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1 Introduction

Tail events and non-normal distributions are ubiquitous in finance. The earliest compre-

hensive empirical evidence for fat-tailed marginal return distributions dates back more

than half a century to the influential work of Mandelbrot (1963) and Fama (1965). It

is now well recognized that the fat-tailed unconditional return distributions first docu-

mented in these, and numerous subsequent, studies may result from time-varying volatil-

ity and/or jumps in the underlying stochastic process governing the asset price dynamics.

Intuitively, periods of high-volatility can result in seemingly “extreme” price changes,

even though the returns are drawn from a normal distribution with light tails, but one

with an unusually large variance; see e.g., Bollerslev (1987), Mikosch and Starica (2000),

and the empirical analyses in Kearns and Pagan (1997) and Wagner and Marsh (2005)

pertaining to the estimation of tail parameters in the presence of GARCH effects. On

the other hand, the aggregation of multiple jump events over a fixed time interval will

similarly result in fat-tailed asset return distributions, even for a pure Lévy-type jump

processes with no dynamic dependencies; see, e.g., Carr et al. (2002). As such, while

fundamentally different, these two separate mechanisms will both manifest themselves

in the form of apparent “tail” events and leptokurtic marginal return distributions.1

These same general issues carry over to a multivariate context and questions related

to “extreme” dependencies across assets. In particular, it is well documented that the

correlations between equity returns, both domestically and internationally, tend to be

higher during sharp market declines than during “normal” periods;2 see e.g., Longin

and Solnik (2001) and Ang and Chen (2002). Similarly, Starica (1999) documents much

stronger dependencies for large currency moves compared to “normal-sized” changes,

while Jondeau (2010) based on an explicit parametric model reports much stronger tail

dependence on the downside for several different equity portfolios.

In parallel to the marginal effects discussed above, it is generally unclear whether

these increased dependencies in the tails are coming from commonalities in time-varying

volatilities across assets and/or common jumps. Poon et al. (2004), for instance, report

that “devolatilizing” the daily returns for a set of international stock markets signifi-

cantly reduces the joint tail dependence, while Bae et al. (2003) find that time-varying

volatility and GARCH effects can not fully explain the counts of coincident “extreme”

daily price moves observed across international equity markets. More closely related to

1Importantly, these different mechanisms also have very different pricing implications and risk premia
dynamics, as recently explored by Bollerslev and Todorov (2011).

2The use of simple linear correlations as a measure of dependence for “extreme” observations has
been called into question by Embrechts et al. (2002), among others.
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the present paper, recent studies by Bollerslev et al. (2008), Jacod and Todorov (2009),

and Gobbi and Mancini (2009), based on high-frequency data and nonparametric meth-

ods, have all argued for the presence of common jump arrivals across different assets,

thus possibly inducing stronger dependencies in the “extreme.”

In light of these observations, one of the goals of the present paper is to separate

jumps from volatility to more directly assess the “extreme” dependencies inherent in

the jump tails. Motivated by the basic idea from asset pricing finance that only non-

diversifiable systematic jump risks should be compensated, we further dissect the jumps

into their systematic and idiosyncratic components. This decomposition in turn allows

us to compare and contrast the behavior of the two different jump tails and how they

impact the return distributions.3

Our estimation methodology is based on the idea that even though jumps and time-

varying volatility may have similar implications for the distribution of the returns over

coarser sampling frequencies, the two features manifest themselves very differently in

high-frequency returns. Intuitively, treating the volatility as locally constant over short

time horizons, it is possible to perfectly separate jumps from the price moves associated

with the slower temporally varying volatility through the use of increasingly finer sam-

pled observations. Empirically, this allows us to focus directly on the high-frequency

“filtered” jumps. Relying on the insight from Bollerslev and Todorov (2010) that re-

gardless of any temporal variation in the jump intensity, the jump compensator for the

“large” jumps behaves like a probability measure, we non-parametrically estimate the de-

cay parameters for the univariate jump tails using a variant of the Peaks-Over-Threshold

(POT) method.4

Going one step further, we characterize the extreme joint behavior of the “filtered”

jump tails through non-parametric estimates of Pickands (1981) dependence function as

well as the residual tail dependence coefficient of Ledford and Tawn (1996, 1997). The

Pickands dependence function succinctly characterizes the dependence of the limiting

bivariate extreme value distribution. When the latter has independent marginals, the

residual tail dependence coefficient further discriminates among the dependencies that

disappear in the limit.5 We implement several different estimators for the Pickands

3In a related context, Barigozzi et al. (2010) have recently explored a factor structure for disentan-
gling the total realized variation for a large panel of stocks into a single systematic component and
remaining idiosyncratic components, while Todorov and Bollerslev (2010) propose a framework for the
estimation of separate continuous and jump CAPM betas.

4The POT method for characterizing extremes dates back to Fisher and Tippett (1928). It has been
formalized more recently by Balkema and de Haan (1974) and Pickands (1975); for general textbook
discussions see also Embrechts et al. (2001) and Jondeau et al. (2007).

5In technical terms, the Pickands dependence function captures asymptotic tail dependence, while
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dependence function and the residual tail dependence coefficient. Together with the

estimated decay parameters for each of the underlying univariate extreme distributions,

these summary measures effectively describe the key features of the bivariate joint tail

behavior.6

Our actual empirical analysis is based on high-frequency observations for fifty large

capitalization stocks and the S&P 500 aggregate market portfolio spanning the period

from 1997 through 2010. We find that the number of “filtered” idiosyncratic jumps

exceeds the number of systematic jumps for all of the stocks in the sample, and typically

by quite a large margin. Nonetheless, the hypothesis of fully diversifiable individual jump

risk is clearly not supported by the data, thus pointing to more complicated dependence

structures in the tails than hitherto entertained in most of the existing asset pricing

literature.7

Even though the assumption of “light” Gaussian jump tails can not necessarily be

rejected for many of the individual estimates, the combined evidence for all of the stocks

clearly supports the hypothesis of heavy jump tails. Our estimates for the individual

jump tail decay parameters also suggest that the tails associated with the systematic

jumps are slightly fatter than those for the idiosyncratic jumps, albeit not uniformly so.

Somewhat surprisingly, we also find that the right tail decay parameters for both types

of jumps in quite a few cases exceed those for the left tail.

Our estimates of various dependence measures reveal a strong degree of tail de-

pendence between the market-wide jumps and the systematic jumps in the individual

stocks. This therefore calls into question the assumption of normally distributed jumps

previously used in the asset and derivatives pricing literature.

Further, comparing our high-frequency based estimation results with those obtained

from daily returns, we find that the latter indicate much weaker tail dependencies.

Intuitively, while the estimates based on the daily returns represent the tail dependence

attributable to both systematic jumps and common volatility factors, both of which

may naturally be expected to be associated with positive dependence, the idiosyncratic

jumps when aggregated over time will tend to weaken the dependence. In contrast, by

focusing directly on the high-frequency “filtered” systematic and idiosyncratic jumps,

the residual tail dependence coefficient captures pre-asymptotic tail dependence.
6For a general textbook discussion of the relevant concepts, see, e.g., Coles (2001) and Beirlant

et al. (2004). Existing applications of these ideas have primarily been restricted to climatology and
insurance. Steinkohl et al. (2010), for instance, have recently employed this approach to characterize
the asymptotic dependence for high-frequency wind speeds across separate geographical locations.

7The mere existence of market-wide jumps, of course, refutes the hypothesis of fully diversifiable
jump risk as in Merton (1976). The estimates reported in, e.g., Eraker et al. (2003), also suggest large
risk premia for systematic jump risk.
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we are able to much more accurately assess the true extreme jump tail dependencies,

and assess how the different effects impart the dependencies in the lower-frequency daily

returns.

The rest of the paper is organized as follows. Section 2 introduces the formal setup

and assumptions. Section 3 outlines the statistical methodology and econometric pro-

cedures, beginning in Section 3.1 with the way in which we disentangle jumps from

continuous prices moves, followed by a discussion of our univariate tail estimation pro-

cedures in Section 3.2, and the framework that we rely on for assessing the joint jump

tail dependencies in Section 3.3. Section 4 presents the results from an extensive Monte

Carlo simulation study designed to assess the properties of the different estimators in an

empirically realistic setting. Section 5 summarizes our main empirical results, starting

in Section 5.1 with a brief description of the data, followed by our findings pertaining

to the individual jump tails in Section 5.2, and the bivariate jump tail dependencies in

Section 5.3. Section 6 concludes.

2 Formal Setup and Assumptions

We will work with a total of M + 1 financial asset prices. The individual assets will be

enumerated 1, ...,M , while the aggregate market portfolio will be indexed by 0.8 The dy-

namics for the log-price for the j’th asset is assumed to follow the generic semimartingale

process,

dp
(j)
t = α

(j)
t dt+ σ

(j)
t dW

(j)
t +

∫
R
xµ(j)(dt, dx), j = 0, ...,M, (2.1)

where α
(j)
t and σ

(j)
t are locally bounded processes,W

(j)
t denote possibly correlated Brown-

ian motions, and µ(j)(ds, dx) are integer-valued random measures that capture the jumps

in p
(j)
t over time dt and size dx.9

Our main focus centers on the behavior of the jumps in the individual assets; i.e., the

µ(j)(ds, dx) measures for j = 1, ...,M . We will further categorize these jumps as being

either systematic or idiosyncratic depending upon their association with the market-wide

jumps, or µ(0)(ds, dx). As we show below, as long as the systematic market factor is

8The M individual assets do not comprise the full market, so that p
(0)
t isn’t simply given by a

weighted average of the p
(j)
t j = 1, ...,M prices.

9Equation (2.1) implicitly assumes that the jumps are of finite variation. This assumption only
restricts the behavior of the very small jumps, and has no practical implications for our subsequent

analysis of the jump tails. We also implicitly assume that α
(j)
t and σ

(j)
t both satisfy sufficient integra-

bility conditions.
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assumed to be directly observable, such a decomposition can easily be formally justified

and implemented empirically.10

To more rigorously set out our procedures, let

T (j)
[0,T ] =

{
s ∈ [0, T ] : ∆p(j)s ̸= 0

}
, j = 0, ...,M,

where ∆p
(j)
s ≡ p

(j)
s − p

(j)
s−, denotes the set of jump times for asset j. The T (j)

[0,T ] sets may

in theory be infinite, but countable, as the jump processes may be infinitely active.11

Note that in a standard one-factor market model T (0)
[0,T ] ⊂ T (j)

[0,T ], although this need not

be the case in general.

Further denote with µ(j,0)(ds, dx) the jump measure for asset j for the jumps that

occur at the same time as the market-wide jumps; i.e., at times restricted to the inter-

section of T (j)
[0,T ] and T (0)

[0,T ]. Similarly, let µ(j,j)(ds, dx) denote the jump measure for the

asset j jumps that occur at times restricted to the set T (j)
[0,T ] \

{
T (0)
[0,T ] ∩ T (j)

[0,T ]

}
. Then by

definition

µ(j)(ds, dx) ≡ µ(j,0)(ds, dx) + µ(j,j)(ds, dx), j = 1, ...,M.

In parallel, denote with µ(0,j)(ds, dx) the jump measure for the aggregate market jumps

that arrive at the same time as the jumps in asset j; i.e., the counting measure for the

systematic jumps restricted to the subset T (0)
[0,T ] ∩ T (j)

[0,T ].

In addition, denote the compensators, or jump intensities, for µ(j,0)(ds, dx), µ(j,j)(ds, dx)

and µ(0,j)(ds, dx) by dt⊗ ν
(j,0)
t (dx), dt⊗ ν

(j,j)
t (dx) and dt⊗ ν

(0,j)
t (dx), respectively, where

ν
(j,0)
t (dx), ν

(j,j)
t (dx) and ν

(0,j)
t (dx) are some nonnegative measures satisfying the condition∫

R
(x2 ∧ 1)ν

(j,0)
t (dx) +

∫
R
(x2 ∧ 1)ν

(j,j)
t (dx) +

∫
R
(x2 ∧ 1)ν

(0,j)
t (dx) <∞,

for any t > 0. The main goal of the paper in essence amounts to characterizing the tail

properties of ν
(j,0)
t (x), ν

(j,j)
t (x) and ν

(0,j)
t (x).

Rather than doing so directly, for theoretical reasons explained in Bollerslev and

Todorov (2010), we will do so for their images under the following mappings

ψ+(x) =

{
ex − 1, x ≥ 0
0, x < 0

ψ−(x) =

{
0, x ≥ 0
e−x − 1, x < 0

. (2.2)

This in effect transforms the logarithmic jumps ∆ps into Ps−Ps−
Ps−

, or functions thereof,

akin to switching from discrete-time logarithmic returns to arithmetic returns. In prac-

tice, of course, for the actually observed jumps, the difference between ∆ps and
Ps−Ps−
Ps−

is very small.

10The current analysis could also quite easily be extended to situations with more than one observable
systematic risk factor, including e.g., the popular Fama-French portfolios.

11This has no practical implication for our statistical analysis, however, as we focus on the “large”
jumps, of which there are always a finite number in a finite sample.
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For the implementation of our estimation strategy, we will further assume that the

jump compensators ν
(j,0)
t (x) and ν

(j,j)
t (x) satisfy

νt(dx)
(j,d) = (φ

+(j,d)
t 1{x>0} + φ

−(j,d)
t 1{x<0})ν

(j,d)(dx), j = 1, ...,M, d = 0, j,

νt(dx)
(0,j) = (φ

+(j,0)
t 1{x>0} + φ

−(j,0)
t 1{x<0})ν

(0,j)(dx), j = 1, ...,M,
(2.3)

where φ
±(j,0)
t and φ

±(j,j)
t are nonnegative-valued stochastic processes with càdlàg paths.12

The separability of the jump compensators into time and jump size in equation (2.3) is

trivially satisfied for almost all of the parametric jump models hitherto analyzed in the

literature, including the popular affine jump-diffusion class of models advocated by, e.g.,

Duffie et al. (2000).

Next, denote the tail jump intensities by ν
±(j,d)
ψ (x) =

∫
ψ±(u)≥x ν

±(j,d)(du), for x ∈ R+.

We will then assume that for some (and hence any) x > 0 and u > 0, the ratio13

ν
±(j,d)
ψ (u+ x)

ν
±(j,d)
ψ (x)

, (2.4)

is in the domain of attraction of an extreme value distribution and satisfies a second-order

condition as in, e.g., Smith (1987).14 Recall, see, e.g., Theorem 1.2.5 of de Haan and

Ferreira (2006), that a distribution function F is defined to be in the domain of attraction

of an extreme value distribution if and only if for some positive valued function f ,

lim
u↑x∗

1− F (u+ xf(u))

1− F (u)
= (1 + ξx)−1/ξ, (2.5)

where 1 + ξx > 0, and x∗ denotes the endpoint of the distribution; i.e., x∗ = sup{x :

F (x) < 1}. The case ξ > 0 corresponds to heavy-tailed distributions, ξ = 0 defines

light tails with infinite end points (e.g., the normal), while ξ < 0 corresponds to short-

tailed distributions with finite end points (e.g. the uniform). In the empirically most

relevant heavy-tailed case, the extreme value approximation amounts to assuming that

ν
±(j,d)
ψ (x) are regularly varying at infinity functions; i.e., ν

±(j,d)
ψ (x) = x−β

±(j,d)
L±(j,d)(x),

where β±(j,d) > 0 corresponds to 1/ξ in (2.5), and L±(j,d)(x) are slowly varying at infinity

functions.
12Note that equation (2.3) implicitly assumes that the temporal variation in the jump intensities for

asset j and the market portfolio constrained to the set T (0)
[0,T ] ∩ T (j)

[0,T ] are the same. This restriction is

unavoidable for the class of time-changed Lévy processes.
13Note that although the jump intensity ν

±(j,d)
ψ (x) is not a distribution function, the ratio is.

14The condition effectively restricts the deviations from the power law tail behavior. It is well-known
that second order terms in the tails can generate finite sample biases in the estimation of tail parameters.
Our estimation procedure, as explained in more detail in Section 3 below, is based on the Peaks-Over-
Threshold method, which as shown in Smith (1987), Section 4, is location-invariant and generally less
biased than the popular Hill estimator. Methods for reducing the bias of the Hill estimator have been
discussed in, e.g., Baek and Pipiras (2010), and some of the references therein.
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To facilitate the discussion of our assumptions needed for the systematic jump tail

dependencies, we will let ν
(j)
syst(x) for x ∈ R2 \ (0, 0) denote a measure with marginals

ν
(j)
syst([x × (−∞,+∞)]) = ν(j,0)(x) and ν

(j)
syst([(−∞,+∞) × x]) = ν(0,j)(x) for x ∈ R, re-

spectively. This measure controls the time-invariant part of the jump compensator of the

jumps in asset j and the market constraint to the common set T (0)
[0,T ]∩T (j)

[0,T ]. Generalizing

the univariate tail measures to a vector [x1, x2] ∈ R2
+ \(0, 0), we denote the correspond-

ing jump tail intensity by ν
±(j)
syst,ψ([x1, x2]) =

∫
ψ±(u1)≥x1 ∪ ψ±(u2)≥x2 ν

±(j)
syst (d[u1, u2]).

15

We will then assume that for some (and hence any) x ∈ R2 \ (0, 0) and u ∈ R2
+, the

ratio

ν
±(j)
syst,ψ(u+ x)

ν
±(j)
syst,ψ(x)

, (2.6)

is in the domain of attraction of a mutlivariate extreme value distribution and satisfies

certain second order conditions as in, e.g., Einmahl et al. (1997). Recall, see, e.g.,

Theorem 6.2.1 of de Haan and Ferreira (2006), that a bivariate distribution function F ,

with marginals Fi in the domain of attraction of exp(−(1 + ξix)
−1/ξi) for i = 1, 2, is

defined to be in the domain of attraction of a multivariate extreme value distribution G

if and only if for every x, y > 0,

lim
u→∞

1− F (U1(u · x), U2(u · y))
1− F (U1(u), U2(u))

=

∫ π/2

0

(
1 ∧ tan(θ)

x
∨ 1 ∧ cot(θ)

y

)
Φ(dθ)

/
logG(0, 0),

(2.7)

where Ui(·) for i = 1, 2 denote the inverse of the functions x → 1/(1 − Fi(x)) that

standardize the marginals to belong to the domain of attraction of exp(−1/x), and the

distribution function Φ(·) is concentrated on [0, π/2] and satisfies the terminal condition∫ π/2
0

(1 ∧ tan(θ))Φ(dθ) =
∫ π/2
0

(1 ∧ cot(θ))Φ(dθ) = 1. Following Einmahl et al. (1997),

Φ(·) is commonly referred to as the spectral, or angular, measure of the extreme value

distribution. It accounts for the tail dependence between the two components and

together with the extreme value distributions for the marginals completely characterizes

the bivariate extreme value distribution.

Rather than directly estimating and interpreting the angular extreme value measure,

empirically it is more convenient to characterize the tail dependencies through Pickands

(1981) dependence function. This function is formally defined from Φ(·) as

A(u) =

∫ π/2

0

((1− u)(1 ∧ tan(θ)) ∨ u(1 ∧ cot(θ))) Φ(dθ), u ∈ [0, 1]. (2.8)

15Formally, this definition only pertains to the quadrants of R2 for which the signs of the jumps
coincide. It would be trivial, albeit notationally more cumbersome, to extend the analysis to jumps of
opposite signs. However, those cases are practically irrelevant.
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The function A(u) is convex and restricted to lie in the unit triangle; i.e., u ∨ (1 −
u) ≤ A(u) ≤ 1, with endpoints A(0) = A(1) = 1. The lower bound of the triangle

u∨(1−u) corresponds to perfect dependence, while the upper bound of unity is obtained

for asymptotically independent variables; see, e.g., the discussion in Coles (2001) and

Beirlant et al. (2004). In particular, as first pointed out by Sibuya (1960), a bivariate

normal distribution with correlation less than unity has asymptotically independent tails

and implies A(u) = 1 for all u ∈ [0, 1].

Going one step further, the overall degree of asymptotic dependence may be conve-

niently summarized in terms of the single extreme tail-dependence coefficient,

χ = lim
u→1−

P (F1(x) > u|F2(y) > u) , (2.9)

originally proposed by Sibuya (1960); see also the more recent discussion in Coles et al.

(1999). Intuitively, this measure gives the probability of observing an “extreme” ob-

servation in one of the series given that the other series is also “extreme.” For two

asymptotically independent series with A(u) ≡ 1 it follows that χ = 0. More gener-

ally, it is possible to show that χ = 2
(
1− A(1

2
)
)
, so that the extreme tail-dependence

coefficient is directly related to the value of Pickands dependence function at one-half.

The above characterization of the tail dependence via the limiting multivariate

extreme-value distribution does not discriminate between distributions with asymptot-

ically independent tails and χ = 0. Yet, in practice it might be interesting to further

differentiate the dependencies depending upon the rate at which they disappear in the

tails. To this end, we calculate the additional statistic proposed by Ledford and Tawn

(1996, 1997),

lim
u→∞

P (X > U1(ux), Y > U2(ux))

P (X > U1(u), Y > U2(u))
= x−1/η, x > 0, η ∈ (0, 1]. (2.10)

We will refer to η as the residual tail dependence coefficient. A value of η = 1 is associated

with asymptotic dependence (i.e., a bivariate distribution with χ ̸= 0), while η < 1

implies asymptotic independence (i.e., a bivariate distribution with χ = 0). Specifically,

for a bivariate normal distribution χ = 0, while η = (1 + ρ)/2 where ρ denotes the

standard correlation coefficient. More generally, taken together the χ and η coefficients

succinctly summarizes the characteristics of the dependencies in the tails.16

Before we discuss the actual inference procedures that we rely on in quantifying

the different theoretical measures outlined above, it is important to stress that all of

16Note that our analysis relates explicitly to the cross-sectional dependence inherent in the systematic
jumps, as opposed to the temporal dependencies in the returns. In fact, the Pickands dependence
function is not necessarily the most informative measure for characterizing dependencies over different
points in time; see e.g., the discussion in Hill (2011b,a).
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these pertain to “large” jumps and corresponding “extreme” dependencies. We have

essentially nothing to say about the dependencies inherent in the “smaller” jumps related

to the pathwise properties of the process and the degree of jump activity. An empirical

study of these features would be interesting, but it would also necessitate the use of

entirely different statistical techniques from the ones that we discuss next.

3 Jump Tail Estimation from High-Frequency Data

We will assume the availability of equidistant price observations for each of the M+1

assets over the discrete time grid 0, 1
n
, 2
n
, ..., T , where n ∈ N and T ∈ N. We will

denote the log-price increments over the corresponding discrete time-intervals [ i−1
n
, i
n
] by

∆n
i p

(j) = p
(j)
i
n

− p
(j)
i−1
n

. Our estimation procedures will rely on both increasing sampling

frequency and time span; i.e., n → ∞ and T → ∞. Intuitively, we will use in-fill

asymptotics, or n → ∞, to non-parametrically separate jumps from continuous price

moves, and more conventional long-span asymptotics, or T → ∞, and Extreme Value

Theory (EVT) for our inference about the jump tails. We begin with a discussion of the

former.

3.1 Separating Jumps from Volatility

In our separation of the price increments into jumps and continuous price moves we take

into account both the strongly persistent day-to-day variation and the intraday diurnal

patterns in the volatility; see, e.g, Andersen and Bollerslev (1997). In order to do so,

for each day, t = 1, ..., T , and each asset, j = 0, 1, ...,M , in the sample, we first compute

the Realized Variation (RV) and Bipower Variation (BV), defined by

RV
(j)
t =

tn+n∑
i=tn+1

|∆n
i p

(j)|2, BV
(j)
t =

π

2

tn+n∑
i=tn+2

|∆n
i p

(j)||∆n
i−1p

(j)|, (3.1)

respectively. Under weak regularity conditions and n → ∞, see e.g., Andersen et al.

(2003a) and Barndorff-Nielsen and Shephard (2004, 2006),

RV
(j)
t

P−→
∫ t+1

t

(σ(j)
s )2ds+

∫ t+1

t

∫
R
x2µ(j)(ds, dx), BV

(j)
t

P−→
∫ t+1

t

(σ(j)
s )2ds. (3.2)

Note that the Bipower Variation consistently estimates only the part of the total varia-

tion due to continuous prices moves, or the so-called daily integrated variance.

Based on these daily realized variation measures, we subsequently estimate the Time-
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of-Day (TOD) volatility pattern for each of the stocks and the aggregate market by,17

TOD
(j)
i =

n
∑T

t=1 |∆n
itp|

21

(
|∆n

itp
(j)| ≤ τ

√
BV

(j)
t ∧RV (j)

t n−ϖ
)

∑nT
s=1 |∆n

sp|21
(
|∆n

sp
(j)| ≤ τ

√
BV

(j)
[s/n] ∧RV

(j)
[s/n]n

−ϖ
) , it = (t−1)n+i, (3.3)

where i = 1, ..., n, τ > 0 and ϖ ∈ (0, 0.5) are both constants, and 1(·) denotes the

indicator function. The truncation of the price increments implied by τ and ϖ in the

definition of TOD
(j)
i effectively removes the jumps. Hence TOD

(j)
i measures the ratio

of the diffusive variation over different parts of the day relative to its average value for

the day. In the empirical analysis reported below we set τ = 2.5 and ϖ = 0.49 (the

Monte Carlo simulation evidence reported in Section 4 further corroborates our choice of

these truncation levels). Intuitively, this means that we classify as jumps all of the high-

frequency price increments that are beyond two-and-a-half standard deviations of a local

estimator of the corresponding stochastic volatility. The resulting TOD
(j)
i ’s generally

exhibit the well-known U-shaped pattern as a function of i over the trading day.18

Relying on a similar approach, we estimate the Continuous Variation over the whole

day using a modification of the truncated variation measure originally proposed by

Mancini (2009),

CV
(j)
t =

tn+n∑
i=tn+1

|∆n
i p

(j)|21
(
|∆n

i p
(j)| ≤ α

(j)
i n−ϖ

)
. (3.4)

Consistency and asymptotic normality of this estimator for n → ∞ and appropriate

choice of truncation level follow from Mancini (2009) and Jacod (2008). The truncation

level α
(j)
i that we actually use in separating the “realized” jumps from the continuous

price moves is chosen adaptively based on our preliminary estimates of the stochastic

volatility over the day together with the within-day volatility pattern. Specifically,

α
(j)
i = τ

√
(BV

(j)
[i/n] ∧RV

(j)
[i/n]) ∗ TOD

(j)
i−[i/n]n, i = 1, ..., nT, (3.5)

with τ and ϖ set to the same values as discussed above. We rely on the difference

between the continuous and previously defined realized variation measures,

JV
(j)
t = RV

(j)
t − CV

(j)
t

P−→
∫ t+1

t

∫
R
x2µ(j)(ds, dx), (3.6)

17Note, the asymptotic limit of BV
(j)
t is always below that of RV

(j)
t . The trimming BV

(j)
[i/n] ∧RV

(j)
[i/n]

is merely a finite-sample adjustment.
18Further details concerning our TOD

(j)
i estimates are available upon request. This same approach

has also recently been used by Bollerslev and Todorov (2011), who do provide a plot of the estimated

TOD
(0)
i for the aggregate market.
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for consistently estimating the total variation attributable to jumps.

We also use the identical truncation approach to directly identify the sets of high-

frequency jump increments for each of the assets,

T̂ (j)
[0,T ] =

{
i ∈ [0, nT ] : |∆n

i p
(j)| ≥ α

(j)
i n−ϖ

}
, j = 0, 1, ...,M. (3.7)

Similarly, we define the sets of systematic and idiosyncratic jump times by,

T̂ (j,0)
[0,T ] = T̂ (j)

[0,T ] ∩ T̂ (0)
[0,T ], T̂ (j,j)

[0,T ] = T̂ (j)
[0,T ] \

{
T̂ (j)
[0,T ] ∩ T̂ (0)

[0,T ]

}
, j = 1, ...,M. (3.8)

Armed with these high-frequency based estimates for the times and actual “realized”

jumps, we next show how to use these in our estimation of the jump tail characteristics.

We begin with the univariate jump tails.

3.2 Univariate Jump Tails

To keep the notation simple, we will focus on the right tail and the systematic jumps.

Our estimation of the parameters for the negative and/or idiosyncratic jumps proceed

analogous.

The general assumptions about the jump tails set out in Section 2 imply that

1−
ν
+(j,0)
ψ (u+ x)

ν
+(j,0)
ψ (x)

appr∼

{
1−

(
1 + ξ+(j,0)u/η+(j,0)

)−1/ξ+(j,0)

, ξ+(j,0) ̸= 0,

e−u/η
+(j,0)

, ξ+(j,0) = 0,
(3.9)

where u > 0, x > 0 is some “large” value, and η+(j,0) > 0;19 for additional discussion

of the approximating Generalized Pareto distribution, see, e.g., Embrechts et al. (2001).

Now, denote the (re-scaled) scores associated with the log-likelihood function of the

Generalized Pareto distribution by,

ϕ+
1 (u, ξ

+(j,0), η+(j,0)) =
1

η+(j,0)

(
1−

(
1 + ξ+(j,0)

)(
1 +

ξ+(j,0)u

η+(j,0)

)−1
)
,

ϕ+
2 (u, ξ

+(j,0), η+(j,0)) = log

(
1 +

ξ+(j,0)u

η+(j,0)

)
−
(
1 + ξ+(j,0)

){
1−

(
1 +

ξ+(j,0)u

η+(j,0)

)−1
}
,

(3.10)

where i = 1, 2 refer to the derivatives with respect to η+(j,0) and ξ+(j,0), respectively.

Then, for truncation level tr
(j,0)
T increasing to infinity with T → ∞,∫ t

0

∫
R
ϕ+
i (ψ

+(x)− tr
(j,0)
T , ξ+(j,0), η+(j,0))1

(
ψ+(x) ≥ tr

(j,0)
T

)
µ(j,0)(ds, dx), i = 1, 2,

19Note that with fat tails and β+(j,0) > 0, as discussed in Section 2, η+(j,0) ≡ x
β+(j,0) and ξ+(j,0) ≡

1
β+(j,0) .
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behave approximately as martingales. Combined with our previously discussed proce-

dures for directly “filtering” the “large” jumps from the high-frequency data, this in

turn allows for the construction of a standard method-of-moments type estimators for

the jump tail parameters.

In particular, following Bollerslev and Todorov (2010) the simple-to-implement mo-

ment conditions defined from the two martingales above and the jump sets defined in

equation (3.8),

∑
i∈T̂ (j,0)

[0,T ]

 ϕ+1 (ψ
+(∆n

i p
(j))− tr

(j,0)
T , ξ+(j,0), η+(j,0))1

(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−ϖ)

)
ϕ+2 (ψ

+(∆n
i p

(j))− tr
(j,0)
T , ξ+(j,0), η+(j,0))1

(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−ϖ)

)  ,

(3.11)

should both be arbitrarily close to zero asymptotically under the joint fill-in and long-

span asympotics. Moreover, the precision of the resulting estimator for ξ+(j,0), deter-

mined by the asymptotic limiting variance of the moment conditions, may be conve-

niently expressed as,

V̂ar
(
ξ̂+(j,0)

)
=

1

M
+(j,0)
T

(
1 + ξ̂+(j,0)

)2
, (3.12)

where

M
+(j,0)
T =

∑
i∈T̂ (j,0)

[0,T ]

1
(
ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T ∨ ψ+(α

(j)
i n−ϖ)

)
, (3.13)

denotes the actual number of jumps used in the estimation.

In order to actually implement these estimating equations, we obviously need to

specify the truncation level tr
(j,0)
T for each of the assets, j = 0, 1, ...,M . This choice must

balance the two opposing effects associated with the use of more jumps in the estimation

generally resulting in smaller sampling error, versus the use of more, and hence smaller,

jumps resulting in poorer approximation by the EVT distribution in equation (3.9). In

the main empirical result reported on below, we set tr
+(j,0)
T so that M

+(j,0)
T /T = 0.02,

corresponding to jumps of that size or larger occurring 5− 6 times per year.20

Our calculations for the jumps in p(0) that belong to the set T̂ (j,0)
[0,T ] proceed in exactly

the same fashion. Note, that in the following it is always the case thatM
+(j,0)
T =M

+(0,j)
T .

We next turn to a discussion of our multivariate estimation procedures and the

empirical strategies that we use for assessing the “extreme” jump tail dependencies.

20This choice, of course, directly dictates the accuracy of the estimator for ξ+(j,0) according to the
expression in equation (3.12). As noted below, we also experimented with the use of other truncation
levels in the empirical analysis, resulting in qualitatively very similar point estimates.
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3.3 Jump Tail Dependencies

We will focus our discussion on the estimation of the tail dependencies between the

jumps in the aggregate market and the systematic jumps in the individual stocks; i.e., the

jumps in p(0) and p(j) that arrive at the same time corresponding to the set T (0)
[0,T ]∩T (j)

[0,T ].

However, the same basic estimation techniques may be applied to other bivariate series,

and we do so for other pairs of returns and jump tails in the empirical section.

Following the discussion in Section 2, our main estimate for χ is derived from an es-

timate of Pickands dependence function, A(·). More specifically, we follow the approach

of Einmahl et al. (1997) by first estimating the underlying spectral measure; see also

Steinkohl et al. (2010). For i ∈ T̂ (j,0)
[0,T ] , denote

X̂i,1 =

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(j,0)
T

[
1 +

ξ̂+(j,0)

η̂+(j,0)
(ψ+(∆n

i p
(j))− tr

(j,0)
T )

]1/ξ̂+(j,0)

1{ψ+(∆n
i p

(j))≥tr(j,0)T }

+

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(j,0)
T (i)

1{ψ+(∆n
i p

(j))<tr
(j,0)
T },

X̂i,2 =

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(0,j)
T

[
1 +

ξ̂+(0,j)

η̂+(0,j)
(ψ+(∆n

i p
(0))− tr

(0,j)
T )

]1/ξ̂+(0,j)

1{ψ+(∆n
i p

(0))≥tr(0,j)T }

+

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(0,j)
T (i)

1{ψ+(∆n
i p

(0))<tr
(0,j)
T },

(3.14)

where
∣∣∣T̂ (j,0)

[0,T ]

∣∣∣ refers to the number of elements in the set T̂ (j,0)
[0,T ] , M

+(j,0)
T (i) refers to the

number of elements k in the set T̂ (j,0)
[0,T ] for which ψ

+(∆n
kp

(j)) > ψ+(∆n
i p

(j)) withM
+(0,j)
T (i)

defined in an analogous way from the jumps ∆n
kp

(0). Let

R̂i = X̂i,1 + X̂i,2, (3.15)

denote the sum of the two marginals. An initial estimator for Pickands dependence

function is then naturally obtained by,

Â+(j,0)(u) =
2

M
+(j,0)
T

∑
i∈T̂ (j,0)

[0,T ]

1

(
R̂i > R̂∣∣∣T̂ (j,0)

[0,T ]

∣∣∣−M+(j,0)
T ,

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
) max

{
(1− u)X̂i,1, uX̂i,2

}
R̂i

, u ∈ [0, 1].

where R̂
i,

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣ denotes the i-th order statistics.

Following Beirlant et al. (2004), Section 9.4.1, we further modify this initial estimator,

Ã+(j,0)(u) = max
{
u, 1− u, Â+(j,0)(u) + 1− (1− u)Â+(j,0)(0)− uÂ+(j,0)(1)

}
, u ∈ [0, 1].
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(3.16)

so that it always stays within its lower asymptotic bound of max(1−u, u) and the upper

bound of unity. Using the relationship discussed in Section 2, our primary estimate for

the extreme tail-dependence coefficient is simply obtained by evaluating this function at

one-half,

χ̂j,0 = 2(1− Ãj,0(1/2)). (3.17)

Turning next to the estimation of η. This can easily be accomplished by appealing

to the regular variation result in (2.10) in conjunction with a Hill-type estimator (see,

e.g., Ledford and Tawn (1996) and Draisma et al. (2004) for a discussion of the relevant

ideas),

η̂+(j,0) =
1

M
+(j,0)
T

M
+(j,0)
T −1∑
i=0

log

T∣∣∣T̂ (j,0)
[0,T ]

∣∣∣−M+(j,0)
T ,

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
T∣∣∣T̂ (j,0)

[0,T ]

∣∣∣−i, ∣∣∣T̂ (j,0)
[0,T ]

∣∣∣

 , (3.18)

where T
i,

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣ denotes the i-th order statistics of Ti, which in turn is defined for every

i ∈ T̂ (j,0)
[0,T ] as

Ti =

∣∣∣T̂ (j,0)
[0,T ]

∣∣∣
M

+(j,0)
T (i) ∨M+(0,j)

T (i)
. (3.19)

The two nonparametric estimators for χ and η in equations (3.17) and (3.18), respec-

tively, serve as our main statistics for characterizing the tail dependencies in the empirical

analysis. However, in effort to further verify the robustness of our conclusions, we also

implemented a few alternative estimators and additional summary type statistics.

In particular, following Davis and Mikosch (2009), the χ coefficient may alternatively

be estimated from the so-called extremogram,

χ̂j,0E =

∑
i∈T̂ (j,0)

[0,T ]

1
(
ψ+(∆n

i p
(0)) ≥ tr

(0,j)
T , ψ+(∆n

i p
(j)) ≥ tr

(j,0)
T

)
M

+(j,0)
T

. (3.20)

The extreme tail-dependence coefficient may also be estimated by semiparametric tech-

niques under the assumption of a logistic dependence structure for Pickands dependence

function,

A
(0,j)
θ (u) =

(
u1/θ + (1− u)1/θ

)θ
, θ ∈ (0, 1],
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where total dependence corresponds to the limiting case θ → 0, while independence is

obtained for θ = 1.21 We denote the resulting estimate for χ, by

χ̂j,0l = 2(1− Âj,0θ (1/2)). (3.21)

Lastly, we also calculate Kendall’s tau τk and Spearman’s rho ρs coefficients for the

systematic jump pairs for which each of the individual elements are above the tr
(j,0)
T and

tr
(0,j)
T thresholds, respectively. These two coefficients are, of course, quite widely used in

the literature as “distribution-free” dependence measures.

This completes our discussion of the different estimation procedures. Before turning

to our discussion of the actual empirical findings based on high-frequency intraday data

for a large cross-section of individual stocks, we first summarize the results from a Monte

Carlo simulation study designed to assess the reliability of the different estimators and

the choice of truncation levels.

4 Monte Carlo

The estimators discussed in the previous section are based on Extreme Value Theory

(EVT) approximations, along with in-fill asymptotics, or n→ ∞, to non-parametrically

identify the jumps, and long-span asymptotics, or T → ∞, for estimating the jump

tail dependence parameters. In practice, of course, we do not have access to continuous

price records over an infinitely long sample, and it is instructive to consider how the

estimators perform in a controlled simulation setting that more closely mimics that of

the actual data.

The bivariate model that we use in our simulations of the theoretical market prices

p
(0)
t , and the prices for the individual stock p

(1)
t , is based on the affine jump-diffusion

model used extensively in the empirical asset pricing literature,

p
(0)
t − p

(0)
0 =

∫ t

0

√
VsdW

(0)
s +

∑
s≤Nt

Z(0)
s ,

p
(1)
t − p

(1)
0 =

∫ t

0

√
VsdW

(1)
s +

∑
s≤Nt

Z(1)
s ,

Vt − V0 = 0.0128

∫ t

0

(3− Vs)ds+ 0.0954

∫ t

0

√
VsdBs,

(4.1)

21This is a semiparametric estimator, in the sense that it avoids parametric assumptions about the
marginals. Our actual implementation is based on censored maximum likelihood techniques following
Ledford and Tawn (1996), and we refer to that paper for additional details.
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where W
(0)
t , W

(1)
t are Brownian motions with Corr(W

(0)
1 ,W

(1)
1 ) = 0.4,22 both indepen-

dent from the Brownian motionBt, while conditional on {Vt}t≥0, Nt ∼ Poisson
(
λ
6

∫ t
0
Vsds+ 0.5(1− λ)t

)
.

The persistence of the square-root volatility process and the volatility-of-volatility pa-

rameter are both taken directly from Eraker et al. (2003), with the mean parameter

adjusted to reflect the median diffusive volatility of the individual stocks in our empir-

ical application. As for the conditionally Poisson distributed jumps, we fix λ at 0 or

1 resulting in constant and time-varying jump intensities, respectively, both of which

imply an average unconditional intensity corresponding to a jump every other day. The

distribution of the jump sizes, (Z
(0)
s , Z

(1)
s ), s = 1, 2, ..., are assumed to be i.i.d. with

CDF,

G(x0, x1) = Cθ(F (x0), F (x1)), (4.2)

where F (·) refers to the CDF of a truncated at 0.2 zero-mean normal variable with

standard deviation equal to 0.91,23 and the Gumbel-Hougard (logistic) copula,

Cθ(u0, u1) = exp
(
−
[
(− log u0)

1/θ + (− log u1)
1/θ
]θ)

, u0, u1 ∈ [0, 1], (4.3)

directly links jumps. As such, the extreme dependence between the systematic jumps

is simply controlled by the value of θ, with θ = 1 corresponding to independence, and

complete dependence arising for θ → 0.

All of our results are based on a total of 1,000 replications, with each of the repli-

cations consisting of 252 × 10 “days”, or 10 “years”, of simulated data. We record the

prices at 77 equidistant times within each “day”, corresponding to a 5-minute sampling

frequency, as employed in our actual empirical analysis.

We also allow for market microstructure noise in some of the simulations, by assuming

that at observation times i = 0, 1
n
, 2
n
, ..., T , instead of observing p

(0)
i and p

(1)
i , we actually

observe their “contaminated” counterparts

p
(0)∗
i = p

(0)
i + ϵ

(0)
i , p

(1)∗
i = p

(1)
i + ϵ

(1)
i , (4.4)

where (ϵ
(0)
i , ϵ

(1)
i ) is i.i.d. bivariate normally distributed with correlation 0.5, and variances

equal to 3+0.5
4×76×(1−0.1)

. This implies that the noise accounts for 10% of the total return

variation at the 5-minute sampling frequency, which is generally in line with the numbers

reported in the extensive empirical study of Hansen and Lunde (2006).

22This correlation closely matches the average correlation between the jump-adjusted five-minute
returns of the individual stocks and the aggregate market in our panel data.

23These parameters imply an expected squared jump size equal to 1.0, which again closely matches
that of the actual data analyzed below. This jump specification is also similar to the one previously
used by Jacod and Todorov (2009).
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The results of the Monte Carlo study are summarized in Table 1 in the form of the

median and interquartile range across the 1,000 replications. The first three columns

pertain to the infeasible case where we directly observe (Z
(0)
s , Z

(1)
s ), s = 1, 2, ..., and

thus do not need to first “filter” the jumps from the discretely observed high-frequency

returns. The first column gives the results for the extreme tail dependence parameter

equal to χ = 0.50. This is close to the median estimated value for the systematic

jumps in the actual data. Columns 2 and 3 give the results for χ = 0.25 and χ =

0.75, respectively. For the cases of high and medium tail dependence, the estimators

for χ are all approximately unbiased and reasonably precisely determined. The case

of low dependence contains a small upward bias. This holds true regardless of the

estimator used for inferring the extreme tail dependence parameter. Comparing the

estimator χ̂ in equation (3.17) based on Pickands dependence function with the one

based on the extremogram χ̂E in equation (3.20), the two estimators are generally close,

with the former being marginally more precise. The semiparametric estimator χ̂l based

on the known logistic tail dependence function and censored maximum likelihood, not

surprisingly, tend to result in the smallest biases overall.

Turning to the residual tail dependence coefficient, all of the cases reported in the

table formally imply η = 1. The estimates of η in the first three columns are indeed

close to 1, albeit somewhat downward-biased, with the bias naturally being the most

severe in column two for χ = 0.25. All in all, however, the pair of estimates for χ and η

generally provide good and reliable diagnostic for gauging the tail dependence inherent

the true systematic jumps.

The last two panels in the table report the results for Kendall’s tau τ̂k and Spearman’s

rho ρ̂s. The true population values of these commonly used statistics are not known in

the present setting, and as such it is more difficult to formally judge the results from the

simulations. Nonetheless, it is comforting that the ranking of the median values of the

estimates across the three different scenarios are in concert with the degree of extreme

dependence implied by the values of χ. At the same time, however, the variation in the

estimates for τk and ρs within each of the different scenarios is obviously much greater

than the variation in the estimates for χ.

We turn next to a brief discussion of the empirically more realistic cases in columns

4−8, where we first need to “filter” the jumps from the high-frequency data. For ease of

comparisons, we fix the logistic copula parameter such that χ = 0.5 in all of the cases.24

Columns 4-6 compare the effect on the estimation from the use of different truncation

24As already noted, this is close to median estimate for χ for the systematic jumps in the empirical
analysis discussed in the next section.
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levels in equation (3.5) equal to τ = 2.5, 2.0, 3.0, respectively. As seen from the table,

there is generally very little difference in the estimates across the three different trun-

cation levels. Intuitively, the actual estimates of the different tail parameters are only

based on the relatively large sized jumps, while the tuning parameter τ mostly affects

the inference about the smaller sized jumps. Indeed, comparing the feasible setups in

columns 4 − 6 with the infeasible scenario in the first column, it is clear that the “fil-

tering” of the jumps does not materially affect the estimation of the tail dependence

measures. The only noticeable difference being the estimates for the residual tail depen-

dence coefficient η, for which the downward bias does increase somewhat relative to its

theoretical value of unity.

The results in column 7 for λ = 1, and jumps with time-varying jump intensity, are

almost identical to the ones with constant jump intensity, or λ = 0, reported in column

4. Intuitively, since our estimates of the tail dependence are based directly on the jumps

instead of first aggregating the jumps over time, any temporal dependencies in the jump

arrivals should not affect the estimates.

Lastly, we report in column 8 the results based on the “contaminated” p
(0)∗
i and p

(1)∗
i

prices. The differences between column 4 and 8 are again negligible. Our estimates

for the tail dependence measures are all based on the “large” jumps, and the presence

of market microstructure “noise” does not materially affect our ability to separate the

“large” jumps from the diffusive price moves and the smaller sized jumps.

Taken as a whole, the results in Table 1 confirm that the different estimators for χ all

perform well and give rise to similar conclusions. In the empirical results discussed next

we therefore only report detailed findings for χ̂ based on Pickands dependence function

coupled with shorter summaries for the other statistics, leaving detailed results for all

of the different estimators to a supplementary Appendix.

5 Empirical Results

5.1 Data

Our high-frequency data for the individual stocks was obtained from Price-data. It

consists of 5-minute transaction prices for the fifty largest capitalization stocks included

in the S&P 100 index with continuous price records from mid 1997 until the end of

2010.25 The price records cover the trading hours from 9:35 EST to 16:00 EST, for a

total of 76 intraday return observations per day. Our proxy for the aggregate market

25The actual start date and number of complete trading days available for each of the stocks in the
sample differ slightly, ranging from a low of 3,330 to a high of 3,413, with a medium of 3,410 days.
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portfolio is based on comparable 5-minute data for the S&P 500 futures index obtained

from Tick Data Inc.

Table 2 provides key summary statistics for each of the stocks included in the sample

as well as the S&P 500 futures index (SPFU). Not surprisingly, the average continuous

variation (CV) for all of the individual stocks far exceeds that of the market. Similarly,

the variation attributable to jumps (JV) is also numerically much larger for each of the

individual stocks than it is for the market. In terms of the total variation, the share due

to jumps ranges from a low of 19.6% to a high of 29.2%, with a median value across all

fifty stocks of 21.5%. In contrast, the corresponding number for the aggregate market

index equals 16.1%, so that jump risk appears to be relatively more important at the

individual stock level.

The last two columns in the table, which report the total number of systematic and

idiosyncratic jumps detected for each of the stocks, further corroborates this idea. For

almost all of the stocks the total number of jumps exceed the number of market-wide

jumps for the S&P 500. These numbers also suggest very high overall jump intensities

ranging from slightly more than one jump per day to about one jump every other day.26

The finding that the individual stocks contain more jumps than the market is consistent

with the hypothesis of diversifiable individual jump risk originally put forth by Merton

(1976). Of course, the mere existence of jumps at the market level refutes the conjecture

that jump risk is entirely firm specific.

Further to this effect, the number of so-called systematic jumps, or jumps in the indi-

vidual stocks that occur at the same time the market jumps, are clearly non-trivial. Still,

it is obviously not the case that when a “large” market jump occurs, it automatically

triggers “large” jumps in all of the individual stocks. As such, a simple linear one factor

market model appears too simplistic to describe the relation between the individual and

market-wide jumps, and in turn the joint dependencies in the jump tails.

In order to more clearly visualize the different types of jump sets, we plot in Figure 1

the 5-minute logarithmic prices for three separate days for IBM, as a representative

stock, and the S&P 500 market portfolio. For ease of comparison, we normalize the

logarithmic price at the beginning of the day to zero across all of the panels. The top

panel shows the intraday prices on October 29, 2002, a day where the aggregate market

jumped but IBM did not. The jump in the market obviously occurred at 10:00EST, and

is readily associated with a disappointing reading of the Consumer Confidence Index

26With infinitely activity jumps, the total number of “significant” jumps will naturally be expected
to increase to infinity for ever increasing sampling frequency, and these numbers need to be interpreted
accordingly.
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released at that exact time.27 The middle panel shows the prices on January 3, 2001, a

day with a systematic jump in IBM. The timing of the systematic jumps is again readily

associated with the surprise cut in the Federal Funds Rate announced at 13:10EST on

that day. The final third panel shows February 26, 2008, when the board of directors for

IBM announced at 11:00EST that they had authorized $15 billion in additional funds

for stock repurchases, resulting in an idiosyncratic jump in IBM, but no discernable

discontinuities in the within-day prices for the aggregate market.

We continue next with a discussion of our estimation results pertaining to the id-

iosyncratic and systematic jump tail distributions.

5.2 Marginal Jump Tails

Our estimation results for the scalar tail decay parameter ξ for each of the marginal

jump tail distributions are reported in Table 3. The relevant truncation levels for the

different tails are determined by the equivalent of 0.02 times the daily sample sizes, along

with τ = 2.5 in equation (3.3). Corresponding asymptotic standard errors for each of

the individual estimates are immediately available from the formula in equation (3.12).

Looking first at the results for the S&P 500 market portfolio, both of the jump tails

are heavy with the right tail decaying at a slower rate than the left, or ξ̂+(0,0) > ξ̂−(0,0) >

0. This is consistent with the empirical evidence reported in Bollerslev and Todorov

(2010), and directly refutes the popular compound Poisson jump model with normally

distributed jump sizes that have been used extensively in the existing literature.

Turning to the results for the systematic jumps in the individual stocks, most of the

point estimates for ξ are positive, again indicating heavy-tailed jump distributions. In

parallel to the results for the market, for several of the stocks the estimate for the right

tail appears larger than the left.28 Of course, given the relatively low number of obser-

vations invariably available for the estimation of the jump tails, many of the estimates

are not significantly different from zero when judged by their individual standard errors

of approximately M−1/2 ≈ 0.121 under the null hypothesis of light tails. Taken as a

whole, however, the cross-sectional evidence clearly suggests that the systematic jumps

are heavy-tailed.29 At the same time, the dispersion in the estimates again suggests that

27Andersen et al. (2003b) and Andersen et al. (2007a), among many others, have previously studied
the relationship between regularly scheduled macroeconomic news announcements and jumps and/or
large price movements in asset prices.

28Related empirical evidence for overall larger right tails in half-hourly raw returns for various sector
indexes has recently been reported by Straetmans et al. (2008).

29Related to this, Kelly (2010) has recently explored ways in which to increase the efficiency of tail
index estimation by pooling the estimates across different stocks. His estimates, however, are based on
coarser daily frequency returns and not the jump tails per se, and do not explicitly differentiate between
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the relationship between the individual and market-wide jumps is not well described

by a simple one factor market model, which would imply identical systematic jump tail

decay parameters across all of the stocks.

The estimates for the idiosyncratic jump tails are reported in the last two columns

of the table. Almost all of the point estimates are again positive, and for many of the

stocks are bellow those for the systematic jump tails. Also, in parallel to the systematic

jump tails, the tail decay parameters for the right tails in quite a few cases dominate

those for the left, indicative of greater upside potential than downside firm-specific risks.

Meanwhile, as previously noted, given the relatively short time span and limited

number of “tail” observations underlying the estimation, all of the point estimates are

admittedly somewhat imprecise.30 To check the robustness of the results, we therefore

redid the estimation for the idiosyncratic jump tails based on a truncation level equiv-

alent to a total of 200 jump tail observations, implying a smaller asymptotic standard

error under the null of ξ = 0 approximately equal to M−1/2 ≈ 0.071. The resulting

estimates are generally fairly close to the ones based on the larger truncation level,

with medium estimates of 0.177 and 0.212 for the right and left tail decay parameters,

respectively, compared to the values of 0.187 and 0.214 reported in the table.31

To more directly illustrate the estimation results, we plot in Figure 2 the relevant

jump tail estimation for IBM together with the actually observed “moderate” to “large”

sized jumps. To facilitate the visual comparisons, the tails are plotted on a double loga-

rithmic scale.32 As is evident from the figure, the overall magnitude of the idiosyncratic

jump tails in the bottom two panels dominate the systematic ones depicted in the top

two panels. At the same time, the corresponding estimates for ξ are all quite similar,

except for the right systematic jump tail shown in the top right panel, which appears to

decay at a somewhat slower rate. The generally excellent fits afforded by the estimated

the systematic and idiosyncratic parts of the tails.
30Thirteen-and-a-half years might, of course, not seem like a short time span, but it leaves us with

only 60-70 observations. As discussed above, this choice of truncation is essentially dictated by a
usual bias-variance tradeoff, with the use of lower truncation levels resulting in more observations and
everything else equal more accurate estimates on the one hand, but potentially larger deviations from
the asymptotic approximations and therefore larger biases on the other.

31Further details concerning these robustness checks are available upon request. We also experimented
with the use of lower truncation levels for the estimation of the systematic jump tails. However, the
total number of systematic jumps for each of the stocks defined by the set in (3.8) and the relatively high
threshold level in (3.5) naturally limit the total number of systematic jumps, as reported in Table 2.
As such, the jumps identified as systematic are truly “large” in a joint sense, and the jumps actually
used in the estimation much “deeper” in the tails than a naive comparison of their number relative to
the total number of systematic jumps would suggest.

32The flat lines for the actually observed jumps at −8.14 ≈ log(1/3, 413) correspond to the occurrence
of one jump of that particular size in the sample. Similarly, for the other apparent lines at log(j/3, 413)
for integer j.
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solid lines for the actually observed jump tails, also directly underscore the accuracy of

the marginal EVT approximation underlying our estimation procedures.33

5.3 Systematic Jump Tail Dependencies

5.3.1 High-Frequency Dependencies

Before we discuss the general set of estimation results pertaining to all of the fifty stocks,

it is instructive to again consider the jump tail dependencies that we are after by looking

at IBM as a representative stock. To this end, we plot in Figure 3 the pairs of realized

positive and negative systematic jumps for IBM and the S&P 500 market portfolio.

The figure clearly reveals a strong positive association between the systematic jumps in

the stock and the jumps in the market index. Visual inspection also suggests that for

IBM this association might be slightly stronger for the negative than the positive jumps,

albeit not overwhelmingly so.34

Of course, we are primarily interested in the “extreme” tail dependencies, and the

probability/intensity of observing a “large” jump in one of the individual stocks given

that the market jumped by a “large” amount. As discussed above, this probability fol-

lows directly from Pickands dependence function. Our estimates of that function for the

negative (solid line) and positive (dashed line) systematic IBM and market-wide jumps

are plotted in Figure 4. Both of the estimated curves are far below unity, as would be

implied by independent tails, and much closer to the lower bound of perfect dependence

as indicated by the triangle. Moreover, while simple visual inspection of the aforemen-

tioned scatter plot in Figure 3 seemingly points to somewhat stronger dependencies for

the negative jump tails, the non-parametrically estimated “extreme” dependence func-

tions are fairly close throughout most of the support. The corresponding estimates for

the tail-dependence coefficients obtained by evaluating the functions at one-half together

with the formula for χ in equation (3.17) equal 0.625 and 0.655 for the right and left

tails, respectively. Hence, counter to the naive impression from Figure 3 and many

stories in the popular financial press about various “doomsday scenarios,” our formal

high-frequency based estimates actually suggest very similar asymptotic tail dependen-

cies during sharp market rallies, or positive jumps, and periods of steep market declines,

33Importantly, the new procedures would also allow us to meaningfully extrapolate the behavior
of the jump tails and corresponding “extreme” jump quantiles to levels which would be impossible
to accurately estimate with standard parametric approaches and lower-frequency, say daily, data; for
further discussion along these lines see Bollerslev and Todorov (2010).

34The simple linear correlations for the jump pairs depicted in the two panels equal 0.856 and 0.746
for the negative and positive jumps, respectively.
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or negative jumps.35

To further help gauge the magnitude of the estimated dependencies, we also include

in Figure 4 estimates of Pickands dependence function based on the raw high-frequency

5-minute returns. These functions are systematically higher, and the resulting tail de-

pendencies lower, than the ones based on the systematic jump tails. Intuitively, the

dependence in the raw returns manifests several features in the underlying latent bivari-

ate semimartingale process that describes the joint dynamics of the two price series. On

the one hand, the presence of common, or systematic, jumps tends to produce strong

tail dependencies, as directly evidenced by the previously discussed estimates. On the

other hand, the presence of idiosyncratic jumps tends to weaken the tail dependencies.

Similarly, pure diffusive price moves formally imply asymptotic independence. At the

same time, however, the presence of time-varying stochastic volatility will tend to gen-

erate tail dependence through periods of high volatility. As further discussed below, the

joint influence of all of these separate effects in turn combine to account for the weaker

tail dependencies observed with the raw high-frequency returns.

These specific results for IBM carry over to the rest of the stocks in the sample. In

particular, turning to Table 4, the first two columns in the table show the estimated

asymptotic tail dependencies for the raw 5-minute returns for each of the fifty stocks.

These estimates are generally fairly low. The results also closely mirror those obtained

by restricting the sample to only those 5-minute returns that are classified as jumps,

or the set T̂ (j)
[0,T ]. By contrast, the estimated dependence coefficients for the systematic

jump tails, or the returns in the set T̂ (j,0)
[0,T ] = T̂ (j)

[0,T ] ∩ T̂ (0)
[0,T ], are all very high ranging from

0.455 to 0.662. The estimates are also surprisingly close to symmetric for most of the

stocks, and if anything slightly larger for the right tails.

These conclusions based on χ̂ are further corroborated by the summary results re-

ported in Table 5 for the alternative statistics discussed in Section 3.3.36 As seen from the

table, the estimates for the extreme tail-dependence coefficient χ using the extremogram

and the semiparametric setting based on a logistic copula for the tail dependence lead

to essentially the same results as the ones reported in Table 4. For instance, the median

35This, of course, also contrasts with many of the estimates reported in the existing empirical finance
literature based on daily, or coarser frequency, data and standard correlation based measures, or para-
metric GARCH type models allowing for time-varying dynamic correlations, which typically point to
stronger dependencies on the downside; see, e.g., Engle (2009) and the many references therein. We
will try to reconcile these differences below by directly attributing the tail dependencies in daily returns
to systematic jumps and commonalities in volatilities.

36To conserve space, we only report the median and interquartile range of the estimates obtained
across all of the fifty stocks. Detailed estimates for each of the individual stocks are given in a supple-
mentary Appendix available upon request.
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values of χ̂+
E and χ̂−

E for the systematic jump tails equal 0.603 and 0.574, respectively,

compared to 0.574 and 0.547 for χ̂+ and χ̂− in Table 4.

The estimates for the coefficient of residual tail dependence η are all reasonably close

to 1, as formally implied by χ > 0, with the downward biases relative to unity comparable

to those documented in the Monte Carlo simulation study. Although more difficult to

interpret from a formal theoretical perspective, Kendall’s tau τ̂k and Spearman’s rho ρ̂s

also both achieve their largest average values for the systematic jump tails. This again

is in concert with the results from the simulations.

All in all, these results clearly support the notion that most of the “extreme” joint

dependencies reside in the systematic jump tails. Building on this idea, we next show

how to identify and isolate the effect of common time-varying stochastic volatility as

another separate source of tail dependence in lower-frequency daily returns.

5.3.2 Daily Dependencies

We continue to rely on the high-frequency data for explicitly “filtering” out the jumps

in the daily returns and variation measures. In particular, for each asset, j = 0, 1, ...,M ,

and day, t = 1, ..., T , in the sample, the part of the daily returns associated with con-

tinuous price moves are naturally estimated by the sum of the intraday high-frequency

returns that are not classified as jumps,

z
(j)
t =

tn∑
i=(t−1)n+1

[(
∆n
i p

(j)

∆n
i p

(0)

)
1

(
|∆n

i p
(j)| ≤ α

(j)
i n−ϖ

|∆n
i p

(0)| ≤ α
(0)
i n−ϖ

)]
. (5.1)

Under the assumption of finite variation jumps and weak additional regularity condi-

tions, it follows readily from the expression for the general semimartingale process in

equation (2.1) that for n→ ∞,

z
(j)
t

P−→

( ∫ t
t−1

α
(j)
s ds+

∫ t
t−1

σ
(j)
s dW

(j)
s ds∫ t

t−1
α
(0)
s ds+

∫ t
t−1

σ
(0)
s dW

(0)
s ds

)
. (5.2)

The first integrals on the right-hand-side associated with the drifts in the individual

stock and aggregate market prices are both negligible, and will not affect the estimated

daily tail dependencies. Further, assuming the diffusive volatilities to be constant and

the Brownian motions not perfectly correlated, the terms associated with the second

integrals would be jointly normally distributed and hence result in asymptotically inde-

pendent tails. Consequently, any tail dependence between the two components in z
(j)
t is

directly attributable to time-varying stochastic volatility.

Going one step further, it is possible to non-parametrically “remove” the effect of the

stochastic volatility by standardizing z
(j)
t with an estimator of its quadratic variation.
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Specifically, let
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(5.3)

where the estimator for the daily quadratic variation is based on a multivariate version

of the truncated Continuous Variation measure defined in equation (3.4).37 Then, in

analogy to the results discussed above, it follows that for n→ ∞,
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(5.4)

where ⟨p(j)s , p
(0)
s ⟩c(t−1,t] refers to the continuous part of the quadratic covariation between

p(j) and p(0) over the (t − 1, t] daily time interval. As before, the impact of the drift

terms may be ignored, so that the non-parametrically “devolatilized” pairs of returns

z̃
(j)
t should be approximately bivariate standard normally distributed.38

Motivated by these ideas, the right panel in Figure 4 plots Pickands dependence

functions for each of the bivariate IBM series z
(IBM)
t and z̃

(IBM)
t . Our estimates are based

on exactly the same estimation procedures and truncation levels as the ones described

for the jump tails in Sections 3.2 and 3.3. Per the discussion above, we would expect the

left and right tail functions corresponding to z̃
(IBM)
t to be close to unity. The two curves

in the figure confirm this, thus indirectly underscoring the accuracy of our empirical

approximations, and the minimal influence imparted by the finite-sample measurement

errors and “leverage effect.”

Further elaborating on these results, the wedge between the estimated dependence

functions for z
(IBM)
t and z̃

(IBM)
t directly reveals the effect of the diffusive stochastic

volatility on the overall tail dependence. As seen from the figure, this wedge is obviously

non-trivial, and shows that time-varying volatility is indeed responsible for some of the

asymptotic tail dependence between the daily individual stock returns and the return

37Note, this estimator is guaranteed to be positive semi-definite by construction.
38The approximation comes from the need to estimate the quadratic variation and a possible “leverage

effect,” or negative correlation between the within-day stochastic volatility and price innovations. The
latter should have only minimal effect, and if anything, result in slightly stronger negative tail depen-
dencies. A related univariate standardization approach has been proposed by Andersen et al. (2007b),
and further explored empirically by Andersen et al. (2010), who confirm that the jump-adjusted “de-
volatilized” returns for a sample of individual stocks are approximately univariate standard normally
distributed.

25



on the aggregate market portfolio. The figure also points to slightly stronger, albeit

not by much, tail dependencies in the positive (dashed line) than the negative (solid

line) jump-adjusted “devolatilized” returns. This slight difference and reversal vis-a-

vis the results for the raw daily returns may in part be attributed to the within-day

“leverage effect.” Meanwhile, comparing the two panels in Figure 4 and the magnitudes

therein, the systematic jump tails are clearly associated with much stronger “extreme”

dependencies than the ones induced by the more slowly moving daily diffusive volatility.

To further corroborate these specific results for IBM, we report in Table 6 the esti-

mated tail dependence coefficients χ for the raw daily returns, the jump-adjusted returns

z
(j)
t , and the jump-adjusted “devolatilized” returns z̃

(j)
t , for each of the fifty stocks in

the sample. For comparison purposes, we also include the results where we ignore the

temporal variation in the continuous covariation and only standardize the jump-adjusted

returns by their respective univariate continuous variation measures; i.e., the series ob-

tained by restricting the off-diagonal elements in the matrix in equation (5.3) to be

zero.39

Looking first at the results for the raw daily returns, the estimated tail-dependence

coefficients are generally quite close across all of the fifty stocks, with median values

of 0.317 and 0.336 for the positive and negative tails, respectively. These numbers are,

of course, somewhat larger than the median dependencies estimated with the raw 5-

minute returns, but they are still dwarfed by the estimates for the systematic jump

tails. Removing all of the “large” jumps from the daily returns reduces slightly the

average dependence-coefficient estimates. This is consistent with the aforemention de-

pendence coefficients for the high-frequency “filtered” jumps reported in Table 4, which

are slightly higher than those for the raw 5-minute returns. The results for the univariate

“devolatilized” returns reported in the next pair of columns, confirm that some of the

extreme tail dependence may indeed be ascribed to time-varying volatility. For most

of the stocks, the univariate standardization reduces χ̂− and χ̂+ by more than a third

relative to the estimates for the jump-adjusted returns z
(j)
t .40 Meanwhile, standardizing

the jump-adjusted returns by the full realized continuous covariation matrix to explic-

itly account for the temporal variation in the diffusive covariance risk as well, effectively

eliminates all of the remaining dependencies, and results in asymptotically independent

tails.

39As previously noted, Andersen et al. (2010) have recently argue that a closely related univariate
standardization scheme results in approximate univariate standard normal distributions empirically.

40This is also consistent with the earlier empirical evidence in Poon et al. (2004), who report that
standardizing daily international equity index returns by simple univariate parametric GARCH models
tends to reduce the estimated tail dependencies.
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The results for the alternative tail dependence coefficients summarized in Table 7

again corroborate the more detailed results for all of the individual stocks and ξ̂ discussed

above. In particular, the median values of ξ̂l and ξ̂E for the jump-adjusted bivariate

“devolatilized” returns are all close to zero, as are the median values for τ̂k and ρ̂s. As

noted above, the residual tail dependence coefficient for a bivariate normal distribution

with correlation ρ = 0 equals η = (1 + ρ)/2. Hence, the values of η̂ close to 0.5 in the

last two columns provide further evidence that the standardized returns are indeed i.i.d.

bivariate normal distributed. These results also indirectly suggest that any within-day

dynamic “leverage effects” must be fairly small.

Taken as whole, the empirical results reported in Tables 6 and 7 show how the

new high-frequency based procedures developed here allow us to “dissect” the generic

semimartingale representation in equation (2.1), and effectively assess the role of the

different components in generating tail dependencies.

6 Conclusion

We propose a new set of statistical procedures for dissecting the jumps in individual

asset returns into idiosyncratic and systematic components, and for estimating the joint

distributional features of the corresponding jump tails. Our estimation techniques are

based on in-fill and long-span asymptotics, together with extreme value type approxima-

tions. On applying the estimation methods with a large panel of high-frequency data for

fifty individual stocks and the S&P 500 market portfolio, we find that the idiosyncratic

and systematic jumps are both generally heavy tailed. We also find strong evidence for

asymptotic tail dependence between the individual stocks and the market index, with

most of it directly attributable to the systematic jump tails, and strong dependencies

between the sizes of the simultaneously occurring jumps. Further building on the same

techniques, we document non-trivial joint tail dependencies in longer horizon daily re-

turns, and show how that dependence may be ascribed to the high-frequency systematic

jumps and commonalities in the interdaily temporally varying stochastic volatility.

As such, our empirical findings highlight the importance of the new estimation

framework for better understanding and more accurately modeling tail and systemic

risk events, like the ones experienced during the recent financial crises. The estima-

tion techniques developed here could also be usefully applied with high-frequency data

from different countries in the study of “extreme” international market linkages and

contagion-type effects. We leave further empirical investigations along these lines for

future work.
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Figure 1: IBM and Market-Wide Jumps
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Note: The figure shows the 5-minute logarithmic prices for IBM and the S&P 500 futures index for October 29, 2002 (top

panel), January 3, 2001 (middle panel), and February 26, 2008 (bottom panel). The logarithmic prices are normalized to

zero at the beginning of each day.

32



Figure 2: IBM Jump Tails

−2 −1 0 1

−8

−7

−6

−5

−4

−1 0 1 2

−8

−7

−6

−5

−4

−2 −1 0 1

−8

−7

−6

−5

−4

−1 0 1 2

−8

−7

−6

−5

−4

Note: The figure shows the estimated (solid line) and actually observed (stars) systematic (top two panels) and idiosyn-

cratic (bottom two panels) negative (left two panels) and positive (right two panels) jump tails for IBM. The tails are

plotted on a double logarithmic scale. All of the jumps are extracted from 5-minute returns spanning 1997 through 2010.
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Figure 3: IBM Systematic Jumps
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Note: The figure shows the scatter of systematic negative (top panel) and positive (bottom panel) jumps in IBM and the

S&P 500 market portfolio. The jumps are extracted from 5-minute returns spanning 1997 through 2010.
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Figure 4: Pickands Dependence Functions for High-Frequency and Daily IBM Returns
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Note: The figure shows estimates of Pickands dependence function for IBM and the S&P 500 market portfolio. The left

panel is based on 5-minute returns (top two curves) and the systematic jump tails (bottom two curves). The right panel is

based on daily returns (bottom two curves) and the jump-adjusted “devolatilized” daily returns (top two curves) denoted

by z̃
(j)
t in the main text. The dashed (solid) lines correspond to the positive (negative) tails. The jumps are extracted

from 5-minute returns and the sample spans the period from 1997 through 2010.
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Table 1: Monte Carlo Simulations
Design

1 2 3 4 5 6 7 8
χ̂

true value 0.500 0.250 0.750 0.500 0.500 0.500 0.500 0.500
25th quantile 0.481 0.266 0.724 0.477 0.467 0.489 0.478 0.482
50th quantile 0.518 0.295 0.753 0.511 0.499 0.524 0.509 0.514
75th quantile 0.549 0.328 0.775 0.545 0.535 0.556 0.542 0.544

χ̂l

true value 0.500 0.250 0.750 0.500 0.500 0.500 0.500 0.500
25th quantile 0.443 0.215 0.704 0.424 0.428 0.420 0.416 0.400
50th quantile 0.493 0.261 0.748 0.476 0.479 0.478 0.467 0.467
75th quantile 0.537 0.318 0.774 0.517 0.519 0.521 0.513 0.511

χ̂E

true value 0.500 0.250 0.750 0.500 0.500 0.500 0.500 0.500
25th quantile 0.480 0.240 0.720 0.480 0.460 0.500 0.480 0.480
50th quantile 0.520 0.280 0.760 0.500 0.500 0.520 0.520 0.520
75th quantile 0.560 0.320 0.780 0.560 0.540 0.560 0.560 0.560

η̂
true value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25th quantile 0.890 0.789 0.926 0.828 0.839 0.812 0.820 0.790
50th quantile 0.948 0.853 0.968 0.884 0.895 0.868 0.873 0.844
75th quantile 1.002 0.920 1.007 0.939 0.954 0.923 0.924 0.896

τ̂k
true value - - - - - - - -
25th quantile 0.298 0.158 0.504 0.259 0.257 0.255 0.243 0.234
50th quantile 0.352 0.225 0.556 0.321 0.319 0.318 0.307 0.300
75th quantile 0.406 0.284 0.606 0.381 0.380 0.381 0.376 0.362

ρ̂s
true value - - - - - - - -
25th quantile 0.378 0.189 0.645 0.335 0.333 0.337 0.321 0.316
50th quantile 0.451 0.289 0.713 0.422 0.420 0.421 0.405 0.404
75th quantile 0.528 0.380 0.765 0.499 0.496 0.502 0.497 0.487

Note: The table reports the results from the Monte Carlo simulation study de-
tailed in Section 4 based on a total of 1,000 replications. All of the estimates are
for the positive systematic jump tails. The eight different designs are defined as
follows: 1: λ = 0, χ = 0.50, true jumps; 2: λ = 0, χ = 0.25, true jumps; 3: λ = 0,
χ = 0.75, true jumps; 4: λ = 0, χ = 0.50, τ = 2.5; 5: λ = 0, χ = 0.50, τ = 2.0; 6:
λ = 0, χ = 0.50, τ = 3.0; 7: λ = 1, χ = 0.50, τ = 2.5; 8: λ = 0, χ = 0.5, τ = 2.5,

and p
(j)∗
i , j = 0, 1.
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Table 2: Summary Statistics
CV JV Jump Counts

Ticker Mean st.dev. Mean st.dev. Systematic Idiosyncratic
AAPL 6.070 6.948 1.688 3.986 560 4941
GE 2.859 5.368 0.702 2.776 1002 4063

WMT 2.311 2.861 0.634 2.179 765 4309
IBM 2.082 2.819 0.508 1.687 768 3953
PG 1.624 2.278 0.452 1.660 703 4362
T 2.805 3.887 0.753 1.660 605 4895

JNJ 1.358 1.950 0.385 1.101 720 4874
JPM 4.123 8.821 1.029 3.064 787 4354
WFC 3.825 9.655 0.996 3.355 833 4566
ORCL 5.563 7.366 1.284 2.510 653 4488
KO 1.637 2.101 0.418 0.827 773 4720
PFE 2.243 2.609 0.609 1.409 673 4371
C 5.951 21.04 1.538 6.532 744 4110

BAC 4.659 14.13 1.151 4.442 799 4358
INTC 4.210 5.121 0.743 1.681 666 3613
SLB 4.050 5.671 0.851 1.436 445 4352
CSCO 4.565 6.224 0.895 2.312 667 3902
MRK 2.053 2.795 0.676 2.874 652 4701
PEP 1.913 2.393 0.520 1.493 595 4788
HPQ 3.600 4.528 1.073 2.508 681 4777
MCD 2.148 2.924 0.591 1.088 586 4928
AMZN 10.50 16.22 2.926 5.744 483 4886
QCOM 6.698 10.27 1.618 3.205 572 4302
OXY 3.483 5.983 0.879 1.599 511 5167
UTX 2.224 3.266 0.652 1.852 758 4923
F 5.166 17.40 1.800 6.495 534 5794

MMM 1.809 2.583 0.509 1.501 802 4693
CMCSA 4.338 5.469 1.792 2.606 651 8082
CAT 3.079 4.539 0.799 1.337 678 4843
HD 3.075 4.105 0.819 2.083 722 4606
FCX 5.741 9.484 2.047 3.098 400 8128

AMGN 3.281 4.284 0.901 1.632 595 4924
MO 2.088 2.558 0.763 2.873 526 5030
BA 2.685 3.387 0.713 1.428 622 4648
CVS 2.662 3.849 0.996 2.939 546 6227
EMC 5.931 7.489 1.409 3.196 567 4520
DD 2.711 3.552 0.669 1.520 729 4475
BMY 2.331 2.928 0.794 2.402 652 5225
HON 2.801 4.095 0.919 2.396 743 5430
NKE 2.554 3.152 0.936 1.910 503 5508
MDT 2.060 2.920 0.788 2.204 567 5541
UNH 2.880 4.257 1.044 2.294 441 5634
DOW 3.021 4.321 0.911 2.757 677 5189
CL 1.811 2.369 0.574 1.191 620 5344
TXN 5.460 6.196 1.261 2.498 609 4146
BK 4.260 12.20 1.287 5.521 825 5036
HAL 5.746 9.138 1.467 3.103 383 4759
WAG 2.590 3.027 0.812 1.829 617 5193
LOW 3.409 4.157 1.032 2.110 629 4921
SO 2.000 2.474 0.500 1.161 555 5259

min 1.358 1.950 0.385 0.827 383 3613
max 10.50 21.04 2.926 6.532 1002 8128
25th 2.229 2.921 0.671 1.608 567 4397
50th 2.950 4.207 0.865 2.249 652 4816
75th 4.318 6.767 1.131 2.923 727 5184

SPFU 1.050 2.022 0.201 0.765 4625

Note: The sample period for the fifty stocks range from mid 1997 through December
2010, for a minimum of 3,330 to a maximum of 3,413 daily observations.
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Table 3: Jump Tail Decay Parameters
Systematic Idiosyncratic

Ticker ξ̂+ ξ̂− ξ̂+ ξ̂−

AAPL 0.137 0.335 0.503 0.002
GE 0.361 0.242 0.167 0.335

WMT -0.042 0.119 0.395 0.273
IBM 0.646 0.411 0.282 0.306
PG 0.180 0.205 0.340 0.243
T 0.400 0.248 0.020 0.264

JNJ -0.034 0.396 0.597 0.225
JPM 0.163 0.386 0.124 0.241
WFC 0.306 0.217 -0.159 0.074
ORCL 0.212 0.264 -0.092 -0.179
KO 0.180 0.208 0.317 0.342
PFE 0.094 0.316 0.153 0.221
C 0.481 0.371 -0.036 -0.002

BAC 0.887 0.389 0.112 0.259
INTC 0.443 0.185 0.330 0.109
SLB 0.111 0.253 0.132 0.217
CSCO 0.327 0.353 0.148 0.137
MRK 0.248 0.428 0.241 0.516
PEP 0.077 0.619 0.171 0.416
HPQ 0.335 0.097 0.047 -0.009
MCD 0.247 0.112 0.116 0.211
AMZN 0.176 -0.122 -0.137 0.204
QCOM 0.120 -0.128 0.121 -0.052
OXY 0.126 0.239 0.158 0.395
UTX 0.045 0.435 0.462 0.202
F 0.310 0.435 0.293 0.457

MMM 0.312 0.173 0.466 -0.043
CMCSA -0.030 0.022 0.067 0.109
CAT 0.210 -0.097 0.051 0.106
HD 0.266 0.259 0.216 0.251
FCX 0.259 -0.026 0.190 0.151

AMGN 0.178 0.047 -0.098 0.083
MO 0.402 0.295 0.185 0.242
BA 0.132 0.391 0.221 0.220
CVS 0.268 0.337 0.246 0.365
EMC 0.218 0.213 0.205 -0.260
DD -0.048 0.331 0.065 -0.021
BMY -0.040 0.372 -0.003 0.549
HON 0.323 0.188 0.295 0.204
NKE 0.021 0.215 0.397 0.104
MDT 0.065 0.194 0.169 0.448
UNH 0.360 0.559 -0.004 0.073
DOW 0.402 0.252 0.301 0.227
CL 0.103 0.227 0.281 0.283
TXN 0.320 0.168 0.259 0.036
BK 0.281 0.131 0.427 0.254
HAL 0.007 0.042 0.434 0.143
WAG 0.435 0.265 0.504 0.200
LOW 0.279 0.321 0.053 0.098
SO 0.323 0.237 0.333 0.493

min -0.048 -0.128 -0.159 -0.260
max 0.887 0.619 0.597 0.549
25th 0.113 0.176 0.078 0.100
50th 0.232 0.245 0.187 0.214
75th 0.323 0.349 0.313 0.270

SPFU 0.364 0.207

Note: The estimated jump tail decay parame-
ters are based on M = 0.02*T jump observations
extracted from 5-minute returns spanning 1997
through 2010.
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Table 4: High-Frequency Tail-Dependence Coefficients
5-min Returns All Jumps Systematic Jumps

Ticker χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂−

AAPL 0.114 0.118 0.137 0.145 0.497 0.509
GE 0.274 0.157 0.333 0.212 0.616 0.610

WMT 0.178 0.132 0.254 0.216 0.514 0.563
IBM 0.204 0.247 0.236 0.296 0.625 0.655
PG 0.224 0.124 0.241 0.169 0.552 0.544
T 0.196 0.120 0.216 0.210 0.620 0.583

JNJ 0.235 0.143 0.276 0.173 0.548 0.528
JPM 0.246 0.123 0.344 0.248 0.634 0.576
WFC 0.177 0.097 0.257 0.166 0.555 0.501
ORCL 0.110 0.083 0.143 0.143 0.504 0.455
KO 0.218 0.187 0.239 0.275 0.594 0.592
PFE 0.211 0.144 0.287 0.167 0.590 0.525
C 0.154 0.103 0.245 0.178 0.641 0.506

BAC 0.197 0.105 0.318 0.206 0.563 0.530
INTC 0.211 0.148 0.243 0.206 0.563 0.498
SLB 0.326 0.210 0.304 0.178 0.602 0.549
CSCO 0.207 0.146 0.247 0.209 0.579 0.507
MRK 0.205 0.171 0.226 0.196 0.662 0.577
PEP 0.190 0.126 0.216 0.174 0.585 0.571
HPQ 0.131 0.070 0.199 0.113 0.547 0.550
MCD 0.189 0.093 0.185 0.124 0.554 0.579
AMZN 0.067 0.023 0.082 0.070 0.511 0.470
QCOM 0.081 0.072 0.138 0.114 0.544 0.491
OXY 0.323 0.191 0.279 0.192 0.626 0.518
UTX 0.237 0.148 0.268 0.190 0.607 0.578
F 0.092 0.092 0.117 0.141 0.585 0.574

MMM 0.249 0.150 0.249 0.176 0.559 0.512
CMCSA 0.145 0.086 0.198 0.096 0.477 0.543
CAT 0.224 0.187 0.200 0.235 0.657 0.598
HD 0.248 0.111 0.314 0.202 0.586 0.594
FCX 0.159 0.109 0.165 0.114 0.502 0.506

AMGN 0.139 0.068 0.174 0.072 0.544 0.465
MO 0.119 0.075 0.152 0.103 0.552 0.528
BA 0.254 0.161 0.248 0.224 0.582 0.654
CVS 0.159 0.099 0.186 0.145 0.578 0.580
EMC 0.145 0.067 0.150 0.173 0.493 0.487
DD 0.245 0.158 0.253 0.219 0.625 0.606
BMY 0.131 0.112 0.183 0.123 0.552 0.563
HON 0.212 0.136 0.248 0.175 0.628 0.566
NKE 0.112 0.065 0.099 0.083 0.591 0.612
MDT 0.087 0.057 0.090 0.100 0.523 0.544
UNH 0.190 0.103 0.188 0.119 0.608 0.536
DOW 0.130 0.090 0.151 0.147 0.563 0.512
CL 0.144 0.083 0.175 0.129 0.530 0.524
TXN 0.121 0.072 0.188 0.140 0.564 0.499
BK 0.255 0.116 0.290 0.235 0.650 0.612
HAL 0.148 0.103 0.163 0.123 0.551 0.587
WAG 0.237 0.133 0.255 0.119 0.570 0.526
LOW 0.201 0.167 0.256 0.213 0.600 0.623
SO 0.232 0.142 0.217 0.145 0.581 0.570

min 0.067 0.023 0.082 0.070 0.477 0.455
max 0.326 0.247 0.344 0.296 0.662 0.655
25th 0.140 0.091 0.174 0.123 0.548 0.512
50th 0.193 0.117 0.222 0.171 0.574 0.547
75th 0.230 0.147 0.255 0.206 0.606 0.580

Note: The estimated tail-dependence coefficients for each of the stocks
with the S&P 500 market portfolio reported in the three pairs of columns
are based on: all of the 5-minute returns; all of the jumps; and the sys-
tematic jumps only. The jumps are extracted from the 5-minute returns
spanning 1997 through 2010.
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Table 5: Alternative High-Frequency Tail Dependence
Coefficients

5-min Returns All Jumps Systematic Jumps

+ - + - + -
χ̂l

25th quantile 0.134 0.062 0.149 0.109 0.500 0.471
50th quantile 0.196 0.092 0.120 0.143 0.539 0.517
75th quantile 0.236 0.123 0.248 0.190 0.581 0.565

χ̂E

25th quantile 0.132 0.061 0.151 0.119 0.559 0.544
50th quantile 0.194 0.088 0.199 0.147 0.603 0.574
75th quantile 0.241 0.118 0.250 0.191 0.633 0.618

η̂
25th quantile 0.871 0.756 0.888 0.802 0.787 0.788
50th quantile 0.914 0.816 0.936 0.888 0.829 0.833
75th quantile 0.964 0.893 1.004 0.960 0.875 0.884

τ̂k
25th quantile 0.111 0.054 0.133 0.107 0.259 0.241
50th quantile 0.166 0.118 0.184 0.168 0.312 0.297
75th quantile 0.239 0.178 0.236 0.202 0.364 0.372

ρ̂s
25th quantile 0.102 0.080 0.129 0.118 0.348 0.308
50th quantile 0.172 0.160 0.213 0.213 0.408 0.396
75th quantile 0.273 0.232 0.282 0.276 0.489 0.491

Note: The table reports the median and interquartile range for the differ-
ent estimators obtained across all of the fifty stocks in the sample based
on: the 5-minute returns; all of the jumps; and the systematic jumps only,
as further detailed in the note to Table 4.
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Table 6: Daily Tail-Dependence Coefficients
Daily Returns Jump Adj. Returns Univariate De-vol. Multivariate De-vol.

Ticker χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂− χ̂+ χ̂−

AAPL 0.190 0.237 0.225 0.226 0.161 0.198 0.090 0.065
GE 0.441 0.516 0.355 0.429 0.232 0.202 0.058 0.061

WMT 0.321 0.235 0.214 0.252 0.140 0.136 0.047 0.040
IBM 0.361 0.399 0.348 0.325 0.207 0.160 0.096 0.054
PG 0.320 0.269 0.241 0.209 0.231 0.118 0.087 0.035
T 0.333 0.344 0.249 0.270 0.157 0.207 0.067 0.093

JNJ 0.296 0.344 0.249 0.302 0.109 0.177 0.051 0.063
JPM 0.473 0.398 0.363 0.290 0.196 0.216 0.075 0.063
WFC 0.397 0.343 0.310 0.336 0.167 0.190 0.062 0.076
ORCL 0.262 0.239 0.263 0.213 0.166 0.112 0.083 0.032
KO 0.296 0.306 0.255 0.299 0.164 0.126 0.073 0.047
PFE 0.271 0.386 0.249 0.327 0.172 0.169 0.061 0.054
C 0.415 0.367 0.314 0.357 0.189 0.236 0.065 0.091

BAC 0.368 0.401 0.279 0.329 0.177 0.206 0.073 0.045
INTC 0.372 0.324 0.314 0.282 0.230 0.216 0.069 0.050
SLB 0.291 0.424 0.231 0.343 0.152 0.126 0.074 0.041
CSCO 0.341 0.295 0.287 0.235 0.186 0.178 0.082 0.043
MRK 0.314 0.436 0.275 0.344 0.144 0.154 0.042 0.042
PEP 0.328 0.264 0.253 0.254 0.110 0.129 0.049 0.057
HPQ 0.312 0.305 0.279 0.245 0.145 0.124 0.063 0.050
MCD 0.228 0.312 0.253 0.209 0.168 0.135 0.068 0.065
AMZN 0.212 0.230 0.188 0.193 0.138 0.182 0.058 0.085
QCOM 0.218 0.242 0.225 0.202 0.162 0.167 0.067 0.056
OXY 0.354 0.407 0.193 0.339 0.118 0.131 0.048 0.063
UTX 0.436 0.373 0.343 0.278 0.160 0.195 0.069 0.065
F 0.321 0.286 0.250 0.314 0.161 0.180 0.088 0.064

MMM 0.383 0.355 0.292 0.405 0.193 0.200 0.047 0.060
CMCSA 0.280 0.335 0.228 0.318 0.147 0.162 0.075 0.074
CAT 0.398 0.363 0.257 0.345 0.190 0.207 0.089 0.045
HD 0.420 0.384 0.328 0.383 0.179 0.187 0.079 0.067
FCX 0.287 0.378 0.207 0.345 0.116 0.148 0.059 0.060

AMGN 0.276 0.303 0.195 0.259 0.124 0.167 0.052 0.052
MO 0.197 0.206 0.167 0.164 0.098 0.157 0.044 0.040
BA 0.375 0.373 0.327 0.288 0.146 0.162 0.068 0.067
CVS 0.272 0.230 0.209 0.217 0.132 0.189 0.057 0.085
EMC 0.282 0.261 0.231 0.245 0.122 0.187 0.042 0.036
DD 0.399 0.398 0.374 0.364 0.189 0.148 0.071 0.084
BMY 0.304 0.337 0.298 0.296 0.145 0.175 0.077 0.058
HON 0.426 0.379 0.314 0.373 0.154 0.199 0.050 0.076
NKE 0.292 0.291 0.227 0.216 0.147 0.187 0.058 0.050
MDT 0.253 0.248 0.241 0.252 0.148 0.178 0.083 0.075
UNH 0.246 0.273 0.210 0.255 0.125 0.119 0.076 0.058
DOW 0.303 0.337 0.292 0.322 0.224 0.189 0.081 0.053
CL 0.253 0.255 0.206 0.221 0.162 0.100 0.077 0.043
TXN 0.284 0.278 0.243 0.222 0.179 0.147 0.087 0.059
BK 0.436 0.411 0.401 0.366 0.135 0.246 0.045 0.106
HAL 0.334 0.350 0.232 0.374 0.115 0.153 0.055 0.051
WAG 0.346 0.253 0.229 0.223 0.075 0.156 0.039 0.069
LOW 0.382 0.356 0.287 0.376 0.157 0.190 0.068 0.071
SO 0.246 0.187 0.225 0.167 0.128 0.143 0.058 0.043

min 0.190 0.187 0.167 0.164 0.075 0.100 0.039 0.032
max 0.473 0.516 0.401 0.429 0.232 0.246 0.096 0.106
25th 0.277 0.265 0.227 0.228 0.136 0.147 0.055 0.047
50th 0.317 0.336 0.251 0.289 0.157 0.172 0.068 0.059
75th 0.374 0.377 0.296 0.342 0.179 0.190 0.076 0.067

Note: The estimated tail-dependence coefficients for each of the stocks with the S&P 500 market port-
folio reported in the four pairs of columns are based on: the raw daily returns; the daily returns with

the jumps removed denoted by z
(j)
t in the main text; the jump-adjusted z

(j)
t “devolatilized” by the

scalar continuous variation measures; and z
(j)
t “devolatilized” by the multivariate continuous covaria-

tion measure denoted by z̃
(j)
t in the main text. The sample spans the period from 1997 through 2010.
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Table 7: Alternative Daily Tail Dependence Coefficients
Daily Returns Jump Adj. Returns Univariate De-vol. Multivariate De-vol.

+ - + - + - + -
χ̂l

25th quantile 0.250 0.244 0.190 0.205 0.071 0.081 0.001 0.001
50th quantile 0.306 0.309 0.230 0.267 0.087 0.100 0.001 0.001
75th quantile 0.370 0.367 0.299 0.332 0.122 0.132 0.020 0.004

χ̂E

25th quantile 0.265 0.265 0.206 0.227 0.088 0.103 0.015 0.015
50th quantile 0.309 0.324 0.250 0.279 0.112 0.132 0.029 0.015
75th quantile 0.379 0.382 0.301 0.342 0.147 0.165 0.044 0.029

η̂
25th quantile 0.833 0.813 0.800 0.771 0.580 0.594 0.466 0.436
50th quantile 0.898 0.918 0.874 0.885 0.631 0.652 0.504 0.459
75th quantile 0.960 0.974 0.930 0.986 0.677 0.693 0.536 0.498

τ̂k
25th quantile 0.180 0.227 0.152 0.193 -0.017 0.010 -0.096 -0.068
50th quantile 0.248 0.302 0.222 0.272 0.048 0.058 -0.045 -0.026
75th quantile 0.315 0.333 0.270 0.324 0.118 0.099 0.042 0.044

ρ̂s
25th quantile 0.226 0.291 0.194 0.232 -0.034 0.014 -0.137 -0.109
50th quantile 0.294 0.378 0.300 0.330 0.060 0.090 -0.072 -0.049
75th quantile 0.391 0.443 0.361 0.422 0.159 0.146 0.046 0.080

Note: The table reports the median and interquartile range for the different estimators obtained
across all of the fifty stocks in the sample based on: the raw daily returns; the daily returns with
the jumps removed; the jump-adjusted univariate “devolatilized” returns; and the jump-adjusted
multivariate “devolatilized” returns, as further detailed in the note to Table 6.
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