(8.18)
∣∣∣f̂ (j)
T,4 (u)

∣∣∣ ≤ Ct(|u| ∨ 1)2
(
|k|je3k + k

j
e−3k

)
T, j = 0, 1, 2, 3.

Since u2
NT → 0 (due to (4.9)) and

∫
R |z|

2νt(z)dz is a finite Ft-adapted
variable due to Assumption A3, from (8.7), we then have that for suffi-
ciently high value of N , there exists a constant ε > 0 such that we have
inf |u|≤uN |fT (u)| > ε. Similarly, using the bounds in (8.11)-(8.18) and the
condition in (4.9), we have that

(8.19) sup
|u|≤uN

3∑
j=0

4∑
i=1

|f̂ (j)
T,i (u)| = Op

(
u2
N | lnT |

(
T ∨
√
T∆
))

,

and therefore since u2
NT | lnT | → 0 and u2

N∆T 1/2| lnT | → 0 (due to (4.9)),

the probability of the event sup|u|≤uN |f̂T (u) − fT (u)| ≥ ε
2 converges to 0.

Therefore,

(8.20) P (Ωn)→ 0, for Ωn =

{
ω : inf
|u|≤uN

|f̂T (u)| < ε

2

}
.

Using the above two results, u2
NT | lnT | → 0 and u2

N∆T 1/2| lnT | → 0, we
have on the set Ωc

n:

T |ĥ∗t (u)− h∗(u)| ≤ Ct|f̂ (3)
T (u)− f (3)

T (u)|+ Ct|f (3)
T (u)||f̂T (u)− fT (u)|

+ Ct|f (1)
T (u)||f̂ (2)

T (u)− f (2)
T (u)|+ Ct|f̂ (1)

T (u)− f (1)
T (u)||f̂ (2)

T (u)− f (2)
T (u)|

+ Ct(|f (1)
T (u)f

(2)
T (u)|+ |f (1)

T (u)|3)|f̂T (u)− fT (u)|+ Ct|f̂ (1)
T (u)− f (1)

T (u)|3

+ Ct|f (1)
T (u)|2|f̂ (1)

T (u)− f (1)
T (u)|.

(8.21)
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Using this inequality and the bounds in (8.11)-(8.18), we have altogether∫
|u|≤uN

(
ĥ∗t (u)− h∗t (u)

)2
du = Op (A1 +A2 +A3 +A4) ,

where we denote

A1 = u5
N∆, A2 = u5

NT ln8 T
(
|k|6e−2k ∧ T−1/3 + k

8
)
,

A3 = u7
N ln2 T∆

2
+ u5

N∆
2 (

ln2 |k|+ ln2 k
)
, A4 = u5

N

(
|k|6e6k + |k|6e−6k

)
.

From here the result of the theorem follows by taking into account the
restriction on uN given in (4.9).

8.3. Auxiliary Results.

Lemma 1. Suppose Assumptions A2-A4 hold. Then there exist Ft-adapted
t > t and Ct such that for s ∈ [t, t ∧ (t+ T )], we have
(8.22)

EQ
t (exs − 1)2 + EQ

t

(
e−xs − 1

)2
+ EQ

t

(
exs − 1

)2
+ EQ

t

(
ex̃s − 1

)2
≤ CtT,

(8.23) EQ
t |ex̃

d
s − 1|+ EQ

t |ex̃
d
s − 1|2 + EQ

t |ex̃
d
s − 1|3 + EQ

t |e−x̃
d
s − 1|3 ≤ CtT,

(8.24) EQ
t

∣∣∣exs−x̃s − 1
∣∣∣4 ≤ CtT 4.

Proof of Lemma 1. We start with the first term in (8.22). By application
of Itô’s formula:

exs − 1 =

∫ s

t

exuaudu+

∫ s

t

exuσudWu +
1

2

∫ s

t

exuσ2
udu

+

∫ s

t

∫
E

exu−(eδ
x(u,z) − 1)µ̃x(du, dz)

+

∫ s

t

∫
E

exu−(eδ
x(u,z) − 1− δx(u, z))νx(du, dz),

where we made use of the fact that xt = 0. From here, applying Hölder’s
inequality and using the integrability assumptions for xs and as, σs and
νs(z) in Assumption A3, we get the result in (8.22) for EQ

t (exs − 1)2. The

result for EQ
t (e−xs − 1)

2
is showed in exactly the same way.
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We continue with (8.23). Using Itô’s lemma and the fact that x̃dt = 0, we
have

ex̃
d
s − 1 =

∫ s

t
ex̃

d
u−(eδ

x(t,z) − 1)µ̃x(du, dz)

+

∫ s

t
ex̃

d
u−(eδ

x(t,z) − 1− δx(t, z))νx(du, dz).

(8.25)

We can then apply Burkholder-Davis-Gundy inequality and make use of
the fact that sups∈[t,t+T ] E

Q
t (e3x̃ds ) <∞ due to our assumption for the Lévy

measure in Assumption A3 and Theorem 25.17 (iiii) of [27]. From here the

result in (8.23) concerning ex̃
d
s −1 follows. The part of (8.23) about e−x̃

d
s −1

is shown in exactly the same way by making use of the fact that we have
sups∈[t,t+T ] E

Q
t (e−3x̃ds ) < ∞ due to our assumption on the Lévy measure in

Assumption A3 and Theorem 25.17 (iiii) of [27].
Turning next to the bound in (8.24), by application of Itô’s formula, we

can write for s ∈ [t, t+ T ]:

(8.26) xs − x̃s =
ηt
2

(Ws −Wt)
2 − (s− t)ηt

2
+ η̃t

∫ s

t
(W̃u − W̃t)dWu.

Then for every p such that pηtT < 1, we have EQ
t

(
e
pηt
2

(Ws−Wt)
2
)
< ∞.

In addition, for any p > 0 using successive conditioning and the Jensen’s

inequality, we have EQ
t

(
epη̃t

∫ s
t (W̃u−W̃t)dWu

)
= EQ

t

(
e
p2η̃2t

2

∫ s
t (Wu−Wt)

2du

)
≤

1
s−tE

Q
t

(∫ s
t e

p2η̃2t
2

(s−t)(Wu−Wt)2du

)
. The latter integral is finite as soon as

p|η̃t|T < 1. Combining the above bounds and using first-order Taylor series
expansion, we have for T sufficiently small (depending on the values of ηt
and η̃t) the bound in (8.24).

We are left with the bounds in (8.22) that involve xs and x̃s. The result
involving x̃s follows by applying the algebraic inequality |xy− 1| ≤ |x− 1|+
|y− 1|+ |x− 1||y− 1| for x, y ∈ R, the bounds in (8.23), the Ft-conditional
independence of x̃cs and x̃ds for s ≥ t, as well as the bound EQ

t (ex̃
c
s−1)2 ≤ CtT

for s ∈ [t, t+ T ] which follows by direct evaluation of exponential moments
of a normal random variable.

We finish with the bound in (8.22) for xs. First, we can write exs =

exs−x̃sex̃
c
sex̃

d
s , use the Ft-conditional independence of x̃ds from xs − x̃s and

x̃cs, the bounds in (8.23) and (8.24), the bound EQ
t

(
epx̃s

)
≤ Ct(p) for every

finite p and s ≥ t, as well as Hölder inequality to conclude EQ
t (e3xs) ≤ Ct

for s ∈ [t, t ∧ (t+ T )]. From here we can apply Itô’s formula for exs − 1, use
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the above result, the integrability assumptions of A3 as well as Burkholder-
Davis-Gundy inequality to get the result.

Lemma 2. Suppose Assumptions A2-A4 hold. There exist Ft-adapted
random variables t > t and Ct > 0 that do not depend on k and T , such that
for T < t− t we have

(8.27) OT (k) ≤ CtT

{
e2k

e−k−1
, if k < 0,

1
ek−1

, if k > 0.

Proof of Lemma 2. For k < 0, we use (8.22) and the following algebraic
inequality

(ek − ex)+ ≤ e2k((e−x − 1)− (e−k − 1))+ ≤ e2k |e−x − 1|2

|e−k − 1|
, k < 0, x ∈ R.

For k > 0, we use (8.22) and the following algebraic inequality

(ex − ek)+ ≤ (ex − 1)2

ek − 1
, k > 0, x ∈ R.

Lemma 3. Suppose Assumptions A2-A4 hold. There exist Ft-adapted
random variables t > t and Ct > 0 that do not depend on k and T , such that
for T < t− t we have

(8.28) |OT (k)−OT (k)| ≤ Ct| lnT |T 3/2.

Proof of Lemma 3. Throughout the proof, we will assume T < t − t,
where t is defined in the statement of the lemma. First, given the definitions
of OT (k) and OT (k), we have

(8.29) |OT (k)−OT (k)| ≤ EQ
t |ext+T − ext+T |.

Further, we make use of the following algebraic inequality for x, y ∈ R and
ε > 0:

|ey − ex| ≤ |ey − ex|1{|x−y|>ε} + ex+ε|x− y|
≤ |ey − 1|1{|x−y|>ε} + |ex − 1|1{|x−y|>ε} + ex+ε|x− y|

≤ |e
y − 1||x− y|

ε
+
(
ε−1 + eε

)
|ex − 1||x− y|+ eε|x− y|.

(8.30)
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We apply the above inequality with y = xt+T and x = xt+T and some ε > 0.
To proceed further, we make use of bounds for EQ

t |xt+T −xt+T |p, E
Q
t (ext+T −

1)2 and EQ
t (ext+T − 1)2 for powers p ∈ [1, 2]. First, by applying Burkholder-

Davis-Gundy inequality and using our assumption for the processes η and
η̃ in A4, we have

EQ
t

∣∣∣∣∫ s

t
(ηu − ηt)dWu +

∫ s

t
(η̃u − η̃t)dW̃u

∣∣∣∣2 ≤ CtT 2, for s ∈ [t, t+ T ].

This bound, another application of Burkholder-Davis-Gundy inequality and
our assumption for the process a in A4 and for δσ in A3, leads to the following
inequality for p ∈ [1, 2] and s ∈ [t, t+ T ]:

(8.31) EQ
t

∣∣∣∣xcs − xcs − ∫ s

t

∫ u

t

∫
R
δσ(v, z)µ̃σ(dv, dz)dWu

∣∣∣∣p ≤ Ct(p)T 3p
2 .

Next, using integration by parts, we can write∫ s

t

∫ u

t

∫
R
δσ(v, z)µ̃σ(dv, dz)dWu = (Ws −Wt)

∫ s

t

∫
R
δσ(u, z)µ̃σ(du, dz)

−
∫ s

t

∫
R

(Wu −Wt)δ
σ(u, z)µ̃σ(du, dz),

and we can further split

|Ws −Wt|
∣∣∣∣∫ s

t

∫
R
δσ(u, z)µ̃σ(du, dz)

∣∣∣∣ ≤√|s− t|| ln |s− t|| ∣∣∣∣∫ s

t

∫
R
δσ(u, z)µ̃σ(du, dz)

∣∣∣∣
+ |Ws −Wt|

∣∣∣∣∫ s

t

∫
R
δσ(u, z)µ̃σ(du, dz)

∣∣∣∣ 1{ |Ws−Wt|√
|s−t|| ln |s−t||

>1}.

In addition, by applying Burkholder-Davis-Gundy inequality and the alge-
braic inequality |

∑
i xi|α ≤

∑
i |xi|α for a sequence of reals {xi}i≥1 and some

α ∈ (0, 1], we have

EQ
t

∣∣∣∣∫ s

t

∫
R

(Wu −Wt)
qδσ(u, z)µ̃σ(du, dz)

∣∣∣∣p
≤ Ct(p)EQ

t

∣∣∣∣∫ s

t
|Wu −Wt|qp

∫
R
|δσ(u, z)|pdzdu

∣∣∣∣ ,
for p ∈ [1, 2] and q = 0, 1. Successive application of the Burkholder-Davis-
Gundy inequality and the integrability conditions for δσ yield

EQ
t

∣∣∣∣∫ s

t

∫
R
δσ(u, z)µ̃σ(du, dz)

∣∣∣∣p ≤ Ct(p)|s− t|, p ∈ [1, 3].
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Combining the above results and using Hölder inequality, we have for s ∈
[t, t+ T ] and p ∈ [1, 2]:

(8.32) EQ
t

∣∣∣∣∫ s

t

∫ u

t

∫
R
δσ(v, z)µ̃σ(dv, dz)dWu

∣∣∣∣p ≤ Ct(p)| lnT |pT 1+ p
2 .

Next, applying the Burkholder-Davis-Gundy inequality and the algebraic
inequality |

∑
i xi|q ≤

∑
i |xi|q, for a sequence of reals {xi}i≥1 and q ∈ (0, 1],

and recalling the definition of δx yields

EQ
t |xds − xds |p ≤ Ct(p)E

Q
t

∣∣∣∣∫ s

t

∫
E
|δx(u, z)− δx(t, z)|pνx(du, dz)

∣∣∣∣
≤ Ct(p)EQ

t

∣∣∣∣∫ s

t

∫
R
|z|p|νs(z)− νt(z)|dz

∣∣∣∣ , p ∈ [1, 2].

(8.33)

Therefore, using the assumption for νt(z) in A4, we have

(8.34) EQ
t |xds − xds |p ≤ Ct(p)T

3
2 , ∀s ∈ [t, t+ T ], p ∈ [1, 2].

We next denote ξs,1 =
∫ s
t e

xuσudWu and ξs,2 =
∫ s
t

∫
E e

xu−
(
eδ
x(u,z) − 1

)
µ̃x(du, dz)

for s ≥ t. By using Cauchy-Schwarz inequality, the bound in (8.34), the same
steps as for the proof of (8.22) involving EQ

t (exs − 1)2, we get

EQ
t

(
|exs − 1− ξs,1 − ξs,2| |xds − xds |

)
≤ CtT

7
4 .

Next, we can further split (recall that xt = 0)

ξs,1 =

∫ s

t
(exuσu − σt)dWu +

∫ s

t
σtdWu ≡ ξas,1 + ξbs,1,

and analyze separately ξas,1(xds−xds) and ξbs,1(xds−xds). For ξbs,1(xds−xds), we can

apply Hölder inequality and (8.34). For ξas,1(xds − xds), we can apply Hölder
inequality and use the bounds in (8.34) and (8.22) as well as Assumptions
A3 and A4. Altogether

EQ
t |ξs,1(xds − xds)| ≤ CtT

3
2 , ∀s ∈ [t, t+ T ].

Next, using integration by parts

ξs,2(xds − xds) =

∫ s

t

∫
E
exu−

(
eδ
x(u,z) − 1

)
(δx(u, z)− δx(t, z))µ(du, dz)

+

∫ s

t

∫
E
exu−

(
eδ
x(u,z) − 1

)
(xdu− − xdu−)µ̃(du, dz)

+

∫ s

t

∫
E

(δx(u, z)− δx(t, z)) ξu−,2µ̃(du, dz).
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Using the bound in (8.22), Cauchy-Schwarz inequality as well as Assump-
tions A3 and A4, we have

EQ
t

(∫ s

t

∫
E
exu−

∣∣∣eδx(u,z) − 1
∣∣∣ |δx(u, z)− δx(t, z)|µ(du, dz)

)
≤ EQ

t

(∫ s

t
exu
∫
R
ez|z||νu(z)− νt(z)|du

)
≤ CtT

3
2 .

We have a similar bound for the other two terms in the decomposition of
ξs,2(xds − xds) by using Hölder inequality, the bound in (8.34) as well as
Assumptions A3 and A4. Thus, altogether

EQ
t |ξs,2(xds − xds)| ≤ CtT

3
2 .

Combining the above bounds, we have

(8.35) EQ
t

∣∣∣(exs − 1)(xds − xds)
∣∣∣ ≤ CtT 3

2 .

Exactly the same analysis leads to

(8.36) EQ
t

∣∣∣(exs − 1)(xds − xds)
∣∣∣ ≤ CtT 3

2 .

Combining the bounds in (8.31), (8.32), (8.34), (8.35) and (8.36) with the
one in (8.22), and using Cauchy-Schwarz inequality and (8.30), we get the
bound of the lemma to be proved.

Lemma 4. Suppose Assumptions A2-A4 hold. There exist Ft-adapted
random variables t > t and Ct > 0 that do not depend on k and T , such that
for T < t− t we have

(8.37) |OT (k)− ÕT (k)| ≤ Ct

(
T

3
2

∨(
T 3/2

|ek − 1|
∧
T

))
.

Proof of Lemma 4. Throughout the proof, we will assume T < t − t,
where t is defined in the statement of the lemma. For X, Y being reals and
K being a nonnegative number, we have the following algebraic inequality

|(Y −K)+ − (X −K)+| ≤ |Y −X|(1{|Y−X|>K/2} + 1{X≥K/2}),

and similarly for X, Y being reals and K being a nonpositive number, we
have

|(K − Y )+ − (K −X)+| ≤ |Y −X|(1{|Y−X|>−K/2} + 1{X≤K/2}).
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Applying these inequalities (note that ÕT (k) = EQ
t (ex̃t+T − ek)+ if ek > 1

and ÕT (k) = EQ
t (ek − ex̃t+T )+ if ek ≤ 1), we have

|OT (k)− ÕT (k)|

≤ EQ
t

[
|ext+T − ex̃t+T |

(
1{|ext+T−ex̃t+T |>|ek−1|/2} + 1{|ex̃t+T−1|≥|ek−1|/2}

)]
.

Then, if
√
T > |ek − 1|, we can bound

|OT (k)− ÕT (k)| ≤ EQ
t |ext+T − ex̃t+T |,

and from here the result in (8.37) in the case
√
T > |ek − 1| follows from

the results in (8.23) and (8.24), Cauchy-Schwarz inequality as well as the
Ft-conditional independence of x̃dt+T from xt+T − x̃t+T .

If
√
T ≤ |ek − 1|, first using the algebraic inequality |xy − 1| ≤ |x− 1|+

|y − 1|+ |x− 1||y − 1|, for some reals x and y, we can bound

|ext+T − ex̃t+T |

≤ |ext+T−x̃t+T − 1|
(
|ex̃

c
t+T − 1|+ |ex̃

d
t+T − 1|+ |ex̃

c
t+T − 1||ex̃

d
t+T − 1|+ 1

)
.

From here, if
√
T ≤ |ek − 1|, we have

|OT (k)− ÕT (k)| ≤ 2

|ek − 1|
EQ
t

[
|ext+T−x̃t+T − 1|2ex̃t+T

]
+

(
2 +

2

|ek − 1|

)
× EQ

t

[
|ext+T−x̃t+T − 1|

(
|ex̃

c
t+T − 1|+ |ex̃

d
t+T − 1|+ |ex̃

c
t+T − 1||ex̃

d
t+T − 1|

)]
.

(8.38)

To proceed further we first note that, since EQ
t (epx̃

c
t+T ) <∞ for every finite

p, by using first-order Taylor series expansion, we have

EQ
t |e

x̃ct+T − 1|p ≤ Ct(p)T p/2, ∀p ≥ 1.

Combining the above bound with the ones in (8.23) and (8.24) as well as
(8.38), and using Cauchy-Schwarz inequality as well as the fact that x̃dt+T is
Ft-conditionally independent from x̃ct+T and xt+T − x̃t+T , we get the result

of the lemma in the case
√
T ≤ |ek − 1|.

Lemma 5. Suppose Assumptions A2-A4 hold. There exist Ft-adapted
random variables t > t and Ct > 0 that do not depend on k and T , such that
for T < t− t we have

(8.39) ÕT (k) ≤ Ct
(√

T
∧ T

|ek − 1|

)
.
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Proof of Lemma 5. We look only at the case k > 0, with the case k ≤ 0
being proven in an analogous way. For k > 0, we have

ÕT (k) ≤ EQ
t

[
(ex̃t+T − 1)1{ex̃t+T−1>ek−1}

]
≤ EQ

t

(
|ex̃t+T − 1|

(
|ex̃t+T − 1|
ek − 1

∧
1

))
≤ EQ

t |ex̃t+T − 1|2

ek − 1

∧
EQ
t |ex̃t+T − 1|.

From here the result to be proved follows by making use of EQ
t |ex̃t+T −1|2 ≤

CtT and EQ
t |ex̃t+T − 1| ≤ Ct

√
T . The first of these two inequalities is shown

in Lemma 1 and the second one follows from the first one and an application
of Jensen’s inequality.

Lemma 6. Suppose Assumptions A2-A4 hold and denote kl,t = −σt
√
T | lnT |

and kh,t = σt
√
T | lnT |. Then, there exist Ft-adapted random variables Ct >

0 and t > t that do not depend on k and T , such that for T < t− t, we have

(8.40)


k < kl,t =⇒ ÕT (k) ≤ Ct e2k(

e
−k+kl,t−1

)2T,
k > kh,t =⇒ ÕT (k) ≤ Ct 1(

e
k−kh,t−1

)2T.
Proof of Lemma 6. Throughout the proof, we will assume T < t − t,
where t is defined in the statement of the lemma. We introduce the set Ct ={
ω : |x̃ct+T | ≤ σt

√
T | lnT |

}
. Applying Chebyshev’s and Hölder’s inequalities

and using (8.23) as well as the Ft-conditional independence of x̃ct+T and

x̃dt+T , we have

(8.41) EQ
t

[(
ex̃t+T − ek

)+
1{Cct }

]
≤ 2e−2kEQ

t

[
e3x̃t+T 1{Cct }

]
≤ Cte−2kT.

Next, taking into account the definition of the set Ct, we have

EQ
t

[(
ex̃t+T − ek

)+
1{Ct}

]
≤ eσt

√
T | lnT |EQ

t

(
ex̃

d
t+T − ek−σt

√
T | lnT |

)+
.

For k > kh,t, we have ek−σt
√
T | lnT | > 1, and therefore by an application of

Chebyshev’s inequality and the preceding inequality, we have

k > kh,t =⇒ EQ
t

[(
ex̃t+T − ek

)+
1{Ct}

]
≤ Ct

(ek−kh,t − 1)2
EQ
t

∣∣∣ex̃dt+T − 1
∣∣∣3 .

We can then use (8.23) to get altogether

(8.42) k > kh,t =⇒ EQ
t

[(
ex̃t+T − ek

)+
1{Ct}

]
≤ Ct

(ek−kh,t − 1)2
T.
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From here, the second bound in (8.40) easily follows. For the first bound,
exactly as before, using (8.23), we first have

(8.43) EQ
t

[(
ek − ex̃t+T

)+
1{Cct }

]
≤ 2e4kEQ

t

[(
e−3x̃t+T

)
1{Cct }

]
≤ Cte4kT.

We further have

EQ
t

[(
ek − ex̃t+T

)+
1{Ct}

]
≤ eσt

√
T | lnT |EQ

t

(
ek+σt

√
T | lnT | − ex̃

d
t+T

)+

≤ e2k+3σt
√
T | lnT |EQ

t

(
e−x̃

d
t+T − e−k−σt

√
T | lnT |

)+
.

From here, by using (8.23), we get

k < kl,t =⇒ EQ
t

[(
ek − ex̃t+T

)+
1{Ct}

]
≤ 2e2k+3σt

√
T lnT |

(e−k+kl,t − 1)2
EQ
t

∣∣∣e−x̃dt+T − 1
∣∣∣3

≤ Ct
e2k

(e−k+kl,t − 1)2
T.

(8.44)

Combining the above bounds we have the first result in (8.40).

Lemma 7. Suppose Assumptions A2-A4 hold. For k1 < k2 < 0 or k1 >
k2 > 0, we have∣∣∣ÕT (k1)− ÕT (k2)

∣∣∣
≤ Ct

[(
T

k2
2

∧
1

)
1{|k2|≤1} +

T

k4
2

1{|k2|>1}

] ∣∣∣ek1 − ek2∣∣∣ ,(8.45)

and further

(8.46)
∣∣∣ÕT (k1)− ÕT (k2)

∣∣∣ ≤ Ct( T

|k2|
+ e
− k22

12σ2t T

)∣∣∣ek1 − ek2∣∣∣ , if |k2| ≤ 1,

where Ct is an Ft-adapted random variable that does not depend on k1, k2

and T .

Proof of Lemma 7. We have the following algebraic inequalities∣∣(X −K1)+ − (X −K2)+
∣∣ ≤ |K1 −K2|1{X>K2}, ∀X, K1 ≥ K2,∣∣(K1 −X)+ − (K2 −X)+
∣∣ ≤ |K1 −K2|1{X<K2}, ∀X, K1 ≤ K2.
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Therefore, to prove the claim it suffices to evaluate for any k > 0 the proba-
bility Qt (|x̃t+T | > k). Using Chebychev’s and Burkholder-Davis-Gundy in-
equalities, and upon noting that x̃t = 0 and taking into account the integra-
bility conditions on the processes at, σt and νt, we have{

Qt

(
|x̃dt+T + atT | > k

)
≤ Ct Tk , if k ∈ (0, 1],

Qt (|x̃t+T | > k) ≤ Ct Tk4 , if k > 1.

We can further write

Qt (σt|Wt+T −Wt| > k) = Qt

(
e|Wt+T−Wt|2/(3T ) > ek

2/(3σ2
t T )
)

≤ Ce−k2/(3σ2
t T ), for k > 0.

From here, the first result of the lemma follows by applying the first bound
with k = |k2| and the second one follows by applying both inequalities with
k = |k2|/2.

Lemma 8. Suppose Assumptions A2-A6 hold and in addition ∆ � Tα,
K � T−β, K � T γ for some α > 0, β > 0 and γ > 0. We then have:

sup
u∈R

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1kpj−1εj−1∆j

∣∣∣∣∣∣ = Op (T | lnT |) , p = 0, 1, 2, 3,(8.47)

(8.48) sup
u∈R

E

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1εj−1∆j

∣∣∣∣∣∣
2 ∣∣∣∣F (0)

 = Op

(
T 3/2∆

)
,

(8.49)

sup
u∈R

E

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1kpj−1εj−1∆j

∣∣∣∣∣∣
2 ∣∣∣∣F (0)

 = Op
(
T 2∆

)
, p = 1, 2, 3.

Proof of Lemma 8. We start with (8.47). We have

sup
u∈R

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1kpj−1εj−1∆j

∣∣∣∣∣∣ ≤
N∑
j=2

e−kj−1 |kj−1|p|εj−1|∆j .

Furthermore, using Lemmas 2-6 and provided T < t−t for some Ft-adapted
t > t, we have

E

 N∑
j=2

|kj−1|p|εj−1|∆j

∣∣∣∣F (0)

 ≤ CtT | lnT |.
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Combining the above two results we get (8.47). We turn next to (8.48)-
(8.49). Using the assumption for the F (0)-conditional variance of the errors
εj in Assumption A6 as well as Assumption A5 for the mesh of the log-strike
grid, we have

E

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1kpj−1εj−1∆j

∣∣∣∣∣∣
2 ∣∣∣∣F (0)


≤ Ct sup

i=1,...,N
σ2
t,i

N−1∑
j=1

k2p
j e
−2kjOT (kj)

2∆
2
.

Therefore, since supi=1,...,N σ
2
t,i is Op(1) and using the results of Lemmas 2-6,

provided T < t− t for some Ft-adapted t > t, we have

E

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1εj−1∆j

∣∣∣∣∣∣
2 ∣∣∣∣F (0)

 ≤ CtT 3/2∆,

E

∣∣∣∣∣∣
N∑
j=2

e(iu−1)kj−1kpj−1εj−1∆j

∣∣∣∣∣∣
2 ∣∣∣∣F (0)

 ≤ CtT 2∆, p = 1, 2, 3.

From here, the bounds in (8.48)-(8.49) follow.
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Finance and Stochastics 10, 449–474.

[5] Belomestny, D. and M. Reiß (2015). Lévy Matters IV: Estimation for Discretely
Observed Lévy Processes. In Lecture Notes in Mathematics 2128. Springer.

[6] Bentata, A. and R. Cont (2012). Short-Time Asymptotics for Marginal Distributions
of Semimartingales. Working paper.



NONPARAMETRIC IMPLIED LÉVY DENSITIES 37
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for Lévy Measures. Probability Theory and Related Fields 164, 61–108.
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[28] Söhl, J. (2014). Confidence Sets in Nonparametric Calibration of Exponential Lévy
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