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SA Proofs

Throughout the proofs, we use K to denote a generic constant that may change from line to

line. For a sub σ-field G ⊆ F and a sequence Xn of random variables, we write Xn
L|G−→ X if the

G-conditional law of Xn converges in probability to that of X under a metric that is associated

with the weak convergence of probability measures. By a standard localization procedure, we can

strengthen Assumption 3 as the following without loss of generality:

Assumption SA1. Suppose Assumption 3 holds with T1 = ∞. Moreover, the processes αj, λj,

λZ , bf , σf , σ̃
2
j and J̃Y,j are bounded, uniformly in j.

SA.1 Preliminary Results

In this subsection, we introduce some notations and preliminary estimates that are used in the

sequel. We consider a sequence Ωn of random events defined by Ωn ≡ {distinct jump times of the

Poisson process t 7→ µ ([0, t], E) are at least 2kn∆n apart}. Since kn∆n → 0 and the jumps of

Z is of finite activity, P (Ωn) → 1. Therefore, we can restrict our calculations to Ωn without loss

of generality. It is (notationally) convenient to extend the definition of the spot jump beta to all

t ∈ [0, T ] such that, on each path, βj,t = βj,τ for t ∈ [τ − kn∆n, τ + kn∆n]. This extension is well-

behaved on Ωn and our analysis only concerns the behavior of βj,t around shrinking neighborhoods

around the jump times. (It should be noted that βj,t defined as such is not adapted to Ft.)
We also consider the following sequence of events:

Ω′n ≡


Nn∑
j=1

1{
∆n
i(n,τ)

J̃Y,j 6=0
} ≤ bNnq

w
n c /2 for some τ ∈ T

 . (SA.1)

By Markov’s inequality,

P

Nn∑
j=1

1{
∆n
i(n,τ)

J̃Y,j 6=0
} > bNnq

w
n c /2

 ≤ 2

bNnqwn c

Nn∑
j=1

P
(

∆n
i(n,τ)J̃Y,j 6= 0

)
≤ K∆n/q

w
n → 0.

Since T is finite, we have P (Ω′n)→ 1.

We denote the continuous part of Yj and Z as, respectively,

Y ′j,t ≡
∫ t

0
αj,udu+

∫ t

0
λ>j,udfu + εj,t, Z ′t ≡

∫ t

0
λ>Z,udfu. (SA.2)

The diffusive residual process is then defined as

Ỹ ′j,t ≡ Y ′j,t − βj,tZ ′t =

∫ t

0
αj,udu+

(∫ t

0
λ>j,udfu − βj,t

∫ t

0
λ>Z,udfu

)
+ εj,t. (SA.3)
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We denote

ξn,j,s ≡
∆n
i(n,s)Ỹ

′
j

∆n
i(n,s)Z

, (SA.4)

which can be decomposed as

ξn,j,s = ξ′n,j,s + ξ′′n,j,s, (SA.5)

where

ξ′n,j,s ≡
1

∆Zs

(
λ̃>j,s−

(
fs − f(i(n,s)−1)∆n

)
+ λ̃>j,s

(
fi(n,s)∆n

− fs
)

+ εi(n,s)∆n
− ε(i(n,s)−1)∆n

)
,

ξ′′n,j,s ≡
1

∆Zs

∫ i(n,s)∆n

(i(n,s)−1)∆n

αj,udu+ ∆n
i(n,s)Ỹ

′
j

(
1

∆n
i(n,s)Z

− 1

∆Zs

)
+

1

∆Zs

∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu −
βj,s
∆Zs

∫ s

(i(n,s)−1)∆n

(λZ,u − λZ,s−)> dfu

+
1

∆Zs

∫ i(n,s)∆n

s
(λj,u − λj,s)> dfu −

βj,s
∆Zs

∫ i(n,s)∆n

s
(λZ,u − λZ,s)> dfu.

(SA.6)

We further rewrite ξ′n,j,s as

ξ′n,j,s = ∆1/2
n

∑
q∈{s−,s+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)
, (SA.7)

where we define

ζn,s− ≡ Σ
−1/2
f,s−

fs − f(i(n,s)−1)∆n√
s− (i (n, s)− 1) ∆n

, ζn,s+ ≡ Σ
−1/2
f,s

fi(n,s)∆n
− fs√

i (n, s) ∆n − s
,

Rn,j,s− ≡
εj,s − εj,(i(n,s)−1)∆n√
s− (i (n, s)− 1) ∆n

, Rn,j,s+ ≡
εj,i(n,s)∆n

− εj,s√
i (n, s) ∆n − s

,

wn,s− ≡
1

∆Zs

√
s− (i (n, s)− 1) ∆n

∆n
, wn,s+ ≡

1

∆Zs

√
i (n, s) ∆n − s

∆n
.

(SA.8)

Lemma SA1. Under Assumptions 3 and 4, we have for p, q ∈ {τ−, τ+, η−, η+}:
(a) N−1

n

∑Nn
j=1Rn,j,pRn,j,q = Op(N

−1/2
n ) when p 6= q;

(b) N−1
n

∑Nn
j=1R

2
n,j,q

P−→Mε(q);

(c) N−1
n

∑Nn
j=1Rn,j,pλ̃j,q = Op(N

−1/2
n );

(d) N−1
n ∆−1

n

∑Nn
j=1(ξ′′n,j,τ − ξ′′n,j,η)2 = Op(∆n).

Proof of Lemma SA1. (a) We prove the case with p = τ− and q = τ+ in detail, while noting

that the other cases can be proved in exactly the same way. Note that the jump times of the

Poisson measure µ are necessarily independent of the Brownian motions W̃j , 1 ≤ j ≤ Nn. Let

Gt be the smallest filtration such that Ft ⊆ Gt and the jump times of µ are Gt-measurable. The

processes (W̃j)1≤j≤Nn remain to be Brownian motions with respect to (Gt)t≥0. Consequently, εj is

a (Gt)t≥0-martingale and, hence,

E[Rn,j,τ−Rn,j,τ+] = 0. (SA.9)
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Moreover, for j 6= m,

E [Rn,j,τ−Rn,j,τ+Rn,m,τ−Rn,m,τ+] = E [Rn,j,τ−Rn,m,τ−E [Rn,j,τ+Rn,m,τ+|Gτ ]] = 0, (SA.10)

where the first equality holds because Rn,j,τ−Rn,m,τ− is Gτ -measurable and the second equal-

ity holds because W̃j and W̃m are orthogonal. Since the processes σ̃2
j are uniformly bounded,

E[R4
n,j,τ±] ≤ K holds due to a standard estimate for continuous Itô processes. By the Cauchy–

Schwarz inequality, this further implies that

E
[
R2
n,j,τ−R

2
n,j,τ+

]
≤ K. (SA.11)

From (SA.9), (SA.10) and (SA.11), we deduce

E

N−1
n

Nn∑
j=1

Rn,j,pRn,j,q

2 ≤ KN−1
n .

The assertion of part (a) then readily follows.

(b) We consider the case q = τ− in details while noting that the other cases can be proved in

the same way. By using Itô’s formula, we can decompose

R2
n,j,τ− = Un,j + U ′n,j , where

Un,j ≡
1

τ − (i (n, τ)− 1) ∆n

∫ τ

(i(n,τ)−1)∆n

σ̃2
j,udu,

U ′n,j ≡
2

τ − (i (n, τ)− 1) ∆n

∫ τ

(i(n,τ)−1)∆n

(εj,u − εj,(i(n,τ)−1)∆n
)dW̃j,u.

We note that E[U ′n,j ] = 0 for each j and E[U ′n,jU
′
n,m] = 0 for j 6= m. In addition, E|U ′n,j |2 ≤ K.

From these estimates, it readily follows that

1

Nn

Nn∑
j=1

U ′n,j = Op(N
−1/2
n ). (SA.12)

Next, note that by Assumption 3(v),

E
∣∣Un,j − σ̃2

j,τ−
∣∣ ≤ E

[
sup

s,t,|s−t|≤∆n

∣∣σ̃2
j,s − σ̃2

j,t

∣∣] ≤ K∆1/2
n .

From this estimate and Assumption 4, we deduce

1

Nn

Nn∑
j=1

Un,j =
1

Nn

Nn∑
j=1

σ̃2
j,τ− + op(1) = Mε(τ−) + op(1). (SA.13)

The assertion of part (b) then follows from (SA.12) and (SA.13).
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(c) By Assumption 4, λ̃j,q is conditionally independent of Rn,j,p and, hence, E[Rn,j,pλ̃j,q|G0] =

E[Rn,j,p|G0]E[λ̃j,q|G0] = 0. In addition, for j 6= m,

E[Rn,j,pRn,m,pλ̃j,qλ̃
>
m,q|G0] = E[Rn,j,pRn,m,p|G0]E[λ̃j,qλ̃

>
m,q|G0] = 0,

where the second equality follows from the orthogonality between W̃j and W̃m. Since λ̃j,q is

bounded, Rn,j,pλ̃j,q has bounded second moment. The assertion of part (c) readily follows from

these facts.

(d) First, since the αj ’s are uniformly bounded, it is easy to see that (∆Zs)
−1 ∫ i(n,s)∆n

(i(n,s)−1)∆n
αj,udu =

Op(∆n) uniformly in j. Hence,

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ i(n,s)∆n

(i(n,s)−1)∆n

αj,udu

)2

= Op(∆n). (SA.14)

Further note that, uniformly in j, we have E|∆n
i(n,s)Ỹ

′
j |2 ≤ K∆n and, hence,

1

Nn∆n

Nn∑
j=1

(∆n
i(n,s)Ỹ

′
j )2 = Op(1). (SA.15)

It is easy to see that
1

∆n
i(n,s)Z

− 1

∆Zs
= Op(∆

1/2
n ). (SA.16)

From (SA.15) and (SA.16), we deduce

1

Nn∆n

Nn∑
j=1

(
∆n
i(n,s)Ỹ

′
j

(
1

∆n
i(n,s)Z

− 1

∆Zs

))2

= Op(∆n). (SA.17)

We then note that, since the processes λj ’s are (1/2)-Hölder continuous under L2-norm uni-

formly in j (Assumption 3(v)), the following estimate also holds uniformly

E

(∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu

)2
 ≤ K∆2

n.

Hence,

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu

)2

= Op(∆n). (SA.18)

Similarly, 

1

Nn∆n

Nn∑
j=1

(
βj,s
∆Zs

∫ s

(i(n,s)−1)∆n

(λZ,u − λZ,s−)> dfu

)2

= Op(∆n),

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ i(n,s)∆n

s
(λj,u − λj,s)> dfu

)2

= Op(∆n),

1

Nn∆n

Nn∑
j=1

(
βj,s
∆Zs

∫ i(n,s)∆n

s
(λZ,u − λZ,s)> dfu

)2

= Op(∆n).

(SA.19)
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With an appeal to the Cauchy–Schwarz inequality, the assertion of part (d) then follows from

(SA.14), (SA.17), (SA.18) and (SA.19). Q.E.D.

Next, we set 
An(s) ≡ 1

Nn∆n

Nn∑
j=1

(
ξ′n,j,s

)2
, s ∈ {η, τ} ,

Bn(η, τ) ≡ 1

Nn∆n

Nn∑
j=1

ξ′n,j,ηξ
′
n,j,τ .

(SA.20)

The following lemma collects some convergence results that we use for deriving limiting distribu-

tions.

Lemma SA2. Suppose that Assumptions 3 and 4 hold. Then,

(An(η), An(τ), Bn(η, τ))
L-s−→ (A(η),A(τ),B (η, τ)) ,

where
L-s−→ denotes F-stable convergence in law.

Proof of Lemma SA2. By Theorem 4.3.1 in Jacod and Protter (2012),

(wn,q, ζn,q)q∈{η−,η+,τ−,τ+}
L-s−→ (wq, ζq)q∈{η−,η+,τ−,τ+} . (SA.21)

Recall the definitions in (SA.7) and (SA.20). We have, for s ∈ {η, τ} ,

An(s) =
1

Nn

Nn∑
j=1

 ∑
q∈{s−,s+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)2

=
∑

p,q∈{s−,s+}

wn,pwn,qζ
>
n,pΣ

1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q ζn,q

+
∑

q∈{s−,s+}

w2
n,q

 1

Nn

Nn∑
j=1

R2
n,j,q

+Op(N
−1/2
n ),

(SA.22)

where the rate for the Op(N
−1
n ) term in the last line is obtained using Lemma SA1(a,c). Similarly,

Bn(η, τ)

=
1

Nn

Nn∑
j=1

 ∑
p∈{τ−,τ+}

wn,p

(
λ̃>j,pΣ

1/2
f,p ζn,p +Rn,j,p

)
×

 ∑
q∈{η−,η+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)
=

∑
p∈{τ−,τ+}

∑
q∈{η−,η+}

wn,pwn,qζ
>
n,pΣ

1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q ζn,q +Op(N

−1/2
n ).

(SA.23)
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By Assumption 4 and Lemma SA1(b),

Σ
1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q

P−→MC(p, q),
1

Nn

Nn∑
j=1

R2
n,j,q

P−→Mε(q). (SA.24)

We further note that the limiting variables MC(p, q) and Mε(q) are F-measurable. Hence, by the

property of stable convergence in law, we can deduce the assertion of Lemma SA2 from (SA.21),

(SA.22), (SA.23) and (SA.24). Q.E.D.

Finally, we show in Lemma SA3 some consistency results for the spot jump beta estimates.

Lemma SA3. Under Assumptions 3 and 5, the following holds for s ∈ T :
(a) sup1≤j≤Nn |β̂n,j,s − βj,s|1{∆n

i(n,s)
J̃Y,j=0

} = op(1);

(b) N−1
n

∑Nn
j=1 |β̂n,j,τ − βj,τ |2 = op(1).

Proof of Lemma SA3. (a) Note that

β̂n,j,s − βj,s =
∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z

∆n
i(n,s)Z

. (SA.25)

By localization, we can assume that σ̃2
j , Σf , λj and βj are bounded. By a standard estimate for

continuous Itô semimartingales (applied to the continuous parts of Yj and Z), we have for any

p ≥ 1,

E
[
|∆n

i(n,s)Yj − βj,s∆
n
i(n,s)Z|

p1{
∆n
i(n,s)

J̃Y,j=0
}] ≤ Kp∆

p/2
n ,

for some constant Kp. By using a maximal inequality, we deduce that

sup
1≤j≤Nn

|∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z|1{∆n

i(n,s)
J̃Y,j=0

} = Op(∆
1/2
n N ι

n) (SA.26)

for some arbitrarily small (but fixed) constant ι > 0. Then, by Assumption 5,

sup
1≤j≤Nn

|∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z|1{∆n

i(n,s)
J̃Y,j=0

} = op(1).

Note that 1/∆n
i(n,s)Z = Op(1). The assertion of the lemma then readily follows from the above

estimate and equation (SA.25).

(b) It is easy to see that β̂n,j,τ , 1 ≤ j ≤ Nn, are uniformly bounded with probability approaching

one. We then note that

1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |2

=
1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |21{
∆n
i(n,s)

J̃Y,j=0
} +

1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |21{
∆n
i(n,s)

J̃Y,j 6=0
}

≤

(
sup

1≤j≤Nn
|β̂n,j,s − βj,s|1{∆n

i(n,s)
J̃Y,j=0

}
)2

+
K

Nn

Nn∑
j=1

1{
∆n
i(n,s)

J̃Y,j 6=0
}

= op(1),
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as claimed in part (b). Q.E.D.

SA.2 Proof of Proposition 1

Proof of Proposition 1. Recall that the spot jump betas βj,s are bounded by assumption.

By Lemma SA3 and the boundedness of J̃Y,j , we further deduce that the beta estimates β̂n,j,s

are uniformly (in j) bounded with probability approaching one. Since the loss function L(·) is

Lipschitz on bounded sets (Assumption 1), we can now assume that L(·) is globally Lipschitz

without loss of generality. Hence, by Lemma SA3,

1

Nn

Nn∑
j=1

∣∣∣L(β̂n,j,τ − β̂n,j,η)− L(χj,η,τ )
∣∣∣

≤ 1

Nn

Nn∑
j=1

∣∣∣L(β̂n,j,τ − β̂n,j,η)− L(χj,η,τ )
∣∣∣ 1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

+
K

Nn

Nn∑
j=1

1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

≤ K max
s∈{η,τ},1≤j≤Nn

∣∣∣β̂n,j,s − βj,s∣∣∣ 1{∆n
i(n,s)

J̃Y,j=0
} +Op(∆n) = op(1).

(SA.27)

Next, we set

ξn =
1

Nn

Nn∑
j=1

(L(χj,η,τ )− E[L(χj,η,τ )|Fη−]) .

Under Assumption 6, ξn is the average of Fη−-conditionally independent variables with zero con-

ditional mean. Hence,

E
[
ξ2
n|Fη−

]
=

1

N2
n

Nn∑
j=1

E
[

(L(χj,η,τ )− E[L(χj,η,τ )|Fη−])2
∣∣∣Fη−]

≤ 1

N2
n

Nn∑
j=1

E
[
L(χj,η,τ )2|Fη−

]
= Op(N

−1
n ) = op(1).

In particular, this implies that E [|ξn| ∧ 1|Fη−] = op(1). By the bounded convergence theorem, we

further deduce E [|ξn| ∧ 1]→ 0. But this is equivalent to ξn = op(1). This, together with (SA.27),

implies that

1

Nn

Nn∑
j=1

L(β̂n,j,τ − β̂n,j,η) =
1

Nn

Nn∑
j=1

E[L(χj,η,τ )|Fη−] + op(1). (SA.28)

Since qwn → 0, the winsorized estimator V̂n differs from N−1
n

∑Nn
j=1 L(β̂n,j,τ − β̂n,j,η) by an op(1)

term. The assertion of the proposition then follows from (SA.28). Q.E.D.
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SA.3 Proof of Theorem 1

Proof of Theorem 1. Step 1. The proof proceeds in two steps. Recall Ω′n from (SA.1). Since

P (Ω′n)→ 1, we can restrict our calculations to Ω′n without loss of generality. In this step, we show

that

∆−1
n V̂n =

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) + op(1). (SA.29)

From (SA.26), we see that

sup
1≤j≤Nn

|β̂n,j,s − βj,s|1{∆n
i(n,s)

J̃Y,j=0
} = Op(∆

1/2
n N ι

n) (SA.30)

for some fixed but arbitrarily small constant ι > 0. In restriction to Ω′n and the null hypothesis,

B̄n,η,τ is bounded by two times of the left-hand of the above display. Hence,

B̄n,η,τ = Op(∆
1/2
n N ι

n). (SA.31)

We note that∣∣∣∣ 1

∆nNn

Nn∑
j=1

∣∣∣L(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ)
−L

(
|β̂n,j,τ − β̂n,j,η|

)∣∣∣ 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}∣∣∣∣

≤ dq
w
nNne

∆nNn
sup

1≤j≤Nn
L
(
|β̂n,j,τ − β̂n,j,η|

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

= Op(q
w
nN

2ι
n ) = op(1),

(SA.32)

where the inequality follows from the fact that the winsorization is active for at most dqwnNne
terms (d·e denotes the ceiling function); the first equality follows from (SA.30); the second equality

follows from Assumptions 2 and 5 with ι chosen sufficiently small. Note that in restriction to

{|∆n
i(n,τ)J̃Y,j |+ |∆

n
i(n,η)J̃Y,j | = 0} and the null hypothesis, β̂n,j,τ − β̂n,j,η = ξn,j,τ − ξn,j,η. Hence,

1

∆nNn

Nn∑
j=1

L
(
|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

=
1

∆nNn

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
} + op(1).

(SA.33)

Next, we note that

1

Nn∆n

Nn∑
j=1

L
(
|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

≤
L
(
B̄n,η,τ

)
Nn∆n

Nn∑
j=1

1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

= Op(∆nN
2ι
n ) = op(1),

(SA.34)
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where the inequality follows from the monotonicity of L(·) and the last line follows from (SA.31)

and the fact that P(∆n
i(n,s)J̃Y,j 6= 0) ≤ K∆n. Similarly, we can show that

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
} = op(1). (SA.35)

From (SA.33), (SA.34) and (SA.35), we deduce (SA.29) as wanted.

Step 2. It remains to derive the convergence of (Nn∆n)−1∑Nn
j=1 L (ξn,j,τ − ξn,j,η). Recall the

definition of ξ′n,j,s from (SA.6). Let Ln be defined as

Ln ≡
1

Nn∆n

Nn∑
j=1

(
ξ′n,j,τ − ξ′n,j,η

)2
. (SA.36)

Recalling the definitions in (SA.20), we can rewrite Ln as

Ln = An(η) +An(τ)− 2Bn(η, τ). (SA.37)

Then, by Lemma SA2,

Ln
L-s−→ L(η, τ) ≡ A (η) +A (τ)− 2B (η, τ) . (SA.38)

From (SA.5), we further see that

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η)

= Ln +
2

Nn∆n

Nn∑
j=1

(ξ′n,j,τ − ξ′n,j,η)(ξ′′n,j,τ − ξ′′n,j,η) +
1

Nn∆n

Nn∑
j=1

(ξ′′n,j,τ − ξ′′n,j,η)2.

(SA.39)

By Lemma SA1(d), the last term in (SA.39) is Op(∆n). By the Cauchy–Schwarz inequality, this

estimate and (SA.38) further imply that the second term on the right-hand side of (SA.39) is op(1).

Therefore,

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) = Ln + op(1).

The assertion of the theorem then follows from (SA.29) and (SA.38). Q.E.D.

SA.4 Proof of Theorem 2

We start with the proof of part (a) and part (b). We provide details for the case with q = τ−,

while noting that the case with q = τ+ only requires a change of notation. Hence, we suppress

(in most cases) the dependence on q in our notations for simplicity. More specifically, we write

X̂n, F̂n, Λ̂n, Λ∗n, En, H, Σf , M∗Λ and M∗C in place of X̂n(q), F̂n(q), Λ̂n(q), Λ∗n(q), En(q), Hq, Σf,q,

M∗Λ(q, q) and M∗C(q, q), respectively. We denote the jth column of a generic matrix A by A·j .
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Recall the sequence Ωn of events defined as in Section SA.1. Since P (Ωn)→ 1, we can restrict our

calculations below in Ωn without loss of generality.

Below, we denote Γn ≡ {γ ∈ Rkn : γ>γ = kn}. Note that each column of F̂n is an element of

Γn. We collect some useful estimates in Lemma SA4, where we denote

Λ̃∗n ≡
(
λ1,τ− − β̃n,1,τλZ,τ−, . . . , λNn,τ− − β̃n,Nn,τλZ,τ−

)>
. (SA.40)

We also consider an Nn × kn matrix E ′n = [e′j,l]1≤j≤Nn,1≤l≤kn defined as

e′j,l ≡ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

αj,sds+ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,u − λj,τ−)> dfu

−β̃n,j,τ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λZ,u − λZ,τ−)> dfu.

(SA.41)

Lemma SA4. Under the conditions of Theorem 2, the following statements hold:

(a) supγ∈Γn k
−2
n N−1

n γ>E>n Enγ = op(1);

(b) supγ∈Γn k
−2
n N−1

n γ>E ′>n E ′nγ = op(1);

(c) supγ∈Γn k
−1
n N−1

n

∣∣γ>E>n Λ∗n
∣∣ = op(1);

(d) supγ∈Γn k
−1
n N−1

n

∣∣γ>E ′>n Λ∗n
∣∣ = op(1);

(e) N−1
n Λ̃∗>n Λ∗n = M∗Λ + op(1) and N−1

n Λ̃∗>n Λ̃∗n = M∗Λ + op(1).

Proof of Lemma SA4. (a) Recall that the (j, l) element of En is given by ej,l ≡ ∆n
i(n,τ−)+lεj/∆

1/2
n .

We observe

1

k2
nNn

γ>E>n Enγ

=
1

k2
nNn

kn∑
l=1

kn∑
m=1

γlγm

Nn∑
j=1

ej,lej,m

≤

(
1

k2
n

kn∑
l=1

kn∑
m=1

γ2
l γ

2
m

)1/2
 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

21/2

=

 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

21/2

,

(SA.42)

where the first equality is by definition, the inequality is by the Cauchy–Schwarz inequality, and

the last line follows from γ>γ = kn.

We decompose the majorant side of (SA.42) as

1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

2

=
1

k2
n

kn∑
l=1

 1

Nn

Nn∑
j=1

e2
j,l

2

+
1

k2
n

∑
l,m,l 6=m

 1

Nn

Nn∑
j=1

ej,lej,m

2

.

(SA.43)
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By a standard estimate for continuous Itô semimartingales, E[e4
j,l] ≤ K; this holds uniformly in

j ∈ {1, . . . , Nn} because the idiosyncratic variances σ̃2
j are uniformly (locally) bounded under

Assumption 3(iii). Hence, by Jensen’s inequality,

E

 1

Nn

Nn∑
j=1

e2
j,l

2 ≤ E

 1

Nn

Nn∑
j=1

e4
j,l

 ≤ K.
From here, it follows that the first term on the right-hand side of (SA.43) is op(1). In view of

(SA.42) and (SA.43), it remains to show that the second term on the right-hand side of (SA.43)

is also op(1).

To this end, we observe the following for l 6= m: (i) E [ej,lej,m] = 0 because the process εj is

a martingale; (ii) E[e2
j,le

2
j,m] ≤ K; and (iii) the variables (ej,lej,m)1≤j≤Nn are uncorrelated, which

can be shown by using repeated conditioning and the orthogonality among the Brownian motions

(W̃j)j≥1. Hence,

E

 1

Nn

Nn∑
j=1

ej,lej,m

2 ≤ KN−1
n → 0,

which implies, as wanted,

1

k2
n

∑
l,m,l 6=m

 1

Nn

Nn∑
j=1

ej,lej,m

2

= Op(N
−1
n ) = op(1).

This finishes the proof of part (a).

(b) Similar to (SA.42), we can derive

sup
γ∈Γn

1

k2
nNn

γ>E ′>n E ′nγ ≤

 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

e′j,le
′
j,m

21/2

. (SA.44)

In addition, we observe

E

∣∣∣∣∣∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,u − λj,τ−)> dfu

∣∣∣∣∣
4

≤ K∆−2
n E

(∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖2 du

)2


≤ K∆−1
n E

[∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖4 du

]

≤ K∆−1
n E

[∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖2 du

]
≤ K∆n,

(SA.45)

where the first inequality is by the Burkholder–Davis–Gundy inequality, the second inequality is

by Jensen’s inequality, and the last line holds because λj,u is bounded and (1/2)-Hölder continuous
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under L2-norm uniformly in j. Similarly,

E

∣∣∣∣∣∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λZ,u − λZ,τ−)> dfu

∣∣∣∣∣
4

≤ K∆n. (SA.46)

Under Assumption 7, (β̃j,n,τ )1≤j≤Nn are uniformly bounded with probability approaching one, so

we can assume that these variables are bounded without loss of generality. Hence, from (SA.45)

and (SA.46), we deduce that

E|e′j,l|4 ≤ K∆n. (SA.47)

Hence, by the Cauchy–Schwarz inequality, we further have

E

 1

Nn

Nn∑
j=1

e′j,le
′
j,m

2 ≤ K∆n. (SA.48)

The assertion of part (b) then follows from (SA.44) and (SA.48).

(c) We denote the (j, k) element of Λ∗n by λ∗j,k. We note that for each k ∈ {1, . . . , r} (recalling

that Λ∗n,·k denotes the kth column of Λ∗n),

1

knNn

∣∣∣γ>E>n Λ∗n,·k

∣∣∣ =

∣∣∣∣∣∣ 1

kn

kn∑
l=1

γl

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

∣∣∣∣∣∣
≤

(
1

kn

kn∑
l=1

γ2
l

)1/2
 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

21/2

=

 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

21/2

, (SA.49)

where the first line is by definition, the second line is by the Cauchy–Schwarz inequality and the

last line follows from γ ∈ Γn. Under Assumption 8, ej,l is independent of λ∗j,k; hence, the variables

(ej,lλ
∗
j,k)1≤j≤Nn are uncorrelated and have zero mean and bounded second moment. It is then easy

to see that

E

 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

2 ≤ K/Nn.

Therefore,

1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

2

= Op(N
−1
n ) = op(1). (SA.50)

The assertion of part (c) then follows from (SA.49) and (SA.50).
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(d) Like (SA.49), we can derive

1

knNn

∣∣∣γ>E ′>n Λ∗n,·k

∣∣∣ ≤
 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

e′j,lλ
∗
j,k

21/2

. (SA.51)

We further note that,

E

 1

Nn

Nn∑
j=1

e′j,lλ
∗
j,k

2 ≤ E

 1

Nn

Nn∑
j=1

(
e′j,lλ

∗
j,k

)2
≤ K

Nn

Nn∑
j=1

E
[
(e′j,l)

2
]
≤ K∆n,

where the first inequality is by Jensen’s inequality, the second inequality holds because λ∗j,k is

bounded and the last inequality can be derived similarly as (SA.47). In view of (SA.51), the

assertion of part (d) readily follows.

(e) From the definitions of Λ∗n and Λ̃∗n respectively from (3.9) and (SA.40), we see that (recall

q = τ−)

Λ̃∗n − Λ∗n =
((
β∗1,τ − β̃n,1,τ

)
λZ,τ−, . . . ,

(
β∗n,Nn,τ − β̃n,Nn,τ

)
λZ,τ−

)>
.

Therefore, by Assumption 7,

1

Nn
(Λ̃∗n − Λ∗n)>(Λ̃∗n − Λ∗n) = op(1). (SA.52)

That is, N−1
n ‖Λ̃∗n−Λ∗n‖2 = op(1). Since N−1

n Λ∗>n Λ∗n
P−→M∗Λ by Assumption 8, the estimate above

readily implies the assertions in part (e). Q.E.D.

We are now ready to prove part (a) and part (b) of Theorem 2. We remind the reader that we

fix q = τ− for proving these parts.

Proof of Theorem 2(a). Step 1. We prove part (a) of Theorem 2 in several steps. In this step,

we show that

sup
γ∈Γn

|Ξn(γ)− Ξ∗n(γ)| = op(1), (SA.53)

where Ξn(·) and Ξ∗n(·) are defined as

Ξn(γ) ≡ 1

k2
nNn

γ>X̂>n X̂nγ, Ξ∗n(γ) ≡ 1

k2
nNn

γ>FnΛ∗>n Λ∗nF
>
n γ. (SA.54)

Below, we denote the (j, l) element of X̂n by

ξn,j,l ≡
∆n
i(n,τ−)+lYj ∧ un ∨ (−un)− β̃n,j,τ∆n

i(n,τ−)+lZ√
∆n

.
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We set

ξ′n,j,l ≡ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

αj,sds

+∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,s − β̃n,j,τλZ,s)>dfs + ∆−1/2
n ∆n

i(n,τ−)+lεj .

Note that

E
∣∣ξn,j,l − ξ′n,j,l∣∣2 ≤ K∆n. (SA.55)

We now define X̂ ′n as a Nn × kn matrix whose (j, l) element is given by ξ′n,j,l and let

Ξ′n(γ) =
1

k2
nNn

γ>X̂ ′>n X̂
′
nγ.

By (SA.55),

1

knNn

∥∥∥X̂n − X̂ ′n
∥∥∥2

=
1

knNn

Nn∑
j=1

kn∑
l=1

∣∣ξn,j,l − ξ′n,j,l∣∣2 = op(1). (SA.56)

By the Cauchy–Schwarz inequality and the triangle inequality,

sup
γ∈Γn

∣∣Ξn (γ)− Ξ′n (γ)
∣∣ =

1

k2
nNn

sup
γ∈Γn

∣∣∣γ> (X̂>n X̂n − X̂ ′>n X̂ ′n
)
γ
∣∣∣

≤ 1

k2
nNn

sup
γ∈Γn

‖γ‖2
∥∥∥X̂>n X̂n − X̂ ′>n X̂ ′n

∥∥∥
=

1

knNn

∥∥∥X̂>n X̂n − X̂ ′>n X̂ ′n
∥∥∥

≤ 2

knNn

∥∥∥X̂ ′n∥∥∥∥∥∥X̂n − X̂ ′n
∥∥∥+

1

knNn

∥∥∥X̂n − X̂ ′n
∥∥∥2
.

It is easy to see that ‖X̂ ′n‖ = Op(
√
knNn). Hence, by (SA.56),

sup
γ∈Γn

∣∣Ξn (γ)− Ξ′n (γ)
∣∣ = op(1). (SA.57)

To show (SA.53), it remains to show that supγ∈Γn |Ξ
′
n (γ)− Ξ∗n (γ)| = op(1). We note that, by

a standard result for spot covariance estimation

F>n Fn/kn
P−→ Σf . (SA.58)

In particular, ‖Fn‖ = Op(k
1/2
n ). Hence,

sup
γ∈Γn

∥∥∥γ>Fn/kn∥∥∥ ≤ sup
γ∈Γn

‖γ‖ ‖Fn‖ /kn = Op(1). (SA.59)

Under Assumption 8, Λ∗>n Λ∗n = Op(Nn). It then follows that

sup
γ∈Γn

Ξ∗n(γ) = Op(1). (SA.60)
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Recall the definitions in (3.9), (SA.40) and (SA.41). We can decompose X̂ ′n as

X̂ ′n = Λ̃∗nF
>
n + En + E ′n. (SA.61)

Hence,

X̂ ′n − Λ∗nF
>
n = (Λ̃∗n − Λ∗n)F>n + En + E ′n. (SA.62)

We can then decompose

Ξ′n(γ)− Ξ∗n(γ) =
2

k2
nNn

γ>FnΛ∗>n

[
(Λ̃∗n − Λ∗n)F>n + En + E ′n

]
γ

+
1

k2
nNn

γ>
(

(Λ̃∗n − Λ∗n)F>n + En + E ′n
)> (

(Λ̃∗n − Λ∗n)F>n + En + E ′n
)
γ.

(SA.63)

By Lemma SA4(a,b),

1

k2
nNn

sup
γ∈Γn

γ>E>n Enγ = op(1),
1

k2
nNn

sup
γ∈Γn

γ>E ′>n E ′nγ = op(1). (SA.64)

Further using the Cauchy–Schwarz inequality, we can deduce that supγ∈Γn

∣∣γ>E>n E ′nγ∣∣ = op(1);

hence,
1

k2
nNn

sup
γ∈Γn

γ>
(
En + E ′n

)> (En + E ′n
)
γ = op(1). (SA.65)

In addition, by Lemma SA4(e) and (SA.59)

sup
γ∈Γn

1

k2
nNn

γ>F>n (Λ̃∗n − Λ∗n)>(Λ̃∗n − Λ∗n)F>n γ = op(1). (SA.66)

By (SA.65) and (SA.66), as well as the Cauchy–Schwarz inequality, we deduce

1

k2
nNn

sup
γ∈Γn

γ>
((

Λ̃∗n − Λ∗n

)
F>n + En + E ′n

)> ((
Λ̃∗n − Λ∗n

)
F>n + En + E ′n

)
γ = op(1). (SA.67)

By (SA.60) and the Cauchy–Schwarz inequality, (SA.67) further implies that

2

k2
nNn

sup
γ∈Γn

∣∣∣γ>FnΛ∗>n

[
(Λ̃∗n − Λ∗n)F>n + En + E ′n

]
γ
∣∣∣ = op(1). (SA.68)

By (SA.63), (SA.67) and (SA.68), we deduce supγ∈Γn |Ξ
′
n (γ)− Ξ∗n (γ)| = op(1) and, hence, (SA.53)

as wanted.

Step 2. In this step, we show that

S∗n(F̂ ∗>n Fn/kn)Σ
−1/2
f H

P−→ Ir, (SA.69)

where we recall that S∗n = diag(sign(F̂ ∗>n Fn(F>n Fn/kn)−1/2H)) and H is the ordered eigenvec-

tor matrix of M∗C . Below, we denote by Dj the jth largest eigenvalue of M∗C and write D =

diag(D1, . . . , Dr).
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We first show that

sup
γ∈Γn

Ξ∗n(γ)
P−→ D1. (SA.70)

To see this, we note that we can represent γ ∈ Γn as

γ = Fn(F>n Fn/kn)−1/2Hδ + γ̃, (SA.71)

where γ̃ is the projection error of γ onto the column space of Fn such that F>n γ̃ = 0. We can then

rewrite

sup
γ∈Γn

Ξ∗n(γ) = sup
‖δ‖≤1

δ>H>M∗C,nHδ, where

M∗C,n ≡
(
F>n Fn
kn

)1/2(
Λ∗>n Λ∗n
Nn

)(
F>n Fn
kn

)1/2

.

Hence, supγ∈Γn Ξ∗n(γ) is the largest eigenvalue of M∗C,n. By (SA.58) and Assumption 8,

M∗C,n
P−→ Σ

1/2
f M∗ΛΣ

1/2
f ≡M∗C .

Since the mapping for calculating the unique largest eigenvalue is continuous, we deduce (SA.70)

by using the continuous mapping theorem.

By the construction of F̂n, its first column F̂n,·1 satisfies

Ξn(F̂n,·1) = sup
γ∈Γn

Ξn(γ).

By (SA.53), supγ∈Γn Ξn(γ) = supγ∈Γn Ξ∗n(γ) + op(1), which implies Ξn(F̂n,·1)
P−→ D1 because of

(SA.70). Using the uniform convergence result in (SA.53), we further deduce

Ξ∗n(F̂n,·1)
P−→ D1. (SA.72)

We now represent F̂n,·1 in the format of (SA.71), that is,

F̂n,·1 = Fn(F>n Fn/kn)−1/2Hδ̂1 + γ̃1, (SA.73)

such that F>n γ̃1 = 0. From (SA.72) and (SA.73), we see

op(1) = Ξ∗n(F̂n,·1)−D1

= δ̂>1 H
>M∗C,nHδ̂1 −D1

= δ̂>1 H
> (M∗C,n −M∗C)Hδ̂1 + δ̂>1 H

>M∗CHδ̂1 −D1

= δ̂>1 H
> (M∗C,n −M∗C)Hδ̂1 + δ̂>1 Dδ̂1 −D1,

where the last line follows from the eigenvalue decomposition M∗C = HDH>. Since ‖δ̂1‖ ≤ 1 and

M∗C,n −M∗C = op(1), the above display implies that

δ̂>1 Dδ̂1 −D1 = op(1).
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Since D1 is the unique largest eigenvalue, this further implies that δ̂2
11

P−→ 1 and δ̂2
1j

P−→ 0 for

j ≥ 2. In particular, ‖δ̂1‖
P−→ 1 which implies that γ̃>1 γ̃1/kn

P−→ 0.

Let S∗n,j denote the jth diagonal element of S∗n. Note that by (SA.73),

F̂>n,·1Fn/kn = δ̂>1 H
>(F>n Fn/kn)1/2.

Hence,

δ̂>1 = (F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H.

By the definition of S∗n,1, the first element of S∗n,1(F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H is nonnegative.

Hence,

S∗n,1(F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H

=
(
|δ̂11|, S∗n,1δ̂12, . . . , S

∗
n,1δ̂1r

)
P−→ (1, 0, . . . , 0) .

By (SA.58), we further deduce that

S∗n,1(F̂>n,·1Fn/kn)Σ
−1/2
f H

P−→ (1, 0, . . . , 0) ,

which shows the convergence in (SA.69) for the first row.

By repeating the same argument (by setting Γn as the subspace orthogonal to previous eigen-

vectors), we can prove the convergence in (SA.69) for the jth row, 2 ≤ j ≤ r.
Step 3. In this step, we finish the proof for part (a) of Theorem 2. We denote

D̃n = N−1
n (Λ̂∗n − Λ∗nΣ

1/2
f HS∗n)>(Λ̂∗n − Λ∗nΣ

1/2
f HS∗n).

The assertion of part (a) can be rewritten as Trace[D̃n] = op(1).

We decompose

D̃n = D̃n,1 − D̃n,2 − D̃>n,2 + D̃n,3,

where  D̃n,1 ≡ N−1
n Λ̂∗>n Λ̂∗n, D̃n,2 ≡ N−1

n Λ̂∗>n Λ∗nΣ
1/2
f HS∗n,

D̃n,3 ≡ N−1
n S∗nH

>Σ
1/2
f Λ∗>n Λ∗nΣ

1/2
f HS∗n.

To prove Trace[D̃n] = op(1), it suffices to show that

D̃n,k
P−→ D, k = 1, 2, 3, (SA.74)

where we recall that D is the diagonal matrix that collects the ordered eigenvalues of M∗C . Below,

we prove (SA.74) for each case.

Case k = 1: Recall that we partition F̂n = [F̂ ∗n
...F̂ 0
n ], where F̂ ∗n collects the first r columns of

F̂n. We set

Λ̂′∗n =
1

kn
X̂ ′nF̂

∗
n =

1

kn

(
Λ̃∗nF

>
n + En + E ′n

)
F̂ ∗n . (SA.75)
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Note that∥∥∥D̃n,1 −N−1
n Λ̂′∗>n Λ̂′∗n

∥∥∥ = N−1
n

∥∥∥Λ̂∗>n Λ̂∗n − Λ̂′∗>n Λ̂′∗n

∥∥∥
= k−2

n N−1
n

∥∥∥F̂ ∗>n X̂>n X̂nF̂
∗
n − F̂ ∗>n X̂ ′>n X̂

′
nF̂
∗
n

∥∥∥ = op(1), (SA.76)

where the first two equalities are by definition and the last one is by (SA.57). Subsequently, by

(SA.75), we can decompose D̃n,1 as

D̃n,1 =
1

k2
nNn

F̂ ∗>n

(
Λ̃∗nF

>
n + En + E ′n

)> (
Λ̃∗nF

>
n + En + E ′n

)
F̂ ∗n + op(1)

= D̃n,1,1 + D̃n,1,2 + D̃>n,1,2 + D̃n,1,3 + op(1),

where 
D̃n,1,1 ≡

(
F̂ ∗>n Fn/kn

)(
Λ̃∗>n Λ̃∗n/Nn

)(
F>n F̂

∗
n/kn

)
,

D̃n,1,2 ≡
(
k−1
n N−1

n F̂ ∗>n
(
En + E ′n

)>
Λ̃∗n

)(
F>n F̂

∗
n/kn

)
,

D̃n,1,3 ≡ k−2
n N−1

n F̂ ∗>n
(
En + E ′n

)> (En + E ′n
)
F̂ ∗n .

From (SA.69),
1

kn
F̂ ∗>n Fn − S∗nH>Σ

1/2
f = op(1),

1

kn
F̂ ∗>n Fn = Op(1). (SA.77)

Hence, recalling that H is the eigenvector matrix of M∗C = Σ
1/2
f M∗ΛΣ

1/2
f and S∗n is a diagonal

matrix with ±1 on its diagonal, we deduce

D̃n,1,1 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).

By Lemma SA4, we see that D̃n,1,2 and D̃n,1,3 are both op(1). From these estimates, (SA.74) for

the case k = 1 readily follows.

Case k = 2: By (SA.76) and the Cauchy–Schwarz inequality,

D̃n,2 ≡ N−1
n Λ̂′∗>n Λ∗nΣ

1/2
f HS∗n + op(1).

By (SA.75), we can thus decompose D̃n,2 as D̃n,2 = D̃n,2,1 + D̃n,2,2 + op(1) where D̃n,2,1 ≡
(
F̂ ∗>n Fn/kn

)(
Λ̃∗>n Λ∗n/Nn

)
Σ

1/2
f HS∗n,

D̃n,2,2 ≡
(
k−1
n N−1

n F̂ ∗>n
(
En + E ′n

)>
Λ∗n

)
Σ

1/2
f HS∗n.

By (SA.77) and Lemma SA4(e), we deduce

D̃n,2,1 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).

By Lemma SA4(c,d), D̃n,2,2 = op(1). This proves (SA.74) for the case k = 2.

Case k = 3: By Assumption 8, it is obvious that

D̃n,3 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).
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This finishes the proof of (SA.74) and, hence, part (a) of Theorem 2. Q.E.D.

Proof of Theorem 2(b). We fix j ∈ {r + 1, . . . , r̄}. Recall that Λ̂n,·j denote the jth column of

Λ̂n. By the definitions of Λ̂n and F̂n,

1

Nn
Λ̂>n,·jΛ̂n,·j = Ξn(F̂n,·j). (SA.78)

Like in (SA.73), for each k ∈ {1, . . . , r}, we can represent

F̂n,·k = Fn(F>n Fn/kn)−1/2Hδ̂k + γ̃k, (SA.79)

where F>n γ̃k = 0. Following a similar argument as in Step 2 of the proof of Theorem 2(a), we can

show that, for each k, k′ ∈ {1, . . . , r} with k 6= k′,

δ̂2
kk

P−→ 1, δ̂kk′
P−→ 0, γ̃>k γ̃k/kn

P−→ 0. (SA.80)

We also represent

F̂n,·j = Fn(F>n Fn/kn)−1/2Hδ̂j + γ̃j , (SA.81)

where F>n γ̃j = 0. Since F̂>n,·jF̂n,·k/kn = 0 for 1 ≤ k ≤ r (because F̂n collects the eigenvectors of

X̂>n X̂n), we have

δ̂>j δ̂k + γ̃>j γ̃k/kn = 0. (SA.82)

Since γ̃>k γ̃k/kn
P−→ 0 and γ̃>j γ̃j/kn ≤ 1, we have γ̃>j γ̃k/kn = op(1) by the Cauchy–Schwarz in-

equality. Therefore, δ̂>j δ̂k = op(1) for 1 ≤ k ≤ r. By (SA.80) above, this implies δ̂j = op(1).

Hence,

Ξ∗n(F̂n,·j) = δ̂>j HM
∗
C,nH

>δ̂j = op(1). (SA.83)

By (SA.53), Ξn(F̂n,·j) = op(1). The assertion of part (b) readily follows from (SA.78). Q.E.D.

Proof of Theorem 2(c). By Assumption 8,

H>p Σ
1/2
f,p

Λ∗n(p)>Λ∗n(q)

Nn
Σ

1/2
f,qHq

P−→ H>p M
∗
C(p, q)Hq. (SA.84)

We observe

1

Nn

∥∥∥Λ̂∗n(p)>Λ̂∗n(q)− S∗n(p)H>p Σ
1/2
f,pΛ∗n(p)>Λ∗n(q)Σ

1/2
f,qHqS

∗
n(q)

∥∥∥
≤ 1

Nn

∥∥∥∥(Λ̂∗n(p)− Λ∗n (p) Σ
1/2
f,pHpS

∗
n(p)

)>
Λ∗n(q)Σ

1/2
f,qHq

∥∥∥∥
+

1

Nn

∥∥∥H>p Σ
1/2
f,pΛ∗n(p)>

(
Λ̂∗n(q)− Λ∗n (q) Σ

1/2
f,qHqS

∗
n(q)

)∥∥∥
+

1

Nn

∥∥∥∥(Λ̂∗n(p)− Λ∗n (p) Σ
1/2
f,pHpS

∗
n(p)

)> (
Λ̂∗n(q)− Λ∗n (q) Σ

1/2
f,qHqS

∗
n(q)

)∥∥∥∥ .
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By the Cauchy–Schwarz inequality and Theorem 2(a), we deduce that the terms on the majorant

side of the above display are all op(1). Hence, by (SA.84),

1

Nn
Λ̂∗n(p)>Λ̂∗n(q)− S∗n(p)H>p M

∗
C(p, q)HqS

∗
n(q) = op(1). (SA.85)

In particular,
1

Nn
Λ̂∗n(p)>Λ̂∗n(q) = Op(1). (SA.86)

By Theorem 2(b),
1

Nn
Λ̂0
n(p)>Λ̂0

n(q) = op(1). (SA.87)

By the Cauchy–Schwarz inequality, (SA.86) and (SA.87), we deduce

1

Nn
Λ̂∗n(p)>Λ̂0

n(q) = op(1). (SA.88)

The assertion of part (c) then follows from (SA.85), (SA.87) and (SA.88). Q.E.D.

Proof of Theorem 2(d). By part (c) of Theorem 2,

Trace[M̂C,n(q, q)] = Trace[S∗n(q)H>q M
∗
C(q, q)HqS

∗
n(q)] + op(1)

= Trace[M∗C(q, q)] + op(1)

= Trace[M∗Λ(q, q)Σf,q] + op(1),

where the second inequality follows from the orthogonality of HqS
∗
n(q) and the last line holds

because M∗C(q, q) = Σ
1/2
f,qM

∗
Λ(q, q)Σ

1/2
f,q . We also note from (SA.56) that

1

knNn
‖X̂n(q)‖2 =

1

knNn
‖X̂ ′n(q)‖2 + op(1).

Hence, it remains to show that

1

knNn
‖X̂ ′n(q)‖2 P−→ Trace[M∗Λ(q, q)Σf,q] +Mε(q). (SA.89)

To show (SA.89), we consider the following decomposition:

‖X̂ ′n(q)‖2 = Trace
[
X̂ ′n(q)>X̂ ′n(q)

]
= Trace

[
Λ̃∗n(q)>Λ̃∗n(q)Fn(q)>Fn(q)

]
+Trace

[(
En(q) + E ′n(q)

)> (En(q) + E ′n(q)
)]

+2 Trace
[
Fn(q)Λ̃∗n(q)>

(
En(q) + E ′n(q)

)]
. (SA.90)

By Lemma SA4(e) and (SA.58),

1

knNn
Trace

[
Λ̃∗n(q)>Λ̃∗n(q)Fn(q)>Fn(q)

]
P−→ Trace [M∗Λ(q, q)Σf,q] . (SA.91)
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In the proof of Lemma SA4(c,d), we have shown that

1

kn

∥∥∥∥ 1

Nn

(
En(q) + E ′n(q)

)>
Λ∗n(q)

∥∥∥∥2

= op(1).

In addition, by (SA.52),

1

kn

∥∥∥∥ 1

Nn

(
En(q) + E ′n(q)

)> (
Λ̃∗n(q)− Λ∗n(q)

)∥∥∥∥2

≤ ‖En(q) + E ′n(q)‖2

knNn
·

∥∥∥Λ̃∗n(q)− Λ∗n(q)
∥∥∥2

Nn
= op(1).

Hence, ‖ (En(q) + E ′n(q))> Λ̃∗n(q)‖ = op(Nnk
1/2
n ). Also note that ‖Fn(q)‖ = Op(k

1/2
n ). Therefore,

by the Cauchy–Schwarz inequality,∥∥∥∥ 1

knNn

(
En(q) + E ′n(q)

)>
Λ̃∗n(q)Fn(q)>

∥∥∥∥ ≤ 1

knNn
‖Fn(q)‖

∥∥∥(En(q) + E ′n(q)
)>

Λ̃∗n(q)
∥∥∥ = op(1).

Consequently,
1

knNn
Trace

[
Fn(q)Λ̃∗n(q)>

(
En(q) + E ′n(q)

)]
= op(1). (SA.92)

In view of (SA.90), (SA.91) and (SA.92), (SA.89) will be implied by

1

knNn
Trace

[(
En(q) + E ′n(q)

)> (En(q) + E ′n(q)
)] P−→Mε(q). (SA.93)

Finally, we show (SA.93). For each j, we denote

ξn,j ≡
1

kn

kn∑
l=1

(
∆n
i(n,q)+lεj√

∆n

)2

,

ξ′n,j ≡
1

kn∆n

∫ i(n,q)∆n+kn∆n

i(n,q)∆n

σ̃2
j,udu, ξ′′n,j ≡ ξn,j − ξ′n,j .

Then, we can decompose

1

knNn
Trace

[
En(q)>En(q)

]
=

1

knNn

Nn∑
j=1

kn∑
l=1

(
∆n
i(n,q)+lεj√

∆n

)2

=
1

Nn

Nn∑
j=1

ξ′n,j +
1

Nn

Nn∑
j=1

ξ′′n,j .

We note that conditional on Fi(n,q)∆n
, the variables (ξ′′n,j)1≤j≤Nn are uncorrelated with zero mean

and bounded variances. Hence,

1

Nn

Nn∑
j=1

ξ′′n,j = op(1). (SA.94)

In addition, we note that

1

Nn

Nn∑
j=1

ξ′n,j −
1

Nn

Nn∑
j=1

σ̃2
j,q =

1

Nn

Nn∑
j=1

1

kn∆n

∫ i(n,q)∆n+kn∆n

i(n,q)∆n

(
σ̃2
j,u − σ̃2

j,q

)
du

= Op(k
1/2
n ∆1/2

n ) = op(1).
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It readily follows that

1

Nn

Nn∑
j=1

ξ′n,j
P−→Mε(q). (SA.95)

By (SA.94) and (SA.95),
1

knNn
Trace

[
En(q)>En(q)

]
P−→Mε(q). (SA.96)

We further note that

1

knNn
Trace

[
E ′n(q)>E ′n(q)

]
=

1

knNn

Nn∑
j=1

kn∑
l=1

(
e′j,l
)2

= Op(∆n). (SA.97)

With an appeal to the Cauchy–Schwarz inequality, we deduce (SA.93) from (SA.96) and (SA.97).

This finishes the proof of part (d) of Theorem 2. Q.E.D.

SA.5 Proof of Theorem 3

(a) Firstly, by Theorem 2(c,d), it is obvious that L̃n(η, τ) = Op(1). Hence, the quantile cvn,α =

Op(1). Next, we consider the case under the null hypothesis, so M∗C(p, q) coincides with MC(p, q).

We partition ζ̃>q = (ζ̃∗>q , ζ̃0>
q ), where ζ̃∗q is r-dimensional. By Theorem 2(c,d), we have, for

s ∈ {η, τ},
Ãn(s) =

∑
p,q∈{s−,s+}

w̃n,pw̃n,q ζ̃
∗>
p S∗n(p)H>p MC(p, q)HqS

∗
n(q)ζ̃∗q +

∑
q∈{s−,s+}

w̃2
n,qMε (q) + op(1),

B̃n(η, τ) =
∑

p∈{τ−,τ+}

∑
q∈{η−,η+}

w̃n,pw̃n,q ζ̃
∗>
p S∗n(p)H>p MC(p, q)HqS

∗
n(q)ζ̃∗q + op(1).

We note that the r-dimensional vectors HqS
∗
n(q)ζ̃∗q are, conditionally on F , standard normal

and mutually independent across q ∈ {τ−, τ+, η−, η+}. We also observe that for s ∈ {η, τ},
∆n
i(n,s)Z

P−→ ∆Zs. Hence,(
HqS

∗
n(q)ζ̃∗q , w̃n,q

)
q∈{τ−,τ+,η−,η+}

L|F−→ (ζq, wq)q∈{τ−,τ+,η−,η+}, (SA.98)

where
L|F−→ denotes the convergence of conditional law in probability. It follows that(

Ãn(η), Ãn(τ), B̃n(η, τ)
) L|F−→ (A (η) ,A (τ) ,B (η, τ)) .

Consequently, L̃n(η, τ)
L|F−→ L (η, τ). We further note that the F-conditional distribution function

of L (η, τ) is continuous and strictly increasing. Hence, cvn,α
P−→ cvα.

(b) The assertion on the asymptotic level follows from part (a) and Theorem 1. Under the

alternative, ∆−1
n V̂n diverges to +∞ in probability by Proposition 1. The power property then

follows from cvn,α = Op(1). Q.E.D.
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