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Supplemental Appendix A: Proofs

We prove the results in the main text in this appendix. Below, we use K to denote a generic

constant that may change from line to line. This constant does not depend on the index

of a process or a series. We sometimes emphasize its dependence on some parameter v

by writing Kv. We write “w.p.a.1” for “with probability approaching one.” By a standard

localization procedure (see, e.g., Section 4.4.1 of [5]), we can strengthen Assumptions 2 and

4 to the following versions without loss of generality.

Assumption S1. We have Assumption 2. Moreover, the processes (bt)t≥0, (σt)t≥0 and

(Xt)t≥0 are bounded.

Assumption S2. We have Assumption 4. Moreover, the process (at)t≥0 is bounded.

For notational simplicity, we denote the continuous part of X by Xc, that is,

Xc
t = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs.

The notations Y c and Zc are defined similarly.

SA.1 Proof of Theorem 1

For each p ≥ 1, let in,p denote the unique integer i such that τp ∈ ((i − 1)∆n, i∆n]. Since

the jumps of X are finitely active, each interval ((i−1)∆n, i∆n] contains at most one jump

w.p.a.1. By Proposition 1 of [9], P(Jn = J ∗n )→ 1. Therefore, w.p.a.1,

Mn (h) = ∆−q/2n

∑
p∈P

ρ
(

∆n
in,pY −

(
β∗ + ∆1/2

n h
)>

∆n
in,pZ

)
=

∑
p∈P

ρ
(

∆−1/2
n

(
∆n
in,pY

c − β∗>∆n
in,pZ

c
)
− h>∆n

in,pZ
)
,
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where the second equality is due to Assumption 1 and (1). By Proposition 4.4.10 of [5],

∆−1/2
n

(
∆n
in,pY

c − β∗>∆n
in,pZ

c
)
p≥1

L-s−→ (ςp)p≥1 .

It is easy to see that ∆n
in,pZ → ∆Zτp . Since ρ(·) is convex, it is also continuous on R.

We then deduce (12) using the continuous mapping theorem and the properties of stable

convergence (see (2.2.5) in [5]).

Next, we show that ĥn
L-s−→ ĥ in restriction to Ω0 using a convexity argument sim-

ilar to Lemma A of [7]. We need to adapt this argument to the case of stable conver-

gence. Fix any bounded F -measurable random variable ξ. By Proposition VIII.5.33 in

[6], it suffices to show that (ĥn, ξ) converges in law to (ĥ, ξ) in restriction to Ω0. Let

D be a countable dense subset of Rd−1 and ξ0 ≡ 1Ω0. We consider (Mn(h)h∈D, ξ, ξ0) as

a R∞-valued random variable, where R∞ is equipped with the product Euclidean topol-

ogy. By (12), (Mn(h)h∈D0 , ξ, ξ0)
L−→ (M (h)h∈D0

, ξ, ξ0) for any finite subset D0 ⊂ D. By

Skorokhod’s representation, there exists (M∗
n(h)h∈D,M

∗ (h)h∈D , ξ
∗, ξ∗0) that has the same

finite-dimensional distributions as (Mn(·),M(·), ξ, ξ0), and M∗
n(·)→M∗(·) in finite dimen-

sions almost surely. Note that in restriction to {ξ∗0 = 1}, M∗(·) is uniquely minimized at a

random variable ĥ∗ that has the same distribution as ĥ. We can then use the pathwise argu-

ment in the proof of Lemma A of [7] to deduce that ĥ∗n → ĥ∗ almost surely in restriction to

the set {ξ∗0 = 1}, where ĥ∗n minimizes M∗
n (·). This further implies that (ĥ∗n, ξ

∗)→ (ĥ∗, ξ∗)

almost surely in restriction to {ξ∗0 = 1}. By a reverse use of Skorokhod’s representation,

we deduce (ĥn, ξ)
L−→ (ĥ, ξ) in restriction to Ω0 as wanted. �
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SA.2 Proof of Theorem 2

Denote M̃n(h) ≡
∑

i∈Jn ρ
(
ς̃n,i − h>∆n

i Z
)
. Let in,p be defined as in the proof of Theorem

1. By Proposition 1 of [9], P(Jn = J ∗n )→ 1. Hence, w.p.a.1,

M̃n(h) =
∑
p∈P

ρ
(
ς̃n,in,p − h>∆n

in,pZ
)
.

Since the set P is finite almost surely, the probability of {|P| > p̄} can be made arbitrarily

small by setting the constant p̄ sufficiently large. Therefore, in order to prove the asserted

convergence in probability, we can restrict attention to the set {|P| ≤ p̄}.

Fix an arbitrary subsequence N1 ⊆ N. By Proposition 9.3.2 in [5], Σ̂n,in,p−
P−→ Στp−

and Σ̂n,in,p+
P−→ Στp for each p ≥ 1. Theorem 1 implies that β̂n

P−→ β∗. Therefore, we

can select a further subsequence N2 ⊆ N1 such that ((Σ̂n,in,p−, Σ̂n,in,p+)1≤p≤p̄, β̂n) converges

almost surely to ((Στp−,Στp)1≤p≤p̄,β
∗) along N2. By the construction of ς̃n,i, it is then

easy to see that the F -conditional law of (ς̃n,in,p)1≤p≤p̄ converges (under any metric for

weak convergence) almost surely to that of (ςp)1≤p≤p̄ along N2. Note that ∆n
in,pZ → ∆Zτp

pathwise for each p ≥ 1. Therefore, by the continuous mapping theorem, we further deduce

that, along N2, the F -conditional law of (M̃n(h))h∈D converge almost surely to that of

(M(h))h∈D for any countable dense subset D ⊆ Rd−1. By using a convexity argument as in

Lemma A of [7], we deduce that, along N2, the F -conditional law of h̃n converges almost

surely to that of ĥ in restriction to Ω0. By the subsequence characterization of convergence

in probability, we deduce the assertion of the theorem. �

SA.3 Proof of Theorem 3

Step 1. We outline the proof in this step. We shall use two technical results that are proved

in steps 2 and 3. Below, we use opu(1) to denote a uniformly op(1) term.
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We shall use an alternative representation for M ′(·). Let (Tm)m≥1 be the successive

jump times of the Poisson process t 7→ µ ([0, t]× R). We consider R-valued processes

(ζ̃m(·), ζ̃ ′m(·))m≥1 which, conditional on F , are mutually independent centered Gaussian

processes with covariance functions given by E
[
ζ̃m(s)ζ̃m(t)|F

]
= θΣTm−

∫ 0

−1
g (s+ u) g (t+ u) du+ θΣTm

∫ 1

0
g (s+ u) g (t+ u) du,

E
[
ζ̃ ′m(s)ζ̃ ′m(t)|F

]
=

ATm−
θ

∫ 0

−1
g′ (s+ u) g′ (t+ u) du+

ATm
θ

∫ 1

0
g′ (s+ u) g′ (t+ u) du.

We then observe that M ′(·) can be represented as

M ′ (h) =
∑

m≥1:Tm≤T

1{∆ZTm 6=0}

∫ 1

0

ρ
(
ζ̃m(s) + ζ̃ ′m(s)− h>∆ZTmg (s)

)
ds.

Note that the stopping times (Tm)m≥1 are independent of the Brownian motion W.

Hence, with Ht ≡ Ft ∨ σ (Tm : m ≥ 1), the process W is still a Brownian motion with

respect to the filtration (Ht)t≥0. We consider a sequence Ωn of events on which the stopping

times (Tm)m≥1 do not occur on the sampling grid {i∆n : i ≥ 0} and |Tm − Tm′| > 3kn∆n

whenever m 6= m′. Since the jumps have finite activity and kn∆n → 0, P (Ωn) → 1.

Therefore, we can restrict the calculation below to Ωn without loss of generality. Below,

we denote In,m = bTm/∆nc, which is an H0-measurable random integer.

Recall the definition of J ′∗n from (17). We complement the definition (19) with

M ′∗
n (h) =

1

kn∆
q/4
n

∑
i∈J ′∗n

ρ
(
Ȳ ′n,i − (β∗ + ∆1/4

n h)>Z̄′n,i
)
.

In step 2 below, we shall show that for each h,

M ′
n (h)−M ′∗

n (h) = op(1). (SA.1)

We then proceed to derive the finite-dimensional stable convergence in law of M ′∗
n (·).
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We denote X′c = (Y ′c,Z′c) = Xc + χ′. Observe that

M ′∗
n (h) =

∑
m≥1:Tm≤T

1{∆ZTm 6=0}
1

kn

kn−1∑
j=0

ρ
(

∆−1/4
n (Ȳ ′cn,In,m−j − β∗>Z̄′cn,In,m−j)− h>Z̄′n,In,m−j

)
=

∑
m≥1:Tm≤T

1{∆ZTm 6=0}

∫ 1

0

ρ
(
ζ̃n,m(s) + ζ̃ ′n,m(s)− h>Z̄′n,In,m−bknsc

)
ds, (SA.2)

where we define, for s ∈ [0, 1], ζ̃n,m(s) ≡ ∆
−1/4
n (1,−β∗>)X̄c

n,In,m−bknsc,

ζ̃ ′n,m(s) ≡ ∆
−1/4
n (1,−β∗>)χ̄′n,In,m−bknsc.

(SA.3)

In step 3 below, we show

(ζ̃n,m(·), ζ̃ ′n,m(·))m≥1
L-s−→ (ζ̃m(·), ζ̃ ′m (·))m≥1 (SA.4)

under the product Skorokhod topology. Estimates used in step 3 also imply Z̄′cn,In,m−bkn ·c =

opu(1). Hence, Z̄′n,In,m−bkn ·c = gn(bkn ·c + 1)∆ZTm + opu(1). Since the weight function g(·)

is Lipschitz continuous, we further deduce that

Z̄′n,In,m−bkn ·c = g(·)∆ZTm + opu(1). (SA.5)

We now note that the limiting processes in (SA.4) and (SA.5) have continuous paths.

By Propositions VI.1.17 and VI.1.23 in [6], as well as the continuous mapping theorem, we

deduce M ′∗
n (·) L-s−→ M ′ (·) on finite dimensions. The second assertion of Theorem 3 then

follows from the convexity argument used in the proof of Theorem 1.

Step 2. We show (SA.1) in this step. Fix h ∈ Rd−1. We denote ρn,i ≡ ρ(Ȳ ′n,i − (β∗ +

∆
1/4
n h)>Z̄′n,i) and decompose M ′

n (h)−M ′∗
n (h) = R1,n +R2,n, where

R1,n ≡
1

kn∆
q/4
n

∑
i∈J ′n\J ′∗n

ρn,i, R2,n ≡
1

kn∆
q/4
n

∑
i∈J ′∗n \J ′n

ρn,i.
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It remains to show that both R1,n and R2,n are op(1).

We first consider R1,n. Note that for i /∈ J ′∗n , Z̄′n,i = Z̄′cn,i. Set u′n = minj u
′
j,n and

observe J ′n ⊆ {i : ‖Z̄′n,i‖ > u′n}. Hence,

R1,n ≤
1

kn∆
q/4
n

∑
i∈I′n

ρn,i1{‖Z̄′cn,i‖>u′n}.

Under Assumption 1, E |ρn,i|2 ≤ KE‖X̄′n,i‖2q, where the majorant side is bounded. By

(5.39) of [4], for any v > 0,

E[‖X̄′cn,i‖v|H0] ≤ Kv∆
1/4
n . (SA.6)

Hence, P(‖Z̄′cn,i‖ > u′n) ≤ Kv∆
(1/4−$′)v
n by Markov’s inequality. Note that k−1

n ∆
−q/4
n ≤ K.

By the Cauchy–Schwarz inequality, we further deduce E [R1,n] ≤ Kv∆
(1/4−$′)v/2−1
n for any

v > 0. Setting v > 2/(1/4−$′), we deduce R1,n = op(1).

Turning to R2,n, we first observe that Ȳ ′n,i − β∗>Z̄′n,i = Ȳ ′cn,i − β∗>Z̄′cn,i for all i ∈ J ′∗n
in restriction to Ωn. Therefore, we can rewrite R2,n = k−1

n

∑
i∈J ′∗n \J ′n

ρ̃n,i, where ρ̃n,i ≡

ρ(∆
−1/4
n (Ȳ ′cn,i − β∗>Z̄′cn,i) − h>Z̄′n,i). For each m ≥ 1, we consider the positive process

(fn,m(s))s∈[0,1] given by

fn,m(s) = ρ̃n,In,m−bknsc1
{
‖Z̄′

n,In,m−bknsc
‖≤

∑d−1
j=1 u

′
j,n

}
∩{∆ZTm 6=0}.

We then bound R2,n as follows

R2,n =
1

kn

∑
m≥1:Tm≤T

kn−1∑
j=0

ρ̃n,In,m−j1{In,m−j /∈J ′n}1{∆ZTm 6=0}

≤
∑

m≥1:Tm≤T

∫ 1

0

fn,m(s)ds. (SA.7)

Recall that the random integer In,m is H0-measurable. Hence,

E
[
fn,m(s)2|H0

]
≤ E[ρ̃2

n,In,m−bknsc|H0] ≤ K, (SA.8)
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where the second inequality follows from |ρ̃n,i|2 ≤ K +K‖∆−1/4
n X̄′cn,i‖2q and (SA.6).

We now claim that, for each s ∈ (0, 1),

P

({∥∥∥Z̄′n,In,m−bknsc∥∥∥ ≤ d−1∑
j=1

u′j,n

}
∩ {∆ZTm 6= 0}

∣∣∣∣∣H0

)
= op(1). (SA.9)

To see this, we first note that Z̄′n,In,m−bknsc = (g(s) + O(k−1
n ))∆ZTm + Z̄′cn,In,m−bknsc. Since

g (s) > 0 for s ∈ (0, 1) by our maintained assumption on the weight function, ‖(g(s) +

O(k−1
n ))∆ZTm‖ is bounded below by g(s)‖∆ZTm‖/2 > 0 for large n when ∆ZTm 6= 0. On

the other hand, by the maximal inequality (see, e.g., Lemma 2.2.2 of [11]) and the Lv-

bound given by (SA.6), we deduce maxi∈I′n ‖Z̄′cn,i‖ = Op(∆
1/4−ι
n ) under the H0-conditional

probability for any fixed but arbitrarily small ι > 0. From these estimates, the claim (SA.9)

readily follows.

From (SA.8), we also see ρ̃n,In,m−bknsc = Op(1) under the H0-conditional probability.

Then, by (SA.9), fn,m(s) = op(1) for each s ∈ (0, 1). Note that (SA.8) implies that, for m

and s fixed, the sequence (fn,m(s))n≥1 is uniformly integrable. Therefore, E [fn,m(s)|H0] =

op(1). By Fubini’s theorem and the bounded convergence theorem, we further deduce for

each m ≥ 1,

E
[∫ 1

0

fn,m(s)ds

∣∣∣∣H0

]
= op(1). (SA.10)

Finally, note that the cadinality of {m : Tm ≤ T} is finite almost surely. It then follows

from (SA.7) and (SA.10) that R2,n = op(1). The proof of (SA.1) is now complete.

Step 3. We show (SA.4) in this step. By Lemma A3 of [10], which is a functional

extension of Proposition 5 of [3], it suffices to show that (ζ̃n,m(·))m≥1
L-s−→ (ζ̃m(·))m≥1 and

L[(ζ̃ ′n,m(·))m≥1|F ]
P−→ L[(ζ̃ ′m(·))m≥1|F ], where L[ · |F ] denotes the F -conditional law and

the latter convergence is under any metric for the weak convergence of probability measures.

We first show (ζ̃n,m(·))m≥1
L-s−→ (ζ̃m(·))m≥1. Recall the definitions in (SA.3). Since g(·)
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is supported on [0, 1], we can rewrite

ζ̃n,m (s) = ∆−1/4
n

kn−1∑
i=−(kn−1)

gn (i+ bknsc) ∆n
In,m+iU

∗c, (SA.11)

where U∗c is the continuous component of the process U∗, that is, U∗ct = (1,−β∗>)Xc
t . We

consider an approximation of ζ̃n,m (s) given by

ζ̃cn,m (s) = ∆−1/4
n

−1∑
i=−(kn−1)

gn (i+ kns) (1,−β∗>)σTm−kn∆n∆n
In,m+iW

+∆−1/4
n

kn−1∑
i=1

gn (i+ kns) (1,−β∗>)σTm∆n
In,m+iW.

(SA.12)

We now show that

ζ̃n,m (·)− ζ̃cn,m (·) = opu(1). (SA.13)

To see this, we first note that ∆
−1/4
n g(bknsc/kn)∆n

In,m
Xc = Op(∆

1/4
n ) uniformly in s, so the

summand in (SA.11) with i = 0 is opu(1). Since g(·) is Lipschitz continuous, |gn (i+ bknsc)−

gn (i+ kns) | ≤ Kk−1
n uniformly in s. Since E‖∆n

In,m+iX
c‖ ≤ K∆

1/2
n , the difference resulted

from replacing bknsc with kns in (SA.11) is Op(∆
1/4
n ) uniformly in s. Hence,

ζ̃n,m (·)− ζ̃cn,m (·) = Rn,1(·) +Rn,2(·) + opu(1) (SA.14)

where

Rn,1(s) ≡ ∆−1/4
n

−1∑
i=−(kn−1)

gn (i+ kns)
(

∆n
In,m+iU

∗c − (1,−β∗>)σTm−kn∆n∆n
In,m+iW

)
,

Rn,2(s) ≡ ∆−1/4
n

kn−1∑
i=1

gn (i+ kns)
(

∆n
In,m+iU

∗c − (1,−β∗>)σTm∆n
In,m+iW

)
.
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For each s ∈ [0, 1],

E
[
|Rn,1 (s)|2

∣∣H0

]
≤ K∆−1/2

n

−1∑
i=−(kn−1)

gn (i+ kns)
2

×E
[∣∣∣∆n

In,m+iU
∗c − (1,−β∗>)σTm−kn∆n∆n

In,m+iW
∣∣∣2∣∣∣∣H0

]
≤ K∆−1/2

n

−1∑
i=−(kn−1)

(
∆2
n +

∫ (In,m+i)∆n

(In,m+i−1)∆n

E
[∣∣∣Σ1/2

s − Σ
1/2
Tm−kn∆n

∣∣∣2∣∣∣∣H0

]
ds

)
= op(1),

where the first inequality is derived using the fact that Rn,1(s) is formed as a sum of

martingale differences; the second inequality follows from the boundedness of the drift and

Itô’s isometry; the last line follows from kn � ∆
−1/2
n and the fact that the process Σ is

càdlàg. Therefore, Rn,1(s) = op(1) for fixed s. We further verify that Rn,1(·) is tight. To

this end, we note that for s, t ∈ [0, 1]

E
[
|Rn,1(s)−Rn,2(t)|2

∣∣H0

]
≤ K∆−1/2

n

−1∑
i=−(kn−1)

(gn (i+ kns)− gn (i+ knt))
2

×E
[∣∣∣∆n

In,m+iU
∗c − (1,−β∗>)σTm−kn∆n∆n

In,m+iW
∣∣∣2∣∣∣∣H0

]
≤ K |s− t|2 .

(SA.15)

From here, the tightness of Rn,1(·) readily follows. Hence, Rn,1(·) = opu(1). Similarly, we

can show Rn,2(·) = opu(1). Recalling (SA.14), we deduce (SA.13) as claimed.

We note that ζ̃cn,m (·) is continuous and, for each s, ζ̃cn,m (s) is formed as a sum of

martingale differences. We derive the finite-dimensional convergence of ζ̃cn,m (·) towards

ζ̃m(·) by using the central limit theorem given by Theorem IX.7.28 in [6]. In particular, it

is easy to verify using a Riemann approximation that the asymptotic covariance between

10



ζ̃cn,m (s) and ζ̃cn,m′ (t) is(
θΣTm−

∫ 0

−1

g (s+ u) g (t+ u) du+ θΣTm

∫ 1

0

g (s+ u) g (t+ u) du

)
1{m=m′}.

Since g(·) is Lipschitz continuous, we deduce E|ζ̃cn,m (s) − ζ̃cn,m (t) |2 ≤ K |s− t|2 for s, t ∈

[0, 1] using estimates similar to (SA.15). Therefore, the continuous processes ζ̃cn,m(·) form

a tight sequence. From here, we deduce (ζ̃cn,m (·))m≥1
L-s−→ (ζ̃m(·))m≥1 under the product

topology induced by the uniform metric. By (SA.13) and Corollary VI.3.33 of [6], we

deduce (ζ̃n,m(·))m≥1
L-s−→ (ζ̃m(·))m≥1 as wanted.

Next, we show L[(ζ̃ ′n,m(·))m≥1|F ]
P−→ L[(ζ̃ ′m(·))m≥1|F ]. Recall (SA.3) and g′n(j) ≡

gn (j) − gn (j − 1). To simplify notations, we denote χ̃t =
(
1,−β∗>

)
χ′t and note that

E[χ̃2
t |F ] = At. It is elementary to rewrite ζ̃ ′n,m(s) as

ζ̃ ′n,m (s) = −∆−1/4
n

kn∑
j=1

g′n (j) χ̃(In,m−bknsc+j−1)∆n

= −∆−1/4
n

kn−1∑
i=−kn

g′n (i+ 1 + bknsc) χ̃(In,m+i)∆n .

We approximate ζ̃ ′n,m (·) with the continuous process ζ̃ ′cn,m (·) given by

ζ̃ ′cn,m (s) = −∆−1/4
n

−1∑
i=−kn

g′n (i+ 1 + kns) χ̃(In,m+i)∆n −∆−1/4
n

kn−1∑
i=1

g′n (i+ 1 + kns) χ̃(In,m+i)∆n .

Since g(·) and g′(·) are Lipschitz continuous, we have

sup
s∈[0,1]

|g′n(bknsc+ 1)| ≤ Kk−1
n , sup

s∈[0,1]

|g′n(i+ kns)− g′n(i+ bknsc)| ≤ Kk−2
n .

From these estimates, we deduce

sup
s∈[0,1]

∣∣∣ζ̃ ′n,m (s)− ζ̃ ′cn,m (s)
∣∣∣ = Op(∆

−1/4
n k−1

n ) = op(1). (SA.16)
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By applying a central limit theorem under the F -conditional probability, we derive

the finite-dimensional convergence of ζ̃ ′cn,m (·) towards ζ̃ ′m (·). In particular, it is easy to

verify using a Riemann approximation that the asymptotic covariance between ζ̃ ′cn,m (s)

and ζ̃ ′cn,m′ (t) is given by(
ATm−
θ

∫ 0

−1

g′ (s+ u) g′ (t+ u) du+
ATm
θ

∫ 1

0

g′ (s+ u) g′ (t+ u) du

)
1{m=m′}.

We now verify that the processes ζ̃ ′cn,m(·) form a tight sequence. Note that, for s, t ∈

[0, 1], |g′n (i+ kns) − g′n (i+ knt) | ≤ Kk−1
n |t− s|. Since the variables

(
χ̃(In,m+i)∆n

)
are

F -conditionally independent with bounded second moments, we further derive that

E
∣∣∣ζ̃ ′cn,m (s)− ζ̃ ′cn,m (t)

∣∣∣2 ≤ K∆−1/2
n k−1

n |t− s|
2 ≤ K |t− s|2 .

From here, the tightness of ζ̃ ′cn,m (·) follows. Therefore, L[(ζ̃ ′cn,m(·))m≥1|F ]
P−→ L[(ζ̃ ′m(·))m≥1|F ].

By (SA.16), the conditional law of (ζ̃ ′n,m(·))m≥1 converges to the same limit as claimed. This

finishes the proof of (SA.4). �

SA.4 Proof of Theorem 4

Similarly as in the proof of Theorem 3, we can restrict the calculation below to the event

Ωn without loss of generality. We first establish some facts about the clusters used in Algo-

rithm 1. Firstly, by a maximal inequality and (SA.6), supi/∈J ′∗n ‖Z̄
′
n,i‖ = supi/∈J ′∗n ‖Z̄

′c
n,i‖ =

Op(∆
1/4−ι
n ), where the constant ι > 0 can be taken to be less than $′. We then deduce

that, w.p.a.1., the indices outside J ′∗n are not selected by J ′n. Secondly, we observe that

(SA.9) can be strengthened to

P

({
inf

s∈[ε,1−ε]

∥∥∥Z̄′n,In,m−bknsc∥∥∥ ≤ d−1∑
j=1

u′j,n

}
∩ {∆ZTm 6= 0}

)
→ 0,

12



for any fixed, but arbitrarily small ε ∈ (0, 1/4). Therefore, the following holds w.p.a.1:

each jump time of Z is matched with at least one index i ∈ J ′∗n such that (i∆n, (i+ kn) ∆n]

contains this jump time, and the differences between these indices are bounded above by

kn/4. From these two facts, we deduce that, w.p.a.1., there is a one-to-one correspondence

between each jump time τp of Z and each cluster J ′n,p such that τp ∈ (i∆n, (i+ kn) ∆n] for

each i ∈ J ′n,p. In particular, (minJ ′n,p − k′n − kn)∆n and (maxJ ′n,p + kn − 1)∆n converge

to τp from left and right, respectively. Then, by (B.7) of [2], we have Σ̂′n,minJ ′n,p−k′n−kn
P−→ Στp−, Σ̂′n,maxJ ′n,p+kn−1

P−→ Στp ,

Ân,minJ ′n,p−k′n−kn
P−→ Aτp−, Ân,maxJ ′n,p+kn−1

P−→ Aτp .
(SA.17)

By an argument similar to that in step 2 of the proof of Theorem 3, we can show that

k−1
n

∑′
i∈J ′n,p

Z̄′n,i = k−1
n

∑
i∈J ′∗n,p

Z̄′n,i + op(1), where J ′∗n,p = {i : τp ∈ (i∆n, i∆n + kn∆n]}. By

(SA.5), we further deduce that k−1
n

∑′
i∈J ′n,p

Z̄′n,i
P−→ (

∫ 1

0
g (u) du)∆Zτp . Similarly, we have∣∣J ′n,p∣∣ /kn P−→ 1 and, hence,

1

kn

b(kn−|J ′n,p|)/2c+|J ′n,p|−1∑
j=b(kn−|J ′n,p|)/2c

g (j/kn)
P−→
∫ 1

0

g (u) du.

It follows that ∆Ẑn,p
P−→ ∆Zτp .

We now show that the F -conditional law of M̃ ′
n (·) converges on finite dimensions in

probability to that of M ′ (·) under the topology for the weak convergence of probability

measures. By a subsequence argument as in the proof of Theorem 2, it suffices to prove the

convergence under the F -conditional probability for a given path on which (SA.17) holds

13



pathwise, (∆Ẑn,p)p∈P → (∆Zτp)p∈P and Pn = P . Then, we can rewrite

M̃ ′
n(h) =

1

kn

∑
p∈P

kn−1∑
i=0

ρ

((
∆−1/4
n

kn−1∑
j=1

gn (j) r̃′n,p,j−i

)
− gn (i) h>∆Ẑn,p

)

=
∑
p∈P

∫ 1

0

ρ

((
∆−1/4
n

kn−1∑
j=1

gn (j) r̃′n,p,j−bknsc

)
− gn (bknsc) h>∆Ẑn,p

)
ds.

Observe that

∆−1/4
n

kn−1∑
j=1

gn (j) r̃′n,p,j−bknsc

= ∆−1/4
n

kn−1∑
j=1

gn (j) r̃n,p,j−bknsc −∆−1/4
n

kn∑
j=1

g′n (j) χ̃′n,p,j−1−bknsc

= ∆−1/4
n

kn−1∑
i=−(kn−1)

gn (i+ bknsc) r̃n,p,i −∆−1/4
n

kn−1∑
i=−kn

g′n (i+ 1 + bknsc) χ̃′n,p,i.

The two terms on the right-hand side of the last equality are F -conditionally independent

by construction. Then, similarly as in step 3 of the proof of Theorem 3, we can derive the F -

conditional convergence in law of (∆
−1/4
n

∑kn−1
j=1 gn (j) r̃′n,p,j−bkn ·c)p∈P towards (ςp(·))p∈P . By

the continuous mapping theorem, we further deduce the finite-dimensional F -conditional

convergence in law of M̃ ′
n(·) towards M ′ (·). By a convexity argument used in the proof of

Theorem 1, we deduce that h̃′n converges in F -conditional law to ĥ′ as asserted. �

Supplemental Appendix B: The effect of uncorrected

noise: an example

In this appendix, we provide a concrete analytical example to illustrate the adverse effect of

measurement errors (i.e., noise) on the jump regression procedure discussed in Section 2 of

14



the main text. Since this procedure ignores the measurement errors when they are present,

we shall refer to it as the “naive” procedure below. We consider the setting with d = 2, so Z

is scalar-valued and will be denoted by Z. We shall impose some simplifying assumptions

so as to make the argument in this appendix self-contained with minimal technicality.

Below, we show that the naive estimator is biased even under these (favorable) simplifying

assumptions.

In order to highlight the effect of the measurement errors on the naive procedure, we

shut down the other complexities in our setting by assuming: (i) there is no drift (i.e.,

b = 0); (ii) the volatility process σ is constant and nonrandom; (iii) the Brownian motion

W is independent of the jump process; (iv) the error terms (χ′i∆n
)i≥ are independent of

other processes; (v) Y does not have idiosyncratic jumps.

In addition, we recall that the naive procedure involves two steps. The first step is the

jump detection and the second step is the regression using detected jumps. The adverse

effect of noise on jump detection has been demonstrated in prior work (see, e.g., [1], [2], [8]).

Therefore, here, we shall focus on the effect of noise in the regression step by considering

the (favorable) infeasible setting in which the jump times are observed up to the precision

of the sampling interval.

We now turn to the analysis of the naive estimator. For each jump time τ , let i(τ)

denote the unique integer i such that τ ∈ ((i − 1)∆n, i∆n]. The noisy return vector over

this sampling interval is given by ∆n
i(τ)Y

′

∆n
i(τ)Z

′

 =

 β∗∆Zτ

∆Zτ


︸ ︷︷ ︸

Jump part

+ σ∆n
i(τ)W︸ ︷︷ ︸

Diffusive part

+ ∆n
i(τ)χ

′︸ ︷︷ ︸
Noise part

. (SB.18)
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For notational simplicity, we denote

Dτ ≡

 DY,τ

DZ,τ

 ≡ σ∆n
i(τ)W

∆
1/2
n

, Nτ ≡

 NY,τ

NZ,τ

 ≡ ∆n
i(τ)χ

′,

so that we can rewrite (SB.18) as ∆n
i(τ)Y

′

∆n
i(τ)Z

′

 =

 β∗∆Zτ

∆Zτ

+ ∆1/2
n

 DY,τ

DZ,τ

+

 NY,τ

NZ,τ

 . (SB.19)

We note that the terms on the right-hand side of (SB.19) are mutually independent and

independent across different τ ’s. In addition, Dτ and Nτ are non-degenerate when ∆n → 0.

We consider the least-squares estimator, which admits a closed-form solution given by

β̂LSn ≡
∑

τ∈T ∆n
i(τ)Y

′∆n
i(τ)Z

′∑
τ∈T

(
∆n
i(τ)Z

′
)2 .

Using (SB.19) and then extracting the leading term, we deduce

β̂LSn − β∗ =

∑
τ∈T (∆

1/2
n (DY,τ − β∗DZ,τ ) +NY,τ − β∗NZ,τ )(∆Zτ + ∆

1/2
n DZ,τ +NZ,τ )∑

τ∈T

(
∆Zτ + ∆

1/2
n DZ,τ +NZ,τ

)2

=

∑
τ∈T (NY,τ − β∗NZ,τ )(∆Zτ +NZ,τ )∑

τ∈T (∆Zτ +NZ,τ )
2︸ ︷︷ ︸

Bias

+Op(∆
1/2
n ). (SB.20)

Clearly, the bias term would be zero if there were no measurement errors (i.e., NY,τ =

NZ,τ = 0), which is the case considered in Section 2.

We observe that the bias depends on a fixed number of measurement errors around the

jump times, which, importantly, do not “average out” asymptotically. Hence, the bias is

non-degenerate even in the limit.
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Finally, we provide some further analytical insight by considering the case when there

is only one jump realized in the sample, that is, T = {τ}. We can then rewrite the bias

term in (SB.20) as

Bias =
NY,τ − β∗NZ,τ

∆Zτ +NZ,τ

=

(
∆Zτ
NZ,τ

+ 1

)−1

×
(
NY,τ

NZ,τ

− β∗
)
. (SB.21)

The idea behind the decomposition (SB.21) is as follows. The scaling factor
(

∆Zτ
NZ,τ

+ 1
)−1

is strictly decreasing in the signal-to-noise ratio ∆Zτ
NZ,τ

. Consistently with intuition, the bias

is larger when the signal-to-noise ratio is low. In the extreme case with the signal-to-noise

ratio being zero, this scaling factor is 1 and the bias becomes
NY,τ
NZ,τ
− β∗. In this sense, the

second term in (SB.21) can be understood as the bias in the worst-case scenario.
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