
Jump Regressions∗

Jia Li,† Viktor Todorov,‡ and George Tauchen§

August 30, 2016

Abstract

We develop econometric tools for studying jump dependence of two processes from high-
frequency observations on a fixed time interval. In this context, only segments of data around a
few outlying observations are informative for the inference. We derive an asymptotically valid
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power against general forms of nonlinearity in the jump dependence as well as temporal insta-
bilities. We further propose an efficient estimator for the linear jump regression model that is
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around the jump times. We derive the asymptotic limit of the estimator, a semiparametric lower
efficiency bound for the linear jump regression, and show that our estimator attains the latter.
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1 Introduction

Aggregate market risks exhibit discontinuities (i.e., jumps) in their dynamics. Bearing such non-

diversifiable jump risk is significantly rewarded, as is evident from the expensiveness of short-

maturity options written on the market index with strikes that are far from its current level.

Therefore, precise estimates of the comovement of jumps in asset prices with those of aggregate

risk factors will play a key role in our understanding of the pricing of jump risk in the cross-section.

High-frequency data allows for robust nonparametric inference for jumps. In their pioneering

work, Barndorff-Nielsen and Shephard (2004b, 2006), using realized multipower variation measures,

and Mancini (2001, 2009), using threshold-based methods, have developed nonparametric tools for

measuring jump variation from high-frequency data. The goal of the current paper is to extend this

strand of literature by developing econometric tools for testing and efficiently estimating pathwise

relationships between jumps of an asset price process (Yt)t≥0 and an aggregate risk factor (Zt)t≥0.

More specifically we study the relationship between ∆Yτ and ∆Zτ for τ ∈ T , where ∆Yt ≡
Yt − Yt− and ∆Zt ≡ Zt − Zt− for any t ≥ 0, and T is the collection of jump times of Z. The

statistical inference is based on discrete observations of (Y,Z) sampled on an observation grid with

asymptotically shrinking mesh. The ratio (henceforth referred to as the spot jump beta)

βτ ≡
∆Yτ
∆Zτ

, τ ∈ T , (1.1)

measures the co-movement of the jumps in the two processes. Without any model restriction,

the spot jump beta is stochastic and varies across instances of jump events. However, in many

cases such as factor models, which are used pervasively in asset pricing, the relationship between

the jumps of Y and Z can be captured by a function which is known up to a finite-dimensional

parameter. The most common is the linear function which leads to:

∆Yt = β∆Zt + ∆εt, ∆Zt∆εt = 0, (1.2)

for some constant β, where ε captures the asset-specific jump risk as in the seminal work of Merton

(1976). Equation (1.2) is akin to the usual regression in econometrics, except that the orthogonality

condition is defined pathwise, i.e., ε has zero covariation with Z on the observed path (see next

section for the formal definition of quadratic covariation). We can thus view (1.2) as a linear jump

regression model, while noting the important fact that neither the jump time τ nor the jump sizes

(∆Yτ ,∆Zτ )τ∈T are directly observable from data sampled at discrete times.

A motivating empirical example of the jump regression is given in Figure 1. From 10-minute

log returns, we select locally large (jump) returns of the S&P 500 exchange traded fund (ETF),
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Figure 1: A Representative Illustration of Jump Regressions
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Note: The horizontal axes are the jump returns of the S&P 500 ETF while the vertical
axes are the contemporaneous returns of the Financial Sector ETF for data sampled at the
10-minute frequency in 2008 (left) and 2007-2012 (right), together with linear fits. The
jump returns are selected according the thresholding procedure described in Section 5.

which is our proxy for the market, and plot them versus the contemporaneous Financial Sector

ETF returns,1 along with a linear fit based on model (1.2). We see that the simple linear jump

regression model provides quite a good fit in the one-year subsample (left) and a less tight fit for the

six-year sample (right). Are these patterns statistically consistent with model (1.2)? On one hand,

due to the very nature of jumps, jump regressions are inevitably based on a few high-frequency

observations. On the other hand, the signal-to-noise ratio of these observations is likely to be very

high. If model (1.2) is true, how do we efficiently estimate the jump beta? The main contribution

of this paper is to develop econometric tools that address the above questions.

In the first part of our analysis, we develop a specification test for the linear relationship (1.2)

and its piecewise generalizations. The test is asymptotically consistent against all nonparametric

fixed alternatives for which (1.2) is violated, for example, due to time variation in the jump beta

and/or nonlinearity in the jump relationship (i.e., the dependence of the jump beta on the jump

size). The test is based on the fact that the linear model (1.2) is equivalent to the singularity

of the realized jump covariation matrix computed over the times of jumps of Z only.2 Our test

rejects the null hypothesis when the determinant of a sample analogue estimator of the jump

covariation matrix is larger than a critical value. While the estimator for the jump covariation

has a well-known central limit theorem at the usual parametric
√
n-rate, see e.g., Jacod (2008),

1The identification of the jump returns of the market portfolio is done using a standard adaptive thresholding
technique, see e.g., Lee and Mykland (2008), that is described and rigorously justified in the main text below.

2This is an example of a reduced rank restriction, which arises naturally in several areas of statistics, econometrics,
and several other disciplines as well; see Anderson (1951) and the more recent work of Anderson (2002), Gourieroux
and Jasiak (2013) and Jacod and Podolskij (2013) for various such instances.

3



its determinant is asymptotically degenerate under the null hypothesis specified by (1.2) and no

asymptotic theory has been developed for it to date. We thus consider higher-order asymptotics

so as to characterize the non-degenerate asymptotic null distribution of the test statistic. The

resultant null distribution can be represented as a quadratic form of mixed Gaussian variables

scaled by (random) jumps and spot volatilities. Since this distribution is nonstandard, we further

provide a simple simulation-based algorithm to compute the critical value for our test.

On the presumption of the linear model (1.2), for a given time interval and a range of the jump

size, we further study the efficient estimation of the jump beta. Under certain assumptions, we

derive a semiparametric lower efficiency bound for regular estimators of the jump beta.3 Following

Stein’s insight (Stein (1956)) that the estimation in a semiparametric problem is no easier than

in any parametric submodel, we compute the efficiency bound by first constructing a class of

submodels. These submodels satisfy the local asymptotic mixed normality (LAMN) property

with a random information matrix. For these submodels, we compute the worst-case Cramer-Rao

information bound of estimating the jump beta. In addition, we show that this lower efficiency

bound is actually sharp by constructing a semiparametric estimator which attains it. This direct

approach reveals that the key nuisance component is the unknown heterogeneous jump sizes of

Z and the least favorable submodel should fully account for their presence. In particular, the

estimation of jump beta is generally not adaptive with respect to the sizes of jumps in Z.

The proposed efficient estimator is an optimally weighted linear estimator and has formal

parallels to classical weighted least squares estimation in a linear heteroskedastic regression con-

text. The optimal weights in the present setting are determined by nonparametric high-frequency

estimates of the local volatility of the instantaneous residual term Y − βZ at the jump times.

The efficient estimator enjoys the parametric convergence rate
√
n, despite the presence of spot

volatility estimates, which in general can be estimated at a convergence rate no faster than n1/4.

To improve finite sample performance, we further derive a novel higher-order expansion for

the optimally weighted estimator which clearly reveals the role of the spot covariance estimates

in the estimation. Moreover, it allows us to design a simple finite-sample refinement (relative

to the standard high-frequency asymptotics) for confidence sets of the jump beta. The efficient

estimator provides considerable efficiency gains over natural alternatives based on the ratio of the

3The general theory of semiparametric efficient estimation has been developed for models admitting locally
asymptotically normal (LAN) likelihood ratios, see e.g., Bickel, Klaassen, Ritov, and Wellner (1998) and references
therein. By contrast, the infill asymptotic setting with high-frequency data is non-ergodic which renders the limiting
distribution random, meaning that its variability depends on the realization of the underlying processes. In this
nonstandard setting, Mykland and Zhang (2009), Jacod and Rosenbaum (2013), Clément, Delattre, and Gloter
(2013) and Renault, Sarisoy, and Werker (2016) study the efficient nonparametric estimation of general integrated
volatility functionals, and Li, Todorov, and Tauchen (2016a) study the adaptive estimation in a semiparametric
regression model for the diffusive part of a multivariate semimartingale process. All this work focuses on the
diffusive components of the asset prices, by either filtering out the price jumps or assuming them away. But the
jumps are exactly the focus of the current paper and as well known, their econometric analysis is very different.
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jump covariation between Y and Z to the jump variation of Z (Gobbi and Mancini (2012)) as well

as ratios of higher order power variations (Todorov and Bollerslev (2010)).

In an empirical application of the proposed inference techniques, we study the market jump

betas of the nine industry portfolios comprising the S&P 500 stock market index for the period

2007–2012. The premise of our empirical application is the well-known fact that standard market

betas are strongly time-varying. The key empirical question that we address here is whether the

previously documented temporal instability of market betas is constrained only to the regular

non-jump moves or it is present for the jump moves as well. The pattern seen in Figure 1 is

indeed representative for our empirical findings for all assets in our empirical analysis. While we

find evidence for temporal instability over the whole six-year sample, market jump betas appear

reasonably stable over periods as long as a year.

The rest of the paper is organized as follows. Section 2 presents the setting. The theory is

developed in Section 3 for specification testing and in Section 4 for efficient estimation. Section

5 presents our empirical application. The online supplement to this paper contains (a) some

additional theoretical results, (b) Monte Carlo and (c) all proofs.

2 Setting and modeling jump dependence

We start with introducing the formal setup for our analysis. The following notation is used

throughout. We denote the transpose of a matrix A by A>. The adjoint matrix of a square matrix

A is denoted A#. For two vectors a and b, we write a ≤ b if the inequality holds component-

wise. The functions vec (·), det (·) and Tr(·) denote matrix vectorization, determinant and trace,

respectively. The Euclidean norm of a linear space is denoted ‖ · ‖. We use R∗ to denote the set

of nonzero real numbers, that is, R∗ ≡ R \ {0}. The cardinality of a (possibly random) set P is

denoted |P|. The largest smaller integer function is denoted by b·c. For two sequences of positive

real numbers an and bn, we write an � bn if bn/c ≤ an ≤ cbn for some constant c ≥ 1 and all n. All

limits are for n→∞. We use
P−→,

L−→ and
L-s−→ to denote convergence in probability, convergence

in law and stable convergence in law, respectively.

2.1 The underlying processes

The object of study of the paper is the dependence of the jumps in a univariate process Y on the

jumps of another process Z. For simplicity of exposition, we will assume that Z is one-dimensional,

but the results can be trivially generalized to settings where Z is multidimensional.

We proceed with the formal setup. Let Z and Y be defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). Throughout the paper, all processes are assumed to be càdlàg adapted. We
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denote X = (Z, Y )>. Our basic assumption is that X is an Itô semimartingale with the form

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, Jt =

∑
s≤t

∆Xs =

∫ t

0

∫
R
δ (s, u)µ (ds, du) , (2.1)

where the drift bt takes value in R2; the volatility process σt takes value inM2, the space of 2× 2

matrices; W is a 2-dimensional standard Brownian motion; δ = (δZ , δY )> : Ω×R+ ×R 7→ R2 is a

predictable function; µ is a Poisson random measure on R+ ×R with its compensator ν (dt, du) =

dt⊗ λ (du) for some measure λ on R. Recall from the introduction, that the jump of X at time t

is denoted by ∆Xt ≡ Xt −Xt−, where Xt− ≡ lims↑tXs. The spot covariance matrix of X at time

t is denoted by ct ≡ σtσ>t , which we partition as

ct =

 cZZ,t cZY,t

cZY,t cY Y,t

 . (2.2)

We also write Jt = (JZ,t, JY,t)
>, so that JZ and JY are the jump components of Z and Y ,

respectively. Our basic regularity condition for X is given by the following assumption.

Assumption 1. (a) The process b is locally bounded; (b) ct is nonsingular for t ∈ [0, T ]; (c)

ν ([0, T ]× R) <∞.

The only nontrivial restriction in Assumption 1 is the assumption of finite activity jumps in

X. This assumption is used mainly for simplicity as our focus in this paper are “big” jumps, i.e.,

jumps that are not “sufficiently” close to zero. Alternatively, we can drop Assumption 1(c) and

focus on jumps with sizes bounded away from zero.4

Turning to the sampling scheme, we assume that X is observed at discrete times i∆n, for

0 ≤ i ≤ n ≡ bT/∆nc, within the fixed time interval [0, T ]. The increments of X are denoted by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i = 1, . . . , n. (2.3)

Below, we consider an infill asymptotic setting, that is, ∆n → 0 as n→∞.

2.2 Piecewise linear jump regression models

We proceed with the jump regression model which in the most general setting is given by

∆Yt = f(∆Zt) + ∆εt, ∆Zt∆εt = 0, t ∈ [0, T ], (2.4)

where f is a piecewise linear function and ε captures Y -specific jumps. Similar to a standard

regression model, we can equivalently define our jump regression model via the orthogonality

4Yet another strategy, that can allow for studying dependence in infinite activity jumps, is to use higher order
powers in the statistics that we develop henceforth, see e.g., Todorov and Bollerslev (2010). This, however, comes
at the price of losing some efficiency for the analysis of the “big” jumps.
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condition

[ε, Z] = 0, on [0, T ], (2.5)

where the quadratic covariation process [ε, Z] is given by
∑

s≤•∆εs∆Zs. Our use of the quadratic

covariation to define the jump regression model parallels the realized regressions of Barndorff-

Nielsen and Shephard (2004a) and Mykland and Zhang (2006), which concern processes with

continuous paths (in which case the quadratic covariation is the integrated covariance).

The orthogonality condition in (2.5) can be equivalently written as∫ t

0

∫
R

[(δY (s, u)− f(δz(s, u)))δz(s, u)]µ(ds, du) = 0, ∀t ∈ [0, T ].

Unlike the usual regression for which orthogonality of the error term and the explanatory variable

is defined in terms of expectations, the orthogonality condition in our jump regression is defined

with respect to the jump measure µ controlling the behavior of the jumps on the observed path.

The jump model in (2.4) (potentially extended to general f and multivariate Z) arises naturally

in asset pricing models in which the economy-wide pricing kernel is a function of a low-dimensional

systematic vector of factors and the cash flows of the asset depend on these factors driving the

pricing kernel as well as on idiosyncratic shocks which can include idiosyncratic jump risk as

proposed in the work of Merton (1976).

The leading case of our jump regression model, as already explained in the introduction, is

the one in which f(z) = β · z for some constant parameter β. This case plays a central role

in finance as it represents the only jump model for which the overall asset beta, defined as the

ratio of the quadratic co-variation between Y and Z and the quadratic variation of Z (see, e.g.,

Barndorff-Nielsen and Shephard (2004a) and references therein) remains constant on the time

interval [0, T ]. Such temporal stability of the beta of an asset is important both for the validity

of methods estimating beta over local windows of time (as is typically done in practice) but also

plays a central role in judging whether conditional asset pricing models can potentially explain

standard cross-sectional asset pricing puzzles (see, e.g., Lewellen and Nagel (2006)).5

The linear jump regression model can be generalized in the following two directions.

Example 1 (Temporal Breaks). Conditional asset pricing models allow for the exposure of assets

to fundamental risks to change over time; see, for example, Hansen and Richard (1987). In our

context, this implies that the jump beta can vary over time, but presumably not too erratically. A

practically relevant model is to assume that the jump beta remains constant over fixed intervals

5We note that if at the time τ ∈ T of jump in the systematic factor Z, the jump ∆Yτ has an an asset-specific
error term in addition to f(∆Zτ ), then one cannot identify β using infill asymptotics. This is because each of the
finite number of jumps will contain a non-vanishing asset-specific error term which cannot be “averaged out” by
sampling more frequently. In such a case, the ratio ∆Yτ

∆Zτ
will be temporally unstable and its prediction from past

observations limited. Such a scenario will imply limited temporal stability of overall asset betas (regardless of the
estimation horizon), more generally, and we develop tests against such scenarios.

7



of time (e.g., months, quarters, years), an assumption which is often made in empirical asset

pricing. We refer to such an extension of the constant beta model as a temporal structural break

model. More formally, let (Sk)1≤k≤k̄ be a finite disjoint partition of [0, T ], which corresponds to

the horizon of k̄ regimes. The structural break model amounts to imposing

βτ =

k̄∑
k=1

β0,k1{τ∈Sk}, τ ∈ T , (2.6)

where the constant β0,k is the jump beta during the time period Sk. Equivalently,

∆Yt =
k̄∑
k=1

β0,k∆Zt1{t∈Sk} + ∆εt, ∆Zt∆εt = 0, t ∈ [0, T ] . (2.7)

Example 2 (Spatial Breaks). An alternative generalization is to allow the slope coefficient to

depend on the jump size of Z, but in a time-invariant manner. In other words, Y reacts differently

to jumps in Z depending on the size of the latter. The simplest model is to allow the jump beta to be

different depending on the sign of ∆Z, leading to the notion of up-side and down-side jump betas.

The latter can be viewed as continuous-time analogues of the downside betas of Ang, Chen, and

Xing (2006) and Lettau, Maggiori, and Weber (2014) which are based on discrete (large) returns.

More generally, let (Sk)1≤k≤k̄ be a finite disjoint partition of R. We set

βτ =

k̄∑
k=1

β0,k1{∆Zτ∈Sk}, τ ∈ T . (2.8)

This corresponds to a piece-wise linear model:

∆Yt =

k̄∑
k=1

β0,k∆Zt1{∆Zt∈Sk} + ∆εt ∆Zt∆εt = 0, t ∈ [0, T ] . (2.9)

We now introduce some notation for the jump regression model that we will use henceforth.

Let (τp)p≥1 be the successive jump times of the process Z. We define two random sets P = {p ≥
1 : τp ≤ T} and T = {τp : p ∈ P}, which collect respectively the indices of the jump times on

[0, T ] and the jump times themselves. Since Z has finite-activity jumps, these sets are finite almost

surely. Below, we refer to a Borel measurable subset D ⊆ [0, T ]×R∗ as a (temporal-spatial) region.

For the jump of Z that occurs at stopping time τ ∈ T , we call (τ,∆Zτ ) its mark. For each region

D, we set PD ≡ {p ∈ P : (τp,∆Zτp) ∈ D}; the random set PD collects the indices of jumps whose

marks fall in the region D. The jump regression is a model of the form (2.4) with f given by

f(∆Zτp) = β∆Zτp , for some constant β ∈ R and all p ∈ PD. (2.10)

That is, the spot jump beta is a constant for all jumps whose marks are in the region D. The linear

regression model (1.2) corresponds to D = [0, T ] × R∗, and Examples 1 and 2 concern regions of
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the form Dk = Sk × R∗ and [0, T ] × Sk, respectively. Below, the jump covariation matrix on the

region D is given by

Q (D) =

 QZZ (D) QZY (D)

QZY (D) QY Y (D)

 ≡ ∑
p∈PD

∆Xτp∆X
>
τp . (2.11)

2.3 Inference for the jump marks

We finish this section with an auxiliary result concerning the approximation of the jump marks

of the process X using discretely sampled data. This result provides guidance for the theory for

the jump regressions developed below. It also gives a theoretical justification for scatter plots like

Figure 1. In order to disentangle jumps from the diffusive component of asset returns, we choose

a sequence vn of truncation threshold values which satisfy the following condition:

vn � ∆$
n for some constant $ ∈ (0, 1/2) . (2.12)

Time-invariant choice for vn, although asymptotically valid, leads to very bad results in practice

as it does not account for the time-varying diffusive spot covariance matrix ct. Hence, a sensible

choice for vn should take into account the variation of ct in an adaptive, data-driven way. We refer

to supplemental appendix B for the details of such a way of constructing vn using the bipower

variation estimator (Barndorff-Nielsen and Shephard (2004b)).

For each p ∈ P, i (p) is the unique random index i such that τp ∈ ((i− 1) ∆n, i∆n]. We set

In (D) ≡ {i : 1 ≤ i ≤ n, ((i− 1)∆n,∆
n
i Z) ∈ D, |∆n

i Z| > vn} , (2.13)

I (D) ≡ {i (p) : p ∈ PD}.

The set-valued statistic In (D) collects the indices of returns whose “marks” ((i−1)∆n,∆
n
i Z) are in

the region D, where the truncation criterion |∆n
i Z| > vn eliminates diffusive returns asymptotically.

The random and unobservable set I (D) collects the indices of sampling intervals that contain the

jumps with marks in D. We also impose the following mild regularity condition on D, which

amounts to requiring that the jump marks of Z almost surely do not fall on the boundary of D.

Assumption 2. ν ({(s, u) ∈ [0, T ]× R : (s, δZ (s, u)) ∈ ∂D}) = 0, where ∂D is the boundary of D.

Below, we use the following definition for the convergence of random vectors with possibly

different length: for a sequence Nn of random integers and a sequence ((Aj,n)1≤j≤Nn)n≥1 of random

elements, we write (Aj,n)1≤j≤Nn
P−→ (Aj)1≤j≤N if P (Nn = N) −→ 1 and (Aj,n)1≤j≤N 1{Nn=N}

P−→
(Aj)1≤j≤N .

Proposition 1 (Approximation of Jump Marks). Under Assumptions 1 and 2,

(a) P (In (D) = I (D))→ 1;

(b) ((i− 1)∆n,∆
n
i X)i∈In(D)

P−→
(
τp,∆Xτp

)
p∈PD

.
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Proposition 1(a) shows that the set In (D) coincides with I (D) with probability approaching

one. In this sense, In (D) consistently locates the discrete time intervals that contain jumps with

marks in the region D. A by-product of this result is that |In (D)| is a consistent (integer-valued)

estimator of the number of jumps with marks in D. Proposition 1(b) further shows that the

jump marks of interest, that is
(
τp,∆Xτp

)
p∈PD

, can be consistently estimated by the collection of

time-return pairs ((i− 1)∆n,∆
n
i X)i∈In(D).

Proposition 1 has a useful implication for data visualization in empirical work. Indeed, the

collections ((i− 1)∆n,∆
n
i X)i∈In(D) and

(
τp,∆Xτp

)
p∈PD

can be visualized as scatter plots on

[0, T ] × R2, or its low-dimensional projections like Figure 1. Proposition 1(b) thus provides a

sense in which the graph of the former consistently estimates that of the latter.

3 Testing for constant jump beta

3.1 The specification test

We start our theoretical analysis of the jump dependence with testing the hypothesis of constant

jump beta on a fixed region D. We shall consider the nondegenerate case where Z has at least two

jumps with marks in D, that is, |PD| ≥ 2. Formally, the testing problem is to decide in which of

the following two sets the observed sample path falls: Ω0(D) ≡ {ω ∈ Ω : condition (2.10) holds for some β0(ω) on path ω} ∩ {|PD| ≥ 2} ,

Ωa (D) ≡ {ω ∈ Ω : condition (2.10) does not hold on path ω} ∩ {|PD| ≥ 2} .
(3.1)

By the Cauchy–Schwarz inequality, it is easy to see that condition (2.10) is equivalent to the

singularity of the positive semidefinite matrix Q (D). Hence, a test for constant jump beta can be

carried out via a one-sided test for det [Q (D)] = 0.

In view of Proposition 1, we construct a sample analogue estimator for Q (D) as

Qn (D) =

 QZZ,n (D) QZY,n (D)

QZY,n (D) QY Y,n (D)

 =
∑

i∈In(D)

∆n
i X∆n

i X
>.

The determinant of Q (D) can then be estimated by det[Qn(D)]. At significance level α ∈ (0, 1),

our test rejects the null hypothesis of constant jump beta if det [Qn(D)] > cvαn for some sequence

cvαn of critical values. Before specifying the critical value cvαn , we first discuss the asymptotic

behavior of det[Qn(D)], for which we need some notation. Let (κp, ξp−, ξp+)p≥1 be a collection of

mutually independent random variables which are also independent of F , such that κp is uniformly

distributed on the unit interval and both ξp− and ξp+ are bivariate standard normal variables. For

each p ≥ 1, we define a 2-dimensional vector Rp as

Rp ≡
√
κpστp−ξp− +

√
1− κpστpξp+. (3.2)
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The stable convergence in law of Qn(D) follows from a straightforward adaptation of Theorem

13.1.1 in Jacod and Protter (2012). In particular, we have

∆−1/2
n (Qn (D)−Q (D))

L-s−→
∑
p∈PD

(
∆XτpR

>
p +Rp∆X

>
τp

)
, (3.3)

and by the delta-method,6

∆−1/2
n (det [Qn (D)]− det [Q (D)])

L-s−→ 2Tr

Q (D)#
∑
p∈PD

∆XτpR
>
p

 . (3.4)

However, it is important to note that the limiting variable in the above convergence is degenerate

under the null hypothesis of constant jump beta. Indeed, in restriction to Ω0 (D),

Q (D)#
∑
p∈PD

∆XτpR
>
p = QZZ (D)

 β2
0 −β0

−β0 1

 1

β0

 ∑
p∈PD

∆ZτpR
>
p = 0. (3.5)

Therefore, the standard convergence result (3.4) at the “usual” ∆
−1/2
n rate is not enough for

characterizing the asymptotic null distribution of our test statistic.

The novel technical component underlying our testing result is to characterize the nondegen-

erate asymptotic null distribution of det [Qn (D)] at a faster rate ∆−1
n , as detailed in Theorem 1

below. The limiting distribution is characterized by an F-conditional law and the critical value cvαn

should consistently estimate its conditional (1− α)-quantile. Since the null asymptotic distribution

is highly nonstandard, its conditional quantiles cannot be written in closed form. Nevertheless,

the critical values can be easily determined via simulation which we now explain.

To construct the critical value cvαn , we need to approximate the spot covariance matrix around

each jump time. To this end, we pick a sequence kn of integers such that

kn →∞ and kn∆n → 0. (3.6)

We also pick a R2-valued sequence v′n of truncation threshold that satisfies∥∥v′n∥∥ � ∆$
n for some constant $ ∈ (0, 1/2) . (3.7)

Let I ′n (D) = {i ∈ In (D) : kn + 1 ≤ i ≤ bT/∆nc − kn}. For each i ∈ I ′n (D), we approximate the

pre-jump and the post-jump spot covariance matrices respectively by

ĉn,i+ =
1

kn∆n

kn∑
j=1

(∆n
i+jX)(∆n

i+jX)>1{−v′n≤∆n
i+jX≤v′n}, (3.8)

ĉn,i− =
1

kn∆n

kn−1∑
j=0

(∆n
i−kn+jX)(∆n

i−kn+jX)>1{−v′n≤∆n
i+jX≤v′n}. (3.9)

6Recall that, for a matrix A, the differential of det(A) is Tr
[
A#dA

]
, where A# is the adjoint matrix of A.
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Algorithm 1, below, describes how to compute the critical value cvαn .

Algorithm 1. (1) Simulate a collection of variables
(
κ̃i, ξ̃i−, ξ̃i+

)
i∈I′n(D)

consisting of independent

copies of (κp, ξp−, ξp+). Set for i ∈ I ′n (D) ,
R̃n,i =

√
κ̃iĉ

1/2
n,i−ξ̃i− +

√
1− κ̃iĉ1/2

n,i+ξ̃i+,

ς̃n,i =

(
−
QZY,n (D)

QZZ,n (D)
, 1

)
R̃n,i.

(3.10)

(2) Compute

ζ̃n (D) ≡

 ∑
i∈I′n(D)

∆n
i Z

2

 ∑
i∈I′n(D)

ς̃2
n,i

−
 ∑
i∈I′n(D)

∆n
i Zς̃n,i

2

. (3.11)

(3) Generate a large number of Monte Carlo simulations according to step 1 and step 2, and

then set cvαn as the (1− α)-quantile of ζ̃n (D) in the Monte Carlo sample. �

Theorem 1, below, provides the asymptotic justification for the proposed test. To state it, we

use the following additional notation: recall Rp from (3.2) and set

ςp ≡
(
−QZY (D)

QZZ (D)
, 1

)
Rp, p ≥ 1. (3.12)

Note that, in restriction to Ω0 (D), we have ςp ≡ (−β0, 1)Rp. It is useful to note that (ςp)p≥1 are F-

conditionally independent. Moreover, each ςp is a mixture of two F-conditionally Gaussian random

variables with possibly distinct conditional variances. The variable ςp becomes F-conditionally

Gaussian when ∆cτp = 0.

Theorem 1. Under Assumptions 1 and 2, the following statements hold.

(a) In restriction to Ω0 (D), we have

∆−1
n det[Qn (D)]

L-s−→ ζ (D) ≡

∑
p∈PD

∆Z2
τp

∑
p∈PD

ς2
p

−
∑
p∈PD

∆Zτpςp

2

. (3.13)

(b) In restriction to Ω0 (D) ∪ Ωa (D), the sequence cvαn of variables defined in Algorithm 1

converges in probability to the F-conditional (1− α)-quantile of ζ (D).

(c) The test defined by the critical region {∆−1
n det [Qn (D)] > cvαn} has asymptotic size α under

the null and asymptotic power one under the alternative, that is,

P
(
∆−1
n det [Qn (D)] > cvαn |Ω0(D)

)
−→ α, P

(
∆−1
n det [Qn (D)] > cvαn |Ωa(D)

)
−→ 1.

Part (a) of Theorem 1 describes the stable convergence of the test statistic det[Qn (D)] under the

null hypothesis, which occurs at the ∆−1
n convergence rate. The limiting variable ζ (D) is quadratic

in the variables ςp, which, conditional on F , are mutually independent mixed Gaussian variables.
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Comparing (3.11) and (3.13), it is easy to see that ζ̃n (D) is designed to mimic the limiting variable

ζ (D). Part (b) shows that the quantile of the former consistently estimates that of the latter. We

note that part (b) holds under both the null and the alternative. Part (c) shows that the proposed

test has valid size control and is consistent against general fixed alternatives.

Our test can be equivalently reported in terms of the realized jump correlation defined as

ρn (D) ≡
QZY,n(D)√

QZZ,n (D)QY Y,n (D)
.

Observe that
det[Qn (D)]

QZZ,n (D)QY Y,n (D)
= 1− ρ2

n (D) .

Therefore, the test rejects the null hypothesis of constant jump beta when ρ2
n (D) is sufficiently

lower than 1, with the critical value for their difference being ∆ncv
α
n/QZZ,n (D)QY Y,n (D). Since

the jump correlation coefficient is scale-invariant, its value is easier to interpret and compare across

studies than the determinant. For this reason we recommend reporting the test in terms of the

jump correlation coefficient in empirical work.

We also remark that our test can be easily extended to test the joint null hypothesis that (2.10)

holds on each of a finite number of disjoint regions (Dk)1≤k≤k̄, with possibly different betas across

regions. To avoid repetition, we only sketch the procedure here. Among many possible choices, one

can employ a “sup” test using the test statistic ∆−1
n max1≤k≤k̄ det[Qn (D)]. By a trivial extension

of Theorem 1(a), it can be shown that in restriction to the (joint) null hypothesis ∩1≤k≤k̄Ω0 (Dk),(
∆−1
n det[Qn (D)]

)
1≤k≤k̄

L-s−→ (ζ (Dk))1≤k≤k̄ ,

and, hence, the asymptotic null distribution of the test statistic is max1≤k≤k̄ ζ (Dk). The critical

value at significance level α can be obtained by computing the (1−α)-quantile of max1≤k≤k̄ ζ̃n (Dk)
via simulation.

Finally, we note that an interesting direction for future research is to test (3.1) using other

types of statistics. An important example is the Wald statistic, which in a more standard context

has been studied by Gourieroux and Jasiak (2013) and further extended by Dufour, Renault,

and Zinde-Walsh (2013) in cases with general singularities. In the current setting, the Wald test

can be obtained by studentizing the test statistic det[Qn (D)] with a preliminary estimator of its

scale in the limit (see (3.4)). Analyzing the null asymptotic distribution of the Wald test is more

complicated because it also depends on that of the normalizing factor, which in turn involves

nonparametric estimators of jumps and the spot volatilities. The full analysis is left to future

research.
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3.2 Inference when some jumps arrive at deterministic times

In supplemental appendix A we extend the above result to a setting where a subset of jump times

can be identified using prior information. Examples of such jump events are the ones caused by

pre-scheduled macro announcements (Andersen, Bollerslev, Diebold, and Vega (2003)). In a liq-

uid market, one may expect that price jumps “immediately” after the announcement, so that the

announcement time can be used to locate the jump time. Pre-scheduled announcement times are

deterministic, which, technically speaking, are excluded from model (2.1) that features random

jump arrivals. That being said, inference procedures in this paper can be extended straightfor-

wardly to accommodate fixed jump times. We use the specification test above as an example for

a detailed illustration. Modifications to inference procedures in later sections are essentially the

same and, hence, will be omitted for brevity.

4 Efficient estimation of jump beta

We continue with the efficient estimation of jump beta under a constant beta model. We first

derive an optimally weighted estimator and its asymptotic properties. We then compute the semi-

parametric efficiency bound for estimating the jump beta and show that this bound is achieved by

our optimally weighted estimator. In supplemental appendix A we derive a higher-order expansion

for the estimator and use it to construct refined confidence sets for jump betas.

4.1 The optimally weighted estimator

In this subsection, we fix a region D, on which we suppose the constant beta condition (2.10) holds

for some true value β0. Clearly, in order to identify β0, it is necessary that Z has at least one jump

with mark in D. The results below hence are in restriction to the set {|PD| ≥ 1}.
We propose a class of estimators of the constant jump beta formed by using weighted jump

covariations. To this end, we consider weight functions w : M2 ×M2 × R 7→ (0,∞) that satisfy

Assumption 3 below.

Assumption 3. (c−, c+, β) 7→ w(c−, c+, β) is continuous at (c−, c+, β0) for any c−, c+ ∈M2.

With any weight function w, we associate a weighted estimator of the jump beta defined as

β̂n (D, w) =

∑
i∈I′n(D)w(ĉn,i−, ĉn,i+, β̃n)∆n

i Z∆n
i Y∑

i∈I′n(D)w(ĉn,i−, ĉn,i+, β̃n) (∆n
i Z)2 , (4.1)

where β̃n is a consistent preliminary estimator for β0. For concreteness, below, we fix

β̃n ≡
QZY,n (D)

QZZ,n (D)
, (4.2)
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which corresponds to no weighting. In Theorem 2 below, we describe the central limit theorem for

the weighted estimator β̂n(D, w). The limiting variable takes the form (recall ςp from (3.12))

ζβ (D, w) ≡
∑

p∈PD w
(
cτp−, cτp , β0

)
∆Zτpςp∑

p∈PD w
(
cτp−, cτp , β0

)
∆Z2

τp

. (4.3)

It is easy to see from (3.2) and (3.12) that, conditional on F , the limiting variable ζβ (D, w) has

zero mean with variance

Σ (D, w) ≡
∑

p∈PD w
(
cτp−, cτp , β0

)2
∆Z2

τp(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)>

2
(∑

p∈PD w
(
cτp−, cτp , β0

)
∆Z2

τp

)2 . (4.4)

From here, we shall also show (Theorem 2(b)) that the optimal weight function, in the sense of

minimizing the F-conditional asymptotic variance Σ (D, w) among all weight functions, is

w∗(ĉn,i−, ĉn,i+, β̃n) =
2

(−β̃n, 1) (ĉn,i− + ĉn,i+) (−β̃n, 1)>
. (4.5)

Since the variables ςp are generally not conditionally Gaussian, nor is ζβ (D, w). Consequently, a

consistent estimator for the conditional asymptotic variance Σ (D, w) is not sufficient for construct-

ing confidence intervals (CI). Instead, we construct CIs for β0 by approximating the conditional

law of ζβ(D, w) as described by Algorithm 2 below. For brevity, we focus on two-sided symmetric

CIs, while noting that other types of confidence sets can be constructed analogously.

Algorithm 2. (1) Simulate (ς̃n,i)i∈I′n(D) as in step 1 of Algorithm 1.

(2) Compute

ζ̃n,β (D, w) ≡

∑
i∈I′n(D)w

(
ĉn,i−, ĉn,i+, β̃n

)
∆n
i Zς̃n,i∑

i∈I′n(D)w
(
ĉn,i−, ĉn,i+, β̃n

)
(∆n

i Z)2
.

(3) Generate a large number of Monte Carlo simulations in the first two steps and set cv
α/2
n,β

as the (1− α/2)-quantile of ζ̃n,β (D, w) in the Monte Carlo sample. Set the 1 − α level two-sided

symmetric CI as CIαn = [β̂n (D, w)−∆
1/2
n cv

α/2
n,β , β̂n (D, w) + ∆

1/2
n cv

α/2
n,β ]. �

The asymptotic properties of the estimator β̂n (D, w) and the confidence interval CIαn are de-

scribed by Theorem 2 below.

Theorem 2. Under Assumptions 1, 2 and 3, the following hold in restriction to {|PD| ≥ 1}.
(a) We have ∆

−1/2
n

(
β̂n (D, w)− β0

)
L-s−→ ζβ (D, w). If, in addition, the process (ct)t≥0 does not

jump at the same time as (Zt)t≥0, then the limiting distribution is mixed Gaussian:

∆−1/2
n

(
β̂n (D, w)− β0

)
L-s−→MN (0,Σ (D, w)) . (4.6)

(b) Σ (D, w∗) ≤ Σ (D, w) for any weight function w.

(c) The sequence CIαn described in Algorithm 2 has asymptotic level 1− α, that is,

P(β0 ∈ CIαn )→ 1− α. (4.7)
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Part (a) shows the central limit theorem for the estimator β̂n (D, w) at the parametric rate

∆
−1/2
n . It is interesting to note that the two building blocks of β̂n (D, w), i.e., QZY,n (D, w) and

QZZ,n (D, w), converge only at a slower rate. Indeed, their sampling error is driven by that in

(ĉn,i−, ĉn,i+), the optimal convergence rate of which is ∆
−1/4
n ; see Theorem 3.2 of Jacod and

Todorov (2010). Part (a) also shows that β̂n (D, w) has an F-conditionally Gaussian asymptotic

distribution in the absence of price-volatility co-jumps. Part (b) shows that w∗ (·) minimizes the

F-conditional asymptotic variance. Part (c) shows that CIαn is asymptotically valid.

We refer to the estimator associated with the optimal weight function, i.e., β̂n(D, w∗), as the

optimally weighted estimator. The corresponding F-conditional asymptotic variance is

Σ (D, w∗) =

∑
p∈PD

2∆Z2
τp

(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)>

−1

. (4.8)

It is instructive to illustrate the efficiency gain of the optimally weighted estimator with respect

to the unweighted estimator β̃n (D). Up to asymptotically negligible boundary terms, the latter

is equivalent to β̂n (D, w1) for w1 (·) = 1 identically. Using the Cauchy–Schwarz inequality, it

can be shown that Σ (D, w∗) ≤ Σ (D, w1) and the equality holds if and only if the variables

(−β0, 1)
(
cτp− + cτp

)
(−β0, 1)> are constant across p ∈ PD, that is, under a homoskedasticity-type

condition. When this condition is violated, the efficiency gain of the optimally weighted estimator

relative to the unweighted estimator is strict.

In a follow-up work in Li, Todorov, and Tauchen (2016b), we have extended the OLS-type esti-

mator β̃n (D) to a whole class of M-estimators which in particular allows for robust type estimation

of β via quantile regressions. The extension of Li, Todorov, and Tauchen (2016b), however, does

not allow for weighting of the different observations which is the source of the efficiency gains of

the optimally weighted estimator derived in Theorem 2.

4.2 The semiparametric efficiency of the optimally weighted estimator

In the previous subsection, we constructed the optimally weighted estimator as the most efficient

estimator within a class of weighted estimators. We now compute the semiparametric efficiency

bound for estimating the jump beta under some additional simplifications on the data generating

process; see Assumptions 4 and 5 below. We stress from the outset that these assumptions are

only needed for this subsection. We further show that the optimally weighted estimator attains

this efficiency bound and, hence, is semiparametrically efficient. To simplify the discussion, we fix

D = [0, T ] × R∗ throughout this subsection, while noting that the extension to multiple regions

only involves notational complications.

We note that the current setting is very nonstandard in comparison with the classical setting for

studying semiparametric efficiency (see, e.g., Bickel, Klaassen, Ritov, and Wellner (1998)), which
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mainly concerns independent and identically distributed data. By contrast, the current setting is

non-ergodic, where asymptotic distributions are characterized as F-conditional laws which depend

on the realized values of the stochastic volatility and the jump processes. Since these processes are

time-varying, an essentially arbitrary form of data heterogeneity needs to be accommodated. In

view of these nonstandard features, it appears necessary to develop the semiparametric efficiency

bound for estimating the jump beta from first principles. Our approach relies on the specific

structure of the problem at hand but should be a useful start for a more general theory in the

spirit of Bickel, Klaassen, Ritov, and Wellner (1998).

Our approach is outlined as follows. We first construct a class of parametric submodels which

pass through the true model. We show that these submodels satisfy the LAMN property. Unlike

the LAN setting, the information matrix in the LAMN setting is random. By results in Jeganathan

(1982, 1983), the inverse of the random information matrix provides an information bound for es-

timating β. We then compute a lower efficiency bound as the supremum of the Cramer-Rao bound

for estimating β over this class of submodels. Since the class of submodels under consideration do

not exhaust all possible smooth parametric submodels, it is possible that this supremum is lower

than the semiparametric efficiency bound. We rule out this possibility by verifying that this lower

efficiency bound is sharp. Indeed, the optimally weighted estimator attains this bound. From

here, we conclude that the optimally weighted estimator is semiparametrically efficient. The key

to our approach is the construction of a class of submodels that contains, in a well-defined sense,

the least favorable submodel.

We now proceed with the details. Below, we denote by Pnθ the joint distribution of the data

sequence (∆n
i X)1≤i≤n, in a parametric model with an unknown parameter θ ∈ Rdθ . The sequence

(Pnθ ) is said to satisfy the LAMN property at θ = θ0 if there exist a sequence Γn of dθ × dθ a.s.

positive semidefinite matrices and a sequence ψn of dθ-vectors, such that, for any h ∈ Rdθ ,

log
dPn

θ0+∆
1/2
n h

dPnθ0
= h>Γ1/2

n ψn −
1

2
h>Γnh+ op(1), (4.9)

and

(ψn,Γn)
L−→ (ψ,Γ) , (4.10)

where the information matrix Γ is a dθ × dθ positive semidefinite F-measurable random matrix

and ψ is a dθ-dimensional standard normal variable independent of Γ.

In order to establish the asymptotic behavior of the log likelihood ratio, we maintain the

following assumption in this subsection.

Assumption 4. We have Assumption 1 and the processes (bt)t≥0, (σt)t≥0 and (Jt)t≥0 are inde-

pendent of (Wt)t≥0, and the joint law of (b, σ, JZ , ε) does not depend on β.
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Assumption 4 allows for a closed-form expression for the likelihood ratio. Since the law of

(b, σ, JZ , ε) does not depend on β, it does not determine the likelihood ratio. Moreover, condi-

tional on these processes, the returns (∆n
i X)1≤i≤n are independent with (non-identical) marginal

distribution

∆n
i X|b, σ, J ∼ N

∫ i∆n

(i−1)∆n

bsds+

 ∆n
i JZ

β∆n
i JZ + ∆n

i ε

 ,

∫ i∆n

(i−1)∆n

csds

 . (4.11)

Assumption 4 greatly simplifies our analysis because, otherwise, the closed-form expression for

transition densities are unavailable for general stochastic differential equations. We stress that we

only need this sufficient condition for the analysis of semiparametric efficiency, while the testing

and estimation results in Sections 3 and 4 are valid under settings that are far more general.

Finally, we remark that independence-type assumption have also been used by Reiß (2011) and

Renault, Sarisoy, and Werker (2016) in the study of efficient estimation of integrated volatility

functionals.

In order to ensure that the estimators are asymptotically F-conditionally Gaussian, we restrict

our analysis to the case without price-volatility co-jumps (recall Theorem 2(a)).

Assumption 5. The process (ct)t≥0 does not jump at the same time as the process (Zt)t≥0 a.s.

We now proceed to constructing a class of parametric submodels which pass through the original

model. We do so by perturbing multiplicatively the jump process JZ by a step function with known,

but arbitrary, break points and unknown step sizes. Each set of break points corresponds to a

submodel in which the unknown step sizes play the role of nuisance parameters for the estimation

of β. More precisely, we denote the collection of break points by

S ≡
{
S = (Sj)0≤j≤m : 0 = S0 < · · · < Sm = T, m ≥ 1

}
. (4.12)

Note that each vector S ∈ S specifies dim (S)− 1 steps with the form (Sj−1, Sj ]. With any S ∈ S,

we associate the following parametric model: for some unknown parameter η ∈ Rdim(S)−1,

dXt = btdt+ σtdWt +

 ηjdJZ,t

βηjdJZ,t + dεt

 , for t ∈ (Sj−1, Sj ], 1 ≤ j ≤ dim (S)− 1. (4.13)

We denote the law of (∆n
i X)1≤i≤n under this model by Pnθ , where θ = (β, η). Below, it is

useful to emphasize the dependence of Pnθ on S by writing Pnθ (S). The parametric submodel

(Pnθ (S) : θ ∈ Rdim(S)) is formed by treating θ = (β, η) as the unknown parameter and treating

the vector S and the law of (b, σ, JZ , ε) as known. Clearly, each submodel passes through the true

model at θ0 =
(
β0, η

>
0

)>
, where η0 is a vector of 1’s.
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Before stating the formal results, we provide some heuristics to guide intuition concerning the

submodels constructed above. To focus on the main idea, we discuss a simple case where both the

drift b and the Y -specific jump ε are absent, so (4.11) becomes a bivariate Gaussian experiment

∆n
i X|b, σ, J ∼ N

 ∆n
i JZ

β∆n
i JZ

 ,

∫ i∆n

(i−1)∆n

csds

 . (4.14)

It is intuitively clear that the observation ∆n
i X contains information for β only when the process

Z has a jump during the interval ((i− 1)∆n, i∆n]. The size of each jump of Z can be considered

as a nuisance parameter for the estimation of β.7 Analogous to standard Gaussian location-scale

experiments, the estimation of β is not adaptive to the jump size (i.e. location); this is unlike the

local covariance matrix
∫ i∆n

(i−1)∆n
csds, to which the estimation of β is adaptive. Furthermore, it is

crucial to treat all jump sizes as separate nuisance parameters because jump sizes are time-varying.

Constructing a submodel which captures the heterogeneity in jump sizes would be straightforward

in the ideal (but counterfactual) scenario where there are a fixed number of jumps at fixed times.

Indeed, any submodel (4.13) would suffice provided that each interval (Sj−1, Sj ] contains at most

one jump time, so that the size of each jump is assigned a nuisance parameter. That being said, the

complication here is that both the number of jumps (which is finite but unbounded) and the jump

times are actually random. This means, any fixed submodel cannot fully capture the heterogeneity

in jump sizes. Therefore, it is important to consider a “sufficiently rich” class of submodels, in the

sense that, on every sample path, we can find some submodels in this class that play the role of

the least favorable model.

As shown in Theorem 3 below, the parametric submodel (Pnθ (S) : θ ∈ Rdim(S)) satisfies the

LAMN property for each S ∈ S. To describe the information matrix in each submodel, we need

some notation. We define the continuous beta and the spot idiosyncratic variance respectively as

βct ≡
cZY,t
cZZ,t

and vct ≡ cY Y,t −
c2
ZY,t

cZZ,t
. (4.15)

We then set for t ≥ 0, 
γ1t =

∆Z2
t

vct
(β0 − βct ) ,

γ2t = ∆Z2
t

(
(β0 − βct )

2

vct
+

1

cZZ,t

)
.

(4.16)

7Referring to the jump size as a nuisance “parameter” may be nonstandard, because the jump size is itself an
random variable. Note that in the continuous-time limit (i.e., the “population”), the jump process is identified
pathwise.
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The information matrix for Pnθ (S) at θ = θ0 is given by

Γ (S) =



∑
s≤T

∆Z2
s

vcs

∑
S0<s≤S1

γ1s · · ·
∑

Sm−1<s≤Sm γ1s∑
S0<s≤S1

γ1s
∑

S0<s≤S1
γ2s 0

...
. . .∑

Sm−1<s≤Sm γ1s 0
∑

Sm−1<s≤Sm γ2s


. (4.17)

We note that the nonsingularity of the (nonrandom) information matrix is typically imposed

for a regular parametric submodel in the LAN setting; see, for example, Definition 1 in Section 2.1

of Bickel, Klaassen, Ritov, and Wellner (1998). In the LAMN setting, the information matrix is

random, so this type of regularity generally depends on the realization. Therefore, for each S ∈ S,

we consider the set

Ω (S) ≡ {Γ (S) is nonsingular} . (4.18)

By applying the conditional convolution theorem (Theorem 3, Jeganathan (1982)) in restriction

to Ω (S), the efficiency bound for estimating θ is given by Γ (S)−1.

We now present the main theorem of this subsection. Below, a nonrandom vector S ∈ S is said

to shatter the jump times on a sample path if each time interval (Sj−1, Sj ] contains exactly one

jump. It is useful to note that Γ (S) is nonsingular whenever S shatters the jumps of (Zt)0≤t≤T .

Theorem 3. Under Assumptions 4 and 5, the following statements hold.

(a) For each S ∈ S, the sequence (Pnθ (S) : θ ∈ Rdim(S)) satisfies the LAMN property at θ = θ0

with information matrix Γ (S). In restriction to Ω (S), the information bound for estimating β,

that is, the first diagonal element of Γ (S)−1, has the form

Σ̄β (S) =

∑
s≤T

∆Z2
s

vcs
−

dim(S)−1∑
j=1

(∑
Sj−1<s≤Sj γ1s

)2∑
Sj−1<s≤Sj γ2s


−1

. (4.19)

(b) We have

sup
S∈S

Σ̄β (S) 1Ω(S) = Σ∗, (4.20)

where Σ∗ is given by (4.8) with D = [0, T ]×R∗. Moreover, on each sample path, the supremum is

attained by any S that shatters the jump times of the process (Zt)0≤t≤T .

The key message of Theorem 3 is part (b), which shows that the lower efficiency bound (i.e.,

supS∈S Σ̄β (S) 1Ω(S)) for estimating β among the aforementioned class of submodels is attained

by the optimally weighted estimator. We remind the reader that the asymptotic property of

the optimally weighted estimator (Theorem 2) is valid in a general setting without imposing the

parametric submodel. In other words, the lower efficiency bound derived for these submodels is
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sharp and the optimally weighted estimator is semiparametrically efficient. Part (b) also shows

that the lower efficiency bound is attained by submodels with a sufficiently rich and properly

located set of break points (collected by S) which can shatter the realized jump times. In this

sense, the least favorable submodel is implicitly chosen in a “random” manner in the sense that

it depends on the realization of jump times. A similar phenomenon also arises in the efficient

estimation of volatility functionals (see Renault, Sarisoy, and Werker (2016)).

Part (a) of Theorem 3 confirms the intuition that the estimation of β is generally not adaptive

to the (unobservable) jumps of Z. Indeed, we see from (4.17) that in the absence of the nuisance

parameter η, the Cramer-Rao bound for estimating β is

Σ̄a
β ≡

∑
s≤T

∆Z2
s

vcs

−1

, (4.21)

where we use the superscript “a” to indicate adaptiveness, because Σ̄a
β is the information bound

for estimating β in the parametric model where the only unknown parameter is β. From Theorem

3, we also see that Σ∗ can be written as

Σ∗ =

∑
s≤T

(
∆Z2

s

vcs
− γ2

1s

γ2s

)−1

. (4.22)

Comparing (4.21) and (4.22), it is clear that Σ̄a
β ≤ Σ∗, where the equality holds if and only if

the process (γ1t)t≥0 is identically zero over [0, T ]. Observe that the latter condition amounts to

saying that βct = β0 whenever ∆Zt 6= 0. In other words, Σ∗ coincides with the adaptive bound Σ̄a
β

only when the continuous beta is equal to the constant jump beta at all jump times of Z. From a

practical point of view, this condition appears to be rather peculiar. A stronger, but arguably more

natural, restriction is to assume that the continuous beta process βc coincides with the constant

jump beta over the entire time span [0, T ]. But this additional restriction can be exploited to

improve the semiparametric efficiency bound for estimating the common (i.e., continuous and

jump) beta. It can be shown that under this stronger assumption, adaptive estimation for the

common beta can be achieved.8

5 Empirical application

The application concerns betas on market jumps, with the market proxy being the ETF that

tracks the S&P 500 index (ticker symbol: SPY). The assets we study are the ETFs on the nine

industry portfolios comprising the S&P 500 index: materials (XLB), energy (XLE), financials

8Formal results for the adaptive estimation of beta under the condition βct = β0, t ∈ [0, T ], are presented in
supplement appendix A.
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Figure 2: Scatter of Jumps: Industry Portfolios
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(XLF), industry (XLI), technology (XLK), consumer staples (XLP), utilities (XLU), healthcare

(XLV), and consumer discretionary (XLY).

Data on each series are sampled at the 10-minute frequency over the period 2007–2012, resulting

in 1, 746 days of 38 within-day returns (log-price increments). By using 10-minute sampling on

liquid assets we essentially eliminate the impact of biases due to various microstructure effects. We

set the truncation threshold exactly as in the Monte Carlo (presented in supplemental appendix

B), with further correction for the well-known deterministic diurnal pattern in volatility.9 The

block size is set to kn = 19.

Figures 2 displays the scatter plots of the detected jump increments of the various assets against

those of the market index. The figure also shows the fit provided by the linear jump regression

model (1.2) based on the optimally weighted estimator. Perhaps surprisingly, the fit appears

generally quite tight, despite the tail nature of jumps and the fact that the sample spans both

tranquil and turbulent market environments. That noted, there is lack of fit on the left tail for

certain assets. Table 1 reports summary statistics for the linear jump beta regressions over the full

sample. As seen from the table, the confidence intervals for beta are relatively tight which further

confirms the high precision with which we can estimate jump betas. It is also interesting to note

that the average volatility of the residual Y − βZ at the jump times of Z is higher than its value

at the times immediately preceding the jumps. This provides evidence for volatility jumps at the

9We use the procedure detailed in the supplemental material of Todorov and Tauchen (2012).

22



Table 1: Jump Betas and Tests for Constancy over the Full Sample

Asset β̂ 95% CI σ̂τp− σ̂τp R2 p-val

XLB 1.0920 [1.0525 1.1315] 0.5775 0.5928 0.9614 0.0000

XLE 1.1093 [1.0669 1.1518] 0.7025 0.7283 0.9592 0.0111

XLF 1.2378 [1.1829 1.2926] 0.6515 0.7124 0.8875 0.0000

XLI 1.1225 [1.0918 1.1533] 0.3580 0.3989 0.9548 0.0000

XLK 0.9295 [0.9032 0.9559] 0.3753 0.3956 0.9800 0.0004

XLP 0.6546 [0.6270 0.6823] 0.3916 0.3735 0.9633 0.0003

XLU 0.7574 [0.7146 0.8001] 0.5706 0.6276 0.9534 0.0201

XLV 0.7425 [0.7120 0.7730] 0.3721 0.3991 0.9305 0.0000

XLY 0.9829 [0.9555 1.0102] 0.3949 0.4066 0.9821 0.0012

Note: The columns show the estimated jump beta, the 95% confidence interval (CI), the average
level of volatility of Y − βZ pre- and post-market jump, R2 of the regression, and the p-values for
the null hypothesis of a constant linear jump regression model for the period 2007–2012.

time of the price jumps. The second to last column of Table 1, which reports the R2s, confirms

our observation of the good fit provided by the linear jump regression. Despite the apparently

good fit, the formal test for constancy of the jump beta rejects the null for all but two of the assets

in our sample at all conventional levels of the test; see the last column of Table 1 for p-values of

these tests. The deviations from linearity observed in Figure 2 are thus in most cases strongly

statistically significant.

Of course, as suggested by Figure 1 discussed in the introduction, the jump regression fits can

probably be further stabilized when the regressions are run over a shorter period such as one year.

This is consistent with the conditional asset pricing models in which betas change over time (see,

e.g., Hansen and Richard (1987)). We hence perform the jump regressions year by year, with

results from the tests for the constant linear specification reported in Table 2. Allowing for beta

to change over years improves the performance of the jump regression. Indeed, the constant jump

beta hypothesis is not rejected at the conventional 1% significance level in the majority of cases.

The preceding analysis illustrates that a linear jump regression model works well over periods

of years in capturing the dependence between jumps in industry portfolios on one hand and the

market jumps on the other hand. The analysis here can be extended to allow for different betas

depending on the sign and size of the market jump. It can be further expanded to include a larger

set of systematic risk factors (in addition to the market portfolio) and a larger set of test assets.

Overall, the tools developed in the paper should prove useful in studying jump dependence which

is a key building block in the analysis of pricing of jump risk in the cross-section.
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Table 2: Tests for Constant Jump Beta over Years

Asset Year

2007 2008 2009 2010 2011 2012

XLB 0.030 0.016 0.015 0.085 0.007 0.049

XLE 0.539 0.421 0.090 0.064 0.426 0.027

XLF 0.000 0.133 0.019 0.009 0.029 0.071

XLI 0.002 0.000 0.597 0.006 0.033 0.000

XLK 0.001 0.058 0.280 0.004 0.261 0.077

XLP 0.043 0.015 0.008 0.009 0.343 0.002

XLU 0.533 0.782 0.047 0.209 0.061 0.022

XLV 0.000 0.027 0.004 0.022 0.260 0.000

XLY 0.022 0.038 0.020 0.291 0.173 0.267

Number of jumps within year

15 8 9 12 10 20

Note: The table reports p-values of the test for constant linear jump regression model for every
asset and every year in the sample.
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