Supplemental Material for “Jump Regressions”

Jia Li,* Viktor Todorov,! and George Tauchen?

August 30, 2016

Abstract

This document contains three supplemental appendices for the main text. Supplemental Ap-
pendix A presents additional theoretical results. Supplemental Appendix B contains some
numerical analysis for the econometric procedures proposed in the main text. Supplemental
Appendix C contains all proofs.

JEL classification: C51, C52, G12.

*Department of Economics, Duke University, Durham, NC 27708; e-mail: jl410@duke.edu.

tDepartment of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208; e-mail:
v-todorov@northwestern.edu.

tDepartment of Economics, Duke University, Durham, NC 27708; e-mail: george.tauchen@duke.edu.



Supplemental Appendix A: Additional theoretical results
SA.1 Inference when some jumps arrive at deterministic times

In this subsection, we extend the results in the main text to a setting where a subset of jump
times can be identified using prior information. Examples of such jump events are the ones caused
by pre-scheduled macro announcements (Andersen, Bollerslev, Diebold, and Vega (2003)). In a
liquid market, one may expect that price jumps “immediately” after the announcement, so that
the announcement time can be used to locate the jump time. Pre-scheduled announcement times
are deterministic, which, technically speaking, are excluded from model (2.1) that features random
jump arrivals. That being said, inference procedures in this paper can be extended straightforwardly
to accommodate fixed jump times as we now show. Here, we use the specification test as an example
for a detailed illustration. Modifications to other inference procedures are essentially the same and,
hence, will be omitted for brevity.

Formally, we denote with V; the number of pre-scheduled announcements before time ¢. We

then extend model (2.1) as follows

¢ ¢ ¢ ~
X; = x9 +/ bsds —|—/ osdWs + Jy,  Jp = / / 0 (s,u) p(ds,du) + Z ds, (SA.1)
0 0 0 JR

SSNt

where the jump size process § is cadlag adapted. Economically, & reflects the unanticipated infor-
mation content in the announcement, aggregated among market participants, with 6 =0 indicating

no surprise. The jump times associated with the announcements are indexed by
Ap={pePp: AN, #0}.

We now describe how to modify the results in Section 3.1 so as to accommodate the pres-
ence of fixed jump times. It is instructive to start with some intuition. We note that the vari-
able R, (see (3.2) in the main text) represents asymptotically the (scaled) diffusive disturbance
A, 1/2 (A?X — AXT,,) around the jump at time 7,,. In particular, the variable x, represents the rel-
ative location of the jump time within the sampling interval in the limiting problem. The uniform
[0,1] distribution of k), is a consequence of the absolute continuity of the compensator of the jump
measure u, and reflects the fact that the econometrician is “locally uninformed” about the exact
jump time. On the other hand, if we can use external information (such as announcement times)
to pin down the jump time within the sampling interval, we can resolve this layer of statistical

uncertainty. Technically, we assume the following.



Assumption S1. The following conditions hold for each p € Ap: (a) T, is not an integer multiple

of An; (b) Tp/An — |1p/Ar] converges to some known constant r, € [0,1].

Part (a) of Assumption S1 is a convenient device to avoid uninteresting technical issues that
arise when the pre-scheduled announcement is at iA, for some i. Part (b) of Assumption S1
formalizes the form of prior knowledge about jump times. For example, the assumption that the
price jumps immediately after the announcement time corresponds to x, = 0.

For random jump times indexed by p € Pp \ Ap, we draw x, from a uniform [0, 1] distribution
like in Section 3.1 of the main text and for p € Ap we set k), at its known value. We then define R,
and ¢, respectively using (3.2) and (3.12) for all p € Pp. The variables (%, Ry, i,S,) in Algorithm

1 are modified analogously. The formal extension of Theorem 1 is stated as follows.

Theorem S1. Suppose (SA.1), Assumption S1 and the conditions in Theorem 1. Under aforeme-

nioned modifications for the definitions of (kp, Rp,<p) and (Ri, Rni,Sn,i), the statements in Theorem

1 hold true.

SA.2 Higher-order asymptotics for the optimally weighted estimator

In this subsection, we proceed with designing refined confidence sets of the optimally weighted
estimator based on a higher-order asymptotic expansion. To motivate, we observe that while the
optimally weighted estimator /3, (D,w*) depends on the spot covariance estimates (¢ i—, Cn it ),
the sampling variability of the latter is not reflected in the asymptotic distribution described by
Theorem 2. The reason is that these estimates enter only the weights and their sampling errors
are annihilated in the second-order asymptotics. In finite samples, the sampling variability of the
spot covariance estimates may still have some effect, because the latter enjoy only a nonparametric
convergence rate. To account for such effects, we need a refined characterization of the asymptotic
behavior of the optimally weighted estimator, so we proceed to derive its higher-order expansion.
Based on this expansion, we provide a refinement to the confidence interval construction described
in Algorithm 2.

We first need some additional regularity on the spot volatility o, namely that it is an It6

semimartingale.

Assumption S2. The process o is an It6 semimartingale of the form
t t topo
vec(oy) = vec(ao)—l—/ bsds—i—/ 5SdWS—|—/ /5(s,u)1{’5(su)‘|>1}/}(ds,du)
0 0 0 JR ’
t ~
+/0 /R(S(S,u) I{HS(S,U)Hﬁl} (i —7) (ds,du),
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where the processes b and & are locally bounded and take values respectively in R* and R**4, W is
a 4-dimensional Brownian motion, 5:Q x R, x R~ R* is a predictable function, fi is a Poisson
random measure with compensator i of the form v (dt,du) = dt ® X (du) for some o-finite measure
X. Moreover, there ezists a localizing sequence of stopping times (Tm)le and A-integrable functions

(Ton)m>1, such that |6 (w,t,u) |2 A1 < T (u) for allw e Q, t <Tp, and u € R.

Assumption S2 is needed for characterizing the stable convergence of the spot covariance es-
timates. This assumption is fairly unrestrictive and is satisfied by many models in finance. In
particular, it allows for “leverage effect,” that is, the Brownian motions W and W can be corre-
lated. Moreover, Assumption S2 allows for volatility jumps, and it does not restrict their activity
and dependence with the price jumps. However, this assumption does rule out certain long-memory
volatility models driven by the fractional Brownian motion (see Comte and Renault (1996)).

We now present the higher-order asymptotic expansion for the optimally weighted estimator.
We need some additional notation for this. Let v denote the spot variance of the residual Y — 5y Z.
That is,

v = (—Bo, 1) e (—fo, 1) T (SA.2)

Further, let (5;,, 52) +)p>1 be a collection of mutually independent random variables which are also
independent of F and (kp, &p—, £pt) P10 such that 52’,_ and 5; . are scalar standard normal variables.
We set for p > 1,
s (—Bo, 1) (c.rp_ + ch) (—Bo, 1)T o U-,-p—fglg_ + Urp§;;+.
p 9 ’ p \/i

To guide intuition, we note that the variable F}, captures the sampling variability for approximating

(SA.3)

the average residual volatility (vs,— + vr,)/2. We further note that ¢, ' = w*(¢s,—, ¢r,, fo), so the

limit variable (g(D,w*) defined in (4.3) can be rewritten as

Zpepp AZzr,5p/ bp
ZPEP'D AZ’TQ'p/qbp

Theorem S2. Let k, < A ® for some constant a € (0,1/2). Suppose Assumptions 1, 2 and S2

(SA.4)

¢ (D,w*) =

hold for w € (a/4,1/2). Then we have the following expansion for the optimally weighted estimator:
A2 (B0 (D,w") = Bo) = G (D) + by V2 5 (D) + 0 (K, /%), (SA.5)

for some sequences of variables ¢}, 5 (D) and H,, 5 (D) satisfying

(¢rg (D) Hy (D)) 55 (¢G5 (D, w*), H (D)) (SA.6)



where

AZZF, AZry s AZr, s F, AZZ
(ZpeP ¢>§p> (ZpeP ¢>§ p) o (ZpeP %) <Zp€7’ ¢pp>
Hj; (D) = . (SA.7)

2
AZ2
(2 22)

The leading term ¢, 5 (D) in (SA.5) is what drives the convergence in Theorem 2. The higher-
order term ky \/ QH;; 5 (D) is Op(kn Y 2) and hence is asymptotically dominated by (; 5 (D). The

limiting variable HE (D) involves both F), and g, which capture respectively the sampling variability
that arise from the estimation of the spot covariance and the estimation of jumps.

Because of the higher-order asymptotic effect played by ¢, ;+ in the efficient beta estimation,
the user has a lot of freedom in setting the block size k,. Indeed, as seen from Theorem S2, we
need only ky, =< A, with a in the wide range of (0,1/2). This is unlike the block-based volatility
estimators, see e.g., Jacod and Rosenbaum (2013), where one has significantly less freedom in
choosing k,,. Having the refined asymptotic result in Theorem S2 helps since if &, is relatively

small, the higher-order term k&, Y 2H;; 3 (D) might have nontrivial finite sample effect.

For concreteness, we describe in Algorithm 3 a finite-sample correction for the Cls described in

Algorithm 2, based on Theorem S2, where we set for i € Z,, (D),

an,i — (_an 1) (Cnyie —;—én,i—l-) <_Bm 1) , fnis = (_Bm 1) oo i (—Bn, 1>T . (SA8)

The proof of Theorem 2(c) can be easily adapted to show that CI'® defined in Algorithm 3 has

asymptotic level 1 — «, that is, P(8y € CIY) — 1 — «; the details are omitted for brevity.

AvLcoriTHM 3. (1) Simulate (S ;) (p) as in step 1 of Algorithm 1. Simulate én, Z:L_)Z'el';l(p)

ieT),
consisting of independent copies of (£, ,&/,, ). Set
F ﬁn,ifﬂm, + {)n,i+£g7i+ .

n,t \/é

(s (D)
. AYASY A?Z2
i€T! (D) .yt i€l (D) Tt
AMZ2F, ; ATZ &, AVZ G Fri A7 72
Z é2 | Z bni h Z 32 Z Oni
i€Z!,(D) n,i i€T/, (D) n; 1€Z/,(D) n,i i€z, (D) Tt

2

A Z?
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/2

(3) Generate a large number of Monte Carlo simulations in the first two steps and set cvz 5 as
the (1 — a/2)-quantile of f;j 5 (D,w) in the Monte Carlo sample. Set the 1 — a level two-sided CI

as CI** = [, (D, w*) — A}m/zcvsg,ﬁn (D, w*) + A}L/chz’/;]. O

SA.3 Adaptive estimation under a common-beta restriction

In Section 4.2 of the main text, we have shown that the optimally weighted jump beta estimator
attains the adaptive bound (4.21) when the diffusive beta (i.e., 8f) coincides with the jump beta. If
this parametric restriction is known a priori, it can be exploited to construct a more efficient esti-
mator of the (common) beta parameter by using both jump and diffusive returns. In this appendix,
we show that the common beta can be estimated adaptively with respect to nonparametric nuisance
components in the model. This result is related to the recent work of Li, Todorov, and Tauchen
(2016), which considers the adaptive estimation of the constant diffusive beta. Li, Todorov, and
Tauchen (2016) treat the jump component as a nonparametric nuisance. By contrast, here we also
exploit the information content of the constant jump beta restriction.

Below, we maintain the same setting as in Section 4.2 of the main text with the additional

restriction that the diffusive beta equals the jump beta, that is,
czve = Poczze, all te]0,T]. (SA.9)
Like in Section 4.2, we fix D = [0, 7] x R, and suppress it in future notation. Model (2.1) can then
be represented as
dZy = bzdt + \/czz2: AWz + dJz4,
dY; = bydt + B\/cz24dW 1 + \/v§dWyp + BdJ 7 + dey,

where Wy, and Wy are univariate independent Brownian motions, € is a pure jump process that

(SA.10)

contains the Y-specific jumps, and the spot idiosyncratic variance v§ is connected with ¢; via
vf = Cyy, — szy,t/ CzZt-

We proceed as follows. We first derive the efficiency bound for estimating 8 in a parametric
submodel of (SA.10) where the only unknown parameter is . The resulting efficiency bound
is what one would attain if the processes (b,czz,v° Jz,€) were observable. We then provide a
feasible estimator that attains this efficiency bound in the original semiparametric model. The
proposed estimator is therefore adaptive with respect to the nonparametric nuisance components
(b,czz,v°, Jz,€). Henceforth, we denote the law of (A" X);<;<y, in this submodel by pPg.

Theorem S3, below, shows that the aforementioned submodel satisfies the LAMN property and
characterizes the information matrix for the estimation of 8. To fit the current setting, we modify

slightly Assumption 4 in the main text as follows.



Assumption S3. We have Assumption 1 and the processes (bt)t>0, (0t)t>0 and (Ji)i>0 are inde-

pendent of (Wi)i>0, and the joint law of (b, czz,v¢, Jz,€) does not depend on 3.
Theorem S3. Under Assumptions S8 and 5, the sequence (Pg : B € R) satisfies the LAMN
property at B = By with information fOT (1/v5)d[Z, Z],.

The proofs for all results in this section are given in Supplemental Appendix C.
From Theorem S3 and the conditional convolution theorem (Jeganathan (1982, 1983)), we

deduce that the efficiency bound for estimating 5y in the adaptive case is given by the inverse of

([ 122 sa11)

Next, we construct an estimator for 5y that attains this bound, for which we need some addi-

the information, that is,

tional notation. For each i, we set

CzZmni CZymi 1

pu— R R pu— k, A
CzZYm,i CYYn,i nen G

M

T
(A?_i_jX)(A?-;-jX) 1{—U’L§A?+jX§U$L ’

m

and then

~C  — A ~2 ~

Opi = Cyymi — Coynil €22 n.i-
The adaptive estimator for gy is given by

(= A T T et 5y SR (SA.12)
N 1 3 A \_T/Anj_k'n éZZ,n,i (A?Z)Q ' ‘
(1= 2)An 350 oc + ZiGIa S Un

The factor 1 —3/k, in (SA.12) is used to correct a nonlinearity bias in the estimation of integrated

n

volatility functionals as in, for example, Jacod and Rosenbaum (2013) and Li, Todorov, and Tauchen
(2016).
Theorem S4, below, establishes the stable convergence in law of BT*L In particular, it shows that

~

By attains the adaptive bound given by (SA.11).

Theorem S4. Suppose (a) Assumptions 1, 5 and S2 hold; (b) k, < A" such that v € (1/3,1/2)
and (1 —~)/2 <w < 1/2. Then
-1
812 (B - ) £3 M <0, ([ 122 ) |
COMMENT. Theorem S4 does not require the independence conditions in Assumption S3, which are
only needed for deriving the LAMN property and the efficiency bound. Assumption S2 is needed for
deriving the stable convergence of the integrated volatility functionals A, ZgéA"Jfk" Czvnil O i

T/ A |~k .
and A, ZZL:(/J ! ¢z 7m0 -



SA.4 Jump regressions with microstructure noise and irregular sampling

In this subsection, we consider jump regressions under a setting with microstructure noise and
irregular asynchronous sampling. Section SA.4.1 describes the setting. In Section SA.4.2, we
propose and analyze a new estimator that is robust to these complications. The proofs are in
Supplemental Appendix C. To simplify the exposition, we set D = [0,7] x R, and suppress it
henceforth. In other words, the jump regression relationship AY, = ByAZ, is supposed to hold for

all jump times 7 of Z.

SA.4.1 The setting with microstructure noise and irregular sampling

We extend the jump regression setting in the main text in three directions. First, the observed
prices are contaminated by measurement error. The measurement error is often referred to as
“microstructure noise,” which may be attributed to various trading frictions. Second, the prices are
sampled at irregular times, i.e., the sampling interval is no longer constant. Third, the sampling
times for Y and Z are possibly asynchronous.

To describe the formal setting, we start with the sampling scheme. We consider an array of
deterministic times ¢ (n, ), ¢ > 0, that is increasing in 7. Our analysis for this deterministic sampling
scheme can be equivalently considered as an analysis conditioning on a strictly exogenous random
sampling design. We allow these times to be irregularly spaced, that is, A, ; =t (n,i) —t(n,i — 1)
may depend on i. Below, we refer to (¢ (n,4));>0 as the sampling basis for simplicity. The processes
Y and Z are sampled at two deterministic subsets of the sampling basis, indexed by (iy,nk)k>0
and (izmnk)p>0 respectively.! Asynchronous sampling arises when these subsets are different. To

simplify notation, we denote the sampling times of Y and Z using
t(Y,n k) =t(niyar), t(Znk)=tniznk).

As an additional generalization of our original setup in the text, we assume that only noisy obser-

vations of Y and Z are available at the sampling times

!/ / / /
Y;(Y,n,k) = }/t(Y,TL,kJ) + €Yat()/7n7k)7 Zt(Zﬂ’L,k) = Zt(Z,TL,k}) + EZ,t(ZJL,k’)’
where ¢}, and ¢/, are the noise terms. We assume the following for the noise.

Assumption S4. We have 5’Y7t = /Ay ey, and 5’th = \/Azez: such that (a) the processes Ay

and Az are continuous, (F¢)-adapted and locally bounded; (b) the variables ey andezy, t > 0, are

! Alternatively, if we start with the sampling times of Y and Z, we can set the sampling basis as the union of these
sampling times (i.e., the collection of times at which at least one process is sampled).



mutually independent and independent of F with zero mean and unit variance, and with finite pth

moment for all p > 1.

The essential part of Assumption S4 is that the noise terms (52(Y,n,k)752(z,n,k))k20 are JF-
conditionally independent with zero mean. For the results below, we only need ey; and €z; to
have finite moments up to a certain order; assuming finite moments for all orders is merely for
technical convenience. Finally, we note that the noise terms are allowed to be heteroskedastic and
serially dependent through their volatility processes v/Ay and v/Ay.

We now turn to the regularity conditions for the sampling scheme. Below, we denote

Ok = iynk — Wnk—1r OZnk = 1Znk — 1Znk—1s

which are the numbers of fine sampling intervals (i.e., those determined by the sampling basis)

contained in the kth sampling intervals of Y and Z, respectively.

Assumption S5. The following conditions hold for a real sequence A, — 0 and functions f, ¢y,

¢z [0,T] — (0,00): (a) Api/Ay is uniformly bounded; (b) for each t € (0,T) and any integer

sequence Ly, with L, — oo and Lp,A, — 0,
min{i:t(n,i)>t}+Ln

=y

" i=max{i:t(n,i)<t}—Ln

An,i

n

- 10| =o; (5A.13)

(¢) Syni and 6z pk are uniformly bounded; (d) for each t € (0,T) and any integer sequence L,
with Ly, — oo and L,A, — 0,

1 min{k:t(Y,n,k)>t}+Ln,

. Z ‘5Y,n,k_¢Y )] =0(1),
" k=max{k:t(Y,n,k)<t}—Ln
min{k:t(Y,n,k)>t}+L,

- Z 020k — ¢z ()] =0(1).

" k=max{k:t(Y,n,k)<t}—Ln

(SA.14)

Part (a) of Assumption S5 ensures that the mesh of the sampling basis shrinks to zero at
least as fast as A,. Part (b) formalizes the notion that the irregularity of the sampling basis
is “locally moderate.” This condition allows the sampling intensity (measured by 1/f(¢)) to vary
across different fixed times. It requires that, within a shrinking neighborhood of each time ¢,
“most” sampling intervals are of size close to f () A,. Note that parts (a) and (b) hold trivially
when the sampling basis is regular. Part (c) requires that the sampling grids of Y and Z are not
“too coarse” relative to the sampling basis, and part (d) further requires that the coarse sampling
of each process is “moderately irregular.” These two conditions hold trivially if the sampling of Y
and Z are synchronized: in this case, we can set the sampling basis as the common sampling grid

of Y and Z, so that (SA.14) hold with the o(1) terms being identically zero.



SA.4.2 The estimator and its asymptotic properties

We propose a pre-averaging method to deal with the noisy data: we first smooth locally the noisy
returns and then conduct the jump regression. The pre-averaging method has been introduced by
Podolskij and Vetter (2009), Jacod, Li, Mykland, Podolskij, and Vetter (2009) for the estimation
of integrated variance using noisy high-frequency data. The inference for jumps is limited to high-
order jump power variations (Jacod, Podolskij, and Vetter (2010), Li (2013)) for univariate regularly
sampled processes. The current setting is hence distinct from prior work in a non-trivial way.

In order to pre-smooth the noisy returns, we consider a weight function g : R — R, that is
supported on [0, 1], continuously differentiable with Lipschitz continuous derivative and is strictly
positive on (0,1). We also consider an integer sequence h,, of smoothing bandwidth parameters
that satisfies

hn = [0A;12], for some 6 € (0,00). (SA.15)

The pre-averaged returns are defined as locally weighted averages of observed noisy returns. For

each ¢ > 0 (which is the index of the sampling basis), we set
>l _ iZnk — 1 / /
Zi=> g <hn> (Zt(Z,nJc) - Zt(Z,n,k:—l)) ;
k
o iy — 0
Y=g ( nh ) (Yt/(y,n,k) - Yt’(y,n,k—n) :
n

k

(SA.16)

By construction, these pre-averaged returns are synchronized with respect to the sampling basis.

We adapt the (unweighted) jump regression estimator using the pre-averaged returns as follows:

A Zizo:t(n,i+hn)§T ZL,ini,il{ ’Z%,i|>17n}

_ (SA.17)
ZizO:t(n,iJrhn)gT Z;LQ,ilﬂij. |>v,}
The truncation threshold ,, plays the same role as vy, in (2.12). In the current context, we suppose
that

B, < AT, for some @' € (0,1/4).

The intuition for the condition ' < 1/4 is that, in the absence of jumps, the order of magnitude of
each pre-averaged return is Op(Ayl/ 4). Hence, the truncation threshold v, can be used to separate
consistently the smoothed jump returns from the diffusive ones.

Theorem S5, below, describes the asymptotic distribution of 37’1, which requires some additional
notation. Let (T},)m>1 be the successive jump times of the Poisson process ¢ — p ([0, ] x Ry). We

consider variables ((pm—, (m+, Cg’,m’ C,Z,m)mzl defined on an extension of the space (£, F,P) which,

10



conditionally on F, are mutually independent centered Gaussian with variances given by

E[C_|F] = bur, f (Tn) /1 ([o6-wse dsQ)Qdu,
B [GhlF] = bur, f (T | ( / g(s—u)g(s)ds) du,
E [(FmlF] :Q_IAKTm(;Sy(Tm)/ </Olg(s)g/ (54 u) ds> du,

E [(FmlF] = 91AZ,Tm¢Z(Tm)/ </01 g(s)g (s +u) d3)2 du.

(SA.18)

Theorem S5. Under Assumptions 1, S4 and S5,

o £ o1 <r AZ1, (G + Gt + G = BoCh )
JANS 1/4 (5% - ﬁo) — <f01 , (3)2 ds) ZmZI:TmST AZ%M )

Theorem S5 shows that B;L is asymptotically centered at the true value 8y with convergence rate
A, 4 The limiting distribution is F-conditionally centered Gaussian and its asymptotic variance
depends on the spot variances of the efficient prices, the spot variances of the noise terms, as well

as the local sampling intensities, around jump times.
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Supplemental Appendix B: Numerical experiments

We now assess the efficiency gain provided by our efficient estimation procedure and we further ex-
amine the finite-sample performance of the asymptotic theory developed in the paper in realistically

calibrated simulations.

SB.1 Relative efficiency of beta estimation

We start with gauging the efficiency gains of our efficient estimation procedure in empirically
relevant scenarios. As seen from the asymptotic theory in Section 4, the sampling variability in
the estimation of beta depends on the volatility processes of Y and Z, as well as the number and
sizes of jumps. Therefore, to make the efficiency comparisons practically relevant, we calibrate the
numerical environment using estimates of these quantities from our empirical application in Section
5. In particular, in the calculation of the asymptotic variances we will use the detected jumps in
our empirical data sets and we will further set ¢, = 3 (én,i— + énis) for t € ((i — 1)Ap,iA).

We conduct two efficiency comparisons. First, in order to have a general sense about how
accurate the jump beta can be estimated, we compare the efficiency bound for estimating the jump
beta, which is attained by our optimally weighted estimator, with that for estimating the continuous
beta. Under the assumption that 8§ (recall (4.15)) is a constant, Li, Todorov, and Tauchen (2016)
show that the sharp lower efficiency bound for estimating the continuous beta is ( fOT czz.s/vSds) L.
For the 9 assets studied in our empirical application, we find that estimating the continuous beta
is 6 to 7 times more accurate, measured by the F-conditional asymptotic standard deviation, than
estimating the jump beta from the same data set. We note that this is in spite of the fact that
the jump beta estimation is (effectively) based on 74 jump returns detected in the sample while
the continuous beta is based on the remaining of the total 56, 886 high-frequency increments. The
intuition is that, although the number of jump returns is small, these returns have much higher
signal-to-noise ratio than their diffusive counterparts for the estimation of betas.?

Our second efficiency comparison concerns the role of the optimal weighting in the efficient
estimation of jump beta. That is, we are interested in the efficiency gains from using the optimal
weight function w*(-) over the case of no weighting, corresponding to w(-) = 1, which has been
done in prior work such as Gobbi and Mancini (2012) and Todorov and Bollerslev (2010). The

comparison is, again, implemented using estimates of jumps and volatility paths as explained above.

20f course the above efficiency comparison is based on the premise that the continuous beta and the jump beta
remain constant over the same time interval. Results from tests for temporal stability of continuous betas in Reif3,
Todorov, and Tauchen (2015) indicate that continuous betas vary even over short periods such as months. This is
unlike our empirical findings for the jump betas, reported in Section 5, for which we find temporal stability over time
spans of years.
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Table S1: Relative Efficiency of Jump Beta Estimation

Asset ©3¢Pn Agget 2S€On Agget SCn

a.s.e.fn a.s.€.Bn a.s.e.Bn
XLB 0.68 XLI 0.69 XLU 0.55
XLE 0.61 XLK 0.61 XLV 0.61
XLF 0.44 XLP 0.66 XLY 0.61

Note: Calculations of the asymptotic standard error (a.s.e.) are based on detected jumps and
volatlhty paths extracted from the empirical data set discussed in Section 5. The efficient estimator
$3, and the unweighted estimator 3, correspond to 3, ([0, T] xRy, w) with w(-) = w*(-) and w(-) = 1,
respectively.

Table S1 reports the relative efficiency of the unweighted estimator versus the efficient estimator.
We see that the optimal weighting indeed provides nontrivial efficiency gains, with the minimal
gain being 31% among all assets in our sample. Not surprisingly, these gains vary across assets
and are bigger for those with more volatility variations over the time period. We note that optimal
weighting is of particular relevance for the jump beta estimation: by their very nature, jumps are
rare events and, hence, for estimating the jump beta we naturally pool information from distinct

time periods which typically have very different volatility levels.

SB.2 Monte Carlo

We proceed with assessing the performance of our inference techniques on simulated data from the

following model

dZy = oydLy, dY; = B1dZ; + oydLy, oF = Vig+ Vay,
dViy = 0.0105(0.5 — V1 4)dt 4- 0.0717,/V1 1d By 4, (SB.1)
dVay = 0.6931(0.5 — Va)dt + 0.5828,/V5 1dBa 4,

where L and L are two independent Lévy processes with characteristic triplets (O, 1, %‘:‘) and

(0, %, e;g') with respect to the zero truncation function; (Bj, Bg) is a two-dimensional standard
Brownian motion independent of L and L. This means that L and L are Brownian motions plus
compound Poisson jumps, with jumps having double-exponential distribution. The frequency and
jump size distributions are calibrated to mimic those in the real data that we are going to use.
The stochastic volatility has a two-factor affine volatility structure, with the first factor being slow

mean-reverting (with half-life of sixty-six days) and the second factor being fast mean-reverting
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(with half-life of one day). Finally, for the beta process we consider

By =1, forte|0,T], under Hy (null hypothesis),

~ (SB.2)
dB; = 0.005(1 — 3;)dt + 0.005+/B;dB;, under H, (alternative hypothesis),

where B is a Brownian motion independent of B, L and L. The unconditional mean of B¢ under
the alternative hypothesis is 1 and the expected range of the process (f;);>0 over the interval of
estimation is approximately 0.2.

We set T' = 1, 500 days (our unit of time is a trading day), and consider two sampling frequencies:
A, = 1/38 which corresponds to sampling every 10 minutes in a 6.5 hours trading day, and
A, = 1/81 which corresponds to sampling every 5 minutes. We experiment with two values of
ky for each of the sampling frequency in order to check the sensitivity of the inference techniques
with respect to this tuning parameter. Finally, as is typical in truncation-based methods, we
select the truncation threshold in the following data-driven way. For the increment AT'Z with
i=(t—-1)/An] +1,..., [t/Ay], we set

0.49 [1/An] = = n n
Un =4 % \/BV, x AY BV, = /A 13 > 1A Z|AYZl. (SB.3)
[(t=1)/An]+2

Here, BV} is the Bipower Variation of Barndorff-Nielsen and Shephard (2004, 2006) which is a jump-
robust estimator of volatility and importantly free of tuning parameters. For the construction of
Cn,i+ we include all increments for which both components are below a threshold set similarly as
above but with 4 replaced by 3. There are 10,000 Monte Carlo trials.

In Table S2 we report the results from the Monte Carlo for the test of constant jump beta.
As seen from the table, the test in general has good size properties. In all cases, we notice some
overrejections which are higher for the larger choices of the block size k,,. These overrejections
decrease when the sampling frequency increases from 10 to 5 minutes. The test also has a reasonable
power against the considered alternative which increases with the sampling frequency. In Table S3
we report the coverage probability for the refined CI of jump beta that is based on the efficient
estimator and is described in Algorithm 3. The coverage probabilities are in general quite close to
the nominal levels of the CIs. Not surprisingly, we see again improved performance at the higher
sampling frequency. We also note that the coverage probability of the Cls is not very sensitive to
the choice of the block size k,. Overall, we find quite satisfactory finite-sample performance of our

inference techniques for the jump betas, even for relatively sparse sampling of 1/A,, = 38.
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Table S2: Monte Carlo Rejection Rates (%) of Tests for Constant Jump Beta

Case Under Hy Under H,

Nominal Level Nominal Level
10% 5% 1% 10% 5% 1%
1/A, =38, k, =19 1342 7.72 2.99 69.76 59.39 39.28
1/A, =38, k, =25 14.09 8.42 3.20 70.19 60.28 41.12
1/A, =81, k, =27 1290 7.40 2.62 90.37 85.19 71.69
1/A, =81, k, =35 13.01 7.29 240 90.13 85.22 72.45

Table S3: Monte Carlo Coverage Probability (%) of Confidence Intervals

Case Nominal Level
920% 95%  99%
1/A, =38, k, =19 88.43 93.60 98.46
1/A, =38, k, =25 8852 94.01 98.43
1/A, =81, k, =27 88.68 94.04 98.50
1/A, =81, k, =35 88.93 94.32 98.59
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Supplemental Appendix C: Proofs

Throughout this appendix, we use K to denote a generic constant that may change from line to
line; we sometimes emphasize the dependence of this constant on some parameter ¢ by writing K.
We use 0O, to denote a k x ¢ matrix of zeros and when g = 1, we write 0, for notational simplicity;

0f is understood to be empty when k£ = 0. For any sequence of variables (&) the convergence

p=1’
(&np)p>1 = (&p)y>; is understood as n — oo under the product topology. We write w.p.a.1 for

“with probability approaching 1.”
By a standard localization procedure (see Section 4.4.1 of Jacod and Protter (2012)), we can

strengthen Assumption 1 to the following stronger version without loss of generality.

Assumption S6. We have Assumption 1. Moreover, the processes X, by and oy are bounded.

SC.1 Proofs of results in the main text

Proof of Proposition 1. (a) Since the jumps of Z have finite activity, we can assume without
loss of generality that each interval ((i — 1)A,,iA,] contains at most one jump; otherwise we can
restrict our calculation to the w.p.a.l set of sample paths on which this condition holds. We denote

the continuous part of Z by Z¢, that is,

Zf =2y —Y AZ, t>0. (SC.1)

s<t

Note that Z,, (D) is the union of two disjoint sets Z1,, (D) and Zy, (D) that are defined as
Tin (D) =Z,(D)n{i(p) :p € P}, Io, (D) =7Z,(D)\Z,, (D). (SC.2)
It suffices to show that, w.p.a.l,
Z1n, (D) =Z (D), Zon(D)=0. (SC.3)

First consider 7y, (D). Since v, — 0, we have |A?(p)Z | > v, for all p € P, when n is large

enough. Therefore,
Tin (D) = {z () :p € P.((i (p) — DA AL, Z) € D} w.p.a.l. (SC.4)
Now, observe that

wop (660 = D2 88 2) = (382

’ —0 as. (SC.5)
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Indeed, almost surely,

21617;7) H( -1) An,A”( ) ) — (Tp,AZ-,—p)

- sy (600 3 70,7
‘ pE'P P =i(p)

< Ay + sup |Zf — Z5| — 0. (SC.6)
st<T,|s—t|<Ap

By Assumption 2, the marks (7,, AZ,,)pep,, are contained in the interior of D a.s. Then, by (SC.5),
((i(p)—1)An, A?(p)Z)pepD C D w.p.a.1l. With the same argument but with D¢ (i.e. the complement
of D) replacing D, we deduce ((i(p) —1)A,, A?(p)Z)pE’p\’pD C D¢ w.p.a.l. Therefore, the set on the
right-hand side of (SC.4) coincides with Z (D) w.p.a.1. From here, the first claim of (SC.3) readily
follows.

It remains to show that Zy, (D) is empty w.p.a.1. Note that for i € Zy, (D), A'Z = A Z°.
Hence, for any ¢ > 2/ (1 — 2w),

P(Ion (D) #0) < > P(IATZ] > va) < KA = = 0, (SC.7)
Un
=1

where the second inequality is by Markov’s inequality and E |A"Z¢|? < KqA?L/ 2; the convergence is
due to (2.12) and our choice of q. The proof of part (a) is now complete.
(b) By part (a), it suffices to show that

(1 = 1)An, AT X)icz0py — (70 AX,) = 0,(1). (SC.8)

pEPD

Observe that ((i — 1)A,, A?X)iez(p) is simply ((i(p) — 1)A, Af(p)X)pEpD. We deduce the desired

convergence via the same argument as that for (SC.5). Q.E.D.

Proof of Theorem 1. (a) Let

3 Qzy (D)
D)= —“=———-. SC.9
#(D) Qzz (D) (5C-9)
For each p > 1, we set
Ryp=A2A7 X - AX,) and G,y = (—B(D),1)Rup. (SC.10)
With these notations, we have in restriction to Qg (D),
ALY = Bl Z + A6 (SC.11)

L-5

By Proposition 4.4.10 in Jacod and Protter (2012), (Rnp),~; = (Bp),~,, where Ry, is defined in

(3.2). Consequently (recall the notation (3.12)),

p>1

L-s
(Snp)p>1 = (Sp)p>1 - (SC.12)

17



By Proposition 1(a), w.p.a.l.,
2

_ n 2 n 2 n n
det [Qn(D)] = | S ap, z2 | | S an,v?| - Y an,zan, v . (SC.13)

pEPD pEPD pEPD

Plug (SC.11) into (SC.13). After some algebra, we deduce

2

A det[QuD)] = | D ATLZ [ DD | — | D Al Zons | - (SC.14)

pEPD pEPD pEPD

Note that for each p > 1, A?(p)Z — AZ,,. Combining this convergence with (SC.12), we use the

property of stable convergence to derive the joint convergence

(gn,pa AZP)Z)le E) (§p, AZTP)pzl . (SC.15)

Since the set Pp is a.s. finite, the assertion of part (a) follows from (SC.14), (SC.15) and the
continuous mapping theorem:.

(b) By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we
assume that Assumption S6 holds without loss of generality. Since Pp is a.s. finite, we can
also assume that |Pp| < M for some constant M > 0 for the purpose of proving convergence in
probability; otherwise, we can fix some large M to make P (|Pp| > M) arbitrarily small and restrict
the calculation below on the set {|Pp| < M}.

By Theorem 9.3.2 in Jacod and Protter (2012), we have,

~

Cri(p)— i> Cry—s ém(p)Jr i> Crps all 1<p< M. (SC.16)

By Proposition 1(b),
Qn (D) = Q(D), (5C.17)

which further implies (with £, = Qzy.n (D) /Qzzn (D))
Bn - B (D). (SC.18)

Furthermore, by essentially the same argument as in the proof of Proposition 1(a), we deduce

7, (D) =1 (D) w.p.a.l. (SC.19)
Therefore,
2
GO =S a2 | Y 0] - X AL Zaun | wpal (SC.20)
pEPD pEPD pEPp
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Fix any subsequence N; C N. By (SC.16) and (SC.18), we can extract a further subsequence
Ny C Ny, such that along No,

((én,i(p)*’émi(p)+)1gp§M ’Bn> = ((CTP—7CTP)1§p§M 76(1))) (SC.21)

on some set Q with P(2) = 1. Then, for each w € Q fixed, the transition kernel of ¢, (D) given
F converges weakly to the F-conditional law of (D). Moreover, observe that the F-conditional
law of the variables (sp)1<p<m does not have atoms and has full support on RM . Therefore, the
F-conditional distribution function of ¢ (D) is continuous and strictly increasing. By Lemma 21.2
in van der Vaart (1998), we deduce that on each path w € €, along the subsequence Ny, cv® — cv®,
where cv® is the F-conditional (1 — a)-quantile of ¢ (D). Since the subsequence N; is arbitrarily
chosen, we further deduce that cvy RN by the subsequence characterization of convergence in
probability. The proof for part (b) is now complete.
(c) By part (a) and part (b), as well as the property of stable convergence, we have

(A7 det [Qn (D)), cv, Tay(p) = (¢ (D), 0™, 1ay(p))- (SC.22)
In particular,
P ({A;" det [Qn (D)] > cvg} N2 (D)) = P({C (D) > v} N 2 (D). (SC.23)

Since P (¢ (D) > cv®|F) = a and Qq (D) € F, the right-hand side of (SC.23) equals to aP (Qg (D)).
The first assertion of part (c) then follows from (SC.23). To show the second assertion of part
(c), we first observe that (SC.17) implies det [Qy, (D)] L5 det [Q (D)]. In restriction to €, (D),
det [Q (D)] > 0 and, hence, A !det[Q, (D)] diverges to +oo in probability. Part (b) implies
that cv? is tight in restriction to Q, (D). Consequently, P (A, det (@, (D)] > cv|Qq (D)) — 1 as
asserted. Q.E.D.

Proof of Theorem 2. (a) Observe that

Qzyn (D,w) — BoQzzn (D,w) Z w <cZ , H,Bn) AMZ (ATY — BoATZ) . (SC.24)
i€l (D)

Recall the notation ¢, , from (SC.10). By (SC.19), we further deduce that, w.p.a.1,

A2 (Qzyvin (Dyw) — BoQzzm (D, w)) = Z w (ém( )—> Cni(p +,ﬂn) % Snp- (SC.25)

p€Pp
By (SC.16), (SC.18) and Assumption 3,

w (é’LT'L(p)—’ é?(p)—}—?/én) i) w (CTp—7 ch)/BO) ] b 2 1. (SCQG)
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Since Pp is a.s. finite, we use properties of stable convergence to deduce from (SC.12) and (SC.26)

that

Agl/Q (QZYJL (D7 w) - BOQZZ,n (D7 w)) g w (CTP_7 Crps 50) AZTng' (8027)
pEPD
Note that 1/2
_ A n n D w) 50QZZ7L (D7 w))
AZY2(B, (D, w) — (Qzyn ( ’ . SC.28
y (SC.19),
Qu (Dyw) = 3w (&l iy Bu) Al XA X T (SC.29)
pEPp
By A;L(p)X — AX,, and (SC.26), we deduce

Qn (D,w) = 3w (er,—cr,, fo) AX, AX]T (SC.30)

PEPD

-S

The first assertion of part (a), that is, Aﬁl/Q(ﬂAn (D, w) — Bo) L
(SC.27), (SC.28) and (SC.30).

Turning to the second assertion of part (a), we first observe that when ¢; does not jump at the

(s (D, w) readily follows from

same time as Z;, each ¢, is F-conditionally centered Gaussian; moreover, the variables (gp)p>1 are JF-
conditionally independent. Therefore, the limiting variable (3 (D) is centered Gaussian conditional
on F, with conditional variance given by X (D, w). This finishes the proof of the second assertion.

(b) For notational simplicity, we denote

(—B0s1) (erp— +¢r) (=B, 1) T

A, =
P 2072 ’

By =w (¢r,— r,, Bo) AZZ .

Then we can rewrite ¥ (D, w) and X (D, w*) as

> (D, w) = Z:I’LBPA? 2 (D, w*) = Z A;l
(ZPEP'D Bp) p€Pp

The assertion of part (b) is then proved by observing

| ¥(D,w) \/EPEPD pA \/ZPEPD > 1
% (D, w* 2 perp Bp T

where the inequality is by the Cauchy-Schwarz inequality.
(c) By (SC.19) and (SC.26), as well as AlpyZ = AZr,, we deduce that the F-conditional law

of En”g(D, w) converges in probability to that of (3(D,w) under any metric for weak convergence.
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From here, by using an argument similar to that in the proof of Theorem 1(b), we further deduce
that

cvs’/; N cvg/2, (SC.31)

where cv§/2 denotes the (1 — a/2)-quantile of the F-conditional law of (3(D,w). It is easy to see
that the F-conditional law of (g (D, w) is symmetric. The assertion of part (c) then follows from
part (a) and (SC.31). Q.E.D.

Proof of Theorem 3. (a) Fix S € S and let m = dim(S) — 1. We consider a sequence of subsets
Q,, defined by

For every 1 <i < |T/A, ], if ((i — 1) A,,iA,] contains
Q, = { some jump of Z, then this interval is contained in (S;j_1,5;]
for some 1 < j < m and it contains exactly one jump of Z.
Under Assumption 1, the process Z has finitely active jumps without any fixed time of discontinuity.

Hence, P (€2,,) — 1, so we can restrict our calculation below on €2, without loss of generality.

Below, we write h = (hy, ... hm)T and denote the log likelihood ratio by

n
o+2,%h
L, (h) =log —2=>n =,
n (h) = log 4Py
0
For each i > 1, we set h(n,i) = hj, where j is the unique integer in {1,...,m} such that iA, €

(Sj-1,85;]. On the set €, with 6 = 6y + Arl/zh, we have

iA, iAn (14 AY2h (n, i) AT,
ATX = b5d8+/ osdWs + 1o 1/9
(i—1)An (i—1)A, (ﬂo +AY ho> (1+ AY2h (n,9) AT + Ale

To simplify notations, we denote for each i > 1,

8
3
Il

iAp
AT1/? / osdWs,
(i—1)An

B iAp (740
bni / bsds, Cp;= A;l csds,
(

i—1)Ap (i-1D)A,
ArJ h(n,i
Jn,i = e ) dn,i = ( )1 9
BoAP Tz + Al ho + Boh (n, 1) + A *hoh (n, i)

Note that under Assumption 4, (gvm)i>1 are independent conditional on (b, o, Jz4, €)i>0 and

each z,; is distributed as N (0, Cni). With these notations, we can write the log likelihood ratio
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explicitly as e L L
T T/Ap
Z A Jyd) e te,  — Z ATJZdT e td,, . (SC.32)

Mn,1°n,i n,i n,i nz

Note that on Q,, A'Jz # 0 only if ((i —1)A,,iA,] contains one (and only one) jump of Z.

Therefore,
1 T —1
Z AZTP ~ ,(p Tni(p) — Z AZTpdn i( p)cn,’i(p)dnvi(p)' (80'33)
pEP p673

L-s

By Proposition 4.4.10 in Jacod and Protter (2012), (z —— (Rp)p>1. Under Assumption

n,i(P))p21
5, the variables (R,)p>1 are F-conditionally independent, where the F-conditional law of R, is

N (0, c.rp); MOTEOVEr, Gy, j(p) —* Cr, a.8. for each p > 1. Further note that for each p > 1,
dn,i(p) — Dph. (8034)
where the matrix D), is defined as

0 OT; 1 0!

m—j

L 0, Bo O]

m—j

Dy

for j such that 7, € (S;-1,5;]. (SC.35)

Since P is a.s. finite, we deduce (4.9) from (SC.33) and (SC.34), that is,

1
Ly () = h' T2y, — §hT1‘nh + 0,(1), (SC.36)
where
— 2 T—fl —1/2 T—fl
Tw=Y AZ.Dye t Dy, n=T,"2Y AZ Dle | wnip). (SC.37)
peP pEP

In addition, (4.10) follows with
=) AzZD)c.'D, =02 AZ DJc 'R, (SC.38)
peEP peEP

It is easy to verify that I" defined in (SC.38) equals to I' (S) defined by (4.17). To see, we make
the following explicit calculation using (SC.35),

1 T Bo—BE T
v, 0j—1 T O
0j—1 OG-1)x(-1 051 0¢-1
D;c;le— J ) (=1x(-1) C A (J=1)x(m=j) (SC.39)
Po—hz, ol <6076Tp> 1 0T
vz, J—1 V7, CZZ,mp m—j
Om—j  Om—j)x(j-1) Orn—;j O(m—j)x (m—j)
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Finally, we note that conditional on F, 1 has a standard normal distribution and, hence, is inde-
pendent of F. The proof for the LAMN property is now complete.

From the proof of Theorem 3 of Jeganathan (1982), we see that the convolution theorem can
be applied in restriction to the set Q(S) = {I'(S) is nonsingular}. The information bound for
estimating f3, that is, the first diagonal element of T" (S ) , can then be easily computed by using
the inversion formula for partitioned matrices.

(b) Since the jumps of Z have finite activity, on each sample path w € Q there exists some
S*(w) € S that shatters its jumps. That is, each interval (S7_;(w), S} (w)] contains at exactly one
jump time of Z. We can then evaluate X5 () at S* on each sample path and obtain

-1

AZ? 2
S5(57 = (> (CS - 71) . (SC.40)
v V2s
s<T §
Plugging the definitions of 715 and 725 (see (4.16)) into (SC.40), we can verify that
-1

AZ?
Y5(85%) = 5 . SC.41
5 (57) z; cyy.s — 2Boczy.s + Baczzs ( )

Recall that we fix D = [0,7] x R, and ¥* = ¥ (D,w"), with the latter given by (4.8). Under
Assumption 5, we see ¥ (S*) = T*.
It remains to verify that X5 (S*) > X5 (S) for all S € S. By the Cauchy-Schwarz inequality,

2
(zsﬁlggsﬂls) S s (SC.42)

ZSJ‘71<S§S]‘ V2s S 1<s<S; V2s

From (4.19), (SC.40) and (SC.42), 3 (S*) > £5 (S) readily follows. Q.E.D.

SC.2 Proofs of results in Appendices SA.1, SA.2 and SA.3

Proof of Theorem S1. The proof is essentially the same as that of Theorem 1 except that
we derive the convergence R, ), Ls R, for p € Ap using Assumption S1. To do so, we denote

Enp = Tp/An — |Tp/Ar] and observe

R A-1/2 /i(p)A" osdWs + 0,(1)
n,p n S S P
(i(p)~1)An
W, W( (P)=1)An

- W,
O'(zp) 1 nV np\/ —1)A \/ \/7_7_})“!‘01;

where the 0,(1) term in the first equality is due to the drift and, in the second equality, we use the

standard local Gaussian approximation (using It6’s isometry and the cadlag property of o) to the
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continuous martingale component before and after the jump. From here, the claimed convergence

of Ry, follows from the cadlag property of o and Assumption S1. Q.E.D.
Proof of Theorem S2. We complement the notations in (SA.8) with
Tn,it = (B0, 1) Enix (=Bo, 1) . (SC.43)

Observe that vy (recall (SA.2)) is the spot covariance matrix of the process Y — fyZ. Then, by
applying Theorem 13.3.3(c) of Jacod and Protter (2012) to the process Y — 5pZ, we deduce that

~ ~ L-s
k’}L/Q (Un,i(p)— — UTpf, Un,i(p)-i— — UTp)pzl — (\/ivafgzl,_, \/§UTP£II7+) . (8044)

p>1

Recall the notations in (SA.3) and (SA.8). For each p > 1, we can decompose

Pritp) = bp + ki /2 Frp + G, (SC.45)
where
Fop = bl ((f’n,i(p)— + ﬁn,i(p)+) /2= ¢p), (SC.46)
Grp = bnp — (Bn,i()— + Pnip)+) /2-
From (SC.44), it follows that
(Fp)p>1 - (Fp)p>1 - (SC.47)

We also see from Theorem 2(a) that £, — Sy = OP(A}L/ 2) = op(kn Y 2), so we further deduce

Grp = 0p(ki1/?). (SC.48)

n

We now turn to the estimator 3, (D, w*). By (SC.19), we have

_1/2 n n n "
An ') pep Al 2 (Ai(p)y — BoAjy Z) /Gni(p)
ZpGP A?(p) 22 Pnip)

AL (Bn (D, w") — 50) = w.p.a.l. (SC.49)

Recall the notations R, , and ¢, , from (SC.10) and write R, p = (Rznp, Rym’p)—r. We can rewrite
(SC.49) as

1/2 in
ZpeP (AZTP + An/ RZ,n,p) §n,p/¢n,i(p)

1/2 2 2
> oep (AZT,, + Ay RZ,n,p) [ ni(p)

A2 (ﬁn (D, w*) — /30) - w.p.al. (SC.50)
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Next, we derive expansions for the numerator and the denominator of the right-hand side of

(SC.50) separately. Observe that the numerator satisfies

(82, + AP Rznp) v AZs e,
pEP qgn,i(p) B ;;9 P
(825, + A2 Ranp) Snp b0 — An sup (9 + b P Fop + Gy
= Gnitp) b (SC.51)
/2 Z AZr, Snp Fup n Z A%L/2RZ,n,p§n,f> bp — AZn, $npGnp
P ¢n ilp ¢p peP Pni(p) P
— g2 g} Zry ;’:p +0p(k'/?),

where the first equality is obtained by using (SC.45); the second equality is obvious; the third
equality follows from Ry, , = Op(1), ¢np = Op(1), q@n’i(p) — ¢p = 0p(1) and (SC.48). Similarly, the
denominator of the right-hand side of (SC.50) satisfies

(AZTP +AA711/2RZ,n,p)2 B Z AZEP
peEP ¢n,i(p) p2673 ng
(8Z:, + AV Rznp) 0= AZ (65 + By + Gy

veP ) Pn,i(p) Pp
12N B e (SC.52)

n

pEP Pn,i(p) Pp
(287282, R+ DulY, ) 6p — AZ2,Gny

an,i(p)¢p
= 1/22 =t op(ky ).

peP p

>

Finally, we plug the expansions (SC.51) and (SC.52) into (SC.50) and deduce, w.p.a.1,

A2 (B (D) = o)
—1/2 1/2
_ ZpE'P AZz, n »/Pp — kn / ZpeP AZ:, Snp np/% + op(kn / )
S pep AZ2 [y — k2 Y ep AZ2 Frp )92+ 0p(kn ?)
= (5 (D) + k2 HY 5 (D) + op(ky /),

(SC.53)
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where

_ AZqr, n, AZ?
150) = (Syer 22222) / (Sper 2 ).
AZ? Fn7 Tp SN, Tp SN, n, AZ?
- (ZPEP ¢2> (S 22322 (5, 2o o) (ZPEP J) (SC.54)

n,,B AZ72.p 2
ZPGP T ép

We now observe that the estimators ¢, ;- and ¢, ;4 do not involve the increment A7 X. From here,

it is easy to see that the convergence in (SC.12) and (SC.47) hold jointly with F-conditionally

independent limits, that is,
L-s

(Snps Fn,p)pzl — (Sps Fp)pzl . (SC.55)
By properties of stable convergence, we deduce
* * L-s * *
(G5 (D), H 5 (D)) 55 (3 (D), H; (D). (SC.56)
This finishes the proof. Q.E.D.

Proof of Theorem S3. We consider a sequence (2, of subsets defined by

Q For every 1 <i < |T/A,], ((1 — 1) Ap,iA,)

contains at most one jump of Z.
Under the maintained assumptions, the process Z has finitely active jumps. Hence, P (€2,) — 1, so
we can restrict our calculation below on 2, without loss of generality.

We denote the log likelihood ratio by

RN
— 0 n
0
Let G denote the o-field generated by the processes (b, czz,v¢, Jz,€). Given the maintained assump-
tions, we see that, under the law Pj, the observed returns (A7'X);>0 are independently normally

distributed conditional on G. Using this fact, we can obtain an explicit expression for L, (h). For

notational simplicity, we denote

Ay iAp
Zng = Anl/Q/( VCzz2sdWzs,  Yn,i EAnl/Q/( A VUSdWy g,
i—1) A,

i—1)An
iAp Ay
Cni = A;l czzsds, Up; EA;I veds.
(i—1)An (i—1)Ap
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Some straightforward algebra yields

- h?
where )
_ [T/An] Yni (A:LJZ + A%L/2Zn,i> [T/An] (A?JZ + A;/2Zn71>
¢n = _ ) Fn = — .
i=1 Un,i = Uni

It remains to analyze the asymptotic properties of 1, and I',. We decompose v, = 1% +
)" where 1!, and 9!/ are sums over the subset {i: A?.Jz # 0} and its complement, respectively.
Similarly, we decompose I'y, =T + T,

We now proceed to deriving the joint convergence in law of ( N,’z,%’]’) under the G-conditional
probability. We note that A'Jz and ©,; are G-measurable, and (2p,yni) are G-conditionally

independent with conditional distributions given by
Zn,z"g ~ MN (07 En,i) ) yn,z’g ~ MN (07 'Dn,i) .

In particular, 1/;,’1 and 1;;{ are G-conditionally independent, so it is enough to derive the marginal

convergence of each sequence. Since the jumps are finitely active, it is easy to see that

LT/An

J

- AT - .

Bo= Y TS ag), d=ay? Yy o),
AP J 770 e i=1 .t

By applying the Lindeberg-Lévy central limit theorem under the G-conditional probability, we

deduce the following G-conditional convergence in law:

~ 2 N T
0 L MN (o, > AZT) S M <o, / CZZ’sds> .
Ve o US

reT T $

From here, we deduce the following convergence under the G-conditional probability,

T

~ ~ d\Z,. 7

I —E5 )~ MN (0/ [U]> : (SC.58)
0 S
Similarly, we can derive the convergence in probability for I';;:
Ta1z,z
T, T = / [v} (SC.59)
0 s

Since T, is G-measurable, (SC.58) and (SC.59) imply that (t,, ') converges in law to (¢, T'). From
here, the assertion of the theorem readily follows (recall (SC.57)). Q.E.D.
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Proof of Theorem S4. We first define some functions. For any 2 X 2 symmetric matrix ¢ =
[cik1<j k<2, we define

C12 C11
g(c) = ———5—, @)= ——5—, g3(c) =g1(c) — Bog2(c).
C22 — 012/611 C22 — 012/011

With any twice continuously differentiable function g, we associate a function

1
E 5 Z k lmg leckm + cjmckl)v
7,k lm=1

and a statistic

|T/An|—kn
Sn(g) =A, Z (g(én,z> — —Byg (Cn,l)>
i=0 "

We also set

noz AT n 72
22)’—2%#7 Z,ZZEZ(Ai?) .
i€}, e icTl, st
By direct calculation, we see that Bgi(c) = 3g1(c) and Bga(c) = 3g2(c). With this notation, we
can rewrite 3% as
A Snlgr) + Q 2y

Sn(g )+QnZZ

Hence,
A8, (93) + An 2 ( n,2Y 50@7122)

AP (B = Bo) = (SC.60)
( ) S (92) + Qn A
As a special case of (SC.27), we deduce
s AZ, AZ?
An1/2 ( n2ZY — /BOQn ZZ) L_) fpgp ~ MN (O, Z CT> . (SC61)
pEP Tp T€T vr
In addition, we note that
T T _
/ g5 (cs) ds = / Czvs = Poczzs 4o
0 0 g
Therefore, by Theorem 4 of Li, Todorov, and Tauchen (2016),
1/2 & L-s T CZZ,s
A28, (g3) =5 MN (0,/ UC’ ds) . (SC.62)
0 s

Note that the convergence (SC.61) is driven by a fixed number of Brownian increments around
the jump times. By a routine argument, we can show that (SC.61) and (SC.62) hold jointly with
F-conditionally independent limits. Hence,
T
- d|Z,Z
A R A R R T (Y = B (5063
0

C
/US
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By Theorem 3 of Li, Todorov, and Tauchen (2016), Sy, (g2) N fOT czz.s/vsds. As a special case of
(SC.30), we also have Q;, ,, N > e AZZ/vE. Hence,

5 . Tq(z,z
Sn(92) + Qn 22 o / [Uc]s (SC.64)
0 s
The assertion of the theorem readily follows from (SC.60), (SC.63) and (SC.64). Q.E.D.

SC.3 Proofs for Theorem S5

In this subsection, we prove Theorem S5. Section SC.3.1 collects some notation. Section SC.3.2

contains the main proof. Technical lemmas are proved in Section SC.3.3.

SC.3.1 Notations and preliminary results

By a standard localization argument (see Section 4.4.1 of Jacod and Protter (2012)), we can,

without loss of generality, strengthen Assumption S4 to the following version.
Assumption S7. We have Assumption S4. Moreover, the processes Ay and Ay are bounded.
We now introduce some additional notation. For notational simplicity, we set
gn () = gn (3/hn) -

Since the continuous function g(+) is supported on [0, 1], g5, (7) is non-zero only when 1 < j < h,, —1;

we shall use this simple fact implicitly below without further mention. We denote

Xn,i = }N/ = Zgn (]) A?—l—jX’ (8065)
n,. 7

where the first-difference operator A" is now defined with respect to the sampling basis, that is,
AVX = Xingy — Xinio1), 121
We denote the continuous component of X by

Z¢ t t
= Xp + / bsds + / osdWs.
Y¢ 0 0

We also denote by Uy = Y, — BoZf the diffusive residual process. The instantaneous drift and the

Xi

diffusion coefficient of U are given by, respectively,
bU7t = (—Bo, 1)bt, out = (—,30, 1)0’,5, t>0. (8066)
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Recall from (SA.2) in the main text that v; = (=S, 1)o:0, (—fo,1). Hence,
_ T
Vg = OULOy (SC.67)

We consider a filtration given by H; = F V o (T, : m > 1). Note that the random times
(Tin)m>1 are independent of the Brownian motion W. Hence, W remains a Brownian motion with
respect to the filtration (H;);>o. For each m > 1, we denote by ¢ (n,m) the unique integer ¢ such
that T,,, € (¢t (n,i —1),t(n,7)]. The random integer i (n, m) is Ho-measurable.

We consider a sequence (2, of events defined by

0 — For each @ with ¢ (n,i) < T, (t (n,i — hy),t (n,i + 2hy,)]

contains at most one jump time in (7p,)m>1.

Under the maintained assumptions, the length of the interval (¢ (n,i — hy,),t (n,i + 2h, )] shrinks
to zero uniformly. Since the jumps have finite activity, P (€2,) — 1. Therefore, we can restrict the
calculations below to the set €2,, without loss of generality. By doing so, we can suppose that each
pre-averaged return contains at most one jump return.

Finally, we recall the concept of convergence in F-conditional law. We write &, % ¢ if the
F-conditional law of &, converges in probability to the F-conditional law of & under any metric
for the weak convergence of probability measures. See Appendix A of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008) for more details and many useful results.

SC.3.2 Proof of Theorem S5

We now prove Theorem S5. The proof relies on several technical lemmas. For readability, we defer
the proof of these lemmas to Section SC.3.3.
Lemma S1, below, collects some estimates that are repeatedly used in the sequel. Notations

such as jZ,m and jZJm are interpreted as in (SA.16) and (SC.65), respectively.

Lemma S1. The following statements hold under the assumptions of Theorem S5: for p > 2,

‘Jz,n,i—Jz,n,i +‘Jy,n,i—Jy,n,i < Ko\, (SC.68)
[Ty = Bodznil Louni iy, oy S Khy', (SC.69)
B[Vl + |20, ol < Ky (hadh)”? (sC.70)
E[|&ynil" + |E2mil | Ho] < EphpP2, (SC.71)
IE“YYLC7Z-}77§7,L»2+ Z;;JZQZ.Q"HO] < KA, (SC.72)
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As we shall show later, the asymptotics of B;L is driven by the following variables:

¢

Cnm— = A;lﬂlh;l Z Zgn (] — k) gn (.7) Azn(n,m)JrkU7
k<0 J

o = 87 (S0 000 ()| Als
k>0 \ J (SC.73)
hn,

<§’,n,m = A;1/4h7_11 Z In (l) ’E_lY,n,i(n,m)—l’
=1

C/Z,n,m = A;1/4h7:1 Z 9n (l) é/Z,n,i(n,m)—l'

\ =1

Their asymptotic distributions are characterized by Lemma S2 and Lemma S3 below.

Lemma S2. (Cnm—» Cum+t )m>1 L (Cm—), Cm+)m>1 under the product topology.

L|F
Lemma S3. (Cynm, an m)m>1 —|> (Cym, CZ m)m>1 under the product topology.

We set
Ty =A{i:(t(n,i),t(n,i+ hy)] contains at least one jump of Z}, (SC.74)

which collects local windows on the sampling basis in which Z jumps. The proof of Theorem S5

relies on approximating 3/, via

Ziej iy Z;L er; K
Zzej* Z/2

Theorem S5 is evidently implied by Proposition S1 below, which is followed by its proof.

Bl (SC.75)

Proposition S1. Under the assumptions of Theorem S5,
(a) the sequence Ay, 14 (B — Bo) converges stably in law to

ZmZIITmST AZTm (Cm— + Cm-i— + C&m - BOC/Z’m>
(fo1 g(s)* d3> Yomsrr, <1 AZF,

I

(b) By = B = op(A3%).

Proof of Proposition S1(a). Step 1. In this step, we outline the proof. We note that

_1/4 1 Zzej* ( _ ﬁ0Z7,”>

A 1/4 _ _ ) SC.76
( " BO) h, Zzej* Z/2 ( )
In step 2, below, we show that
1
> zp— / 2ds Y. AZ7 . (SC.77)
ZEJ* m>1:T,, <T
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The numerator of the right-hand side of (SC.76) can be rewritten as

1/42 ni (Yai = PoZy,;) = Z Liazy, #0yNnm, (SC.78)

A m>1Tp <T

where
1 no B B
N”,m = 1/4 Z Z;,i(n,m)fl (Yé,i(n,m)fl - 602;,1'(11,771)7[) :
(VA ]
In step 3, below, we show that for each m > 1,

Nnym = AZTm (Cn,m— + Cn,m—i— + Cgf,n,m - /BOCIZ,n,m) + Op(l)' (80‘79)

By Proposition 5 in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), we can combine
Lemma S2 and Lemma S3 to deduce that

L-s
(Cnm 7<n m+7<Yn m?Can) —> (Cm >Cm+7<Ym7CZm)m>1 (8080)
From (SC.79) and (SC.80), we deduce
(M) o1 =5 AZz, (G + G+ G — BoChm) - (SC.81)

The assertion of part (a) of Proposition S1 then follows from (SC.76), (SC.77), (SC.78) and (SC.81).
Step 2. In this step, we show (SC.77). We can rewrite

hn

1 _
2 _ 2
I Z Zii= D, 1{AZTm¢0}h*n > 2 iyt (SC.82)
SN m>1:T,, <T =1
We note that (recall the notation (SC.65))
1 &
72 2
Z 1{AZTm¢0}FZJZ,n,i(n,m)—l = Z 1{AZT 7é0}h Zgn AZTm
m>1:T, <T =1 m>1:T, <T
— < / d5> Y Az; (SC.83)

m>1:Tm <T
Next, we note that

2 7 7 7 ~c =
Zn,i - JZJM' = JZ»”J' - JZ7n7i + Zn,i + €Zmi

Since the random integer i (n,m) is Ho-measurable, Lemma S1 implies

?|

_ ~ 2
N — sz,i(n,m)_l‘ ‘”H,o] < K (hy2 + hoNy + by t) < KAY2 (SC.84)

n,i(n,m)
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Therefore,

hn 9

1 _ -
Z 1{AZTm7AO}h7 Z Z;L,i(n,m)—l - JZ,n,i(n,m)—l = OP(A'}Z/2) = Op(].). (8085)
m>1:Tp <T =1

With an appeal to the Cauchy-Schwarz inequality, we deduce (SC.77) from (SC.82), (SC.83)

and (SC.85).
Step 3. We show (SC.79) in this step. We first approximate Ny, ,,, by

h
1 - — =
Nym = — 1 Z I 7 mi(nm)—1 (Yé,i(n,m),l - BOZ;W-(,LM),Z) .
hnAr 120
Note that (SC.69), (SC.70) and (SC.71) imply

E[ff

2
Ho} < KAV, (SC.86)

Ti,i(n,m)fl - IBOZ;,i(n,m)fl’

y (SC.84), (SC.86) and the Cauchy—Schwarz inequality, E | Ny — N, | < KALY*. Hence,
Npm = Ny, + 0p(1). (SC.87)

Next, we observe that N, ,, can be rewritten as

ANZr,, -
Nyym = NP Zgn ( ni(nam)—l BOZ;L,i(n,m)fl> :
We further approximate Ny, ,, by Ny ., = Ny |+ N ., where

AZ .
N7/1/,m 1= h, A1;74 Zgn ( n,i(n,m)—l /BOZn,i(n,m)—l) )

AZr
" — m =/ —/
n,m,2 = h, A1/4 Z gn (6Y,n,i(n,m)—l B ﬁer,n,i(n,m)—l) :
Note that .
AZp, Lo _
N;L,m - Ng,m = h, A1/4 Zgn JY,n,i(n,m)—l - BOJZ,n,i(n,m)—Z) .
y (SC.69),
N?”L,T)’L - N;L/,m = OP(A}L/LL) = Op(l)- (8088)
Let .
- AZp
" — m c
Nn,m,lz h A1/4 Zgn(l)< n,i(n,m)— /BOan (n,m)— l>'
n=n |=1



y (SC.72),
N;L/m 1 N;L/m 1 — OP(A111/2) = Op(l)- (SCSQ)

Recall that U = Y¢ — 5y Z¢. Hence, we can rewrite

- AZr,
" _ m
n,m,l h A1/4 Zgn nz -l
AZr.
- h,, A1/4 Zg" Ej: z l+JU
AZr,, n

From here, it is easy to see that N/{ml = AZr,, (Com— + Came) + 0p(1). By (SC.89), we further

derive

n,m,l — AZTm (Cnm + Cn m+) + Op( ) (8090)

Finally, we observe that, by definition,

nm? - AZTm(CYnm BOC,Z,mm)' (chl)

From (SC.87), (SC.88), (SC.90) and (SC.91), the claim (SC.79) readily follows. Q.E.D.

Proof of Proposition S1(b). Step 1. For notational simplicity, we denote 7, = {i : |Z;”| > Up}.
In this step, we show that

VYT 2R =0,(1), byt > Zy (Vi BoZly) = op(ANY). (SC.92)
€T \T €T \T

We start with some estimates for each ¢ ¢ 7. For such ¢, Z does not jump in the interval
(t(n,i),t(n,i+ hy)]. Therefore, only the first non-zero summand in (SA.16) may contain a jump.
Since g(-) is Lipschitz continuous and g (0) = 0, the weight on this term is bounded by Kh,!.
Therefore, |Z7’”—Z;fl] < Kh;;!, where Z'¢ = Z¢+¢',. By Lemma S1, for each p > 2, IEHZT’{’:Z-WHO] <
KpAfLM. Hence, E[|Z], ;|P|Ho] < KpAﬁM. For each ¢ > 0,

— — 2 _ _ /
B[ 221117 ooy Ho] < B[ 20l 0] jit < sl
From here, we deduce that for any ¢ > 0,

Z 72, = (Agum—w')). (SC.93)

'LEJn\j*

34



Since @’ € (0,1/4), by taking ¢ sufficiently large in (SC.93), we deduce
ha' Y 7R = 0p(AY), (SC.94)
€T \T;

which implies the first part of (SC.92).

From Lemma S1, it is easy to see that
hy! Z (Vi — ﬁoZ,'m)2 <h! Z (Vi — BOZ,’M.)2 = 0,(1). (SC.95)
ETN\T i

By the Cauchy—Schwarz inequality, (SC.94) and (SC.95), we further deduce the second part of
(SC.92).
Step 2. In this step, we show that

ht Y Z7Ri=0p(1). (SC.96)

We consider a positive process fpm(-) given by

Frm(s) = Zn’z(n’m)_l_ [fins] 1{‘Zé,i(n,m)—1— Lhns) ‘SG”}O{AZTm #0}" (5C.97)

We can then rewrite

'Y Zhi= Y /0 1 Frm(s)ds. (SC.98)

1€ \TIn m21Ty, <T

From Lemma S1, it is easy to see that
E [fnm(s)*[Ho] < K. (SC.99)
We now consider the behavior of f,, ,,(s) for each s € (0,1). From Lemma S1, we see that
Zylm(n7m)_1_thnsj = jZ,n,i(n,m)flthnsj + 0p(1).
We further note that jZ,n,i(n,m)—l—LhnsJ = g(s)AZr,, + op(1). Hence,
Z), itmam)—1—|hms] = 9(8) AZr,, + 0p(1).
By assumption, g (s) > 0 for s € (0,1). Since v,, — 0, we deduce

P({

)1 Lhms] = O,(1), (SC.100) implies that for each s € (0,1),

2y stmam)—1-Lins)| < n} N{AZr, # 0} Ho ) = 0p(1). (SC.100)

: 712
Since Zn,i(n,m

fom (s) = 0p(1). (SC.101)
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Note that (SC.99) implies that the sequence fy, ,,(s), n > 1, is uniformly integrable under the #o-
conditional probability. This condition allows us to deduce E[fy, 1, (s)[Ho] = 0p(1) from (SC.101).
Note that E[f,m(s)|Ho] is bounded because of (SC.99). By Fubini’s theorem and the bounded
convergence theorem, we deduce that the right-hand side of (SC.98) is 0p(1). From here, (SC.96)
readily follows.

Step 3. In this step, we show that

A;1/4h;1 Z Zj”( 7 — BoZ!, ) = 0,(1). (SC.102)
1€ \Tn

We use the same argument as in step 2, except that we replace the term Z ;L Qi(n m)—1—[hns] in (SC.97)
by

1/4 | 71 / o 72
A an(nm) 1—|hns] Yn,i(n,m)—l—\_hnsj BOZn,i(n,m)—l—\_hnsJ :

By Lemma S1, we can verify that the term in the above display is O,(1) and (SC.99) still holds.
With these modifications, the same argument in step 2 yields (SC.102).
Step 4. Combining (SC.92), (SC.96) and (SC.102), we deduce that

h;lz 1{‘Z’ ’>Un} h, 1 Z Z/2 = Op )
’ ) e (SC.103)
Z n,i nz_BOan) 1{|Z’ ‘> } h ! Z n,i nz_ﬁo ) :OP(A711/4)'

LISV

From the proof of Proposition S1(a), we also have

Bl S 22 = Oy(1),
- ZZEJ* n, < - BOZ’I/’L z) - OP(A711/4)

Recall the definitions of 3, and £/ from (SA.17) and (SC.75). From (SC.103) and (SC.104), we
readily deduce the assertion of Proposition S1(b). Q.E.D.

(SC.104)

SC.3.3 Proofs of technical lemmas

Proof of Lemma S1. We start with (SC.68). From (SA.16) and (SC.65), we observe that Jyz,, ;

and Jz,; can be rewritten as

17 n.k

Tzmi = Y, >, Gnlizak—1) A}z,

k j:iZ,n,kfl‘Fl

1Z,n,k

Tzmi = > > gn(—i) AL
k

J=iznk—1+1
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We can then rewrite jZ,n,i — jZm = Zj 9z.n,i (J) A?JZ where
97ni () =gnlizne —10) —gn (G —1), i iznp-1<J<iznk (SC.105)
Since g is Lipschitz continuous and 6z, is bounded,
192, (7)) < Khy* (SC.106)

Since the jumps of Z are finitely active, we readily deduce |Jz,; — J zni| < Khy,'. The part of
(SC.68) concerning Y can be shown similarly.

Turning to (SC.69), we first observe that in restriction to Q, N {Jz,; # 0}, the interval
(t(n,i),t(n,i+ hy)] contains exactly one jump. Hence, jym,i — ,BOJZJM- = 0. From here and
(SC.68), (SC.69) readily follows.

We now show (SC.70). By parts (a,c) of Assumption S5, |t (Z,n, k) —t(Z,n,k—1)| < KA,.

By using a standard estimate for continuous It6 semimartingales, we derive

p p/2
E H ’p’ HO < K (Z gn Zan: n) + Kp (Z gn(iZ,n,k - i)2An> .
k

We further note that the sequence g, (izn — i), kK > 0, is bounded and contains at most h,, non-
zero terms. Hence, E[|Z5 ;|P|Ho] < Ky(hnAp)P/?. Similarly, E[|Y¢;[P[Ho] < Ky(hnAp)P/?. The
inequality (SC.70) readily follows.
To show (SC.71), we first observe
EIZ,n,i = Z [gn (iZ,n,k - Z) —On (iZ,n,k+1 - Z)] ElZ,t(Z,n,k:)‘
k

Since g(-) is Lipschitz continuous and dz, 1, is bounded,

\Gn (iznk — 1) — gn (izmss1 —3)| < Khyt.

We further note that the noise terms are F-conditionally independent with bounded moments. By
the Burkholder-Davis-Gundy inequality, we see that E[|£/;, ;[P|Ho] < Kphn” /2, Similarly, we can
show E[|&y,, ;[P|Ho] < Kph;p/Q, which further implies (SC.71).

We now show (SC.72). Recall (SC.105). We can rewrite me - Zﬁl =>_;9zni (j) A7 Z. Note
that Gz, (j) is non-zero for at most 2h,, terms. By using a standard estimate for continuous It6

semimartingales and then using (SC.106), we deduce

E|: ZgZ,n,z(])An +KZanz
J

< KA2 4+ Kh'A,.

~ ~7C
ng Zn,i

2
)

IA
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Hence, E[|ZC; — Z¢ ;|?|Ho] < KAY?. Similarly, E[|Y,; — V¢,|%|Ho] < KAY/?. From here, (SC.72)
readily follows. Q.E.D.

Proof of Lemma S2. Recall the definitions in (SC.66). For each k > 0, we can decompose

?(n,m)—&-kU = Anvmvk + Bn7m7k + O-U7T7TL A?L/L(n7m)+kW7

where
t(n,i(n,m)+k) t(n,i(n,m)+k)
An,m,k = / bU,sd87 Bn,m,k = / (UU,S - UU,Tm) dWs.
t(n,i(n,m)+k—1) t(n,i(n,m)+k—1)
We note that

n,i(n,m)+k)

sl < K, E [[Byl? ]HO | < K/ [HUU,S—UU,TWMHO} ds. (SC.107)

(n,i(n,m)+k—1)

We approximate (4 using

hn—1

Grme =AY A 90 (5= 8) 90 () | 000 Ay 6 V-
k=1 j

Observe that

E [ |Gam+ = G| Ho]

SK (AR D 00 G = k) gn (5) | Anami

k>0 J

2

2

HEA PR S gn (5= K) gn () | E[B2,,4] Ho)
k>0 J

t(n,i(n,m)+hy)
< KAY? + KA,;W/

t(n,i(n,m))

E [l = o, || o] s

< KAY? 4+ KE sup lov,s = ov,m,0 11| Ho
SE[Tom T+ KAL)

, (SC.108)

where the first inequality is derived by observing that B,, ,, x, kK > 1, are martingale differences; the
second inequality holds because of (SC.107); the third inequality follows from Assumption S5. By
the bounded convergence theorem and the right-continuity of the process oy, we deduce that the

majorant side of (SC.108) converges to zero in expectation. Therefore,

Cn,m—l— = C:;,er + Op(l)' (SC.IOQ)

38



Similarly, we can approximate (- using

-1

C;,m— = A;1/4h7:1 Z Z 9n (] - k) In (.7) UU,t(n,i(n,m)—hn)A?(n,m)q_kVVa
k=—(hn—1) j

and show that
Cnm— = Gpm— + 0p(1). (SC.110)

In view of (SC.109) and (SC.110), to prove Lemma S2, it remains to derive the stable conver-
gence in law of (¢} ,,—; G iy )m>1 towards (Gm—, Gm+ )m>1. We observe that ¢ . and ¢ .. are
sums of martingale difference arrays. We then use Theorem 1X.7.28 of Jacod and Shiryaev (2003)
to deduce the stable convergence in law of these sequences (arguing similar to the proof of Theorem
4.3.1 of Jacod and Protter (2012)). The limiting distributions of ¢}, ,,,_ and (; ,,,, are, conditionally
on F, mutually independent and centered Gaussian with their asymptotic variances respectively

given by the limits (in probability) of

En,mf = A;I/Q Z Z gn In ) Ut(n,i(n,m)—hn)An,i(n,m)—i—ka

h<0 5 (SC.111)
Yn mt+ = 1/2 Z Z gn 9n ) T, An,i(n,m)-ﬁ-k'

k>0

It remains to verify that (recall (SA.18))
Snm- —=E[C2_|F], Spms - E [ |F]. (SC.112)

To this end, we observe that
2

Spm- = AV (T, Z Z gn (J () | Vetnitnm)—hn)
k<0
2
Ani n,m)+k
—}—A;/z Z Zgn - gn ) Ut(n,i(n,m)—hn) <7(A)+ - f (Tm)) .
k<0 "

The second term on the right-hand side of (SC.113) is bounded in absolute value by

-1

Kht Y

k=—(hn—1)

An,i(n,m)Jrk

—f(Tm)’,

n

which converges to zero pointwise under Assumption S5. Since A,l/ 2 = Oh 1, the first term on the

right-hand side of (SC.113) converges to

vr, -1 (L) [ 0 < [ots=wa) ds)Qdu.
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From here, the first convergence in (SC.112) follows. The second convergence of (SC.112) can be

proved similarly. This finishes the proof for Lemma S2. Q.E.D.
Proof of Lemma S3. Step 1. In this step, we show that for each m > 1,

£|]:

CY,n,m CYm (80114)

To simplify notations, we denote i* = i (n,m). Observe that
/ . 1 - _
CY,n,m - 71/4 Z 9n (l) 6Y,n,i* —1

- I A1/4 Zgn Zgn iymk — 1 +1) <5Yt(Ynk) Y,t(Y,n,kq))

= 1/4 Z {Zgn ) lgn ZYn k41— i+ 1) = gn (/iY,n,k —i 4 l)]} EIY,t(Y,n,k)'

We further decompose
/ %
CY,n,m — SY,n,m + Rn?

where

Qn,m = Z Ynm

iymk — 1+ 1\ Oyngs1 |
h A1/4 (Z gn ( ( B, > B EV (Y yn k)
Rn = 1/42{2% [gn iynkt1 — 0 +1)

. » tynk — 0"+ 1 Oy kst
—gn (iymp — @ +1) —9'< = W > Zn EY (Y k)

Since ¢’ is Lipschitz continuous,

/% (k)

Ynm

Ty, — 1"+ l> O0V,n k+1

< Kh2. 11
™ | S Kbt (SC15)

In Giynger1 — 0 + 1) — gn (iynpe — 5 +1) — ¢ <

Since the noise terms 53/7t(yjn7k), k > 0, are F-conditionally independent with zero mean and

bounded variance, we have

E[RZ|F] <

9n lYnk-‘rl*l +l)
aar S| 20|

2

v — i+ 1\ 6
g (i — 0* 1) — g (Db LD O
o i
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Here, the summation over k involves at most 2h,, nonzero terms. By (SC.115), we further deduce
E [RZ|F] < Kh,* — 0. (SC.116)

Therefore, to show (SC.114), it suffices to show that

?{n,m Ll}— CYm (80117)

We note that for each fixed m, the array Cyn m (k) is F-conditionally independent with zero
mean. We shall use the Lindeberg—Lévy central limit theorem under the F-conditional probability

to deduce (SC.117). It is easy to verify Lyaponov’s condition. Indeed,
ZIE ([ (0| F] < KA 0.

It remains to compute the (F-conditional) asymptotic variance of Cynm, which is given by the

limit of

2
_ tymk — 4+ 1Y Oy k1
IY,n,m = 1/2 Z (Z gn < I, > h AY,t(Y,n,k)

h2 Ay

h . ) 2
1 Ovmp+1 [ 1 iy — 1" +1
Lyt (LS g (e Y
AN % n n - n

Observe that, in the above display, the summand indexed by k is non-zero only when ¢ (Y, n, k) falls

in a local window around 7;,, with length (in calendar time) shrinking to zero. Since the process

Ay is continuous and (SA.14) holds,

2
Ay, by (T 5Yn k iymg — 4 +1
,Y,n,m = ( ) Z + ( Zgn (h)) + 0p(1).
k n

hnAL?

By applying a Riemann approximation, we deduce

2

1
S = 0 Ay, by (Tm)/ (/0 9(s)g (s +u) dS) du =E [, F] -

This finishes the proof of (SC.117) and, hence, that of (SC.114).

Step 2. In this step, we prove the assertion of the lemma. We observe that for m # m/, the
noise terms in Cg,vn’m do not overlap with those in C{,m’m, when n is large. Since the noise terms
are JF-conditionally independent, for each m > 1, the finite collection (Cgfnm)1<m<m forms an

L|F
F-conditional independency for large n. Therefore, (CY " m)m>1 L> (CY m)m>1 under the product

LIF
topology. Similarly, (Can)m>1 L> (CZ m)m>1. By Assumption S4, CY,n,m and CZm’m are F-

conditionally independent. The assertion of the lemma readily follows. Q.E.D.
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