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Abstract

We develop robust inference methods for studying linear dependence between the
jumps of discretely observed processes at high frequency. Unlike classical linear re-
gressions, jump regressions are determined by a small number of jumps occurring
over a fixed time interval and the rest of the components of the processes around
the jump times. The latter are the continuous martingale parts of the processes as
well as observation noise. By sampling more frequently the role of these components,
which are hidden in the observed price, shrinks asymptotically. The robustness of
our inference procedure is with respect to outliers, which are of particular impor-
tance in the current setting of relatively small number of jump observations. This is
achieved by using non-smooth loss functions (like L1) in the estimation. Unlike clas-
sical robust methods, the limit of the objective function here remains non-smooth.
The proposed method is also robust to measurement error in the observed processes
which is achieved by locally smoothing the high-frequency increments. In an empiri-
cal application to financial data we illustrate the usefulness of the robust techniques
by contrasting the behavior of robust and OLS-type jump regressions in periods in-
cluding disruptions of the financial markets such as so called “flash crashes.”
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1 Introduction

When major events occur in the economy, asset prices often respond with abrupt large

moves. These price moves are typically modeled as jumps in continuous-time semimartin-

gale models ([22], [7]). Understanding the dependence between asset prices at times of

market jumps sheds light on how firm values respond to market-wide information, which

is of interest both for researchers and practitioners; see, e.g., [27] and [6]. More gener-

ally, jumps in semimartingales are used to model spike-like, or “bursty,” phenomena in

engineering and neuroscience; see, e.g., chapter 10 of [25]. The goal of the current paper

is to develop robust inference techniques for regressions that connect jumps in multivari-

ate semimartingales observed at high frequency. High-frequency data are well suited for

studying jumps because they give a microscopic view of the process’s dynamics around

jump-inducing events. Robustness is needed to guard against both potential outliers and

measurement errors.

The statistical setup here differs in critical dimensions from that of the classical linear

regression model. The asymptotic behavior of the estimator is driven by the local behavior

of the observed process at a finite number of jump times. The observed high-frequency

increments around the jumps also contain the non-jump components of the price, i.e., the

drift, the continuous martingale part, and possibly observation error. The drift component

of the process is dominated at high frequencies by the continuous martingale part. The

latter component around the jump times is approximately a sum of conditionally Gaussian

independent random variables with conditional variances proportional to the length of the

interval and the levels of the stochastic volatility of the process before and after the jump

times. By sampling more frequently, this component of the price around the jump times

shrinks asymptotically. When observation error is present, the precision does not increase as
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we sample more frequently. Nonetheless, smoothing techniques explained below will make

it behave asymptotically similarly to the continuous martingale component of the price.

Our setting thus shares similarities to one with a signal and asymptotically shrinking noise

(e.g., section VII.4 in [12]).

In this paper, we pursue robustness for the jump regression in two dimensions. The

first is robustness in the sense of Huber ([11]). The initial analysis considers a general

class of extremum estimators using possibly non-quadratic and non-smooth loss functions.

This framework accommodates, among others, the L1-type estimators analogous to the

least absolute deviation (LAD) and quantile regression estimators ([18]) of the classical

setting; the results extend those of [20] for the least-squares jump regressions. In view

of the different statistical setup, the asymptotic theory for robust estimators in the jump

regression setting is notably different from that of classical extremum estimation. In the

classical case, the sample objective function need not be smooth but the limiting objective

function is smooth. In contrast, here both the sample and the limiting objective functions

are non-smooth, because the kinks in the loss function are not “smoothed away” when the

losses are aggregated over a fixed number of temporally separate jumps over a fixed sample

span. Therefore, unlike the classical setting, the limiting objective function is not locally

quadratic, and the asymptotic properties of the proposed extremum estimator need to be

gleaned indirectly from the asymptotic behavior of the limiting objective function. We

derive a feasible inference procedure in our setting which is very easy to implement.

The second sense of robustness is with respect to the observation error in high-frequency

data. It is well-known that the standard semimartingale model is inadequate for modeling

financial asset returns sampled at very high frequency. This is due to the fact that at

such frequencies market microstructure frictions are no longer negligible ([26], [10]). Such

frictions are typically treated as measurement errors statistically, and referred to as “mi-
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crostructure noise.” A large literature has been developed in the noisy setting for estimating

integrated variance and covariances for the diffusive price component ([28], [4], [13] , [1]).

Noise-robust inference concerning jumps is restricted to the estimation of power variations

([14], [19]).

In Section 3, we further extend the extremum estimation theory to a setting where the

observations are contaminated with noise. We adopt the pre-averaging approach of [14]

and locally smooth the data before conducting the robust jump regressions. That is, we

form blocks of asymptotically increasing number of observations but with shrinking time

span over which we average the data, and then we use these averages to detect the jumps

and conduct the robust jump regressions. The local smoothing reduces the effect of the

noise around the jump times to the second order.

We show that our robust jump regression techniques have very good finite sample

properties on simulated data from models calibrated to real financial data. In an empirical

application we study the reaction of Microsoft to big market jumps over the period 2007−

2014. We find strong dependence between the Microsoft stock and the market at the time

of market jumps. We examine the sensitivity of the robust jump regression with respect

to two episodes in the data which are associated with potential market disruptions known

as “flash crashes.” We show that the robust jump regression estimates have very little

sensitivity towards these events. This is unlike the least-squares estimates based on the

detected jumps, which are very sensitive to the inclusion of these two episodes in the

estimation.

This paper is organized as follows. Section 2 describes the baseline results in the setting

without observation noise, which are extended to the noisy setting in Section 3. Section 4

contains a Monte Carlo evaluation and Section 5 provides an empirical example. Section

6 concludes. Technical assumptions are collected in the appendix. The online supplement
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contains all proofs, as well as MATLAB codes that are used in our numerical work.

2 The case without noise

In this section, we present the jump regression theory in the setting without noise. This

theory extends that in [20] towards a setting with general (possibly non-smooth) loss func-

tions, and serves as the baseline framework for the noise-robust theory that we further

develop in Section 3.

2.1 The model

We consider two càdlàg (i.e., right continuous with left limit) adapted semimartingale pro-

cesses Y and Z defined on a filtered probability space (Ω,F , (Ft)t≥0,P), which respectively

take values in R and Rd−1. Let X ≡ (Y,Z). The jump of the d-dimensional process X at

time t is denoted by ∆Xt ≡ Xt −Xt−, where Xt− ≡ lims↑t Xs.

The jump regression concerns the following population relationship between jumps of

Y and Z:

∆Yτ = β∗>∆Zτ , τ ∈ T , (1)

where τ is a jump time of the process Z, T is a collection of such times and > denotes

matrix transposition. We refer to the coefficient β∗ ∈ Rd−1 as the jump beta, which is the

parameter of interest in our statistical analysis. [20] provide empirical evidence that this

simple model provides an adequate approximation for stock market data.

The model restriction (1) can be understood as a type of orthogonality condition. In-

deed, if we define the residual process as

U∗t = Yt − β∗>Zt, (2)
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model (1) amounts to saying that U∗ does not jump at the same time as Z. We remark

that this model does not impose any restriction on the diffusive components of X nor on

the idiosyncratic jumps of Y (i.e., jumps that occur outside of the times in T ).

The inference for β∗ is complicated by the fact that the jumps are not directly observable

from data, where the process X is only sampled on the discrete time grid In ≡ {i∆n :

i = 0, . . . , bT/∆nc} and b·c denotes the floor function. We account for the sampling

uncertainty in an infill asymptotic setting where the time span [0, T ] is fixed and the

sampling interval ∆n → 0 asymptotically. This setup is applicable in situations where,

for the available sampling frequency, the volatility remains approximately constant over

the sampling interval and one can identify with good accuracy the jumps from the large

increments of X (the cost of coarser sampling frequency is that the small jumps cannot be

separated from the diffusive component of X).

We denote the increments of X by ∆n
i X ≡ Xi∆n −X(i−1)∆n . The returns that contain

jumps are collected by

J ∗n ≡ {i : τ ∈ ((i− 1) ∆n, i∆n] for some τ ∈ T } . (3)

The sample counterpart of (1) is then given by

∆n
i Y = β∗>∆n

i Z + ∆n
i U
∗, i ∈ J ∗n . (4)

The error term ∆n
i U
∗ contains the diffusive moves of the asset prices and plays the role

of random disturbances in the jump regression. In contrast to the population relationship

(1), (4) depicts a noisy relationship for the data, just like in classical regression settings.

That noted, we clarify some important differences between the jump regression and the

classical regression from the outset. Firstly, we note that (4) only concerns jump returns,

which form a small and unobserved subset of all high-frequency returns. Secondly, the
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cardinality of the set J ∗n is bounded by the number of jumps and, hence, does not diverge

even in large samples because the time span is fixed. Consequently, the intuition underlying

the law of large numbers in classical asymptotic settings does not apply here. Instead, the

asymptotic justification for jump regressions is based on the fact that the error terms ∆n
i U
∗

are asymptotically small because the diffusive price moves shrink at high frequencies.

2.2 The estimator and its implementation

To estimate β∗ in (4), we first uncover the (unobservable) set J ∗n . We use a standard

thresholding method ([21]). To this end, we pick a sequence of truncation threshold un =

(uj,n)1≤j≤d−1, such that for all 1 ≤ j ≤ d− 1,

uj,n � ∆$
n , $ ∈ (0, 1/2) . (5)

The thresholding estimator for J ∗n is then given by

Jn ≡ In \ {i : −un ≤ ∆n
i Z ≤ un} . (6)

The rate condition (5) ensures the separation between the small diffusive increments (which

are of order ∆
1/2
n ) and the jumps. Theoretically, any truncation threshold that satisfies (5)

will work (including the same one for j = 1, ..., d). In practice, however, it is important to

set uj,n in an adaptive way which takes into account the fact that the diffusive volatility

changes over time (intuitively, what constitutes a big or small in magnitude move for the

diffusive component of Z depends on the level of its volatility). That is, we recommend using

different thresholds over the sample period that track the diffusive volatility path (for which

we form estimates), so that at each point uj,n represents several local standard deviations

of the diffusive component. For this reason we also recommend to use separate truncation
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thresholds for the different components of Z to account for their possibly different levels of

diffusive volatility at any point in time. We refer to Section 4 for implementation details.

We estimate the unknown parameter β∗ using

β̂n ≡ argmin
b

∑
i∈Jn

ρ
(
∆n
i Y − b>∆n

i Z
)
, (7)

where the loss function ρ(·) is convex. The least-squares estimator of [20] corresponds to

the special case with ρ(u) = u2.

Our main motivation for deviating from the benchmark least-squares setting is due to

a concern of robustness in the sense of [11]. Robustness is of particular interest in the

jump regression setting because the number of large market moves is typically small within

a given sample period; consequently, an outlying observation may be overly influential

in the least-squares estimation. Such outliers can be due to “flash crashes” in financial

markets, which we investigate empirically in Section 5, and more generally can result from

some rare liquidity-related issues on financial markets, see e.g., [3]. We are particularly

interested in the LAD estimation that corresponds to ρ(u) = |u|, where the non-smoothness

of the objective function poses a nontrivial complication for the statistical inference. The

extremum estimation theory, below, is thus distinct from prior work in a nontrivial way.

We assume that ρ(·) satisfies the following assumption, which allows for Lq loss func-

tions, q ≥ 1, as well as asymmetric loss functions used in regression quantiles ([18]).

Assumption 1. (a) ρ(·) is a convex function on R; (b) for some q ∈ [1, 2], ρ(au) = aqρ (u)

for all a > 0 and u ∈ R.

The proposed estimation procedure is very simple to implement. The least-squares esti-

mator admits a closed-form solution. The LAD estimator can be computed using standard

software for quantile regressions. More generally, since ρ(·) is convex, the estimator can be
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computed efficiently using convex minimization software over observations indexed by the

(typically small) set Jn.

2.3 Discussion on regularity conditions

We now briefly discuss the regularity conditions on X. The formal statement of these condi-

tions are defered to the appendix. We assume that X is a d-dimensional Itô semimartingale

of the form

Xt =

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, (8)

where b is the drift, σ denotes stochastic volatility, W is a multivariate standard Brownian

motion and J is a pure-jump process with finite activity. The spot covariance matrix of X

at time t is denoted by ct ≡ σtσ>t . We need some mild pathwise regularity conditions for

these processes; see Assumption 2 in the appendix.

Clearly, the identification of β∗ requires that the collection of jump vectors (∆Zτ )τ∈T

has full rank, so it is necessary that the number of jumps is not less than the number of

regressors. We remind the reader that we are interested in uncovering pathwise properties

of the studied processes as is typical in the infill asymptotic setting. Therefore, we confine

our analysis to the event Ω0 ≡ {|T | ≥ d − 1}, where |T | denotes the cardinality of T .

When Z is scalar-valued, the identification condition automatically holds in Ω0. In the

multivariate setting (i.e., d > 2), the full rank condition is satisfied almost surely when the

jump sizes have a continuous distribution, as stated in Assumption 3 in the appendix.

One caveat is that the full rank condition in the multivariate setting can break down

when the jumps in the vector process Z have a low-dimensional linear factor structure. In

this case, redundant regressors should be removed as in conventional regression analysis.
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2.4 The asymptotic distribution of β̂n

We observe from (7) that β̂n is the solution to a convex minimization problem. Therefore,

we can adapt a convexity argument ([16], [24], [8], [9]) to deduce the asymptotic distribution

of β̂n from the finite-dimensional convergence of the objective function. To do so, we

reparametrize the problem (7) via h = ∆
−1/2
n (b− β∗) and consider the localized objective

function

Mn (h) ≡ ∆−q/2n

∑
i∈Jn

ρ(∆n
i Y − (β∗ + ∆1/2

n h)>∆n
i Z). (9)

Note that Mn(·) is minimized by ĥn ≡ ∆
−1/2
n (β̂n − β∗).

We need some notations for describing the asymptotic distribution of Mn (·) and, sub-

sequently, that of ĥn. We denote the successive jump times of the process Z by (τp)p≥1

and collect them using the set P ≡{p ≥ 1 : τp ∈ [0, T ]}. Let (κp, ξp−, ξp+)p≥1 be mutually

independent random variables that are also independent of F , such that κp is uniformly

distributed on [0, 1] and the variables (ξp−, ξp+) are standard normal. We denote the spot

variance of the residual process U∗t by Σt ≡
(
1,−β∗>

)
ct
(
1,−β∗>

)>
. We then set

ςp ≡
√
κpΣτp−ξp− +

√
(1− κp) Στpξp+. (10)

The variable ςp represents the asymptotic distribution of the residual term ∆n
i U
∗ for the

unique i such that τp ∈ ((i− 1)∆n, i∆n]. Finally, we set

M(h) ≡
∑
p∈P

ρ
(
ςp − h>∆Zτp

)
. (11)

The main result of this section is the following theorem, where
L-s−→ denotes stable

convergence in law; see [15] for additional details about stable convergence.

Theorem 1. Under Assumptions 1–3,

(Mn (hk))1≤k≤k̄
L-s−→ (M(hk))1≤k≤k̄, (12)
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for any hk ∈ R, 1 ≤ k ≤ k̄ and k̄ ≥ 1. Consequently, if M (·) has a unique minimum

almost surely in restriction to Ω0, then ĥn
L-s−→ ĥ ≡ argminh M (h).

We remark on an important non-standard feature of Theorem 1. When ρ(·) is non-

smooth, the limit objective function M (·) is also non-smooth. For example, M(h) =∑
p∈P |ςp − h>∆Zτp | in the LAD estimation, where the kink of the absolute value function

is not “smoothed away” in the sum over a fixed number of jumps. This is unlike the classical

LAD regression and quantile regressions, where the limit function would be smooth and

locally quadratic. Here, the asymptotic distribution of ĥn is characterized as the exact

distribution of the regression median from regressing the mixed Gaussian variables (ςp)p∈P

on the jump sizes (∆Zτp)p∈P . This distribution is non-standard and generally not mixed

Gaussian. That noted, feasible inference is easily implemented as shown in Section 2.5.

The uniqueness of the minimum of M (·) can be verified in specific settings. A sufficient

condition is the strict convexity of ρ(·). The LAD case does not verify strict convexity, but

the uniqueness can be verified using finite-sample results for regression quantiles; see, for

example, Theorem 2.1 of [17].

2.5 Feasible inference on the jump beta

Since the asymptotic distribution of β̂n shown in Theorem 1 is generally not F -conditionally

Gaussian, estimating consistently its asymptotic F -conditional covariance matrix is not

enough for constructing confidence sets of β∗. We instead provide a simulation-based

algorithm for approximating this non-standard asymptotic distribution.

The first step is to nonparametrically estimate the spot variance Σt before and after

each detected jump. To this end, we pick an integer sequence mn of block sizes such

that mn → ∞ and mn∆n → 0. We also pick a real sequence vn of truncation thresholds
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that satisfies vn � ∆$
n for some $ ∈ (0, 1/2). The truncation is used to conduct jump-

robust estimation of the spot variances. The sample analogue of the residual U∗t is given

by Ut ≡ Yt − β̂
>
nZt. For each i ∈ Jn, we estimate the pre-jump and the post-jump spot

variances respectively using
Σ̂n,i− ≡

∑mn−1
j=0

∣∣∆n
i−mn+jU

∣∣2 1{|∆n
i−mn+jU|≤vn}

∆n

∑mn−1
j=0 1{|∆n

i−mn+jU|≤vn}
,

Σ̂n,i+ ≡

∑mn

j=1

∣∣∆n
i+jU

∣∣2 1{|∆n
i+jU|≤vn}

∆n

∑mn

j=1 1{|∆n
i+jU|≤vn}

.

(13)

The asymptotic distribution of ĥn = ∆
−1/2
n (β̂n − β∗) can be approximated via simu-

lation as follows. Firstly, we draw a collection of mutually independent random variables

(κ̃i, ξ̃i−, ξ̃i+)i∈Jn such that κ̃i is uniformly distributed on the unit interval and ξ̃i± are stan-

dard normal. We set

ς̃n,i ≡
(√

κ̃iΣ̂n,i−ξ̃i− +

√
(1− κ̃i) Σ̂n,i+ξ̃i+

)
and compute h̃n ≡ argminh

∑
i∈Jn ρ(ς̃n,i−h>∆n

i Z). The Monte Carlo distribution of h̃n is

then used to approximate the asymptotic distribution of ĥn. Theorem 2, below, provides

the formal justification.

Theorem 2. Under the conditions of Theorem 1, the F-conditional law of h̃n converges

in probability to the F-conditional law of ĥ under any metric for the weak convergence of

probability measures.

Confidence sets of β∗ can be constructed using the simulated distribution of h̃n. For

concreteness, we describe an example with β∗ being a scalar, which can also be considered

as a component of a vector. For α ∈ (0, 1), a two-sided 1−α confidence interval (CI) of β∗

can be constructed as [β̂n−∆
1/2
n zn,1−α/2, β̂n−∆

1/2
n zn,α/2] where zn,α denotes the α-quantile

of h̃n computed using the simulated sample.
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3 The case with noise

3.1 The noisy setting

We now generalize the above setup to a setting in which the observations of Xi∆n are

contaminated with measurement errors. That is, instead of the the process X, we observe

a noisy process X′ at discrete times given by

X′i∆n
= Xi∆n + χ′i∆n

, (14)

where (χ′i∆n
)i≥0 denote the error terms. In financial settings, these error terms are often

referred to as the microstructure noise and are attributed to market microstructure frictions

such as the bid-ask bounce ([26]). Parallel to (2), the residual process in the noisy setting

is given by U ′∗t ≡ Y ′t − β∗>Z′t. Since the sizes of the measurement errors remain constant

even asymptotically, the baseline method in Section 2 is no longer valid. In the online

supplement, we provide an analytical example for a precise illustration.

Below, we assume that the error terms (χ′i∆n
)i≥0 are conditionally independent with zero

mean given the X process, while allowing for essentially unrestricted heteroskedasticity; see

Assumption 4 in the appendix.

3.2 Pre-averaging jump regressions

We propose a pre-averaging method to address the noisy data: we first locally smooth the

noisy returns and then conduct the jump regression. In this paper, a function g : R 7→ R+ is

called a weight function if it is supported on [0, 1], continuously differentiable with Lipschitz

continuous derivative and is strictly positive on (0, 1). We also consider an interger sequence

kn of smoothing bandwidth. Below, we denote gn (j) = g(j/kn). The pre-averaged returns
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are weighted moving averages of the noisy returns given by

X̄′n,i =
kn−1∑
j=1

gn (j) ∆n
i+jX

′, i ∈ I ′n ≡ {0, . . . , bT/∆nc − kn + 1}. (15)

The notations Z̄′n,i and Ȳ ′n,i are defined similarly.

To guide intuition, we note that X̄′n,i can be decomposed into the contributions from

jumps, the diffusive component and the noise component. The latter two components can

be shown to have order
√
kn∆n and 1/

√
kn, respectively. As a result, the rate-optimal

choice of kn is

kn = bθ/∆1/2
n c, for some θ ∈ (0,∞) . (16)

With this choice, the diffusive and the noise components are balanced at order ∆
1/4
n . Ac-

cordingly, we consider a truncation sequence u′n that satisfies u′j,n � ∆$′
n for all 1 ≤

j ≤ d − 1 and some $′ ∈ (0, 1/4) and select pre-averaged jump returns using J ′n ≡

I ′n \
{
i : −u′n ≤ Z̄′n,i ≤ u′n

}
. The set J ′n plays the role of an approximation to

J ′∗n ≡ {i : τ ∈ (i∆n, (i+ kn)∆n], τ ∈ T }, (17)

which collects the indices of the overlapping pre-averaging windows that contain the jump

times.

The noise-robust estimator of β∗ can be adapted from (7) by using pre-averaged returns

and is defined as

β̂
′
n = argmin

b

1

kn

∑
i∈J ′n

ρ
(
Ȳ ′n,i − b>Z̄′n,i

)
. (18)

Here, the normalizing factor 1/kn is naturally introduced because each jump time τ is

associated with kn consecutive elements in J ′∗n .
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3.3 Asymptotic properties of β̂
′
n

We derive the asymptotic distribution of β̂
′
n by using a similar strategy as in Section 2.4.

We consider the reparametrization h = ∆
−1/4
n (b− β∗). The associated objective function

M ′
n (h) =

1

kn∆
q/4
n

∑
i∈J ′n

ρ
(
Ȳ ′n,i −

(
β∗ + ∆1/4

n h
)>

Z̄′n,i

)
(19)

is minimized by ĥ′n = ∆
−1/4
n (β̂

′
n−β∗). Similarly as in Theorem 1, we study the asymptotic

distribution of ĥ′n by first establishing the finite dimensional asymptotic distribution of

M ′
n(·) and then using a convexity argument.

The asymptotic distribution of M ′
n (·) is more difficult to study than that of Mn (·). The

key complication is that each jump is associated with kn overlapping pre-averaged returns.

These pre-averaged returns are correlated and their number grows asymptotically. Conse-

quently, we consider R-valued processes (ζp(s))s∈[0,1] and (ζ ′p(s))s∈[0,1] which, conditional on

F , are mutually independent centered Gaussian processes with covariance functions given

by E [ζp(s)ζp(t)|F ] = θΣτp−
∫ 0

−1
g (s+ u) g (t+ u) du+ θΣτp

∫ 1

0
g (s+ u) g (t+ u) du,

E
[
ζ ′p(s)ζ

′
p(t)|F

]
= θ−1Aτp−

∫ 0

−1
g′ (s+ u) g′ (t+ u) du+ θ−1Aτp

∫ 1

0
g′ (s+ u) g′ (t+ u) du,

(20)

where the process A is given by At ≡ (1,−β∗>)ata
>
t (1,−β∗>)>, and at is the noise volatility.

Roughly speaking, the F -conditional Gaussian processes ζp(·) (resp. ζ ′p(·)) capture the joint

asymptotic behavior of the pre-averaged diffusive component (resp. noise component) of

the residual process Y ′t − β∗>Z′t around the jump time τp. We then set

ςp(s) = ζp(s) + ζ ′p (s) , s ∈ [0, 1] .

The process ςp(·) plays a similar role as the variable ςp in Theorem 1.

The stable convergence in law of M ′
n(h) and ĥ′n are described by Theorem 3 below.
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Theorem 3. Suppose Assumptions 1–4. Then (M ′
n (hk))1≤k≤k̄

L-s−→ (M ′(hk))1≤k≤k̄, for any

hk ∈ R, 1 ≤ k ≤ k̄ and k̄ ≥ 1, where

M ′(h) ≡
∑
p∈P

∫ 1

0

ρ
(
ςp(s)− h>∆Zτpg (s)

)
ds. (21)

If M(·) is uniquely minimized by some random variable ĥ′ almost surely in restriction to

Ω0, then ĥ′n = ∆
−1/4
n (β̂

′
n − β∗)

L-s−→ ĥ′.

An interesting special case of Theorem 3 is the least-squares estimator with ρ (u) = u2,

which extends prior results in [20] to the current setting with noise. In this case, β̂
′
n admits

a closed-form solution as the least-squares estimator of Ȳ ′n,i versus Z̄′n,i for i ∈ J ′n. The

limiting variable ĥ′ in Theorem 3 can also be explicitly expressed as

ĥ′ =

(∫ 1

0

g (s)2 ds
∑
p∈P

∆Zτp∆Z>τp

)−1(∑
p∈P

∆Zτp

∫ 1

0

g(s)ςp(s)ds

)
.

Since the processes ςp(·), p ≥ 1, are F -conditionally Gaussian, ĥ′ is also F -conditionally

Gaussian. Here, the F -conditional Gaussianity is obtained under a setting where Z and σ

may jump at the same time. In contrast, the least-squares estimator is not F -conditionally

Gaussian when there are co-jumps in the noise-free setting. Intuitively, the indeterminacy

of the exact jump time within a ∆n-interval has negligible effect within a pre-averaging

window of length kn∆n, so the extra layer of mixing from the uniform varaibles κp (recall

(10)) does not appear in the pre-averaging setting.

3.4 Feasible inference in the noisy setting

We now describe a feasible inference procedure for β∗ based on Theorem 3. This procedure

adapts that in Section 2.5 to the pre-averaging setting. Since each jump time is associated
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with many pre-averaged returns in J ′n, the first step is to group these returns into clusters

accordingly. We partition J ′n into disjoint subsets (J ′n,p)p∈Pn such that, for p, l ∈ Pn with

p < l, the elements in J ′n,p are less than those in J ′n,l by at least kn/4. Each cluster is

associated with a jump time. The underlying theoretical intuition is as follows. It can

be shown that the pre-averaged returns that do not contain jumps are not selected by J ′n
uniformly with probability approaching one. Therefore, the elements of J ′n are clustered

around associated jump times within a window of length kn∆n. Since the jump times are

separated by a fixed amount of time, these clusters are eventually separated by any time

window with shrinking length. In practice, this grouping procedure works well because we

are mainly interested in relatively large jumps that are naturally well-separated in time.

For cluster p ∈ Pn, we estimate the associated jump size and the spot variances Σt and

At as follows. The jump size is estimated by

∆Ẑn,p =

∑
i∈J ′n,p

Z̄′n,i∑b(kn−|J ′n,p|)/2c+|J ′n,p|−1

j=b(kn−|J ′n,p|)/2c
g (j/kn)

. (22)

The denominator in (22) could be replaced by
∑kn

j=1 g (j/kn) or kn
∫ 1

0
g (u) du without af-

fecting the asymptotics. That being said, the current version of ∆Ẑn,p makes a simple

finite-sample adjustment that accounts for the fact that, when a jump occurs near the

boundary of a pre-averaging window, the associated pre-averaged return may not be se-

lected by J ′n.

We observe that Σt and At are the spot variances of the diffusive and the noise com-

ponents of the residual process U ′∗, respectively. We approximate this residual process

by U ′t = Y ′t − β̂
′>
n Z′t and then apply the spot variance estimators in [2]. We denote

g′n (j) ≡ gn(j) − gn (j − 1) and Û ′n,i =
∑kn

j=1 g
′
n(j)2

(
∆n
i+jU

′)2
. We take a sequence of

truncation threshold v′n � ∆$′
n , $ ∈ (0, 1/4), for constructing jump-robust spot variance
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estimators. For i ≥ 0, we set

Σ̂′n,i =

∑k′n
j=1

(
Ū ′2n,i+j − 1

2
Û ′n,i+j

)
1{|Ū ′n,i+j|≤v′n}

∆n

∑k′n
j=1 1{|Ū ′n,i+j|≤v′n}

∑kn
j=1 gn (j)2

,

Ân,i =

∑k′n
j=1 Û

′
n,i+j1{|Ū ′n,i+j|≤v′n}

2
∑k′n

j=1 1{|Ū ′n,i+j|≤v′n}
∑kn

j=1 g
′
n (j)2

.

We use Σ̂′n,minJ ′n,p−k′n−kn and Σ̂′n,maxJ ′n,p+kn−1 to estimate Σt before and after the jump

associated with cluster p. Similarly, the pre- and post-jump estimators of At are given by

Ân,minJ ′n,p−k′n−kn and Ân,maxJ ′n,p+kn−1.

Algorithm 1, below, describes a simulation-based method for approximating the asymp-

totic distribution of ĥ′n described in Theorem 3. Theorem 4 shows its first-order validity.

Computer code for implementing this algorithm is available in the online supplement to

this paper.

Algorithm 1.

Step 1. For cluster p, simulate random variables (r̃′n,p,i){i:|i|≤kn−1} given by

r̃′n,p,i ≡ r̃n,p,i + (χ′n,p,i − χ′n,p,i−1),

where (r̃n,p,i, χ
′
n,p,i) are F -conditionally independent such that r̃n,p,i is centered Gaussian

with conditional variance ∆nΣ̂′n,minJ ′n,p−k′n−kn (resp. ∆nΣ̂′n,maxJ ′n,p+kn−1) when i < 0 (resp.

i ≥ 0) and χ′n,p,i is centered Gaussian with variance Ân,minJn,p−k′n−kn (resp. Ân,maxJ ′n,p+kn−1)

when i < 0 (resp. i ≥ 0).

Step 2. Compute h̃′n as the minimizer of

M̃ ′
n(h) ≡ 1

kn

∑
p∈Pn

kn−1∑
i=0

ρ

((
∆−1/4
n

kn−1∑
j=1

gn (j) r̃′n,p,j−i

)
− gn (i) h>∆Ẑn,p

)
.
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Step 3. Approximate the F -conditional asymptotic distribution of ĥ′n using that of h̃′n,

which can be formed by repeating Steps 1 and 2 in a large number of simulations. �

Theorem 4. Under the conditions of Theorem 3, the F-conditional law of h̃′n converges

in probability to the F-conditional law of ĥ′ under any metric for the weak convergence of

probability measures.

4 Monte Carlo study

We now examine the asymptotic theory above in simulation scenarios that mimic our

empirical setting in Section 5.

4.1 Setting

We consider two types of jump regression estimators. One is the least-squares estimator.

The other is L1-type estimators computed using ρ (u) ≡ u
(
q − 1{u<0}

)
, q ∈ (0, 1). We

refer to the latter as the quantile jump regression estimators because they resemble the

classical regression quantiles ([18], [17]). We conduct experiments in the general setting

with noise. The sample span is T = 1 year, containing 250 trading days. Each day contains

m = 4680 high-frequency returns sampled at every five seconds. The returns are expressed

in annualized percentage terms. There are 1000 Monte Carlo trials.

We adopt a data generating process that accommodates features such as leverage effect,

price-volatility co-jumps, and heteroskedasticity in noise and jump sizes. Let W1, W2, B1
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and B2 be independent Brownian motions. We generate the efficient prices according to

d log (V1,t) = −λNµV dt+ σ̃dB1,t + JV,tdNt, V1,0 = V̄1,

log (V2,t) = log
(
V̄2 − β2

C V̄1

)
+B2,t,

dZt =
√
V1,t

(
ρdB1,t +

√
1− ρ2dW1,t

)
+ ϕZ,tdNt,

dYt = βC
√
V1,t

(
ρdB1,t +

√
1− ρ2dW1,t

)
+
√
V2,tdW2,t + β∗ϕZ,tdNt,

(23)

where the parameter of interest is β∗ = 1 and other components are given by

V̄1 = 182, V̄2 = 262, ρ = −0.7, σ̃ = 0.5, βC = 0.89,

JV,t
i.i.d.∼ Exponential (µV ) , µV = 0.1,

ϕZ,t|V1,t
i.i.d.∼ N

(
0, φ2V1,t

)
, φ = 0.055,

Nt is a Poisson process with intensity λN = 20.

(24)

We generate the noise terms for Y and Z respectively as aY,tχY,t and aZ,tχZ,t, where

(χY,t, χZ,t)t≥0 are drawn independently from the standard normal distribution and the

volatility processes of the noise are given by aY,t = ā
√
β2
CV1,t + V2,t and aZ,t = ā

√
V1,t.

We set ā = 0.0028 so that the magnitude of the noise is three times the local standard

deviation of the diffusive returns. In other words, the contribution of the noise in the real-

ized variance computed using 5-second returns is 18 times the contribution of the diffusive

component. The simulated returns are therefore fairly noisy.

We implement the estimation procedures with two pre-averaging windows, kn ∈ {36, 60},

for checking robustness. We fix k′n = 720, while noting that results for k′n = 960 are very

similar so they are omitted for brevity. The weight function is g(x) = g0(|2x− 1|)1{0≤x≤1},

where g0(x) = 1−3x2 +2x3. For each trading day, the truncation threshold is chosen adap-

tively as u′n = 7
√
BV (Z ′), where BV (Z ′) is the average of (π/2) |Z̄ ′n,ikn||Z̄

′
n,(i+1)kn

| over

all i such that the pre-averaging windows associated with Z̄ ′n,ikn and Z̄ ′n,(i+1)kn
are within

the same day. The statistic BV (Z ′) is a jump-robust proxy for the standard deviation of
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the pre-averaged returns, formed using the bipower construction of [5] and [23]. We set

v′n = 4BV (U ′).

4.2 Results

Table 1 reports the simulation results. Panels A and B present results for kn = 36 and kn =

60, respectively. For each estimator, we report its bias, mean absolute deviation (MAD) and

root mean squared error (RMSE). We also report the coverage rates of CIs at nominal levels

90%, 95% and 99%. Here, a level 1− α CI is given by [β̂
′
n −∆

1/4
n zn,1−α/2, β̂

′
n −∆

1/4
n zn,α/2],

where zn,α denotes the α-quantile of h̃
′
n given by Algorithm 1.

From Table 1, we see that the proposed estimators have very small biases and are

fairly accurate. The least-squares estimator is more accurate than the quantile regression

estimators, indicating some tradeoff between efficiency and robustness. However, we note

that the accuracy of the LAD estimator (i.e., q = 0.5) is similar to that of the least-squares

estimator. In addition, we observe that the coverage rates of the CIs are very close to the

associated nominal levels. Overall, the simulation evidence supports the asymptotic theory.

5 Empirical application

We now apply the robust jump regression method to study the sensitivity of the stock

price of Microsoft (NASDAQ: MSFT) to market jumps. The S&P 500 ETF is used as a

proxy for the market portfolio. The asset prices are sampled at every five seconds from

January 3, 2007 to September 30, 2014. We discard incomplete trading days and, for now,

also discard two well-known days with major “Flash Crashes” (May 6, 2010 and April 23,

2013). The resultant sample contains 1931 trading days. We apply the noise-robust method

developed in Section 3, for which tuning parameters are set similarly as in the simulations.
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Bias MAD RMSE CI Coverage

90% 95% 99%

Panel A. kn = 36

Least-squares -0.003 0.018 0.024 0.896 0.945 0.985

q = 0.10 -0.002 0.028 0.039 0.890 0.941 0.981

q = 0.25 -0.002 0.022 0.031 0.886 0.939 0.987

q = 0.50 -0.002 0.019 0.026 0.891 0.935 0.985

q = 0.75 -0.003 0.023 0.031 0.888 0.941 0.989

q = 0.90 -0.004 0.029 0.041 0.883 0.929 0.989

Panel B. kn = 60

Least-squares -0.002 0.022 0.032 0.919 0.956 0.986

q = 0.10 -0.002 0.034 0.049 0.892 0.94 0.987

q = 0.25 -0.003 0.028 0.041 0.895 0.946 0.99

q = 0.50 -0.003 0.024 0.035 0.903 0.951 0.985

q = 0.75 -0.003 0.028 0.04 0.893 0.942 0.985

q = 0.90 -0.003 0.035 0.05 0.894 0.944 0.986

Table 1: Summary of simulation results. We report biases, mean absolute deviations

(MAD), root mean squared errors (RMSE) and coverage rates of confidence intervals (CI)

for the least-squares and the q-quantile jump regression procedure. Panels A and B report

results for kn = 36 and 60, respectively. There are 1000 Monte Carlo trials.
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We perform an additional sensitivity check regarding the choice of the truncation threshold

u′n: we set u′n = ū
√
BV (Z ′) and vary ū from 6 to 7.5. As in prior work, the truncation

threshold is also scaled to account for the deterministic diurnal volatility pattern, but the

details are omitted for brevity.

Table 2 reports the point estimates and 95% CIs from the least-squares and the LAD

procedures implemented using various tuning schemes. We see that the least-squares and

the LAD estimates are generally similar and have good statistical precision. These estimates

appear reasonably insensitive to various changes in the tuning parameters.

kn ū Least Squares LAD

β̂′n 95% CI β̂′n 95% CI

36 6.0 0.877 [0.841; 0.911] 0.897 [0.874; 0.921]

36 6.5 0.885 [0.847; 0.924] 0.905 [0.877; 0.934]

36 7.0 0.898 [0.855; 0.939] 0.899 [0.869; 0.931]

36 7.5 0.897 [0.852; 0.945] 0.901 [0.866; 0.934]

60 6.0 0.894 [0.849; 0.941] 0.915 [0.884; 0.945]

60 6.5 0.895 [0.843; 0.951] 0.915 [0.877; 0.948]

60 7.0 0.885 [0.823; 0.944] 0.899 [0.858; 0.939]

60 7.5 0.890 [0.838; 0.939] 0.878 [0.833; 0.923]

Table 2: Pre-averaging jump beta estimates for MSFT. Confidence intervals (CI) are com-

puted using 1000 Monte Carlo repetitions from Algorithm 1.

Figure 1a shows a scatter plot for the estimated jump sizes ∆Ẑn and ∆Ŷn along with
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fitted regression lines. This figure suggests that the linear model indeed provides a rea-

sonable fit for the central scatter of the jump pairs. We further compute quantile jump

regression estimators at quantiles q ∈ {0.1, 0.2, . . . , 0.9}. Figure 1b plots these estimates

(dashed line) with associated 95% CIs. Note that the simulation-based CIs are not neces-

sarily centered around the point estimates. For this reason, we also plot a centered version

of the beta estimate (solid line) that is defined as the 50% confidence bound for the jump

beta. Figure 1b suggests a modest increase in the quantile beta estimates across quantiles.

By way of economic interpretation, the residuals of the linear model are the hedging errors

from a portfolio using a proportion, or hedge ratio (beta), of the market to hedge aggregate

jump risk, and the statistical objective function measures total loss from un-hedged jump

variation. Figure 1b indicates that an investor who weights more heavily negative losses

should use a somewhat smaller hedge ratio.

Finally, we examine the robustness of the least-squares and the LAD estimators against

outliers. While this type of comparison can be easily made via artificial numerical exper-

iments, here we aim to demonstrate the robustness of the LAD estimator in a real-data

setting. We do so by including the two aforementioned Flash Crashes into our sample. The

idea here is to use these Flash Crashes as extreme, but realistic, examples to “stress test”

the robustness properties of the proposed estimators.

Table 3 reports the least-squares and the LAD estimates for samples with or without

the two Flash Crash days. Results from various tuning schemes are presented. We find

that these outlying observations indeed induce substantial downward biases in the least-

squares estimates. The bias is most pronounced when the truncation threshold is high.

In contrast, the LAD estimator is remarkably robust against these outliers. This finding

reaffirms the relevance of our initial motivation for developing jump regressions with general

loss functions.
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Figure 1: Illustration of the pre-averaging jump regressions with kn = 36, k′n = 720 and

ū = 7. (a) Scatter plot of the jump size estimates ∆Ŷn and ∆Ẑn with fitted regression lines

using the least-squares and the LAD estimates. (b) Quantile jump regression estimates

at quantile q ∈ {0.1, 0.2, . . . , 0.9}. The centered estimate is defined as the 50% confidence

bound. The uncentered estimate is given by eq. (18). Confidence intervals (CI) are

computed using 1000 Monte Carlo repetitions from Algorithm 1.

6 Conclusion

In this paper we propose robust inference techniques for studying linear dependence be-

tween the jumps of discretely-observed processes, e.g., financial prices. The data for the

inference consist of high-frequency observations of the processes on a fixed time interval

with asymptotically shrinking length between observations. The jumps are hidden in the

“big” increments of the process and the difference between the two drives the asymptotic

behavior of our robust jump regression estimators. Our inference is based on minimizing

the residual from the model-implied linear relation between the detected jumps in the data.
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We allow for non-smooth loss functions so as to accommodate leading robust regression

methods. Unlike the classical robust regression, in the current setting the limit of the ob-

jective function continues to be non-smooth as the asymptotics is driven by a finite number

of jumps on the given interval, along with local price increments around these jump times.

To further robustify the analysis against the presence of measurement error at the obser-

vation times, we locally smooth (pre-average) the discrete observations of the processes

around the detected jump times. We provide easy-to-implement simulation methods for

conducting feasible inference and illustrate their good finite sample behavior in a Monte

Carlo study. In an empirical application, we illustrate the gains from the robust regression

by analyzing the stability of the jump regressions during periods which include potential

market disruptions.

7 Appendix

In this appendix, we discuss in detail the technical regularity conditions used in our asymp-

totic theory.

We assume that X is a d-dimensional Itô semimartingale of the form (8). The drift

process b and the volatility process σ are càdlàg adapted. The jump component of X can

be written as Jt =
∫ t

0

∫
R δ (s, u)µ (ds, du), where δ(·) : Ω × R+ × R 7→ Rd is a predictable

function and µ is a Poisson random measure on R+ × R with its compensator ν (dt, du) =

dt⊗ λ (du) for some measure λ(·) on R. We assume the following condition.

Assumption 2. (a) The process b is locally bounded; (b) ct is nonsingular for t ∈ [0, T ]

almost surely; (c) ν ([0, T ]× R) <∞.

The only nontrivial restriction in Assumption 2 is the assumption of finite-activity

jumps in X. This assumption is mainly used to simplify our technical exposition because
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the empirical focus of jump regressions is the big jumps. Technically speaking, this means

that we can drop Assumption 2(c) and focus on jumps with size bounded away from zero

without changing the results in the main text.

The following condition is sufficient for the identification of the jump beta in the mul-

tivariate setting. Recall that (τp)p≥1 denote the successive jump times of Z.

Assumption 3. Suppose P (Ω0) > 0 and, in restriction to Ω0, the joint distribution of(
∆Zτp

)
p≥1

is absolutely continuous with respect to the Lebesgue measure.

The conditions on the measurement errors are given by the following.

Assumption 4. We have χ′i∆n
= ai∆nχi∆n

such that (i) the Rd×d-valued process (at)t≥0 is

càdlàg adapted and locally bounded; (ii) the variables (χi∆n
)i≥0 are mutually independent

and independent of F such that E
[
χi∆n

]
= 0, E

[
χi∆n

χ>i∆n

]
= Id and E

[
‖χi∆n

‖v
]

is finite

for all v ≥ 1.

The essential part of Assumption 4 is that the noise terms (χ′i∆n
)i≥0 are F -conditionally

independent with zero mean. For the results in the main text, we only need χi∆n
to have

finite moments up to a certain order; assuming finite moments for all orders is merely for

technical convenience. Finally, we note that the noise terms are allowed to be heteroskedas-

tic and serially dependent through the volatility process (at)t≥0.
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Least Squares LAD

Flash Crashes? Flash Crashes?

kn ū No Yes Difference No Yes Difference

36 6.0 0.877 0.706 0.171 0.897 0.849 0.048

36 6.5 0.885 0.706 0.179 0.905 0.847 0.058

36 7.0 0.898 0.709 0.189 0.899 0.841 0.057

36 7.5 0.897 0.706 0.191 0.901 0.825 0.076

60 6.0 0.894 0.714 0.179 0.915 0.898 0.017

60 6.5 0.895 0.703 0.193 0.915 0.901 0.013

60 7.0 0.885 0.668 0.217 0.899 0.878 0.021

60 7.5 0.890 0.654 0.236 0.878 0.857 0.020

Table 3: Robustness assessment of the pre-averaging jump beta estimators. Note: We

report the pre-averaging least-squares and LAD estimates for samples excluding (resp.

including) the two days with major Flash Crashes (May 6, 2010 and April 23, 2013) under

the column headed “No (resp. Yes).” The difference of the estimates using these two

samples are reported in the column headed “Difference.”
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