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Supplemental Appendix A: Additional theoretical results

SA.1 Inference when some jumps arrive at deterministic times

In this subsection, we extend the results in the main text to a setting where a subset of jump

times can be identified using prior information. Examples of such jump events are the ones caused

by pre-scheduled macro announcements (Andersen, Bollerslev, Diebold, and Vega (2003)). In a

liquid market, one may expect that price jumps “immediately” after the announcement, so that

the announcement time can be used to locate the jump time. Pre-scheduled announcement times

are deterministic, which, technically speaking, are excluded from model (2.1) that features random

jump arrivals. That being said, inference procedures in this paper can be extended straightforwardly

to accommodate fixed jump times as we now show. Here, we use the specification test as an example

for a detailed illustration. Modifications to other inference procedures are essentially the same and,

hence, will be omitted for brevity.

Formally, we denote with Nt the number of pre-scheduled announcements before time t. We

then extend model (2.1) as follows

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, Jt =

∫ t

0

∫
R
δ (s, u)µ (ds, du) +

∑
s≤Nt

δ̃s, (SA.1)

where the jump size process δ̃ is càdlàg adapted. Economically, δ̃ reflects the unanticipated infor-

mation content in the announcement, aggregated among market participants, with δ̃t = 0 indicating

no surprise. The jump times associated with the announcements are indexed by

AD ≡
{
p ∈ PD : ∆Nτp 6= 0

}
.

We now describe how to modify the results in Section 3.1 so as to accommodate the pres-

ence of fixed jump times. It is instructive to start with some intuition. We note that the vari-

able Rp (see (3.2) in the main text) represents asymptotically the (scaled) diffusive disturbance

∆
−1/2
n

(
∆n
i X −∆Xτp

)
around the jump at time τp. In particular, the variable κp represents the rel-

ative location of the jump time within the sampling interval in the limiting problem. The uniform

[0, 1] distribution of κp is a consequence of the absolute continuity of the compensator of the jump

measure µ, and reflects the fact that the econometrician is “locally uninformed” about the exact

jump time. On the other hand, if we can use external information (such as announcement times)

to pin down the jump time within the sampling interval, we can resolve this layer of statistical

uncertainty. Technically, we assume the following.
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Assumption S1. The following conditions hold for each p ∈ AD: (a) τp is not an integer multiple

of ∆n; (b) τp/∆n − bτp/∆nc converges to some known constant κp ∈ [0, 1].

Part (a) of Assumption S1 is a convenient device to avoid uninteresting technical issues that

arise when the pre-scheduled announcement is at i∆n for some i. Part (b) of Assumption S1

formalizes the form of prior knowledge about jump times. For example, the assumption that the

price jumps immediately after the announcement time corresponds to κp = 0.

For random jump times indexed by p ∈ PD \AD, we draw κp from a uniform [0, 1] distribution

like in Section 3.1 of the main text and for p ∈ AD we set κp at its known value. We then define Rp

and ςp respectively using (3.2) and (3.12) for all p ∈ PD. The variables (κ̃i, R̃n,i, ς̃n,i) in Algorithm

1 are modified analogously. The formal extension of Theorem 1 is stated as follows.

Theorem S1. Suppose (SA.1), Assumption S1 and the conditions in Theorem 1. Under aforeme-

nioned modifications for the definitions of (κp, Rp, ςp) and (κ̃i, R̃n,i, ς̃n,i), the statements in Theorem

1 hold true.

SA.2 Higher-order asymptotics for the optimally weighted estimator

In this subsection, we proceed with designing refined confidence sets of the optimally weighted

estimator based on a higher-order asymptotic expansion. To motivate, we observe that while the

optimally weighted estimator β̂n (D, w∗) depends on the spot covariance estimates (ĉn,i−, ĉn,i+),

the sampling variability of the latter is not reflected in the asymptotic distribution described by

Theorem 2. The reason is that these estimates enter only the weights and their sampling errors

are annihilated in the second-order asymptotics. In finite samples, the sampling variability of the

spot covariance estimates may still have some effect, because the latter enjoy only a nonparametric

convergence rate. To account for such effects, we need a refined characterization of the asymptotic

behavior of the optimally weighted estimator, so we proceed to derive its higher-order expansion.

Based on this expansion, we provide a refinement to the confidence interval construction described

in Algorithm 2.

We first need some additional regularity on the spot volatility σ, namely that it is an Itô

semimartingale.

Assumption S2. The process σ is an Itô semimartingale of the form

vec (σt) = vec (σ0) +

∫ t

0
b̃sds+

∫ t

0
σ̃sdW̃s +

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖>1}µ̃ (ds, du)

+

∫ t

0

∫
R
δ̃ (s, u) 1{‖δ̃(s,u)‖≤1} (µ̃− ν̃) (ds, du) ,
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where the processes b̃ and σ̃ are locally bounded and take values respectively in R4 and R4×4, W̃ is

a 4-dimensional Brownian motion, δ̃ : Ω× R+ × R 7→ R4 is a predictable function, µ̃ is a Poisson

random measure with compensator ν̃ of the form ν̃ (dt, du) = dt⊗ λ̃ (du) for some σ-finite measure

λ̃. Moreover, there exists a localizing sequence of stopping times (Tm)m≥1 and λ̃-integrable functions

(Γ̃m)m≥1, such that ‖δ̃ (ω, t, u) ‖2 ∧ 1 ≤ Γ̃ (u) for all ω ∈ Ω, t ≤ Tm and u ∈ R.

Assumption S2 is needed for characterizing the stable convergence of the spot covariance es-

timates. This assumption is fairly unrestrictive and is satisfied by many models in finance. In

particular, it allows for “leverage effect,” that is, the Brownian motions W and W̃ can be corre-

lated. Moreover, Assumption S2 allows for volatility jumps, and it does not restrict their activity

and dependence with the price jumps. However, this assumption does rule out certain long-memory

volatility models driven by the fractional Brownian motion (see Comte and Renault (1996)).

We now present the higher-order asymptotic expansion for the optimally weighted estimator.

We need some additional notation for this. Let v denote the spot variance of the residual Y −β0Z.

That is,

vt ≡ (−β0, 1) ct (−β0, 1)> . (SA.2)

Further, let
(
ξ′p−, ξ

′
p+

)
p≥1

be a collection of mutually independent random variables which are also

independent of F and (κp, ξp−, ξp+)p≥1, such that ξ′p− and ξ′p+ are scalar standard normal variables.

We set for p ≥ 1,

φp ≡
(−β0, 1)

(
cτp− + cτp

)
(−β0, 1)>

2
, Fp ≡

vτp−ξ
′
p− + vτpξ

′
p+√

2
. (SA.3)

To guide intuition, we note that the variable Fp captures the sampling variability for approximating

the average residual volatility (vτp− + vτp)/2. We further note that φ−1
p = w∗(cτp−, cτp , β0), so the

limit variable ζβ(D, w∗) defined in (4.3) can be rewritten as

ζβ (D, w∗) ≡
∑

p∈PD ∆Zτpςp/φp∑
p∈PD ∆Z2

τp/φp
. (SA.4)

Theorem S2. Let kn � ∆−an for some constant a ∈ (0, 1/2). Suppose Assumptions 1, 2 and S2

hold for $ ∈ (a/4, 1/2). Then we have the following expansion for the optimally weighted estimator:

∆−1/2
n

(
β̂n (D, w∗)− β0

)
= ζ∗n,β (D) + k−1/2

n H∗n,β (D) + op(k
−1/2
n ), (SA.5)

for some sequences of variables ζ∗n,β (D) and H∗n,β (D) satisfying

(
ζ∗n,β (D) , H∗n,β (D)

) L-s−→ (
ζβ (D, w∗) , H∗β (D)

)
, (SA.6)
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where

H∗β (D) ≡

(∑
p∈P

∆Z2
τp
Fp

φ2
p

)(∑
p∈P

∆Zτp ςp
φp

)
−
(∑

p∈P
∆Zτp ςp Fp

φ2
p

)(∑
p∈P

∆Z2
τp

φp

)
(∑

p∈P
∆Z2

τp

φp

)2 . (SA.7)

The leading term ζ∗n,β (D) in (SA.5) is what drives the convergence in Theorem 2. The higher-

order term k
−1/2
n H∗n,β (D) is Op(k

−1/2
n ) and hence is asymptotically dominated by ζ∗n,β (D). The

limiting variable H∗β (D) involves both Fp and ςp, which capture respectively the sampling variability

that arise from the estimation of the spot covariance and the estimation of jumps.

Because of the higher-order asymptotic effect played by ĉn,i± in the efficient beta estimation,

the user has a lot of freedom in setting the block size kn. Indeed, as seen from Theorem S2, we

need only kn � ∆−an with a in the wide range of (0, 1/2). This is unlike the block-based volatility

estimators, see e.g., Jacod and Rosenbaum (2013), where one has significantly less freedom in

choosing kn. Having the refined asymptotic result in Theorem S2 helps since if kn is relatively

small, the higher-order term k
−1/2
n H∗n,β (D) might have nontrivial finite sample effect.

For concreteness, we describe in Algorithm 3 a finite-sample correction for the CIs described in

Algorithm 2, based on Theorem S2, where we set for i ∈ I ′n (D),

φ̂n,i ≡

(
−β̃n, 1

)
(ĉn,i− + ĉn,i+)

(
−β̃n, 1

)
2

, v̂n,i± ≡
(
−β̃n, 1

)
ĉn,i±

(
−β̃n, 1

)>
. (SA.8)

The proof of Theorem 2(c) can be easily adapted to show that CI∗αn defined in Algorithm 3 has

asymptotic level 1− α, that is, P(β0 ∈ CIαn)→ 1− α; the details are omitted for brevity.

Algorithm 3. (1) Simulate (ς̃n,i)i∈I′n(D) as in step 1 of Algorithm 1. Simulate (ξ̃′ni−, ξ̃
′n
i+)i∈I′n(D)

consisting of independent copies of
(
ξ′p−, ξ

′
p+

)
. Set

F̃n,i ≡
v̂n,i−ξ̃

′
n,i− + v̂n,i+ξ̃

′
n,i+√

2
.

(2) Compute

ζ̃∗n,β (D)

≡

 ∑
i∈I′n(D)

∆n
i Z ς̃n,i

φ̂n,i

/ ∑
i∈I′n(D)

∆n
i Z

2

φ̂n,i



+

 ∑
i∈I′n(D)

∆n
i Z

2F̃n,i

φ̂2
n,i

 ∑
i∈I′n(D)

∆n
i Z ς̃n,i

φ̂n,i

−
 ∑
i∈I′n(D)

∆n
i Z ς̃n,i F̃n,i

φ̂2
n,i

 ∑
i∈I′n(D)

∆n
i Z

2

φ̂n,i


k1/2
n

 ∑
i∈I′n(D)

∆n
i Z

2

φ̂n,i

2 .
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(3) Generate a large number of Monte Carlo simulations in the first two steps and set cv
α/2
n,β as

the (1 − α/2)-quantile of ζ̃∗n,β (D, w) in the Monte Carlo sample. Set the 1 − α level two-sided CI

as CI∗αn = [β̂n (D, w∗)−∆
1/2
n cv

α/2
n,β , β̂n (D, w∗) + ∆

1/2
n cv

α/2
n,β ]. �

SA.3 Adaptive estimation under a common-beta restriction

In Section 4.2 of the main text, we have shown that the optimally weighted jump beta estimator

attains the adaptive bound (4.21) when the diffusive beta (i.e., βct ) coincides with the jump beta. If

this parametric restriction is known a priori, it can be exploited to construct a more efficient esti-

mator of the (common) beta parameter by using both jump and diffusive returns. In this appendix,

we show that the common beta can be estimated adaptively with respect to nonparametric nuisance

components in the model. This result is related to the recent work of Li, Todorov, and Tauchen

(2016), which considers the adaptive estimation of the constant diffusive beta. Li, Todorov, and

Tauchen (2016) treat the jump component as a nonparametric nuisance. By contrast, here we also

exploit the information content of the constant jump beta restriction.

Below, we maintain the same setting as in Section 4.2 of the main text with the additional

restriction that the diffusive beta equals the jump beta, that is,

cZY,t = β0 cZZ,t, all t ∈ [0, T ] . (SA.9)

Like in Section 4.2, we fix D = [0, T ]×R∗ and suppress it in future notation. Model (2.1) can then

be represented as  dZt = bZ,tdt+
√
cZZ,tdWZ,t + dJZ,t,

dYt = bY,tdt+ β
√
cZZ,tdWZ,t +

√
vctdWY,t + βdJZ,t + dεt,

(SA.10)

where WZ and WY are univariate independent Brownian motions, ε is a pure jump process that

contains the Y -specific jumps, and the spot idiosyncratic variance vct is connected with ct via

vct = cY Y,t − c2
ZY,t/cZZ,t.

We proceed as follows. We first derive the efficiency bound for estimating β in a parametric

submodel of (SA.10) where the only unknown parameter is β. The resulting efficiency bound

is what one would attain if the processes (b, cZZ , v
c, JZ , ε) were observable. We then provide a

feasible estimator that attains this efficiency bound in the original semiparametric model. The

proposed estimator is therefore adaptive with respect to the nonparametric nuisance components

(b, cZZ , v
c, JZ , ε). Henceforth, we denote the law of (∆n

i X)1≤i≤n in this submodel by Pnβ .

Theorem S3, below, shows that the aforementioned submodel satisfies the LAMN property and

characterizes the information matrix for the estimation of β. To fit the current setting, we modify

slightly Assumption 4 in the main text as follows.
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Assumption S3. We have Assumption 1 and the processes (bt)t≥0, (σt)t≥0 and (Jt)t≥0 are inde-

pendent of (Wt)t≥0, and the joint law of (b, cZZ , v
c, JZ , ε) does not depend on β.

Theorem S3. Under Assumptions S3 and 5, the sequence (Pnβ : β ∈ R) satisfies the LAMN

property at β = β0 with information
∫ T

0 (1/vcs) d [Z,Z]s.

The proofs for all results in this section are given in Supplemental Appendix C.

From Theorem S3 and the conditional convolution theorem (Jeganathan (1982, 1983)), we

deduce that the efficiency bound for estimating β0 in the adaptive case is given by the inverse of

the information, that is, (∫ T

0

d [Z,Z]s
vcs

)−1

. (SA.11)

Next, we construct an estimator for β0 that attains this bound, for which we need some addi-

tional notation. For each i, we set

ĉn,i ≡

 ĉZZ,n,i ĉZY,n,i

ĉZY,n,i ĉY Y,n,i

 ≡ 1

kn∆n

kn∑
j=1

(∆n
i+jX)(∆n

i+jX)>1{−v′n≤∆n
i+jX≤v′n},

and then

v̂cn,i ≡ ĉY Y,n,i − ĉ2
ZY,n,i/ĉZZ,n,i.

The adaptive estimator for β0 is given by

β̂?n ≡
(1− 3

kn
)∆n

∑bT/∆nc−kn
i=0

ĉZY,n,i
v̂cn,i

+
∑

i∈I′n
∆n
i Z∆n

i Y
v̂cn,i

(1− 3
kn

)∆n
∑bT/∆nc−kn

i=0
ĉZZ,n,i
v̂cn,i

+
∑

i∈I′n
(∆n

i Z)
2

v̂cn,i

. (SA.12)

The factor 1− 3/kn in (SA.12) is used to correct a nonlinearity bias in the estimation of integrated

volatility functionals as in, for example, Jacod and Rosenbaum (2013) and Li, Todorov, and Tauchen

(2016).

Theorem S4, below, establishes the stable convergence in law of β̂?n. In particular, it shows that

β̂?n attains the adaptive bound given by (SA.11).

Theorem S4. Suppose (a) Assumptions 1, 5 and S2 hold; (b) kn � ∆−γn such that γ ∈ (1/3, 1/2)

and (1− γ)/2 ≤ $ < 1/2. Then

∆−1/2
n

(
β̂?n − β0

)
L-s−→MN

(
0,

(∫ T

0

d [Z,Z]s
vcs

)−1
)
.

Comment. Theorem S4 does not require the independence conditions in Assumption S3, which are

only needed for deriving the LAMN property and the efficiency bound. Assumption S2 is needed for

deriving the stable convergence of the integrated volatility functionals ∆n
∑bT/∆nc−kn

i=0 ĉZY,n,i/v̂
c
n,i

and ∆n
∑bT/∆nc−kn

i=0 ĉZZ,n,i/v̂
c
n,i.

7



SA.4 Jump regressions with microstructure noise and irregular sampling

In this subsection, we consider jump regressions under a setting with microstructure noise and

irregular asynchronous sampling. Section SA.4.1 describes the setting. In Section SA.4.2, we

propose and analyze a new estimator that is robust to these complications. The proofs are in

Supplemental Appendix C. To simplify the exposition, we set D = [0, T ] × R∗ and suppress it

henceforth. In other words, the jump regression relationship ∆Yτ = β0∆Zτ is supposed to hold for

all jump times τ of Z.

SA.4.1 The setting with microstructure noise and irregular sampling

We extend the jump regression setting in the main text in three directions. First, the observed

prices are contaminated by measurement error. The measurement error is often referred to as

“microstructure noise,” which may be attributed to various trading frictions. Second, the prices are

sampled at irregular times, i.e., the sampling interval is no longer constant. Third, the sampling

times for Y and Z are possibly asynchronous.

To describe the formal setting, we start with the sampling scheme. We consider an array of

deterministic times t (n, i), i ≥ 0, that is increasing in i. Our analysis for this deterministic sampling

scheme can be equivalently considered as an analysis conditioning on a strictly exogenous random

sampling design. We allow these times to be irregularly spaced, that is, ∆n,i ≡ t (n, i)− t(n, i− 1)

may depend on i. Below, we refer to (t (n, i))i≥0 as the sampling basis for simplicity. The processes

Y and Z are sampled at two deterministic subsets of the sampling basis, indexed by (iY,n,k)k≥0

and (iZ,n,k)k≥0, respectively.1 Asynchronous sampling arises when these subsets are different. To

simplify notation, we denote the sampling times of Y and Z using

t (Y, n, k) ≡ t (n, iY,n,k) , t (Z, n, k) ≡ t (n, iZ,n,k) .

As an additional generalization of our original setup in the text, we assume that only noisy obser-

vations of Y and Z are available at the sampling times

Y ′t(Y,n,k) = Yt(Y,n,k) + ε′Y,t(Y,n,k), Z ′t(Z,n,k) = Zt(Z,n,k) + ε′Z,t(Z,n,k),

where ε′Y and ε′Z are the noise terms. We assume the following for the noise.

Assumption S4. We have ε′Y,t =
√
AY,tεY,t and ε′Z,t =

√
AZ,tεZ,t such that (a) the processes AY

and AZ are continuous, (Ft)-adapted and locally bounded; (b) the variables εY,t and εZ,t, t ≥ 0, are

1Alternatively, if we start with the sampling times of Y and Z, we can set the sampling basis as the union of these
sampling times (i.e., the collection of times at which at least one process is sampled).
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mutually independent and independent of F with zero mean and unit variance, and with finite pth

moment for all p ≥ 1.

The essential part of Assumption S4 is that the noise terms (ε′t(Y,n,k), ε
′
t(Z,n,k))k≥0 are F-

conditionally independent with zero mean. For the results below, we only need εY,t and εZ,t to

have finite moments up to a certain order; assuming finite moments for all orders is merely for

technical convenience. Finally, we note that the noise terms are allowed to be heteroskedastic and

serially dependent through their volatility processes
√
AY and

√
AZ .

We now turn to the regularity conditions for the sampling scheme. Below, we denote

δY,n,k ≡ iY,n,k − iY,n,k−1, δZ,n,k ≡ iZ,n,k − iZ,n,k−1,

which are the numbers of fine sampling intervals (i.e., those determined by the sampling basis)

contained in the kth sampling intervals of Y and Z, respectively.

Assumption S5. The following conditions hold for a real sequence ∆n → 0 and functions f , φY ,

φZ : [0, T ] 7→ (0,∞): (a) ∆n,i/∆n is uniformly bounded; (b) for each t ∈ (0, T ) and any integer

sequence Ln with Ln →∞ and Ln∆n → 0,

1

Ln

min{i:t(n,i)≥t}+Ln∑
i=max{i:t(n,i)<t}−Ln

∣∣∣∣∆n,i

∆n
− f (t)

∣∣∣∣ = o (1) ; (SA.13)

(c) δY,n,k and δZ,n,k are uniformly bounded; (d) for each t ∈ (0, T ) and any integer sequence Ln

with Ln →∞ and Ln∆n → 0,

1

Ln

min{k:t(Y,n,k)≥t}+Ln∑
k=max{k:t(Y,n,k)<t}−Ln

|δY,n,k − φY (t)| = o (1) ,

1

Ln

min{k:t(Y,n,k)≥t}+Ln∑
k=max{k:t(Y,n,k)<t}−Ln

|δZ,n,k − φZ (t)| = o (1) .

(SA.14)

Part (a) of Assumption S5 ensures that the mesh of the sampling basis shrinks to zero at

least as fast as ∆n. Part (b) formalizes the notion that the irregularity of the sampling basis

is “locally moderate.” This condition allows the sampling intensity (measured by 1/f(t)) to vary

across different fixed times. It requires that, within a shrinking neighborhood of each time t,

“most” sampling intervals are of size close to f (t) ∆n. Note that parts (a) and (b) hold trivially

when the sampling basis is regular. Part (c) requires that the sampling grids of Y and Z are not

“too coarse” relative to the sampling basis, and part (d) further requires that the coarse sampling

of each process is “moderately irregular.” These two conditions hold trivially if the sampling of Y

and Z are synchronized: in this case, we can set the sampling basis as the common sampling grid

of Y and Z, so that (SA.14) hold with the o(1) terms being identically zero.
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SA.4.2 The estimator and its asymptotic properties

We propose a pre-averaging method to deal with the noisy data: we first smooth locally the noisy

returns and then conduct the jump regression. The pre-averaging method has been introduced by

Podolskij and Vetter (2009), Jacod, Li, Mykland, Podolskij, and Vetter (2009) for the estimation

of integrated variance using noisy high-frequency data. The inference for jumps is limited to high-

order jump power variations (Jacod, Podolskij, and Vetter (2010), Li (2013)) for univariate regularly

sampled processes. The current setting is hence distinct from prior work in a non-trivial way.

In order to pre-smooth the noisy returns, we consider a weight function g : R 7→ R+ that is

supported on [0, 1], continuously differentiable with Lipschitz continuous derivative and is strictly

positive on (0, 1). We also consider an integer sequence hn of smoothing bandwidth parameters

that satisfies

hn = bθ∆−1/2
n c, for some θ ∈ (0,∞) . (SA.15)

The pre-averaged returns are defined as locally weighted averages of observed noisy returns. For

each i ≥ 0 (which is the index of the sampling basis), we set
Z̄ ′n,i ≡

∑
k

g

(
iZ,n,k − i

hn

)(
Z ′t(Z,n,k) − Z

′
t(Z,n,k−1)

)
,

Ȳ ′n,i ≡
∑
k

g

(
iY,n,k − i

hn

)(
Y ′t(Y,n,k) − Y

′
t(Y,n,k−1)

)
.

(SA.16)

By construction, these pre-averaged returns are synchronized with respect to the sampling basis.

We adapt the (unweighted) jump regression estimator using the pre-averaged returns as follows:

β̂′n ≡

∑
i≥0:t(n,i+hn)≤T Z̄

′
n,iȲ

′
n,i1{|Z̄′n,i|>v̄n}∑

i≥0:t(n,i+hn)≤T Z̄
′2
n,i1{|Z̄′n,i|>v̄n}

. (SA.17)

The truncation threshold v̄n plays the same role as vn in (2.12). In the current context, we suppose

that

v̄n � ∆$′
n , for some $′ ∈ (0, 1/4) .

The intuition for the condition $′ < 1/4 is that, in the absence of jumps, the order of magnitude of

each pre-averaged return is Op(∆
1/4
n ). Hence, the truncation threshold v̄n can be used to separate

consistently the smoothed jump returns from the diffusive ones.

Theorem S5, below, describes the asymptotic distribution of β̂′n, which requires some additional

notation. Let (Tm)m≥1 be the successive jump times of the Poisson process t 7→ µ ([0, t]× R∗). We

consider variables (ζm−, ζm+, ζ
′
Y,m, ζ

′
Z,m)m≥1 defined on an extension of the space (Ω,F ,P) which,

10



conditionally on F , are mutually independent centered Gaussian with variances given by

E
[
ζ2
m−|F

]
= θvTm−f (Tm)

∫ 0

−1

(∫
g (s− u) g (s) ds

)2

du,

E
[
ζ2
m+|F

]
= θvTmf (Tm)

∫ 1

0

(∫
g (s− u) g (s) ds

)2

du,

E
[
ζ ′2Y,m|F

]
= θ−1AY,TmφY (Tm)

∫ (∫ 1

0
g (s) g′ (s+ u) ds

)2

du,

E
[
ζ ′2Z,m|F

]
= θ−1AZ,TmφZ(Tm)

∫ (∫ 1

0
g (s) g′ (s+ u) ds

)2

du.

(SA.18)

Theorem S5. Under Assumptions 1, S4 and S5,

∆−1/4
n

(
β̂′n − β0

)
L-s−→

∑
m≥1:Tm≤T ∆ZTm

(
ζm− + ζm+ + ζ ′Y,m − β0ζ

′
Z,m

)
(∫ 1

0 g (s)2 ds
)∑

m≥1:Tm≤T ∆Z2
Tm

.

Theorem S5 shows that β̂′n is asymptotically centered at the true value β0 with convergence rate

∆
−1/4
n . The limiting distribution is F-conditionally centered Gaussian and its asymptotic variance

depends on the spot variances of the efficient prices, the spot variances of the noise terms, as well

as the local sampling intensities, around jump times.
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Supplemental Appendix B: Numerical experiments

We now assess the efficiency gain provided by our efficient estimation procedure and we further ex-

amine the finite-sample performance of the asymptotic theory developed in the paper in realistically

calibrated simulations.

SB.1 Relative efficiency of beta estimation

We start with gauging the efficiency gains of our efficient estimation procedure in empirically

relevant scenarios. As seen from the asymptotic theory in Section 4, the sampling variability in

the estimation of beta depends on the volatility processes of Y and Z, as well as the number and

sizes of jumps. Therefore, to make the efficiency comparisons practically relevant, we calibrate the

numerical environment using estimates of these quantities from our empirical application in Section

5. In particular, in the calculation of the asymptotic variances we will use the detected jumps in

our empirical data sets and we will further set ct = 1
2 (ĉn,i− + ĉn,i+) for t ∈ ((i− 1)∆n, i∆n].

We conduct two efficiency comparisons. First, in order to have a general sense about how

accurate the jump beta can be estimated, we compare the efficiency bound for estimating the jump

beta, which is attained by our optimally weighted estimator, with that for estimating the continuous

beta. Under the assumption that βct (recall (4.15)) is a constant, Li, Todorov, and Tauchen (2016)

show that the sharp lower efficiency bound for estimating the continuous beta is (
∫ T

0 cZZ,s/v
c
sds)

−1.

For the 9 assets studied in our empirical application, we find that estimating the continuous beta

is 6 to 7 times more accurate, measured by the F-conditional asymptotic standard deviation, than

estimating the jump beta from the same data set. We note that this is in spite of the fact that

the jump beta estimation is (effectively) based on 74 jump returns detected in the sample while

the continuous beta is based on the remaining of the total 56, 886 high-frequency increments. The

intuition is that, although the number of jump returns is small, these returns have much higher

signal-to-noise ratio than their diffusive counterparts for the estimation of betas.2

Our second efficiency comparison concerns the role of the optimal weighting in the efficient

estimation of jump beta. That is, we are interested in the efficiency gains from using the optimal

weight function w∗(·) over the case of no weighting, corresponding to w(·) = 1, which has been

done in prior work such as Gobbi and Mancini (2012) and Todorov and Bollerslev (2010). The

comparison is, again, implemented using estimates of jumps and volatility paths as explained above.

2Of course the above efficiency comparison is based on the premise that the continuous beta and the jump beta
remain constant over the same time interval. Results from tests for temporal stability of continuous betas in Reiß,
Todorov, and Tauchen (2015) indicate that continuous betas vary even over short periods such as months. This is
unlike our empirical findings for the jump betas, reported in Section 5, for which we find temporal stability over time
spans of years.

12



Table S1: Relative Efficiency of Jump Beta Estimation

Asset a.s.e.β̂n
a.s.e.β̃n

Asset a.s.e.β̂n
a.s.e.β̃n

Asset a.s.e.β̂n
a.s.e.β̃n

XLB 0.68 XLI 0.69 XLU 0.55

XLE 0.61 XLK 0.61 XLV 0.61

XLF 0.44 XLP 0.66 XLY 0.61

Note: Calculations of the asymptotic standard error (a.s.e.) are based on detected jumps and
volatility paths extracted from the empirical data set discussed in Section 5. The efficient estimator
β̂n and the unweighted estimator β̃n correspond to β̂n([0, T ]×R∗, w) with w(·) = w∗(·) and w(·) = 1,
respectively.

Table S1 reports the relative efficiency of the unweighted estimator versus the efficient estimator.

We see that the optimal weighting indeed provides nontrivial efficiency gains, with the minimal

gain being 31% among all assets in our sample. Not surprisingly, these gains vary across assets

and are bigger for those with more volatility variations over the time period. We note that optimal

weighting is of particular relevance for the jump beta estimation: by their very nature, jumps are

rare events and, hence, for estimating the jump beta we naturally pool information from distinct

time periods which typically have very different volatility levels.

SB.2 Monte Carlo

We proceed with assessing the performance of our inference techniques on simulated data from the

following model

dZt = σtdLt, dYt = βtdZt + σtdL̃t, σ2
t = V1,t + V2,t,

dV1,t = 0.0105(0.5− V1,t)dt+ 0.0717
√
V1,tdB1,t, (SB.1)

dV2,t = 0.6931(0.5− V2,t)dt+ 0.5828
√
V2,tdB2,t,

where L and L̃ are two independent Lévy processes with characteristic triplets
(

0, 1, e
−|x|

24

)
and(

0, 1√
2
, e
−|x|

96

)
with respect to the zero truncation function; (B1, B2) is a two-dimensional standard

Brownian motion independent of L and L̃. This means that L and L̃ are Brownian motions plus

compound Poisson jumps, with jumps having double-exponential distribution. The frequency and

jump size distributions are calibrated to mimic those in the real data that we are going to use.

The stochastic volatility has a two-factor affine volatility structure, with the first factor being slow

mean-reverting (with half-life of sixty-six days) and the second factor being fast mean-reverting

13



(with half-life of one day). Finally, for the beta process we consider βt = 1, for t ∈ [0, T ], under H0 (null hypothesis),

dβt = 0.005(1− βt)dt+ 0.005
√
βtdB̃t, under Ha (alternative hypothesis),

(SB.2)

where B̃ is a Brownian motion independent of B, L and L̃. The unconditional mean of βt under

the alternative hypothesis is 1 and the expected range of the process (βt)t≥0 over the interval of

estimation is approximately 0.2.

We set T = 1, 500 days (our unit of time is a trading day), and consider two sampling frequencies:

∆n = 1/38 which corresponds to sampling every 10 minutes in a 6.5 hours trading day, and

∆n = 1/81 which corresponds to sampling every 5 minutes. We experiment with two values of

kn for each of the sampling frequency in order to check the sensitivity of the inference techniques

with respect to this tuning parameter. Finally, as is typical in truncation-based methods, we

select the truncation threshold in the following data-driven way. For the increment ∆n
i Z with

i = b(t− 1)/∆nc+ 1, ..., bt/∆nc, we set

vn = 4×
√
BVt ×∆0.49

n , BVt =
b1/∆nc
b1/∆nc − 1

π

2

bt/∆nc∑
b(t−1)/∆nc+2

|∆n
i−1Z||∆n

i Z|. (SB.3)

Here, BVt is the Bipower Variation of Barndorff-Nielsen and Shephard (2004, 2006) which is a jump-

robust estimator of volatility and importantly free of tuning parameters. For the construction of

ĉn,i± we include all increments for which both components are below a threshold set similarly as

above but with 4 replaced by 3. There are 10,000 Monte Carlo trials.

In Table S2 we report the results from the Monte Carlo for the test of constant jump beta.

As seen from the table, the test in general has good size properties. In all cases, we notice some

overrejections which are higher for the larger choices of the block size kn. These overrejections

decrease when the sampling frequency increases from 10 to 5 minutes. The test also has a reasonable

power against the considered alternative which increases with the sampling frequency. In Table S3

we report the coverage probability for the refined CI of jump beta that is based on the efficient

estimator and is described in Algorithm 3. The coverage probabilities are in general quite close to

the nominal levels of the CIs. Not surprisingly, we see again improved performance at the higher

sampling frequency. We also note that the coverage probability of the CIs is not very sensitive to

the choice of the block size kn. Overall, we find quite satisfactory finite-sample performance of our

inference techniques for the jump betas, even for relatively sparse sampling of 1/∆n = 38.
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Table S2: Monte Carlo Rejection Rates (%) of Tests for Constant Jump Beta

Case Under H0 Under Ha

Nominal Level Nominal Level

10% 5% 1% 10% 5% 1%

1/∆n = 38, kn = 19 13.42 7.72 2.99 69.76 59.39 39.28

1/∆n = 38, kn = 25 14.09 8.42 3.20 70.19 60.28 41.12

1/∆n = 81, kn = 27 12.90 7.40 2.62 90.37 85.19 71.69

1/∆n = 81, kn = 35 13.01 7.29 2.40 90.13 85.22 72.45

Table S3: Monte Carlo Coverage Probability (%) of Confidence Intervals

Case Nominal Level

90% 95% 99%

1/∆n = 38, kn = 19 88.43 93.60 98.46

1/∆n = 38, kn = 25 88.52 94.01 98.43

1/∆n = 81, kn = 27 88.68 94.04 98.50

1/∆n = 81, kn = 35 88.93 94.32 98.59
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Supplemental Appendix C: Proofs

Throughout this appendix, we use K to denote a generic constant that may change from line to

line; we sometimes emphasize the dependence of this constant on some parameter q by writing Kq.

We use 0k×q to denote a k×q matrix of zeros and when q = 1, we write 0k for notational simplicity;

0k is understood to be empty when k = 0. For any sequence of variables (ξn,p)p≥1, the convergence

(ξn,p)p≥1 → (ξp)p≥1 is understood as n → ∞ under the product topology. We write w.p.a.1 for

“with probability approaching 1.”

By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we can

strengthen Assumption 1 to the following stronger version without loss of generality.

Assumption S6. We have Assumption 1. Moreover, the processes Xt, bt and σt are bounded.

SC.1 Proofs of results in the main text

Proof of Proposition 1. (a) Since the jumps of Z have finite activity, we can assume without

loss of generality that each interval ((i− 1)∆n, i∆n] contains at most one jump; otherwise we can

restrict our calculation to the w.p.a.1 set of sample paths on which this condition holds. We denote

the continuous part of Z by Zc, that is,

Zct = Zt −
∑
s≤t

∆Zs, t ≥ 0. (SC.1)

Note that In (D) is the union of two disjoint sets I1n (D) and I2n (D) that are defined as

I1n (D) = In (D) ∩ {i (p) : p ∈ P} , I2n (D) = In (D) \I1n (D) . (SC.2)

It suffices to show that, w.p.a.1,

I1n (D) = I (D) , I2n(D) = ∅. (SC.3)

First consider I1n (D). Since vn → 0, we have |∆n
i(p)Z| > vn for all p ∈ P, when n is large

enough. Therefore,

I1n (D) =
{
i (p) : p ∈ P, ((i (p)− 1)∆n,∆

n
i(p)Z) ∈ D

}
w.p.a.1. (SC.4)

Now, observe that

sup
p∈P

∥∥∥((i(p)− 1)∆n,∆
n
i(p)Z

)
−
(
τp,∆Zτp

)∥∥∥→ 0 a.s. (SC.5)
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Indeed, almost surely,

sup
p∈P

∥∥∥((i(p)− 1)∆n,∆
n
i(p)Z

)
−
(
τp,∆Zτp

)∥∥∥ = sup
p∈P

∥∥∥((i(p)− 1)∆n − τp,∆n
i(p)Z

c
)∥∥∥

≤ ∆n + sup
s,t≤T,|s−t|≤∆n

|Zct − Zcs | → 0. (SC.6)

By Assumption 2, the marks (τp,∆Zτp)p∈PD are contained in the interior of D a.s. Then, by (SC.5),

((i(p)−1)∆n,∆
n
i(p)Z)p∈PD ⊆ D w.p.a.1. With the same argument but with Dc (i.e. the complement

of D) replacing D, we deduce ((i(p)−1)∆n,∆
n
i(p)Z)p∈P\PD ⊆ D

c w.p.a.1. Therefore, the set on the

right-hand side of (SC.4) coincides with I (D) w.p.a.1. From here, the first claim of (SC.3) readily

follows.

It remains to show that I2n (D) is empty w.p.a.1. Note that for i ∈ I2n (D), ∆n
i Z = ∆n

i Z
c.

Hence, for any q > 2/ (1− 2$),

P (I2n (D) 6= ∅) ≤
bT/∆nc∑
i=1

P (|∆n
i Z

c| > vn) ≤ Kq∆
−1
n

∆
q/2
n

vqn
→ 0, (SC.7)

where the second inequality is by Markov’s inequality and E |∆n
i Z

c|q ≤ Kq∆
q/2
n ; the convergence is

due to (2.12) and our choice of q. The proof of part (a) is now complete.

(b) By part (a), it suffices to show that

((i− 1)∆n,∆
n
i X)i∈I(D) −

(
τp,∆Xτp

)
p∈PD

= op(1). (SC.8)

Observe that ((i− 1)∆n,∆
n
i X)i∈I(D) is simply ((i(p)− 1)∆n,∆

n
i(p)X)p∈PD . We deduce the desired

convergence via the same argument as that for (SC.5). Q.E.D.

Proof of Theorem 1. (a) Let

β̄ (D) ≡ QZY (D)

QZZ (D)
. (SC.9)

For each p ≥ 1, we set

Rn,p = ∆−1/2
n (∆n

i(p)X −∆Xτp) and ςn,p = (−β̄ (D) , 1)Rn,p. (SC.10)

With these notations, we have in restriction to Ω0 (D),

∆n
i(p)Y = β0∆n

i(p)Z + ∆1/2
n ςn,p. (SC.11)

By Proposition 4.4.10 in Jacod and Protter (2012), (Rn,p)p≥1
L-s−→ (Rp)p≥1, where Rp is defined in

(3.2). Consequently (recall the notation (3.12)),

(ςn,p)p≥1
L-s−→ (ςp)p≥1 . (SC.12)
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By Proposition 1(a), w.p.a.1.,

det [Qn (D)] =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

∆n
i(p)Y

2

−
∑
p∈PD

∆n
i(p)Z∆n

i(p)Y

2

. (SC.13)

Plug (SC.11) into (SC.13). After some algebra, we deduce

∆−1
n det[Qn (D)] =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

ς2
n,p

−
∑
p∈PD

∆n
i(p)Z ςn,p

2

. (SC.14)

Note that for each p ≥ 1, ∆n
i(p)Z → ∆Zτp . Combining this convergence with (SC.12), we use the

property of stable convergence to derive the joint convergence(
ςn,p,∆

n
i(p)Z

)
p≥1

L-s−→
(
ςp,∆Zτp

)
p≥1

. (SC.15)

Since the set PD is a.s. finite, the assertion of part (a) follows from (SC.14), (SC.15) and the

continuous mapping theorem.

(b) By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we

assume that Assumption S6 holds without loss of generality. Since PD is a.s. finite, we can

also assume that |PD| ≤ M for some constant M > 0 for the purpose of proving convergence in

probability; otherwise, we can fix some large M to make P (|PD| > M) arbitrarily small and restrict

the calculation below on the set {|PD| ≤M}.
By Theorem 9.3.2 in Jacod and Protter (2012), we have,

ĉn,i(p)−
P−→ cτp−, ĉn,i(p)+

P−→ cτp , all 1 ≤ p ≤M. (SC.16)

By Proposition 1(b),

Qn (D)
P−→ Q (D) , (SC.17)

which further implies (with β̃n ≡ QZY,n (D) /QZZ,n (D))

β̃n
P−→ β̄ (D) . (SC.18)

Furthermore, by essentially the same argument as in the proof of Proposition 1(a), we deduce

I ′n (D) = I (D) w.p.a.1. (SC.19)

Therefore,

ζ̃n (D) =

∑
p∈PD

∆n
i(p)Z

2

∑
p∈PD

ς̃2
n,i(p)

−
∑
p∈PD

∆n
i(p)Z ςn,i(p)

2

w.p.a.1. (SC.20)
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Fix any subsequence N1 ⊆ N. By (SC.16) and (SC.18), we can extract a further subsequence

N2 ⊆ N1, such that along N2,((
ĉn,i(p)−, ĉn,i(p)+

)
1≤p≤M , β̃n

)
→
((
cτp−, cτp

)
1≤p≤M , β̄ (D)

)
(SC.21)

on some set Ω̃ with P(Ω̃) = 1. Then, for each ω ∈ Ω̃ fixed, the transition kernel of ζ̃n (D) given

F converges weakly to the F-conditional law of ζ (D). Moreover, observe that the F-conditional

law of the variables (ςp)1≤p≤M does not have atoms and has full support on RM . Therefore, the

F-conditional distribution function of ζ (D) is continuous and strictly increasing. By Lemma 21.2

in van der Vaart (1998), we deduce that on each path ω ∈ Ω̃, along the subsequence N2, cvαn → cvα,

where cvα is the F-conditional (1 − α)-quantile of ζ (D). Since the subsequence N1 is arbitrarily

chosen, we further deduce that cvαn
P−→ cvα by the subsequence characterization of convergence in

probability. The proof for part (b) is now complete.

(c) By part (a) and part (b), as well as the property of stable convergence, we have

(∆−1
n det [Qn (D)] , cvαn , 1Ω0(D))

L-s−→ (ζ (D) , cvα, 1Ω0(D)). (SC.22)

In particular,

P
(
{∆−1

n det [Qn (D)] > cvαn} ∩ Ω0 (D)
)
→ P ({ζ (D) > cvα} ∩ Ω0 (D)) . (SC.23)

Since P (ζ (D) > cvα|F) = α and Ω0 (D) ∈ F , the right-hand side of (SC.23) equals to αP (Ω0 (D)).

The first assertion of part (c) then follows from (SC.23). To show the second assertion of part

(c), we first observe that (SC.17) implies det [Qn (D)]
P−→ det [Q (D)]. In restriction to Ωa (D),

det [Q (D)] > 0 and, hence, ∆−1
n det [Qn (D)] diverges to +∞ in probability. Part (b) implies

that cvαn is tight in restriction to Ωa (D). Consequently, P
(
∆−1
n det [Qn (D)] > cvαn |Ωa (D)

)
→ 1 as

asserted. Q.E.D.

Proof of Theorem 2. (a) Observe that

QZY,n (D, w)− β0QZZ,n (D, w) =
∑

i∈I′n(D)

w
(
ĉni−, ĉ

n
i+, β̃n

)
∆n
i Z (∆n

i Y − β0∆n
i Z) . (SC.24)

Recall the notation ςn,p from (SC.10). By (SC.19), we further deduce that, w.p.a.1,

∆−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w)) =

∑
p∈PD

w
(
ĉn,i(p)−, ĉn,i(p)+, β̃n

)
∆n
i(p)Z ςn,p. (SC.25)

By (SC.16), (SC.18) and Assumption 3,

w
(
ĉni(p)−, ĉ

n
i(p)+, β̃n

)
P−→ w

(
cτp−, cτp , β0

)
, p ≥ 1. (SC.26)
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Since PD is a.s. finite, we use properties of stable convergence to deduce from (SC.12) and (SC.26)

that

∆−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w))

L-s−→
∑
p∈PD

w
(
cτp−, cτp , β0

)
∆Zτpςp. (SC.27)

Note that

∆−1/2
n (β̂n (D, w)− β0) =

∆
−1/2
n (QZY,n (D, w)− β0QZZ,n (D, w))

QZZ,n (D, w)
. (SC.28)

By (SC.19),

Qn (D, w) =
∑
p∈PD

w
(
ĉni(p)−, ĉ

n
i(p)+, β̃n

)
∆n
i(p)X∆n

i(p)X
>. (SC.29)

By ∆n
i(p)X → ∆Xτp and (SC.26), we deduce

Qn (D, w)
P−→

∑
p∈PD

w
(
cτp−, cτp , β0

)
∆Xτp∆X

>
τp . (SC.30)

The first assertion of part (a), that is, ∆
−1/2
n (β̂n (D, w) − β0)

L-s−→ ζβ (D, w) readily follows from

(SC.27), (SC.28) and (SC.30).

Turning to the second assertion of part (a), we first observe that when ct does not jump at the

same time as Zt, each ςp is F-conditionally centered Gaussian; moreover, the variables (ςp)p≥1 are F-

conditionally independent. Therefore, the limiting variable ζβ (D) is centered Gaussian conditional

on F , with conditional variance given by Σ (D, w). This finishes the proof of the second assertion.

(b) For notational simplicity, we denote

Ap =
(−β0, 1)

(
cτp− + cτp

)
(−β0, 1)>

2∆Z2
τp

, Bp = w
(
cτp−, cτp , β0

)
∆Z2

τp .

Then we can rewrite Σ (D, w) and Σ (D, w∗) as

Σ (D, w) =

∑
p∈PD B

2
pAp(∑

p∈PD Bp

)2 , Σ (D, w∗) =

∑
p∈PD

A−1
p

−1

.

The assertion of part (b) is then proved by observing√
Σ (D, w)

Σ (D, w∗)
=

√∑
p∈PD B

2
pAp

√∑
p∈PD A

−1
p∑

p∈PD Bp
≥ 1,

where the inequality is by the Cauchy-Schwarz inequality.

(c) By (SC.19) and (SC.26), as well as ∆n
i(p)Z → ∆Zτp , we deduce that the F-conditional law

of ζ̃n,β(D, w) converges in probability to that of ζβ(D, w) under any metric for weak convergence.
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From here, by using an argument similar to that in the proof of Theorem 1(b), we further deduce

that

cv
α/2
n,β

P−→ cv
α/2
β , (SC.31)

where cv
α/2
β denotes the (1− α/2)-quantile of the F-conditional law of ζβ(D, w). It is easy to see

that the F-conditional law of ζβ (D, w) is symmetric. The assertion of part (c) then follows from

part (a) and (SC.31). Q.E.D.

Proof of Theorem 3. (a) Fix S ∈ S and let m = dim(S)− 1. We consider a sequence of subsets

Ωn defined by

Ωn =


For every 1 ≤ i ≤ bT/∆nc , if ((i− 1) ∆n, i∆n] contains

some jump of Z, then this interval is contained in (Sj−1, Sj ]

for some 1 ≤ j ≤ m and it contains exactly one jump of Z.


Under Assumption 1, the process Z has finitely active jumps without any fixed time of discontinuity.

Hence, P (Ωn)→ 1, so we can restrict our calculation below on Ωn without loss of generality.

Below, we write h = (h0, . . . hm)> and denote the log likelihood ratio by

Ln (h) = log
dPn

θ0+∆
1/2
n h

dPnθ0
.

For each i ≥ 1, we set h (n, i) = hj , where j is the unique integer in {1, . . . ,m} such that i∆n ∈
(Sj−1, Sj ]. On the set Ωn, with θ = θ0 + ∆

1/2
n h, we have

∆n
i X =

∫ i∆n

(i−1)∆n

bsds+

∫ i∆n

(i−1)∆n

σsdWs +

 (1 + ∆
1/2
n h (n, i))∆n

i JZ(
β0 + ∆

1/2
n h0

)
(1 + ∆

1/2
n h (n, i))∆n

i JZ + ∆n
i ε

 .

To simplify notations, we denote for each i ≥ 1,

xn,i ≡ ∆−1/2
n

∫ i∆n

(i−1)∆n

σsdWs,

b̄n,i ≡
∫ i∆n

(i−1)∆n

bsds, c̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

csds,

Jn,i ≡

 ∆n
i JZ

β0∆n
i JZ + ∆n

i ε

 , dn,i ≡

 h (n, i)

h0 + β0h (n, i) + ∆
1/2
n h0h (n, i)

 .

Note that under Assumption 4, (xn,i)i≥1 are independent conditional on (bt, σt, JZ,t, εt)t≥0 and

each xn,i is distributed as N (0, c̄n,i). With these notations, we can write the log likelihood ratio
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explicitly as

Ln (h) =

bT/∆nc∑
i=1

∆n
i JZd

>
n,ic̄
−1
n,ixn,i −

1

2

bT/∆nc∑
i=1

∆n
i J

2
Zd
>
n,ic̄
−1
n,idn,i. (SC.32)

Note that on Ωn, ∆n
i JZ 6= 0 only if ((i− 1) ∆n, i∆n] contains one (and only one) jump of Z.

Therefore,

Ln (h) =
∑
p∈P

∆Zτpd
>
n,i(p)c̄

−1
n,i(p)xn,i(p) −

1

2

∑
p∈P

∆Z2
τpd
>
n,i(p)c̄

−1
n,i(p)dn,i(p). (SC.33)

By Proposition 4.4.10 in Jacod and Protter (2012),
(
xn,i(p)

)
p≥1

L-s−→ (Rp)p≥1. Under Assumption

5, the variables (Rp)p≥1 are F-conditionally independent, where the F-conditional law of Rp is

N
(
0, cτp

)
; moreover, c̄n,i(p) → cτp a.s. for each p ≥ 1. Further note that for each p ≥ 1,

dn,i(p) −→ Dph. (SC.34)

where the matrix Dp is defined as

Dp ≡

 0 0ᵀj−1 1 0ᵀm−j

1 0ᵀj−1 β0 0ᵀm−j

 for j such that τp ∈ (Sj−1, Sj ]. (SC.35)

Since P is a.s. finite, we deduce (4.9) from (SC.33) and (SC.34), that is,

Ln (h) = h>Γ1/2
n ψn −

1

2
h>Γnh+ op(1), (SC.36)

where

Γn ≡
∑
p∈P

∆Z2
τpD

>
p c̄
−1
n,i(p)Dp, ψn = Γ−1/2

n

∑
p∈P

∆ZτpD
>
p c̄
−1
n,i(p)xn,i(p). (SC.37)

In addition, (4.10) follows with

Γ ≡
∑
p∈P

∆Z2
τpD

>
p c
−1
τp Dp, ψ ≡ Γ−1/2

∑
p∈P

∆ZτpD
>
p c
−1
τp Rp. (SC.38)

It is easy to verify that Γ defined in (SC.38) equals to Γ (S) defined by (4.17). To see, we make

the following explicit calculation using (SC.35),

D>p c
−1
τp Dp =



1
vcτp

0>j−1

β0−βcτp
vcτp

0>m−j

0j−1 0(j−1)×(j−1) 0j−1 0(j−1)×(m−j)

β0−βcτp
vcτp

0>j−1

(
β0−βcτp

)2

vcτp
+ 1

cZZ,τp
0>m−j

0m−j 0(m−j)×(j−1) 0m−j 0(m−j)×(m−j)


. (SC.39)

22



Finally, we note that conditional on F , ψ has a standard normal distribution and, hence, is inde-

pendent of F . The proof for the LAMN property is now complete.

From the proof of Theorem 3 of Jeganathan (1982), we see that the convolution theorem can

be applied in restriction to the set Ω (S) ≡ {Γ(S) is nonsingular}. The information bound for

estimating β, that is, the first diagonal element of Γ (S)−1, can then be easily computed by using

the inversion formula for partitioned matrices.

(b) Since the jumps of Z have finite activity, on each sample path ω ∈ Ω there exists some

S∗(ω) ∈ S that shatters its jumps. That is, each interval (S∗j−1(ω), S∗j (ω)] contains at exactly one

jump time of Z. We can then evaluate Σ̄β (·) at S∗ on each sample path and obtain

Σ̄β (S∗) =

∑
s≤T

(
∆Z2

s

vcs
− γ2

1s

γ2s

)−1

. (SC.40)

Plugging the definitions of γ1s and γ2s (see (4.16)) into (SC.40), we can verify that

Σ̄β (S∗) =

∑
s≤T

∆Z2
s

cY Y,s − 2β0cZY,s + β2
0cZZ,s

−1

. (SC.41)

Recall that we fix D = [0, T ] × R∗ and Σ∗ ≡ Σ (D, w∗), with the latter given by (4.8). Under

Assumption 5, we see Σ̄β (S∗) = Σ∗.

It remains to verify that Σ̄β (S∗) ≥ Σ̄β (S) for all S ∈ S. By the Cauchy–Schwarz inequality,(∑
Sj−1<s≤Sj γ1s

)2∑
Sj−1<s≤Sj γ2s

≤
∑

Sj−1<s≤Sj

γ2
1s

γ2s
. (SC.42)

From (4.19), (SC.40) and (SC.42), Σ̄β (S∗) ≥ Σ̄β (S) readily follows. Q.E.D.

SC.2 Proofs of results in Appendices SA.1, SA.2 and SA.3

Proof of Theorem S1. The proof is essentially the same as that of Theorem 1 except that

we derive the convergence Rn,p
L-s−→ Rp for p ∈ AD using Assumption S1. To do so, we denote

κn,p = τp/∆n − bτp/∆nc and observe

Rn,p = ∆−1/2
n

∫ i(p)∆n

(i(p)−1)∆n

σsdWs + op(1)

= σ(i(p)−1)∆n

√
κn,p

Wτp −W(i(p)−1)∆n√
τp − (i (p)− 1) ∆n

+ στp
√

1− κn,p
Wi(p)∆n

−Wτp√
i (p) ∆n − τp

+ op(1),

where the op(1) term in the first equality is due to the drift and, in the second equality, we use the

standard local Gaussian approximation (using Itô’s isometry and the càdlàg property of σ) to the
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continuous martingale component before and after the jump. From here, the claimed convergence

of Rn,p follows from the càdlàg property of σ and Assumption S1. Q.E.D.

Proof of Theorem S2. We complement the notations in (SA.8) with

ṽn,i± ≡ (−β0, 1) ĉn,i± (−β0, 1)> . (SC.43)

Observe that vt (recall (SA.2)) is the spot covariance matrix of the process Y − β0Z. Then, by

applying Theorem 13.3.3(c) of Jacod and Protter (2012) to the process Y − β0Z, we deduce that

k1/2
n

(
ṽn,i(p)− − vτp−, ṽn,i(p)+ − vτp

)
p≥1

L-s−→
(√

2vτp−ξ
′
p−,
√

2vτpξ
′
p+

)
p≥1

. (SC.44)

Recall the notations in (SA.3) and (SA.8). For each p ≥ 1, we can decompose

φ̂n,i(p) = φp + k−1/2
n Fn,p +Gn,p, (SC.45)

where  Fn,p ≡ k1/2
n

((
ṽn,i(p)− + ṽn,i(p)+

)
/2− φp

)
,

Gn,p ≡ φ̂n,p −
(
ṽn,i(p)− + ṽn,i(p)+

)
/2.

(SC.46)

From (SC.44), it follows that

(Fn,p)p≥1
L-s−→ (Fp)p≥1 . (SC.47)

We also see from Theorem 2(a) that β̃n − β0 = Op(∆
1/2
n ) = op(k

−1/2
n ), so we further deduce

Gn,p = op(k
−1/2
n ). (SC.48)

We now turn to the estimator β̂n (D, w∗). By (SC.19), we have

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∆
−1/2
n

∑
p∈P ∆n

i(p)Z
(

∆n
i(p)Y − β0∆n

i(p)Z
)
/φ̂n,i(p)∑

p∈P ∆n
i(p)Z

2/φ̂n,i(p)
w.p.a.1. (SC.49)

Recall the notations Rn,p and ςn,p from (SC.10) and write Rn,p = (RZ,n,p, RY,n,p)
>. We can rewrite

(SC.49) as

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∑
p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)
ςn,p/φ̂n,i(p)∑

p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)2
/φ̂n,i(p)

w.p.a.1. (SC.50)
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Next, we derive expansions for the numerator and the denominator of the right-hand side of

(SC.50) separately. Observe that the numerator satisfies

∑
p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)
ςn,p

φ̂n,i(p)
−
∑
p∈P

∆Zτp ςn,p

φp

=
∑
p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)
ςn,p φp −∆Zτp ςn,p

(
φp + k

−1/2
n Fn,p +Gn,p

)
φ̂n,i(p)φp

= −k−1/2
n

∑
p∈P

∆Zτp ςn,p Fn,p

φ̂n,i(p)φp
+
∑
p∈P

∆
1/2
n RZ,n,pςn,p φp −∆Zτp ςn,pGn,p

φ̂n,i(p)φp

= −k−1/2
n

∑
p∈P

∆Zτp ςn,p Fn,p

φ2
p

+ op(k
−1/2
n ),

(SC.51)

where the first equality is obtained by using (SC.45); the second equality is obvious; the third

equality follows from RZ,n,p = Op(1), ςn,p = Op(1), φ̂n,i(p) − φp = op(1) and (SC.48). Similarly, the

denominator of the right-hand side of (SC.50) satisfies

∑
p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)2

φ̂n,i(p)
−
∑
p∈P

∆Z2
τp

φp

=
∑
p∈P

(
∆Zτp + ∆

1/2
n RZ,n,p

)2
φp −∆Z2

τp

(
φp + k

−1/2
n Fn,p +Gn,p

)
φ̂n,i(p)φp

= −k−1/2
n

∑
p∈P

∆Z2
τpFn,p

φ̂n,i(p)φp

+
∑
p∈P

(
2∆

1/2
n ∆ZτpRZ,n,p + ∆nR

2
Z,n,p

)
φp −∆Z2

τpGn,p

φ̂n,i(p)φp

= −k−1/2
n

∑
p∈P

∆Z2
τpFn,p

φ2
p

+ op(k
−1/2
n ).

(SC.52)

Finally, we plug the expansions (SC.51) and (SC.52) into (SC.50) and deduce, w.p.a.1,

∆−1/2
n

(
β̂n (D, w∗)− β0

)
=

∑
p∈P ∆Zτp ςn,p/φp − k

−1/2
n

∑
p∈P ∆Zτp ςn,p Fn,p/φ

2
p + op(k

−1/2
n )∑

p∈P ∆Z2
τp/φp − k

−1/2
n

∑
p∈P ∆Z2

τpFn,p/φ
2
p + op(k

−1/2
n )

= ζ∗n,β (D) + k−1/2
n H∗n,β (D) + op(k

−1/2
n ),

(SC.53)
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where
ζ∗n,β (D) ≡

(∑
p∈P

∆Zτp ςn,p
φp

)/(∑
p∈P

∆Z2
τp

φp

)
,

H∗n,β (D) ≡

(∑
p∈P

∆Z2
τp
Fn,p

φ2
p

)(∑
p∈P

∆Zτp ςn,p

φp

)
−
(∑

p∈P
∆Zτp ςn,p Fn,p

φ2
p

)(∑
p∈P

∆Z2
τp

φp

)
(∑

p∈P
∆Z2

τp
φp

)2 .

(SC.54)

We now observe that the estimators ĉn,i− and ĉn,i+ do not involve the increment ∆n
i X. From here,

it is easy to see that the convergence in (SC.12) and (SC.47) hold jointly with F-conditionally

independent limits, that is,

(ςn,p, Fn,p)p≥1
L-s−→ (ςp, Fp)p≥1 . (SC.55)

By properties of stable convergence, we deduce

(
ζ∗n,β (D) , H∗n,β (D)

) L-s−→
(
ζ∗β (D) , H∗β (D)

)
. (SC.56)

This finishes the proof. Q.E.D.

Proof of Theorem S3. We consider a sequence Ωn of subsets defined by

Ωn =

 For every 1 ≤ i ≤ bT/∆nc , ((i− 1) ∆n, i∆n]

contains at most one jump of Z.

 .

Under the maintained assumptions, the process Z has finitely active jumps. Hence, P (Ωn)→ 1, so

we can restrict our calculation below on Ωn without loss of generality.

We denote the log likelihood ratio by

Ln (h) ≡ log
dPn

β0+∆
1/2
n h

dPnβ0

, h ∈ R.

Let G denote the σ-field generated by the processes (b, cZZ , v
c, JZ , ε). Given the maintained assump-

tions, we see that, under the law Pnβ , the observed returns (∆n
i X)i≥0 are independently normally

distributed conditional on G. Using this fact, we can obtain an explicit expression for Ln(h). For

notational simplicity, we denote

zn,i ≡ ∆−1/2
n

∫ i∆n

(i−1)∆n

√
cZZ,sdWZ,s, yn,i ≡ ∆−1/2

n

∫ i∆n

(i−1)∆n

√
vcsdWY,s,

c̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

cZZ,sds, v̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

vcsds.
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Some straightforward algebra yields

Ln (h) = hψ̃n −
h2

2
Γn, (SC.57)

where

ψ̃n ≡
bT/∆nc∑
i=1

yn,i

(
∆n
i JZ + ∆

1/2
n zn,i

)
v̄n,i

, Γn ≡
bT/∆nc∑
i=1

(
∆n
i JZ + ∆

1/2
n zn,i

)2

v̄n,i
.

It remains to analyze the asymptotic properties of ψ̃n and Γn. We decompose ψ̃n = ψ̃′n +

ψ̃′′n, where ψ̃′n and ψ̃′′n are sums over the subset {i : ∆n
i JZ 6= 0} and its complement, respectively.

Similarly, we decompose Γn = Γ′n + Γ′′n.

We now proceed to deriving the joint convergence in law of (ψ̃′n, ψ̃
′′
n) under the G-conditional

probability. We note that ∆n
i JZ and v̄n,i are G-measurable, and (zn,i, yn,i) are G-conditionally

independent with conditional distributions given by

zn,i|G ∼ MN (0, c̄n,i) , yn,i|G ∼ MN (0, v̄n,i) .

In particular, ψ̃′n and ψ̃′′n are G-conditionally independent, so it is enough to derive the marginal

convergence of each sequence. Since the jumps are finitely active, it is easy to see that

ψ̃′n =
∑

i:∆n
i JZ 6=0

yn,i∆
n
i JZ

v̄n,i
+ op(1), ψ̃′′n = ∆1/2

n

bT/∆nc∑
i=1

yn,izn,i
v̄n,i

+ op(1).

By applying the Lindeberg–Lévy central limit theorem under the G-conditional probability, we

deduce the following G-conditional convergence in law:

ψ̃′n
L−→MN

(
0,
∑
τ∈T

∆Z2
τ

vcτ

)
, ψ̃′′n

L−→MN
(

0,

∫ T

0

cZZ,s
vcs

ds

)
.

From here, we deduce the following convergence under the G-conditional probability,

ψ̃n
L−→ ψ̃ ∼MN

(
0,

∫ T

0

d [Z,Z]s
vcs

)
. (SC.58)

Similarly, we can derive the convergence in probability for Γn:

Γn
P−→ Γ ≡

∫ T

0

d [Z,Z]s
vcs

. (SC.59)

Since Γn is G-measurable, (SC.58) and (SC.59) imply that (ψ̃n,Γn) converges in law to (ψ̃,Γ). From

here, the assertion of the theorem readily follows (recall (SC.57)). Q.E.D.
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Proof of Theorem S4. We first define some functions. For any 2 × 2 symmetric matrix c =

[cjk]1≤j,k≤2, we define

g1(c) ≡ c12

c22 − c2
12/c11

, g2(c) ≡ c11

c22 − c2
12/c11

, g3(c) ≡ g1(c)− β0g2(c).

With any twice continuously differentiable function g, we associate a function

Bg(c) ≡ 1

2

2∑
j,k,l,m=1

∂2
jk,lmg(c)(cjlckm + cjmckl),

and a statistic

Ŝn(g) ≡ ∆n

bT/∆nc−kn∑
i=0

(
g(ĉn,i)−

1

kn
Bg (ĉn,i)

)
.

We also set

Q?n,ZY ≡
∑
i∈I′n

∆n
i Z∆n

i Y

v̂cn,i
, Q?n,ZZ ≡

∑
i∈I′n

(∆n
i Z)2

v̂cn,i
.

By direct calculation, we see that Bg1(c) = 3g1(c) and Bg2(c) = 3g2(c). With this notation, we

can rewrite β̂?n as

β̂?n =
Ŝn(g1) +Q?n,ZY

Ŝn(g2) +Q?n,ZZ
.

Hence,

∆−1/2
n

(
β̂?n − β0

)
=

∆
−1/2
n Ŝn(g3) + ∆

−1/2
n

(
Q?n,ZY − β0Q

?
n,ZZ

)
Ŝn(g2) +Q?n,ZZ

. (SC.60)

As a special case of (SC.27), we deduce

∆−1/2
n

(
Q?n,ZY − β0Q

?
n,ZZ

) L-s−→
∑
p∈P

∆Zτpςp

vcτp
∼MN

(
0,
∑
τ∈T

∆Z2
τ

vcτ

)
. (SC.61)

In addition, we note that ∫ T

0
g3 (cs) ds =

∫ T

0

cZY,s − β0cZZ,s
vcs

ds = 0.

Therefore, by Theorem 4 of Li, Todorov, and Tauchen (2016),

∆−1/2
n Ŝn(g3)

L-s−→MN
(

0,

∫ T

0

cZZ,s
vcs

ds

)
. (SC.62)

Note that the convergence (SC.61) is driven by a fixed number of Brownian increments around

the jump times. By a routine argument, we can show that (SC.61) and (SC.62) hold jointly with

F-conditionally independent limits. Hence,

∆−1/2
n Ŝn(g3) + ∆−1/2

n

(
Q?n,ZY − β0Q

?
n,ZZ

) L-s−→MN
(

0,

∫ T

0

d [Z,Z]s
vcs

)
. (SC.63)

28



By Theorem 3 of Li, Todorov, and Tauchen (2016), Ŝn(g2)
P−→
∫ T

0 cZZ,s/v
c
sds. As a special case of

(SC.30), we also have Q?n,ZZ
P−→
∑

τ∈T ∆Z2
τ /v

c
τ . Hence,

Ŝn(g2) +Q?n,ZZ
P−→
∫ T

0

d [Z,Z]s
vcs

. (SC.64)

The assertion of the theorem readily follows from (SC.60), (SC.63) and (SC.64). Q.E.D.

SC.3 Proofs for Theorem S5

In this subsection, we prove Theorem S5. Section SC.3.1 collects some notation. Section SC.3.2

contains the main proof. Technical lemmas are proved in Section SC.3.3.

SC.3.1 Notations and preliminary results

By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we can,

without loss of generality, strengthen Assumption S4 to the following version.

Assumption S7. We have Assumption S4. Moreover, the processes AY and AZ are bounded.

We now introduce some additional notation. For notational simplicity, we set

gn (j) ≡ gn (j/hn) .

Since the continuous function g(·) is supported on [0, 1], gn (j) is non-zero only when 1 ≤ j ≤ hn−1;

we shall use this simple fact implicitly below without further mention. We denote

X̃n,i ≡

 Z̃n,i

Ỹn,i

 ≡∑
j

gn (j) ∆n
i+jX, (SC.65)

where the first-difference operator ∆n
i is now defined with respect to the sampling basis, that is,

∆n
i X ≡ Xt(n,i) −Xt(n,i−1), i ≥ 1.

We denote the continuous component of X by

Xc
t ≡

 Zct

Y c
t

 ≡ X0 +

∫ t

0
bsds+

∫ t

0
σsdWs.

We also denote by Ut = Y c
t − β0Z

c
t the diffusive residual process. The instantaneous drift and the

diffusion coefficient of U are given by, respectively,

bU,t ≡ (−β0, 1)bt, σU,t ≡ (−β0, 1)σt, t ≥ 0. (SC.66)
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Recall from (SA.2) in the main text that vt ≡ (−β0, 1)σtσ
>
t (−β0, 1)>. Hence,

vt = σU,tσ
>
U,t. (SC.67)

We consider a filtration given by Ht ≡ Ft ∨ σ (Tm : m ≥ 1). Note that the random times

(Tm)m≥1 are independent of the Brownian motion W . Hence, W remains a Brownian motion with

respect to the filtration (Ht)t≥0. For each m ≥ 1, we denote by i (n,m) the unique integer i such

that Tm ∈ (t (n, i− 1) , t (n, i)]. The random integer i (n,m) is H0-measurable.

We consider a sequence Ωn of events defined by

Ωn ≡

 For each i with t (n, i) ≤ T , (t (n, i− hn) , t (n, i+ 2hn)]

contains at most one jump time in (Tm)m≥1.

 .

Under the maintained assumptions, the length of the interval (t (n, i− hn) , t (n, i+ 2hn)] shrinks

to zero uniformly. Since the jumps have finite activity, P (Ωn)→ 1. Therefore, we can restrict the

calculations below to the set Ωn without loss of generality. By doing so, we can suppose that each

pre-averaged return contains at most one jump return.

Finally, we recall the concept of convergence in F-conditional law. We write ξn
L|F−→ ξ if the

F-conditional law of ξn converges in probability to the F-conditional law of ξ under any metric

for the weak convergence of probability measures. See Appendix A of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008) for more details and many useful results.

SC.3.2 Proof of Theorem S5

We now prove Theorem S5. The proof relies on several technical lemmas. For readability, we defer

the proof of these lemmas to Section SC.3.3.

Lemma S1, below, collects some estimates that are repeatedly used in the sequel. Notations

such as J̄Z,n,i and J̃Z,n,i are interpreted as in (SA.16) and (SC.65), respectively.

Lemma S1. The following statements hold under the assumptions of Theorem S5: for p ≥ 2,∣∣∣J̄Z,n,i − J̃Z,n,i∣∣∣+
∣∣∣J̄Y,n,i − J̃Y,n,i∣∣∣ ≤ Kh−1

n , (SC.68)∣∣J̄Y,n,i − β0J̄Z,n,i
∣∣ 1Ωn∩{J̃Z,n,i 6=0} ≤ Kh−1

n , (SC.69)

E
[∣∣Ȳ c

n,i

∣∣p +
∣∣Z̄cn,i∣∣p∣∣H0

]
≤ Kp (hn∆n)p/2 , (SC.70)

E
[∣∣ε̄′Y,n,i∣∣p +

∣∣ε̄′Z,n,i∣∣p∣∣H0

]
≤ Kph

−p/2
n , (SC.71)

E
[∣∣∣Ȳ c

n,i − Ỹ c
n,i

∣∣∣2 +
∣∣∣Z̄cn,i − Z̃cn,i∣∣∣2∣∣∣∣H0

]
≤ K∆3/2

n . (SC.72)
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As we shall show later, the asymptotics of β̂′n is driven by the following variables:

ζn,m− ≡ ∆−1/4
n h−1

n

∑
k<0

∑
j

gn (j − k) gn (j)

∆n
i(n,m)+kU,

ζn,m+ ≡ ∆−1/4
n h−1

n

∑
k>0

∑
j

gn (j − k) gn (j)

∆n
i(n,m)+kU,

ζ ′Y,n,m ≡ ∆−1/4
n h−1

n

hn∑
l=1

gn (l) ε̄′Y,n,i(n,m)−l,

ζ ′Z,n,m ≡ ∆−1/4
n h−1

n

hn∑
l=1

gn (l) ε̄′Z,n,i(n,m)−l.

(SC.73)

Their asymptotic distributions are characterized by Lemma S2 and Lemma S3 below.

Lemma S2. (ζn,m−, ζn,m+)m≥1
L-s−→ (ζm−, ζm+)m≥1 under the product topology.

Lemma S3. (ζ ′Y,n,m, ζ
′
Z,n,m)m≥1

L|F−→ (ζ ′Y,m, ζ
′
Z,m)m≥1 under the product topology.

We set

J ∗n ≡ {i : (t (n, i) , t (n, i+ hn)] contains at least one jump of Z} , (SC.74)

which collects local windows on the sampling basis in which Z jumps. The proof of Theorem S5

relies on approximating β̂′n via

β̂′∗n ≡
∑

i∈J ∗n Z̄
′
n,iȲ

′
n,i∑

i∈J ∗n Z̄
′2
n,i

. (SC.75)

Theorem S5 is evidently implied by Proposition S1 below, which is followed by its proof.

Proposition S1. Under the assumptions of Theorem S5,

(a) the sequence ∆
−1/4
n (β̂′∗n − β0) converges stably in law to∑

m≥1:Tm≤T ∆ZTm

(
ζm− + ζm+ + ζ ′Y,m − β0ζ

′
Z,m

)
(∫ 1

0 g (s)2 ds
)∑

m≥1:Tm≤T ∆Z2
Tm

;

(b) β̂′n − β̂′∗n = op(∆
1/4
n ).

Proof of Proposition S1(a). Step 1. In this step, we outline the proof. We note that

∆−1/4
n

(
β̂′∗n − β0

)
=

∆
−1/4
n h−1

n

∑
i∈J ∗n Z̄

′
n,i

(
Ȳ ′n,i − β0Z̄

′
n,i

)
h−1
n
∑

i∈J ∗n Z̄
′2
n,i

. (SC.76)

In step 2, below, we show that

1

hn

∑
i∈J ∗n

Z̄ ′2n,i
P−→
∫ 1

0
g (s)2 ds

∑
m≥1:Tm≤T

∆Z2
Tm . (SC.77)
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The numerator of the right-hand side of (SC.76) can be rewritten as

1

hn∆
1/4
n

∑
i∈J ∗n

Z̄ ′n,i
(
Ȳ ′n,i − β0Z̄

′
n,i

)
=

∑
m≥1:Tm≤T

1{∆ZTm 6=0}Nn,m, (SC.78)

where

Nn,m ≡
1

hn∆
1/4
n

hn∑
l=1

Z̄ ′n,i(n,m)−l

(
Ȳ ′n,i(n,m)−l − β0Z̄

′
n,i(n,m)−l

)
.

In step 3, below, we show that for each m ≥ 1,

Nn,m = ∆ZTm
(
ζn,m− + ζn,m+ + ζ ′Y,n,m − β0ζ

′
Z,n,m

)
+ op(1). (SC.79)

By Proposition 5 in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), we can combine

Lemma S2 and Lemma S3 to deduce that

(ζn,m−, ζn,m+, ζ
′
Y,n,m, ζ

′
Z,n,m)m≥1

L-s−→ (ζm−, ζm+, ζ
′
Y,m, ζ

′
Z,m)m≥1. (SC.80)

From (SC.79) and (SC.80), we deduce

(Nn,m)m≥1
L-s−→ ∆ZTm

(
ζm− + ζm+ + ζ ′Y,m − β0ζ

′
Z,m

)
. (SC.81)

The assertion of part (a) of Proposition S1 then follows from (SC.76), (SC.77), (SC.78) and (SC.81).

Step 2. In this step, we show (SC.77). We can rewrite

1

hn

∑
i∈J ∗n

Z̄ ′2n,i =
∑

m≥1:Tm≤T
1{∆ZTm 6=0}

1

hn

hn∑
l=1

Z̄ ′2n,i(n,m)−l. (SC.82)

We note that (recall the notation (SC.65))

∑
m≥1:Tm≤T

1{∆ZTm 6=0}
1

hn

hn∑
l=1

J̃2
Z,n,i(n,m)−l =

∑
m≥1:Tm≤T

1{∆ZTm 6=0}
1

hn

hn∑
l=1

gn (l)2 ∆Z2
Tm

→
(∫ 1

0
g (s)2 ds

) ∑
m≥1:Tm≤T

∆Z2
Tm . (SC.83)

Next, we note that

Z̄ ′n,i − J̃Z,n,i = J̄Z,n,i − J̃Z,n,i + Z̄cn,i + ε̄′Z,n,i.

Since the random integer i (n,m) is H0-measurable, Lemma S1 implies

E
[∣∣∣Z̄ ′n,i(n,m)−l − J̃Z,n,i(n,m)−l

∣∣∣2∣∣∣∣H0

]
≤ K

(
h−2
n + hn∆n + h−1

n

)
≤ K∆1/2

n . (SC.84)
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Therefore,

∑
m≥1:Tm≤T

1{∆ZTm 6=0}
1

hn

hn∑
l=1

∣∣∣Z̄ ′n,i(n,m)−l − J̃Z,n,i(n,m)−l

∣∣∣2 = Op(∆
1/2
n ) = op(1). (SC.85)

With an appeal to the Cauchy–Schwarz inequality, we deduce (SC.77) from (SC.82), (SC.83)

and (SC.85).

Step 3. We show (SC.79) in this step. We first approximate Nn,m by

N ′n,m ≡
1

hn∆
1/4
n

hn∑
l=1

J̃Z,n,i(n,m)−l

(
Ȳ ′n,i(n,m)−l − β0Z̄

′
n,i(n,m)−l

)
.

Note that (SC.69), (SC.70) and (SC.71) imply

E
[∣∣∣Ȳ ′n,i(n,m)−l − β0Z̄

′
n,i(n,m)−l

∣∣∣2∣∣∣∣H0

]
≤ K∆1/2

n . (SC.86)

By (SC.84), (SC.86) and the Cauchy–Schwarz inequality, E
∣∣Nn,m −N ′n,m

∣∣ ≤ K∆
1/4
n . Hence,

Nn,m = N ′n,m + op(1). (SC.87)

Next, we observe that N ′n,m can be rewritten as

N ′n,m =
∆ZTm

hn∆
1/4
n

hn∑
l=1

gn (l)
(
Ȳ ′n,i(n,m)−l − β0Z̄

′
n,i(n,m)−l

)
.

We further approximate N ′n,m by N ′′n,m ≡ N ′′n,m,1 +N ′′n,m,2, where
N ′′n,m,1 ≡

∆ZTm

hn∆
1/4
n

hn∑
l=1

gn (l)
(
Ȳ c
n,i(n,m)−l − β0Z̄

c
n,i(n,m)−l

)
,

N ′′n,m,2 ≡
∆ZTm

hn∆
1/4
n

hn∑
l=1

gn (l)
(
ε̄′Y,n,i(n,m)−l − β0ε̄

′
Z,n,i(n,m)−l

)
.

Note that

N ′n,m −N ′′n,m =
∆ZTm

hn∆
1/4
n

hn∑
l=1

gn (l)
(
J̄Y,n,i(n,m)−l − β0J̄Z,n,i(n,m)−l

)
.

By (SC.69),

N ′n,m −N ′′n,m = Op(∆
1/4
n ) = op(1). (SC.88)

Let

Ñ ′′n,m,1 ≡
∆ZTm

hn∆
1/4
n

hn∑
l=1

gn (l)
(
Ỹ c
n,i(n,m)−l − β0Z̃

c
n,i(n,m)−l

)
.
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By (SC.72),

N ′′n,m,1 − Ñ ′′n,m,1 = Op(∆
1/2
n ) = op(1). (SC.89)

Recall that U = Y c − β0Z
c. Hence, we can rewrite

Ñ ′′n,m,1 =
∆ZTm

hn∆
1/4
n

∑
l

gn (l) Ũn,i(n,m)−l

=
∆ZTm

hn∆
1/4
n

∑
l

gn (l)
∑
j

gn (j) ∆n
i(n,m)−l+jU

=
∆ZTm

hn∆
1/4
n

∑
k

∑
j

gn (j − k) gn (j) ∆n
i(n,m)+kU.

From here, it is easy to see that Ñ ′′n,m,1 = ∆ZTm (ζn,m− + ζn,m+) + op(1). By (SC.89), we further

derive

N ′′n,m,1 = ∆ZTm (ζn,m− + ζn,m+) + op(1). (SC.90)

Finally, we observe that, by definition,

N ′′n,m,2 = ∆ZTm(ζ ′Y,n,m − β0ζ
′
Z,n,m). (SC.91)

From (SC.87), (SC.88), (SC.90) and (SC.91), the claim (SC.79) readily follows. Q.E.D.

Proof of Proposition S1(b). Step 1. For notational simplicity, we denote Jn ≡ {i : |Z̄ ′n,i| > v̄n}.
In this step, we show that

h−1
n

∑
i∈Jn\J ∗n

Z̄ ′2n,i = op(1), h−1
n

∑
i∈Jn\J ∗n

Z̄ ′n,i
(
Ȳ ′n,i − β0Z̄

′
n,i

)
= op(∆

1/4
n ). (SC.92)

We start with some estimates for each i /∈ J ∗n . For such i, Z does not jump in the interval

(t (n, i) , t (n, i+ hn)]. Therefore, only the first non-zero summand in (SA.16) may contain a jump.

Since g(·) is Lipschitz continuous and g (0) = 0, the weight on this term is bounded by Kh−1
n .

Therefore, |Z̄ ′n,i−Z̄ ′cn,i| ≤ Kh−1
n , where Z ′c ≡ Zc+ε′Z . By Lemma S1, for each p ≥ 2, E[|Z̄ ′cn,i|p|H0] ≤

Kp∆
p/4
n . Hence, E[|Z̄ ′n,i|p|H0] ≤ Kp∆

p/4
n . For each q > 0,

E
[
Z̄ ′2n,i1{|Z̄′n,i|>v̄n}

∣∣∣H0

]
≤ E

[∣∣Z̄ ′n,i∣∣2+q
∣∣∣H0

]
/v̄qn ≤ Kq∆

1/2+q(1/4−$′)
n .

From here, we deduce that for any q > 0,

h−1
n

∑
i∈Jn\J ∗n

Z̄ ′2n,i = Op

(
∆q(1/4−$′)
n

)
. (SC.93)
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Since $′ ∈ (0, 1/4), by taking q sufficiently large in (SC.93), we deduce

h−1
n

∑
i∈Jn\J ∗n

Z̄ ′2n,i = op(∆
1/2
n ), (SC.94)

which implies the first part of (SC.92).

From Lemma S1, it is easy to see that

h−1
n

∑
i∈Jn\J ∗n

(
Ȳ ′n,i − β0Z̄

′
n,i

)2 ≤ h−1
n

∑
i

(
Ȳ ′n,i − β0Z̄

′
n,i

)2
= Op(1). (SC.95)

By the Cauchy–Schwarz inequality, (SC.94) and (SC.95), we further deduce the second part of

(SC.92).

Step 2. In this step, we show that

h−1
n

∑
i∈J ∗n\Jn

Z̄ ′2n,i = op(1). (SC.96)

We consider a positive process fn,m(·) given by

fn,m(s) ≡ Z̄ ′2n,i(n,m)−1−bhnsc1
{∣∣∣Z̄′n,i(n,m)−1−bhnsc

∣∣∣≤v̄n}∩{∆ZTm 6=0}. (SC.97)

We can then rewrite

h−1
n

∑
i∈J ∗n\Jn

Z̄ ′2n,i =
∑

m≥1:Tm≤T

∫ 1

0
fn,m(s)ds. (SC.98)

From Lemma S1, it is easy to see that

E
[
fn,m(s)2|H0

]
≤ K. (SC.99)

We now consider the behavior of fn,m(s) for each s ∈ (0, 1). From Lemma S1, we see that

Z̄ ′n,i(n,m)−1−bhnsc = J̃Z,n,i(n,m)−1−bhnsc + op(1).

We further note that J̃Z,n,i(n,m)−1−bhnsc = g(s)∆ZTm + op(1). Hence,

Z̄ ′n,i(n,m)−1−bhnsc = g (s) ∆ZTm + op(1).

By assumption, g (s) > 0 for s ∈ (0, 1). Since v̄n → 0, we deduce

P
({∣∣∣Z̄ ′n,i(n,m)−1−bhnsc

∣∣∣ ≤ v̄n} ∩ {∆ZTm 6= 0}
∣∣∣H0

)
= op(1). (SC.100)

Since Z̄ ′2n,i(n,m)−1−bhnsc = Op(1), (SC.100) implies that for each s ∈ (0, 1),

fn,m (s) = op(1). (SC.101)
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Note that (SC.99) implies that the sequence fn,m(s), n ≥ 1, is uniformly integrable under the H0-

conditional probability. This condition allows us to deduce E[fn,m(s)|H0] = op(1) from (SC.101).

Note that E[fn,m(s)|H0] is bounded because of (SC.99). By Fubini’s theorem and the bounded

convergence theorem, we deduce that the right-hand side of (SC.98) is op(1). From here, (SC.96)

readily follows.

Step 3. In this step, we show that

∆−1/4
n h−1

n

∑
i∈J ∗n\Jn

Z̄ ′n,i
(
Ȳ ′n,i − β0Z̄

′
n,i

)
= op(1). (SC.102)

We use the same argument as in step 2, except that we replace the term Z̄ ′2n,i(n,m)−1−bhnsc in (SC.97)

by

∆−1/4
n

∣∣∣Z̄ ′n,i(n,m)−1−bhnsc

∣∣∣ ∣∣∣Ȳ ′n,i(n,m)−1−bhnsc − β0Z̄
′
n,i(n,m)−1−bhnsc

∣∣∣ .
By Lemma S1, we can verify that the term in the above display is Op(1) and (SC.99) still holds.

With these modifications, the same argument in step 2 yields (SC.102).

Step 4. Combining (SC.92), (SC.96) and (SC.102), we deduce that
h−1
n

∑
i

Z̄ ′2n,i1{|Z̄′n,i|>v̄n} − h
−1
n

∑
i∈J ∗n

Z̄ ′2n,i = op(1),

h−1
n

∑
i

Z̄ ′n,i
(
Ȳ ′n,i − β0Z̄

′
n,i

)
1{|Z̄′n,i|>v̄n} − h

−1
n

∑
i∈J ∗n

Z̄ ′n,i
(
Ȳ ′n,i − β0Z̄

′
n,i

)
= op(∆

1/4
n ).

(SC.103)

From the proof of Proposition S1(a), we also have h−1
n

∑
i∈J ∗n Z̄

′2
n,i = Op(1),

h−1
n

∑
i∈J ∗n Z̄

′
n,i

(
Ȳ ′n,i − β0Z̄

′
n,i

)
= Op(∆

1/4
n ).

(SC.104)

Recall the definitions of β̂′n and β̂′∗n from (SA.17) and (SC.75). From (SC.103) and (SC.104), we

readily deduce the assertion of Proposition S1(b). Q.E.D.

SC.3.3 Proofs of technical lemmas

Proof of Lemma S1. We start with (SC.68). From (SA.16) and (SC.65), we observe that J̄Z,n,i

and J̃Z,n,i can be rewritten as

J̄Z,n,i =
∑
k

iZ,n,k∑
j=iZ,n,k−1+1

gn (iZ,n,k − i) ∆n
j JZ ,

J̃Z,n,i =
∑
k

iZ,n,k∑
j=iZ,n,k−1+1

gn (j − i) ∆n
j JZ .
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We can then rewrite J̄Z,n,i − J̃Z,n,i =
∑

j g̃Z,n,i (j) ∆n
j JZ where

g̃Z,n,i (j) ≡ gn (iZ,n,k − i)− gn (j − i) , if iZ,n,k−1 < j ≤ iZ,n,k. (SC.105)

Since g is Lipschitz continuous and δZ,n,k is bounded,

|g̃Z,n,i (j)| ≤ Kh−1
n . (SC.106)

Since the jumps of Z are finitely active, we readily deduce |J̄Z,n,i − J̃Z,n,i| ≤ Kh−1
n . The part of

(SC.68) concerning Y can be shown similarly.

Turning to (SC.69), we first observe that in restriction to Ωn ∩ {J̃Z,n,i 6= 0}, the interval

(t (n, i) , t (n, i+ hn)] contains exactly one jump. Hence, J̃Y,n,i − β0J̃Z,n,i = 0. From here and

(SC.68), (SC.69) readily follows.

We now show (SC.70). By parts (a,c) of Assumption S5, |t (Z, n, k)− t (Z, n, k − 1)| ≤ K∆n.

By using a standard estimate for continuous Itô semimartingales, we derive

E
[∣∣Z̄cn,i∣∣p∣∣H0

]
≤ Kp

(∑
k

gn(iZ,n,k − i)∆n

)p
+Kp

(∑
k

gn(iZ,n,k − i)2∆n

)p/2
.

We further note that the sequence gn(iZ,n,k − i), k ≥ 0, is bounded and contains at most hn non-

zero terms. Hence, E[|Z̄cn,i|p|H0] ≤ Kp(hn∆n)p/2. Similarly, E[|Ȳ c
n,i|p|H0] ≤ Kp(hn∆n)p/2. The

inequality (SC.70) readily follows.

To show (SC.71), we first observe

ε̄′Z,n,i =
∑
k

[gn (iZ,n,k − i)− gn (iZ,n,k+1 − i)] ε′Z,t(Z,n,k).

Since g(·) is Lipschitz continuous and δZ,n,k is bounded,

|gn (iZ,n,k − i)− gn (iZ,n,k+1 − i)| ≤ Kh−1
n .

We further note that the noise terms are F-conditionally independent with bounded moments. By

the Burkholder–Davis–Gundy inequality, we see that E[|ε̄′Z,n,i|p|H0] ≤ Kph
−p/2
n . Similarly, we can

show E[|ε̄′Y,n,i|p|H0] ≤ Kph
−p/2
n , which further implies (SC.71).

We now show (SC.72). Recall (SC.105). We can rewrite Z̄cn,i − Z̃cn,i =
∑

j g̃Z,n,i (j) ∆n
jZ

c. Note

that g̃Z,n,i (j) is non-zero for at most 2hn terms. By using a standard estimate for continuous Itô

semimartingales and then using (SC.106), we deduce

E
[∣∣∣Z̄cn,i − Z̃cn,i∣∣∣2∣∣∣∣H0

]
≤ K

∑
j

g̃Z,n,i (j) ∆n

2

+K
∑
j

g̃2
Z,n,i (j) ∆n

≤ K∆2
n +Kh−1

n ∆n.
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Hence, E[|Z̄cn,i − Z̃cn,i|2|H0] ≤ K∆
3/2
n . Similarly, E[|Ȳ c

n,i − Ỹ c
n,i|2|H0] ≤ K∆

3/2
n . From here, (SC.72)

readily follows. Q.E.D.

Proof of Lemma S2. Recall the definitions in (SC.66). For each k > 0, we can decompose

∆n
i(n,m)+kU = An,m,k +Bn,m,k + σU,Tm∆n

i(n,m)+kW,

where

An,m,k ≡
∫ t(n,i(n,m)+k)

t(n,i(n,m)+k−1)
bU,sds, Bn,m,k ≡

∫ t(n,i(n,m)+k)

t(n,i(n,m)+k−1)
(σU,s − σU,Tm) dWs.

We note that

|An,m,k| ≤ K∆n, E
[
|Bn,m,k|2

∣∣∣H0

]
≤ K

∫ t(n,i(n,m)+k)

t(n,i(n,m)+k−1)
E
[
‖σU,s − σU,Tm‖

2
∣∣∣H0

]
ds. (SC.107)

We approximate ζn,m+ using

ζ∗n,m+ ≡ ∆−1/4
n h−1

n

hn−1∑
k=1

∑
j

gn (j − k) gn (j)

σU,Tm∆n
i(n,m)+kW.

Observe that

E
[∣∣ζn,m+ − ζ∗n,m+

∣∣2∣∣∣H0

]
≤ K

∆−1/4
n h−1

n

∑
k>0

∑
j

gn (j − k) gn (j)

An,m,k

2

+K∆−1/2
n h−2

n

∑
k>0

∑
j

gn (j − k) gn (j)

2

E
[
B2
n,m,k

∣∣H0

]
≤ K∆1/2

n +K∆−1/2
n

∫ t(n,i(n,m)+hn)

t(n,i(n,m))
E
[
‖σU,s − σU,Tm‖

2
∣∣∣H0

]
ds

≤ K∆1/2
n +KE

 sup
s∈[Tm,Tm+K∆

1/2
n ]

‖σU,s − σU,Tm‖
2

∣∣∣∣∣∣H0

 , (SC.108)

where the first inequality is derived by observing that Bn,m,k, k ≥ 1, are martingale differences; the

second inequality holds because of (SC.107); the third inequality follows from Assumption S5. By

the bounded convergence theorem and the right-continuity of the process σU , we deduce that the

majorant side of (SC.108) converges to zero in expectation. Therefore,

ζn,m+ = ζ∗n,m+ + op(1). (SC.109)
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Similarly, we can approximate ζn,m− using

ζ∗n,m− ≡ ∆−1/4
n h−1

n

−1∑
k=−(hn−1)

∑
j

gn (j − k) gn (j)

σU,t(n,i(n,m)−hn)∆
n
i(n,m)+kW,

and show that

ζn,m− = ζ∗n,m− + op(1). (SC.110)

In view of (SC.109) and (SC.110), to prove Lemma S2, it remains to derive the stable conver-

gence in law of (ζ∗n,m−, ζ
∗
n,m+)m≥1 towards (ζm−, ζm+)m≥1. We observe that ζ∗n,m− and ζ∗n,m+ are

sums of martingale difference arrays. We then use Theorem IX.7.28 of Jacod and Shiryaev (2003)

to deduce the stable convergence in law of these sequences (arguing similar to the proof of Theorem

4.3.1 of Jacod and Protter (2012)). The limiting distributions of ζ∗n,m− and ζ∗n,m+ are, conditionally

on F , mutually independent and centered Gaussian with their asymptotic variances respectively

given by the limits (in probability) of
Σn,m− ≡ ∆−1/2

n

∑
k<0

 1

hn

∑
j

gn (j − k) gn (j)

2

vt(n,i(n,m)−hn)∆n,i(n,m)+k,

Σn,m+ ≡ ∆−1/2
n

∑
k>0

 1

hn

∑
j

gn (j − k) gn (j)

2

vTm∆n,i(n,m)+k.

(SC.111)

It remains to verify that (recall (SA.18))

Σn,m−
P−→ E

[
ζ2
m−|F

]
, Σn,m+

P−→ E
[
ζ2
m+|F

]
. (SC.112)

To this end, we observe that

Σn,m− = ∆1/2
n f (Tm)

∑
k<0

 1

hn

∑
j

gn (j − k) gn (j)

2

vt(n,i(n,m)−hn)

+∆1/2
n

∑
k<0

 1

hn

∑
j

gn (j − k) gn (j)

2

vt(n,i(n,m)−hn)

(
∆n,i(n,m)+k

∆n
− f (Tm)

)
.

(SC.113)

The second term on the right-hand side of (SC.113) is bounded in absolute value by

Kh−1
n

−1∑
k=−(hn−1)

∣∣∣∣∆n,i(n,m)+k

∆n
− f (Tm)

∣∣∣∣ ,
which converges to zero pointwise under Assumption S5. Since ∆

1/2
n � θh−1

n , the first term on the

right-hand side of (SC.113) converges to

θvTm−f (Tm)

∫ 0

−1

(∫
g (s− u) g (s) ds

)2

du.
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From here, the first convergence in (SC.112) follows. The second convergence of (SC.112) can be

proved similarly. This finishes the proof for Lemma S2. Q.E.D.

Proof of Lemma S3. Step 1. In this step, we show that for each m ≥ 1,

ζ ′Y,n,m
L|F−→ ζ ′Y,m. (SC.114)

To simplify notations, we denote i∗ = i (n,m). Observe that

ζ ′Y,n,m =
1

hn∆
1/4
n

hn∑
l=1

gn (l) ε̄′Y,n,i∗−l

=
1

hn∆
1/4
n

hn∑
l=1

gn (l)
∑
k

gn (iY,n,k − i∗ + l)
(
ε′Y,t(Y,n,k) − ε

′
Y,t(Y,n,k−1)

)
= − 1

hn∆
1/4
n

∑
k

{
hn∑
l=1

gn (l) [gn (iY,n,k+1 − i∗ + l)− gn (iY,n,k − i∗ + l)]

}
ε′Y,t(Y,n,k).

We further decompose

ζ ′Y,n,m = ζ ′∗Y,n,m +Rn,

where

ζ ′∗Y,n,m ≡
∑
k

ζ ′∗Y,n,m (k) ,

ζ ′∗Y,n,m (k) ≡ − 1

hn∆
1/4
n

(
hn∑
l=1

gn (l) g′
(
iY,n,k − i∗ + l

hn

)
δY,n,k+1

hn

)
ε′Y,t(Y,n,k),

Rn ≡ − 1

hn∆
1/4
n

∑
k

{
hn∑
l=1

gn (l)

[
gn (iY,n,k+1 − i∗ + l)

−gn (iY,n,k − i∗ + l)− g′
(
iY,n,k − i∗ + l

hn

)
δY,n,k+1

hn

]}
ε′Y,t(Y,n,k).

Since g′ is Lipschitz continuous,∣∣∣∣gn (iY,n,k+1 − i∗ + l)− gn (iY,n,k − i∗ + l)− g′
(
iY,n,k − i∗ + l

hn

)
δY,n,k+1

hn

∣∣∣∣ ≤ Kh−2
n . (SC.115)

Since the noise terms ε′Y,t(Y,n,k), k ≥ 0, are F-conditionally independent with zero mean and

bounded variance, we have

E
[
R2
n|F

]
≤ K

h2
n∆

1/2
n

∑
k

∣∣∣∣∣
hn∑
l=1

gn (l)

[
gn (iY,n,k+1 − i∗ + l)

−gn (iY,n,k − i∗ + l)− g′
(
iY,n,k − i∗ + l

hn

)
δY,n,k+1

hn

]∣∣∣∣∣
2

.

40



Here, the summation over k involves at most 2hn nonzero terms. By (SC.115), we further deduce

E
[
R2
n|F

]
≤ Kh−2

n → 0. (SC.116)

Therefore, to show (SC.114), it suffices to show that

ζ ′∗Y,n,m
L|F−→ ζ ′Y,m. (SC.117)

We note that for each fixed m, the array ζ ′∗Y,n,m (k) is F-conditionally independent with zero

mean. We shall use the Lindeberg–Lévy central limit theorem under the F-conditional probability

to deduce (SC.117). It is easy to verify Lyaponov’s condition. Indeed,∑
k

E
[∣∣ζ ′∗Y,n,m (k)

∣∣3∣∣∣F] ≤ K∆1/4
n → 0.

It remains to compute the (F-conditional) asymptotic variance of ζ ′∗Y,n,m, which is given by the

limit of

Σ′Y,n,m ≡ 1

h2
n∆

1/2
n

∑
k

(
hn∑
l=1

gn (l) g′
(
iY,n,k − i∗ + l

hn

)
δY,n,k+1

hn

)2

AY,t(Y,n,k)

=
1

hn∆
1/2
n

∑
k

δY,n,k+1

hn

(
1

hn

hn∑
l=1

gn (l) g′
(
iY,n,k − i∗ + l

hn

))2

δY,n,k+1AY,t(Y,n,k).

Observe that, in the above display, the summand indexed by k is non-zero only when t (Y, n, k) falls

in a local window around Tm with length (in calendar time) shrinking to zero. Since the process

AY is continuous and (SA.14) holds,

Σ′Y,n,m =
AY,TmφY (Tm)

hn∆
1/2
n

∑
k

δY,n,k+1

hn

(
1

hn

hn∑
l=1

gn (l) g′
(
iY,n,k − i∗ + l

hn

))2

+ op(1).

By applying a Riemann approximation, we deduce

Σ′Y,n,m
P−→ θ−1AY,TmφY (Tm)

∫ (∫ 1

0
g (s) g′ (s+ u) ds

)2

du ≡ E
[
ζ ′2Y,m|F

]
.

This finishes the proof of (SC.117) and, hence, that of (SC.114).

Step 2. In this step, we prove the assertion of the lemma. We observe that for m 6= m′, the

noise terms in ζ ′Y,n,m do not overlap with those in ζ ′Y,n,m′ when n is large. Since the noise terms

are F-conditionally independent, for each m̄ ≥ 1, the finite collection (ζ ′Y,n,m)1≤m≤m̄ forms an

F-conditional independency for large n. Therefore, (ζ ′Y,n,m)m≥1
L|F−→ (ζ ′Y,m)m≥1 under the product

topology. Similarly, (ζ ′Z,n,m)m≥1
L|F−→ (ζ ′Z,m)m≥1. By Assumption S4, ζ ′Y,n,m and ζ ′Z,n,m are F-

conditionally independent. The assertion of the lemma readily follows. Q.E.D.
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