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SA Proofs

Throughout the proofs, we use K to denote a generic constant that may change from line to
line. For a sub o-field G C F and a sequence X,, of random variables, we write X, g_|g> X if the
G-conditional law of X, converges in probability to that of X under a metric that is associated
with the weak convergence of probability measures. By a standard localization procedure, we can

strengthen Assumption 3 as the following without loss of generality:

Assumption SA1. Suppose Assumption 3 holds with Ty = oo. Moreover, the processes o, Aj,

Az, by, of, 6J2- and ijj are bounded, uniformly in j.

SA.1 Preliminary Results

In this subsection, we introduce some notations and preliminary estimates that are used in the
sequel. We consider a sequence (2, of random events defined by ,, = {distinct jump times of the
Poisson process t — 1 ([0,t], E) are at least 2k,A,, apart}. Since k,A, — 0 and the jumps of
Z is of finite activity, P (€,) — 1. Therefore, we can restrict our calculations to €, without loss
of generality. It is (notationally) convenient to extend the definition of the spot jump beta to all
t € [0,T] such that, on each path, §;; = ;. for t € [t — k, Ay, 7+ kpAy]. This extension is well-
behaved on €2, and our analysis only concerns the behavior of 3;; around shrinking neighborhoods
around the jump times. (It should be noted that 3;; defined as such is not adapted to F;.)

We also consider the following sequence of events:

A w
0, = Z 1{Ay(n,7)Jy,j7éo} < |Nng, | /2 for some 7 € T ». (SA.1)

By Markov’s inequality,

N N,
n 2 n )
P §‘ 1: Yan vyl ™ [Nugr] /2] < ] 21@ (A;l(n,T)JYJ ” o) < KAp/q® — 0.
j= : iz

Since T is finite, we have P () — 1.

We denote the continuous part of Y; and Z as, respectively,

t t t
jl,tE/(; aj7udu—|—/o )\jT’udfu—l-Ej’t, Zt/E/O )\—Zr,udfu (SA2)

The diffusive residual process is then defined as
_ t t t
ijl,t = }/jlﬂf — 5j7tZt/ = /0 aj,udu + (/0 A]Tudfu - Bj’tA )\},udfu> + €t (SA?))
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We denote

_ A
En,js = W, (SA.4)
which can be decomposed as
Engs = Enjs T Enjso (SA.5)

where

¢

1 ~ -
57/1,]',3 = TZS ( j,5— (fs fz (n,s)—1)A n) + )\IS (fi(n,s)An - fs) + €i(n,s)An — 6(i(n,s)fl)An) )

g 1 /z<ns>A e [ 1
n,j,s — AZ (i(ms)—1)An QA AU i(n,s)"J AR VA AZ,
1

k i(n,5)

Bis [ T
+ / A ,u T dfu / A u A ,8— dfu
AZ, (i((n,s))—Al)An A ) AZ( ;(An,s)—l)ﬁn Az zs-)
1 n,s n _I_ /8 5 n,s n _l_
+AZS /S (N — Ajs) dfu — A]Zs /S (Azu —Azs) dfu.
(SA.6)
We further rewrite &/, s
é-;L,j,S = A'}L/Q Z Wn,q ( 7,q }/;Cn q + R n,j, q) (SA?)
q6{5_75+}

where we define

Coe = 512 fs — fz (n,s)—1) Ay (oo = 712 Jitn,s)A, — [
T T s \/3— n,s —I)An7 Wt T s i(n,s)An—S’
€5 T €5 (i(n,s —1)An _ Gi(n,s)An T Ehys
Rn j,s— — ! il ( ) ) Rn j,s+ = . )
v Vs —(i(n,s) —1)A, R i(n,s) A, —s (SA.8)
w _ 1 s—(i(n,s) —1)A, w _ 1 i(n,s) A, —s
| T T AZ, A, COT T AL, A, '

Lemma SA1. Under Assumptions 3 and 4, we have for p,q € {T—,7+,n—,n+}:
(a) Ny lan R ,J,pR Jl]_O (Nn /2) when p # q;
~1 Nn 2 .

(¢c) Ny IZN" R n,J,p Jq—O ( 1/2)7
(d) Nn 1An1 Zj:l(g;{,jﬂ' - gz,j,n)2 = OP(A”)

PrROOF OF LEMMA SA1. (a) We prove the case with p = 7— and ¢ = 7+ in detail, while noting
that the other cases can be proved in exactly the same way. Note that the jump times of the
Poisson measure p are necessarily independent of the Brownian motions Wj, 1 <37 <N, Let
G: be the smallest filtration such that F; C G; and the jump times of y are Gy-measurable. The
processes (Wj)lgg N,, remain to be Brownian motions with respect to (G¢)¢>¢. Consequently, €; is
a (Gt)t>o-martingale and, hence,

E[Rp jr—Rujr+] = 0. (SA.9)
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Moreover, for j # m,
E [Rn,j,T—Rn,j,r—i—Rn,m,T—Rn,m,T-l—] =E [Rn,j,r— Rn,m,T—E [Rn,j,r—f—Rn,m,T—&—’gT]] = 07 (SAlO)

where the first equality holds because R, jr_ R, - is Gr-measurable and the second equal-

ity holds because Wj and Wm are orthogonal. Since the processes &]2. are uniformly bounded,

E[thjji] < K holds due to a standard estimate for continuous Itd processes. By the Cauchy—

Schwarz inequality, this further implies that

E[R, ;. R, /] <K. (SA.11)

n’j»T_ n7ja7—+

From (SA.9), (SA.10) and (SA.11), we deduce
Ny, 2
j=1
The assertion of part (a) then readily follows.
(b) We consider the case ¢ = 7— in details while noting that the other cases can be proved in

the same way. By using It0’s formula, we can decompose

R - =Unj+Uy; where
1 T
U, = : &2udu,
=) = 1) An S -na,
5 .
Up; = , (€0 = €. (i(n,m)-1) 20 ) AW

7= (i (n,7) = 1) An Jitnr)—1)An

We note that E[U], ;] = 0 for each j and E[U], ;U;, ,,] = 0 for j # m. In addition, IE|UT’W-\2 <K.

From these estimates, it readily follows that
1%":(];1 = 0,(N2), (SA.12)
Ny, = 7 "
Next, note that by Assumption 3(v),
E|Un;—63, | <E| sup [67,—6%]| < KAY2

57t7|37t‘§An

From this estimate and Assumption 4, we deduce
1 & 1 &
EZUM = mzfﬂf + 0,(1) = M (=) + 0p(1). (SA.13)
j=1 J=1

The assertion of part (b) then follows from (SA.12) and (SA.13).



(c) By Assumption 4, \j, is conditionally independent of R, j, and, hence, E[Ry, ; pAj.q/Go] =
E[Ry.;p|GolE[Nj4|G0] = 0. In addition, for j # m,

E[Rn’j,pRn7m7p5\j’qX;;7q‘go] = E[RnJ}PR”vm,P’gO]E[;\jaqx;,q’go] = 07

where the second equality follows from the orthogonality between Wj and Wm Since S\j,q is
bounded, Rn7j7p/~\j7q has bounded second moment. The assertion of part (c) readily follows from
these facts.

(d) First, since the «;’s are uniformly bounded, it is easy to see that (AZS)_1 fi.(”’s)éqmn o ydu =

(i(n,s)
Op(Ay,) uniformly in j. Hence,

! Z( ! /l(ns)A d>2 0,(A) (SA.14)
ajudu | = n)- .
NoA, AZs Jims)-1an v
Further note that, uniformly in j, we have E]A?(n s)?j’\Q < KA, and, hence,
1 .
YA D (AT, oY) = 0p(1). (SA.15)
It is easy to see that
1 1
7 a7z O L(AL2), (SA.16)
i(n,s)
From (SA.15) and (SA.16)7 we deduce
2
1 = 0,(Ay) (SA.17)
N, A l(ns) ] Zn(ns)Z AZ, — Up\=2n)- .

We then note that, since the processes A;’s are (1/2)-Holder continuous under Lo-norm uni-

formly in j (Assumption 3(v)), the following estimate also holds uniformly

2
E ( / Njw — Njs) dfu> < KAZ.
(i(n,s)—1)A,

H
o 1 N 1 s 2
NnAn j=1 (AZS /(i(n,s)—l)An ( Js Js ) ) p( ) ( )
Similarly,
N 2
1 n Bjs /s .
’ Azu—Azs) dfu | = O0p(An),
Nolon 35 (AZS (i(n5)=D)An Oz =224-) p(An)
Nn i(n,s 2
1 1 /(7)An(A-u—)\.s)Tde = 0p(An) (SA.19)
NnAn j=1 AZS s > > p )
N, 2
1 n ﬁj,s i(n,s)An - -
L =



With an appeal to the Cauchy—Schwarz inequality, the assertion of part (d) then follows from
(SA.14), (SA.17), (SA.18) and (SA.19). Q.E.D.

Next, we set

1

Nn
An(s) = N.A Z (gé,j,s)Qa s € {7777_}’
nen 5

T (SA.20)
B, (777 7-) = ﬁ Z &L,jm&wﬁ'
nSn ST

The following lemma collects some convergence results that we use for deriving limiting distribu-
tions.
Lemma SA2. Suppose that Assumptions 8 and 4 hold. Then,

(An(0), Au(7), Ba(n, 7)) =5 (A(n), A(r), B (1, 7)),

L- .
where == denotes F-stable convergence in law.

PROOF OF LEMMA SA2. By Theorem 4.3.1 in Jacod and Protter (2012),

L-s
(wn.g, C”vq)qE{nanﬁTaTJr} — (wg, C‘l)qE{naanTﬂTJr}‘ (SA-21)

Recall the definitions in (SA.7) and (SA.20). We have, for s € {n, 7},

2

1T wl/2
An(s) = N Z Wn.q (AjT,qu,/q Gng + R”’jvq)
" j=1 qE{S—,S+}

Nn

_ Twl2 [ 1 s osT 1/2

= D wnpnglapy | 3 2 N | S na (SA.22)

p,q€{s—,s+} =1
Ny

1
2 2 —1/2
oY wh, ﬁZRn,g‘,q + Op(N; 1),

qe{s—,s+} moi=1

where the rate for the O, (N, !) term in the last line is obtained using Lemma SA1(a,c). Similarly,

1T «wl/2
N, > wnp (N2 Gup + Ruin)
n .
J=1 \pe{r—7+}

X 1/2
X Z Wn,q ()‘jT,qu,/q Cng + Rn,j,q)
g€{n—n+}

Nn,

12 1 T % 1/2 _

= E E wn,pwn,qég,pzf,/p N E :)‘j,p)‘jT,q Ef,/q Gnig + Op(Ny, 1/2)'
pe{T—,7+} q€{n—m+} " =1

(SA.23)



By Assumption 4 and Lemma SA1(b),

Np,
$1/2 1/2 1 P
o ZA ioe | e = Me(p @), = > B2, = Mdq). (SA.24)

We further note that the limiting variables M¢(p, q) and Mc(q) are F-measurable. Hence, by the
property of stable convergence in law, we can deduce the assertion of Lemma SA2 from (SA.21),

(SA.22), (SA.23) and (SA.24). Q.E.D.

Finally, we show in Lemma SA3 some consistency results for the spot jump beta estimates.

Lemma SA3. Under Assumptions 3 and 5, the following holds for s € T :
(a) SUP1<j<N, Wn,j,s - Bj’s‘l{A{Qn,s)Jy,FO} = 0p(1);
(0) Nt 520 e = B2 = 0p(1).
PrROOF OF LEMMA SA3. (a) Note that
5 A? Y /83 5= 4(n,s Z
Bn,j,s - /Bj,s = (. An 7 ( ) .
i(n,s)

By localization, we can assume that a , X, Aj and 3; are bounded. By a standard estimate for

(SA.25)

continuous It6 semimartingales (applied to the continuous parts of Y; and Z), we have for any
p=1,
< K,AP/?,

i(n,s)

|A ns)Y BJS i(n,s) Z| 1{A JY,jZO}

for some constant K. By using a maximal inequality, we deduce that

= 0,(AY2NE) (SA.26)

sup ‘Aznsy BJS znsZ‘l{A JY,jZO}_

1<j<Nn

i(n,s)

for some arbitrarily small (but fixed) constant ¢ > 0. Then, by Assumption 5,

n p— - _
e S

Note that 1/ Al 92 =0 ( ). The assertion of the lemma then readily follows from the above
estimate and equatlon (SA.25).

(b) It is easy to see that Bn,jm 1 < j < N, are uniformly bounded with probability approaching
one. We then note that

AL
A 2 B = Bl
n jil

1 ZN" .
- N. ’/BnujuT_/BjuT’ I{A

i(n,s)

2 K N,
< su — 1 -
< (1<j<€vnﬂws Bjs|1 {an, o Ivi=0} Nn Lo {an, v}

= 0p(1),



as claimed in part (b). Q.E.D.

SA.2 Proof of Proposition 1

PROOF OF PROPOSITION 1. Recall that the spot jump betas 3;, are bounded by assumption.
By Lemma SA3 and the boundedness of jyjj, we further deduce that the beta estimates Bn,j,s
are uniformly (in j) bounded with probability approaching one. Since the loss function L(-) is
Lipschitz on bounded sets (Assumption 1), we can now assume that L(-) is globally Lipschitz

without loss of generality. Hence, by Lemma SA3,

571,] T Bn,j,n) — L(xj.n,7)

N,
1 A A
< < 2 | LBnjir = Brgm) — L(Xjmr) | 1g| pn _
Nn jz; n,7,T n,7,M J,M,T { Ai(nT)JYJ’_'_ z(n n)Jy,]"—O} (SAQ?)
Z Llan dvolelan,
7.(n ) YJ i(n,m) Y,j‘>0}
< = .
>~ K se{n,glflnﬁ(jSNn Bn,] s B] s {Az(n S)Jy,j=0} + Op(An) Op(l)
Next, we set
1 o
§n = N (L(X],U,T) - ]E[L(Xj n T)“F ])
L

Under Assumption 6, &, is the average of F,_-conditionally independent variables with zero con-

ditional mean. Hence,

Nn

E [5721’]:77—] = 13 Z { XJ nT - E[L(ijx)‘;n—]f’ }—77—}
Ny

IN

Z XMT 77—] = Op(Nrfl) = op(1).

In particular, this implies that E[|£,] A 1|/F,—] = 0p(1). By the bounded convergence theorem, we
further deduce E [|£,| A 1] — 0. But this is equivalent to &, = o,(1). This, together with (SA.27),
implies that
AL . 1
o ; L(Bagir = Bngn) = - jZlE[Lm,n,T)w_} + 0p(1)- (SA.28)
Since ¢¥ — 0, the winsorized estimator Vj, differs from N, 1ZN” L(Bn,j,r — Bn,jm) by an op(1)

term. The assertion of the proposition then follows from (SA.28). Q.E.D.



SA.3 Proof of Theorem 1

PROOF OF THEOREM 1. Step 1. The proof proceeds in two steps. Recall Q, from (SA.1). Since
P (€2) — 1, we can restrict our calculations to 2, without loss of generality. In this step, we show

that

N,
10 1 -
An lvn = L (gn,j,T - gn,j,n) + Op(l)- (SA29)
NoA, ]Zzl
From (SA.26), we see that
sup  |Bnjis — Bisll = 0,(AY2N: SA.30
IS‘]S];;Vn |B 3Js B]a | {A n, S)JY,jZO} p( n ’Vl) ( )

for some fixed but arbitrarily small constant ¢ > 0. In restriction to €], and the null hypothesis,

Bnm,T is bounded by two times of the left-hand of the above display. Hence,
Bunr = Op(AY2NY). (SA.31)

We note that

N,
1 ~ A N _

A, N, ; L (|/8n7jﬂ' - Bn,j7n| A Bn,r;,r)
L (‘B?’L,jﬂ' - anjv"]D ‘ 1{ -
YN, R

M sup L (|ﬁn’j’7— — 6,”’]',77

AnNn 1<j<N,
= Op(g N7*) = 0p(1),

An

JY,j‘Jr

)1{

AT Ty |0} (SA.32)

<

AT v+ |A

i(n, n)JYJ‘—O}

where the inequality follows from the fact that the winsorization is active for at most [gw N, |
terms ([-] denotes the ceiling function); the first equality follows from (SA.30); the second equality
follows from Assumptions 2 and 5 with ¢ chosen sufficiently small. Note that in restriction to

{‘A;'l(n,T)jY,j‘ + ’A?(n,n)jYJ‘ = 0} and the null hypothesis, Bn,jﬁ - Bn,j,n =&njr — &n,jn- Hence,

Ny

1 . N _
N, ]; L (|Bn,j,7 - 6n,j,77’ A Bn,7777—> 1{ A;ﬂ(n T)JY,j‘JF A;L(n’n)jy,j‘=0}
. (SA.33)
= AN, ; L (gn»j»‘f - 5”13'7’7) 1{‘A?<nﬂ_)jY,j + ‘]YJ) 0} + Op(l)
Next, we note that
R : .
o ZL (lﬂw sl N B ) Uiy o oo
L(Bus) ) (SA.34)
Z { 1(n T)JYJ ‘+ 1(" ")Jy’j ‘>0}

= OP(AHN%) = Op(1)7



where the inequality follows from the monotonicity of L(-) and the last line follows from (SA.31)

and the fact that IP’(A?(n 5 Jy; #0) < KA, Similarly, we can show that

An 0p(1)- (SA.35)

i(n,T)

JY]"‘F

z(n - Jyy]' ‘>0}

1 &
N.A Z L (gn,j,T - gn,j,n) 1{
nen o

From (SA.33), (SA.34) and (SA.35), we deduce (SA.29) as wanted.
Step 2. It remains to derive the convergence of (NnAn)_1 Zjv 1 L (&njr —&njn)- Recall the
definition of & . from (SA.6). Let L, be defined as

n,J,s

Nn,
Z & — Enign) (SA.36)

Recalling the definitions in (SA.20), we can rewrite L,, as

Ly = An(n) + An(7) = 2B (1, 7). (SA.37)
Then, by Lemma SA2,
Lo £5 Ln,r) = A(n) + A(r) = 2B (1, 7). (SA.38)

From (SA.5), we further see that

Nn

1
NnAn Z L (£n7j77- - 5”7]777)
7=l N, (SA.39)

1 - 2
f "o e )+ ( "o el N2
7] T n7] 77 ( n7]77— n7‘77’r] NnA 1 n7]7T n7]777)

=

n

<.
Il

By Lemma SA1(d), the last term in (SA.39) is Op(A,). By the Cauchy-Schwarz inequality, this
estimate and (SA.38) further imply that the second term on the right-hand side of (SA.39) is 0,(1).

Therefore,
1 &
NnAn Z_; L (én’jvT - §n7j7n) = Ln + Op(].).
The assertion of the theorem then follows from (SA.29) and (SA.38). Q.E.D.

SA.4 Proof of Theorem 2

We start with the proof of part (a) and part (b). We provide details for the case with ¢ = 7—,
while noting that the case with ¢ = 7+ only requires a change of notation. Hence, we suppress
(in most cases) the dependence on ¢ in our notations for simplicity. More specifically, we write
X, Ey, A, Ay, &, H, Xy, M and M¢ in place of Xn(q), Fn(q), An(q), A (q), Enlq), Hy, Xt 4,
M7} (q,q) and Mf(q,q), respectively. We denote the jth column of a generic matrix A by A.;.

10



Recall the sequence (2, of events defined as in Section SA.1. Since P (€2,,) — 1, we can restrict our
calculations below in €2, without loss of generality.
Below, we denote I',, = {y € R* : vTy = k,}. Note that each column of F), is an element of

I",,. We collect some useful estimates in Lemma SA4, where we denote

- ~ T
A;; = <)\1,‘r— - /BTL,].,T)\Z,Tfy B )\Nn,Tf - 5H,Nn,T>\Z,T7> . (SA4O)

. . / /
We also consider an Ny, x k,, matrix &, = [e} ]1<j<n, 1<i<k, defined as

(i(n,7=)+1)Ap (i(n,7=)+D)An T
NS / jds + ATV / (N = Ajir—) " dlf
(i(n,7=)+l=1)Ap (i(n,7=)+=1)An (SA.41)

(i(n,7—)+I1) T
Bn,], 1/2/ ()\Z,u - )\Z,Tf) dfu
(i(n,7—)+l-1)Ay,

Lemma SA4. Under the conditions of Theorem 2, the following statements hold:
(a) supyer, by >Ny 'y €] Eny = 0p(1);
(b) supyep, by *No oy TELT €Ly = 0p(1);
(c) SUDyer,, kgan_l ‘VT‘E‘;A;‘ = Op(l)f
(d) SUPyer,, kﬁan_l ‘VT‘%TA;L‘ = 0p(1);
(e) NTYARTAY = My + 0y(1) and Ny YALTAY = My + 0,(1).

PRrOOF OF LEMMA SA4. (a) Recall that the (j,1) element of &, is given by e;; = Al(n ) _HEJ/Al/Q

We observe

TeT
&, Eny
k2N, |
= ZZw'rmZeﬂ%m
k N =1 m=1
2y 1/2
| b 1/2 bn kn (1 Nu (SA.42)
S 5D LA N 5 55 SN (1) prorem
=1 m=1 n =1 m=1 moi=1
1/2
| Jn kn 1 M 2\ Y
=2 2 | 2ciem ,
n =1 m=1 j=1

where the first equality is by definition, the inequality is by the Cauchy—Schwarz inequality, and
the last line follows from vy = k,.
We decompose the majorant side of (SA.42) as

2
kn  kn Ny
1 1
%2 N Z €51€j:m
ka I=1 m=1 " =1
i N 9 9 (SA.43)
1 & 1 <« o n 1
= — — €5 — — Z €5.1€j,m
k2 N, Js k2 N J54%95
no=1 " oj=1 " m,l£m " oj=1



By a standard estimate for continuous It6 semimartingales, E[eil] < K this holds uniformly in

j € {1,...,N,} because the idiosyncratic variances 6?- are uniformly (locally) bounded under

Assumption 3(iii). Hence, by Jensen’s inequality,

N, 2 N,
E m E ej,l S E Fn E ej’l S K.
=1 i=1

From here, it follows that the first term on the right-hand side of (SA.43) is o0,(1). In view of
(SA.42) and (SA.43), it remains to show that the second term on the right-hand side of (SA.43)
is also op(1).

To this end, we observe the following for I # m: (i) E[e;;e;m] = 0 because the process €; is

a martingale; (ii) E[eileim] < K; and (iii) the variables (€j,€jm),<;<y, are uncorrelated, which
can be shown by using repeated conditioning and the orthogonality among the Brownian motions

(Wj)jzy Hence,

N 2
1 n
Elw Y eieim | | KN =0,
which implies, as wanted,
2
1 1 oo .
k2 ) N, > _ciieim | = Op(N; 1) = 0p(1).
" m,l#£m n j=1
This finishes the proof of part (a).
(b) Similar to (SA.42), we can derive
1/2
1 Lo 1 & \
TelT el ol
sup v E ENS | = ~ D €€ . (SA.44)
el k2 Np o k%;mz—l N”jgl e

In addition, we observe

4

(i(n,7—)+1) Ay -
E|A-Y/2 /( N — Njro) | df

n
i(nyr—)H—1)A,,

(i(n,7=)+1)An ) 2
< KAPE / [Aju = Ajr— " du
(i(n,7—)+1l—-1)Ay,

(SA.45)

3 (E(n,7—)+1)An A
<xae| | g — Ajr_ |1
(i(n,7—)+Hl—-1)Ay,

(i(n,7—)+D)An )
< KAL'E / [Njw = Njr— [P du| < KA,
(i(n,7=)+l-1)Ap

where the first inequality is by the Burkholder—Davis—Gundy inequality, the second inequality is

by Jensen’s inequality, and the last line holds because \;,, is bounded and (1/2)-Holder continuous

12



under Lg-norm uniformly in j. Similarly,

4

(i(n,7=)+)An T
a | (\zu—Azr) T df| < KA, (SA.46)
(i(n,7—)+l-1)Ap

E

Under Assumption 7, (Bj,n,f)lgjg ~,, are uniformly bounded with probability approaching one, so
we can assume that these variables are bounded without loss of generality. Hence, from (SA.45)
and (SA.46), we deduce that

Elef | < KA. (SA.47)

Hence, by the Cauchy—Schwarz inequality, we further have
2

N,
1 n
E |5 2o ucim | | KA (SA.48)

The assertion of part (b) then follows from (SA.44) and (SA.48).

(c) We denote the (j, k) element of A}, by A%,. We note that for each k € {1,...,r} (recalling
that A}, ;. denotes the kth column of A7),

1 1 on 1
TeT Ax *
ETA ‘ - = = Y
) . 1/2 ) K ) N, o\ 1/2
2 *
< (1350) (02 Do
n =1 j=1
. N oy 1/2
1 n 1 n .
= k—z — ) €Nk , (SA.49)
=1 "oj=1

where the first line is by definition, the second line is by the Cauchy—Schwarz inequality and the
last line follows from v € I';,. Under Assumption 8, e;; is independent of )\; i hence, the variables
(ejJ)\; ©)1<j<N, are uncorrelated and have zero mean and bounded second moment. It is then easy

to see that )

1 1
E = > - Z €N 1 < K/N,
=1 7j=1
Therefore,
1 gnf 1 X ’
= A Dok | = 0N = 0p(1). (SA.50)
=1 " =1

The assertion of part (c) then follows from (SA.49) and (SA.50).
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(d) Like (SA.49), we can derive

2y 1/2
1o 1
T ol T p* / *
EITA ‘< SN SN . SA.51
ann Y Cn n, k| = kan; Nnj;ej,l 7,k ( )
We further note that,
N, 2 N,
1 & . 1 = 2
E || 3 20 Gt < B2 (€a)
n i—1 n =1
J J
N
K n
< = E[(€)*] < KA,
N, ot ’

where the first inequality is by Jensen’s inequality, the second inequality holds because )\;k is
bounded and the last inequality can be derived similarly as (SA.47). In view of (SA.51), the
assertion of part (d) readily follows.
(e) From the definitions of A* and A* respectively from (3.9) and (SA.40), we see that (recall
q=7-)
A * * 2 * 2 T
An - An = ((51,7— - /Bnylﬂ-) )‘Z,T*’ R (B’I”L,Nnﬂ' - Bn,NmT) AZJ*) :

Therefore, by Assumption 7,

1 = * * Ak *
F(An - An)T(An - An) = Op(l)' (SA52)
n
That is, N, '||AX — A%||? = 0,(1). Since N, 'AXTAX N M7} by Assumption 8, the estimate above
readily implies the assertions in part (e). Q.E.D.

We are now ready to prove part (a) and part (b) of Theorem 2. We remind the reader that we

fix ¢ = 7— for proving these parts.

PROOF OF THEOREM 2(a). Step 1. We prove part (a) of Theorem 2 in several steps. In this step,

we show that

sup |Zn(7) = Zp,(7)] = 0p(1), (SA.53)
’Yern

where =, (-) and = (-) are defined as

— _ 1 TvT v —% _ 1 T *T Ak 0T

Below, we denote the (j,1) element of X, by

il = A?(n,T—)—i—l}/j A un V (*’U,n) - ﬁn:j:TA?(n,T—)—s—lZ
A VA, |
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We set

(i(n,7=)+1) Ay
(i(n,7—)+1-1)Ap

172 (i(n,7—)+)An ~ . i
o A} )+ na<xm__@mﬁAZJ dfs + Dy Al )15

Note that
2
E ‘gn,j,l - f;lyj,l‘ < KAn (SA55)

We now define X as a N,, x k, matrix whose (j,1) element is given by €., and let

=/ T /T v
= =7 X, X,7.
By (SA.55),
1 R R 2 1 Ny kn 9
N, Xn — X;L = L N Z Z ‘fn,j,l - dz,j,l = Op(l)- (SA.56)
By the Cauchy—Schwarz inequality and the triangle inequality,
— — 1 N P
sup [E, (1) —Z, (1) = 5 swp ‘WT (X, %0 - X1 X7) 7‘
€l kiNn ver,
1 2w Ty /T !
1 N P
= N XX, - XTX!
< 2|z |£ - &)+ % - %
o k;nNn " " " ann " "
It is easy to see that | X"|| = Op(v/knN,). Hence, by (SA.56),
sup |2, () — 4 (7)] = 0p(1). (SA.57)

v€ls

[1]

To show (SA.53), it remains to show that sup,cr, |=], (v) — Zj, ()] = 0p(1). We note that, by

a standard result for spot covariance estimation
T P
F, F, [k, — 3. (SA.58)
. 1/2
In particular, ||Fy,|| = Op(kn'”). Hence,

sup HWTFn/k'n
Y€l

< sup [yl 1Bl /hn = Op(1). (SA.59)
v€ElR

Under Assumption 8, A%T A% = O,(N,,). It then follows that

sup Z,(7) = Op(1). (SA.60)
vl

15



Recall the definitions in (3.9), (SA.40) and (SA.41). We can decompose X/, as

X, =ANF] +& +E&. (SA.61)
Hence,
X! —ANE = (A5 —AE] +&,+ & (SA.62)
We can then decompose
- e o 2 T * 1 A* _ A* T /
1 T A*x _ AX T / T A*x _ AX T /
(SA.63)
By Lemma SA4(a,b),
sup 7' &) Eny = 0,(1), sup 7' ETELy = 0,(1). (SA.64)

Further using the Cauchy-Schwarz inequality, we can deduce that sup.cr, "yTEJ ET’L’y‘ = o0p(1);
hence,

T T / .
KZN, ser, | (En+En) (En+En)7=0p(1). (SA.65)

In addition, by Lemma SA4(e) and (SA.59)

v (A = A T A = A E = 0,(1). (SA.66)

sup "

vel'y k%Nn

By (SA.65) and (SA.66), as well as the Cauchy-Schwarz inequality, we deduce

I@% sup 4T ((A;; - A;;) Fl + &+ 5,@)T ((A;; - A;;) Fl + &+ 5;) v=o0,(1). (SA.67)
n-'n yclnp

By (SA.60) and the Cauchy—Schwarz inequality, (SA.67) further implies that

“5 Sup yTEART [(A; —A)FE] 4+ &, + 57’1} ’y’ = o0p(1). (SA.68)
ann vel'y

By (SA.63), (SA.67) and (SA.68), we deduce sup,¢r, |2, () —

as wanted.

[1]

» (7)] = 0p(1) and, hence, (SA.53)

Step 2. In this step, we show that

P

ST F k), P <5 1 (SA.69)

where we recall that S% = diag(sign(F*' F,(F,] F,,/k,)""/2H)) and H is the ordered eigenvec-
tor matrix of Mf. Below, we denote by D; the jth largest eigenvalue of Mf and write D =
diag(Dy, ..., D).
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We first show that

sup 2 (%) = D. (SA.70)

yel'y

To see this, we note that we can represent v € I';, as
v = F(F F,/k,)"Y2Hs + 7, (SA.71)

where 7 is the projection error of  onto the column space of F}, such that F,] ¥ = 0. We can then

rewrite

sup ZX(y) = sup & H'M, HS, where
veln 8] <1 ’

e - (BB V2 AASTARN (ETEN\ Y2
S N, kn '

Hence, sup,cr, Z5,(7) is the largest eigenvalue of M¢, . By (SA.58) and Assumption 8,

1/2
f

1/2

Mg, = SPMESY? = Mg

Since the mapping for calculating the unique largest eigenvalue is continuous, we deduce (SA.70)
by using the continuous mapping theorem.

By the construction of Fn, its first column le satisfies

En(Fn,.l) = sup Z,(7).
’YEF7L

~

By (SA.53), sup,er, Zn(7) = supyer, =5,(7) + 0p(1), which implies =, (F) 1) %5 Dy because of
(SA.70). Using the uniform convergence result in (SA.53), we further deduce

=t (Fo1) — Dy (SA.72)
We now represent Fn,.l in the format of (SA.71), that is,
Ey1 = Fo(E Fy/kn) V2HS, + 71, (SA.73)
such that F,[4; = 0. From (SA.72) and (SA.73), we see

op(1) = En(Fn1) — Dy
= & H' M, Hby — Dy
= o HT (Mg, — M3) Hoy + 6] H MEHS, — Dy
= & H' (Mg, — M) Hoy + 6] Dé — Dy,
where the last line follows from the eigenvalue decomposition Mg, = HDH . Since ||6;] < 1 and
Mg, — M¢ = op(1), the above display implies that

6] D&y — Dy = 0,(1).

17



Since D; is the unique largest eigenvalue, this further implies that 5%1 2 1 and 5%] 50 for
j > 2. In particular, ||6;]] %5 1 which implies that A1 A1 ke 0.
Let S}, ; denote the jth diagonal element of Sy. Note that by (SA.73),

E Fo/ky = STHT(EF, k)2

Hence,

o] = (B} 1Fy/kn)(F, Fo/kn) /*H.

By the definition of Sy |, the first element of S;;l(FTI,IFn/k:n)(FJFn/k:n)_l/zH is nonnegative.
Hence,
(B F/ka) (B Fofky)2H
- (15111,55;1512,...,‘sgﬁlslr) P (1,0,...,0).

By (SA.58), we further deduce that
(B Fafkn)S 7 PH 5 (1,0,...,0),

which shows the convergence in (SA.69) for the first row.
By repeating the same argument (by setting '), as the subspace orthogonal to previous eigen-
vectors), we can prove the convergence in (SA.69) for the jth row, 2 < j <.

Step 3. In this step, we finish the proof for part (a) of Theorem 2. We denote
)T(A; — ALSYPHSS).

The assertion of part (a) can be rewritten as Trace[D,,] = 0,(1).

We decompose

where

Dy = NUASTAS, Do = NATARSY2HSE,
Dus = N, 'S;H TS 2N AL S HS
To prove Trace[D,] = 0,(1), it suffices to show that

D -5 D, k=123, (SA.74)
where we recall that D is the diagonal matrix that collects the ordered eigenvalues of M¢. Below,
we prove (SA.74) for each case.

Case k = 1: Recall that we partition F,, = [F*1F9], where F* collects the first 7 columns of
Fn. We set

S EPUIS |
A= —XUEr = =

- - (A;pg‘%fsng%eg) 20 (SA.75)
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Note that

2 —1 AT ;7%
HDml—Nn AT R?

= N ATAL - ARTAY

= kN ETXT X FY— FXTXITX! B

= 0,(1), (SA.76)

where the first two equalities are by definition and the last one is by (SA.57). Subsequently, by

(SA.75), we can decompose [)n,l as

Dny = kQN fal (A* Fl 4+ &+ 5’) (]x;;FnT +E+ g,g) Er + 0p(1)

= Dn,l,l + Dn,1,2 + [771172 + Dn,1,3 +o0p(1),

where
Dasa = (BT Fufka) (TR /NG ) (B /kn)
Dpig= (kﬁlNEIFJT (Ent &)’ AZ) (Fgﬁﬁ/kn) ;
Dois=k 2N BT (£, +€) (En+EL) F

From (SA.69),

1 -~ 1 .
B F = SR = 0,(1), ETTFy = 0y(1). (SA.77)

Hence, recalling that H is the eigenvector matrix of Mf = E}/ 2MXZ}/ ? and Sy is a diagonal

matrix with 41 on its diagonal, we deduce
Dy = S;HTSPMESYPHS, + 0,(1) = D + 0,(1).

By Lemma SA4, we see that l~)n71,2 and Dn,Lg are both 0,(1). From these estimates, (SA.74) for
the case k = 1 readily follows.

Case k = 2: By (SA.76) and the Cauchy—Schwarz inequality,
Dup = Ny 'ALTALS P HSE + 0,(1).
By (SA.75), we can thus decompose Dn 5 as [) = l~)n7271 + bmg,g + 0p(1) where
Dnaoy = (F*TFn/k ) ( TA%/N, ) s/ HS;,
Duza= (k' NTUET (£a+ 1) A ) /2 HS].
y (SA.77) and Lemma SA4(e), we deduce

Doy = SpHTSYPMESY2HSS + 0,(1) = D+ 0,(1).

By Lemma SA4(c,d), Dy 22 = 0p(1). This proves (SA.74) for the case k = 2.
Case k = 3: By Assumption 8, it is obvious that

Dy = S;HTSYPMESYPHS, + 0,(1) = D + 0y(1).
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This finishes the proof of (SA.74) and, hence, part (a) of Theorem 2. Q.E.D.

PROOF OF THEOREM 2(b). We fix j € {r +1,...,7}. Recall that A, ; denote the jth column of
Ay By the definitions of A,, and Fn,

1

N, AI,~jAn,-j = En(Fn,J) (SA?S)

Like in (SA.73), for each k € {1,...,r}, we can represent
Fn;k = Fo(F,) Fu/kn) " ?Hop + A, (SA.79)

where F,| 4, = 0. Following a similar argument as in Step 2 of the proof of Theorem 2(a), we can

show that, for each k, k' € {1,...,r} with k # ¥/,

Bk =1, Gy =0, A Ak kn — 0. (SA.80)
We also represent
Fn,'j = Fn(FrLTFn/kn)il/QH&j + :Yja (SASl)

where FnT’yj = 0. Since F»,;rjﬁnk/kn =0 for 1 <k <r (because F, collects the eigenvectors of
X X,), we have
0] 0% + 4, Ak /kn = 0. (SA.82)
Since ’y,j’yk [kn 50 and ’?;—'?j Jkn < 1, we have %"r% /kn = 0p(1) by the Cauchy-Schwarz in-
equality. Therefore, 5]T<§k = op(1) for 1 < k < r. By (SA.80) above, this implies 3]- = op(1).
Hence,
Z5(Fneg) = 0] HME, H'0j = op(1). (SA.83)

~

By (SA.53), E,(Fy,.j) = 0p(1). The assertion of part (b) readily follows from (SA.78).  Q.E.D.
PROOF OF THEOREM 2(c). By Assumption 8,

Az (p)TAZ P .
y2ha®) M@ gy gty o, (SA.84)

T
, Eﬁp N, Ia

We observe

o) R - S0 NS
< 1n (An@) - A5 @) E}{ﬁHps;(p)f Al ()Y HqH
+z\1rn Hy SN 0) " (Mnla) = A5 (0) S Hy S5 (a) H
o () -8 ) S H,50) (A - 4 @] S0 H |
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By the Cauchy—Schwarz inequality and Theorem 2(a), we deduce that the terms on the majorant

side of the above display are all 0,(1). Hence, by (SA.84),

1 A * A * * * *
FAn(p)TAn(Q) - Sn(p>H1—JrMC(pv q>Han(Q) - OP(1>'
In particular,

A A0 = 0,0,

By Theorem 2(b),

AW A0 = 0,(1).

By the Cauchy-Schwarz inequality, (SA.86) and (SA.87), we deduce

A ) A = 0,(1).

The assertion of part (c) then follows from (SA.85), (SA.87) and (SA.88).

PROOF OF THEOREM 2(d). By part (c) of Theorem 2,

Trace[Mcn(q,q)] = Trace[S;(q)H, M(q, ) HySy(9)] + 0p(1)
= Trace[M¢(q,q)] + op(1)
= Trace[MK(q, Q)Ef,q] + Op(l)a

(SA.85)

(SA.86)

(SA.87)

(SA.88)

Q.E.D.

where the second inequality follows from the orthogonality of H,S;(q) and the last line holds

. 1/2 1/2
because M (q,q) = Ef’/q Mj (q, q)Ef’/q. We also note from (SA.56) that

1
kn Ny,

v 1K@ + 0p(1).

2
o)l =
Hence, it remains to show that

1
kn Ny

~ P "
1 (@)||> — Trace[M}(q,q)Xy,q] + Mc(q).

To show (SA.89), we consider the following decomposition:
IX(@I? = Trace | %) %1 (0)]
= Trace |A;(0) A5 (@) Fa(a) Fulo)|
+Trace [( )+ & q)) (Enlg) +E(q ))]

42 Trace [ T (En + & ( )]

By Lemma SA4(e) and (SA.58),

1
ann

21

Trace [A7(0) TA5(0) Fa(a) TFu(@)] > Trace [Mj(¢,0)S].

(SA.89)

(SA.90)

(SA.91)



In the proof of Lemma SA4(c,d), we have shown that

¥ (Eala) + €10) Aila)

*
kn
In addition, by (SA.52),

kln + (@) +&1(@) " (Rn@) - 230 >)L
1€a(0) + Ex@)I* ‘]\"(Q)_M’(q)u — 0,(1)
= ke N,y Nn, n

Hence, || (£.(q) + E.(q)) " A(@)]] = o0p(Noki/?). Also note that [|Fu(q)|| = Op(ks'?). Therefore,
by the Cauchy—Schwarz inequality,

krj\fn (Eala) +€(@) ' Ai(@)Fa(a)T|| <

@Il || (Eala) + E0(@) " Anl@)]| = 0p(1):

kny, N
Consequently,
1 A *
——Trace [Fu(@)A5 (@) (£a(0) +€,(0) | = 0,(1). (SA.92)
In view of (SA.90), (SA.91) and (SA.92), (SA.89) will be implied by
1
——Trace [ (£u() + £1(@)) " (€a(@) + £1(0)) | = M.(). (SA.93)

Finally, we show (SA.93). For each j, we denote

g . = 1 & A?(TMQ)'HGj ’
n,j - ]{;n = \/Tn i
1 i(n,q) An+knAp
é-':z,j = n N, /i(n DA &Jz,ud“v n] =&nj — éqlz,j'

Then, we can decompose

1 T 1 N Fn Azn(n,q)Jrlej ?
annTrace [En(q) 5n(q)} = LN, ;Z v/ v

11=1
1 o 1 on
= =D it
Ny, Ny,

We note that conditional on Fj, g)a,,, the variables (34 )1<]< ~,, are uncorrelated with zero mean

and bounded variances. Hence,

1 O
N &n.j = op(1). (SA.94)
In addition, we note that
N, N, ,
n 1 n 1 /1(n7q)An+knAn ~ ~
52 2 2
N Zgn,] " 93,q N, ~ kn A\, (gD ( Jou Jq)

Op(k'rlz/QAvlz/Q) = Op(1)~

22



It readily follows that

N,
1 n ]ID
N 57/1,]' — M(q). (SA.95)
Lt
By (SA.94) and (SA.95),
1 T P
o Trace [Sn(q) En(q)} — M(q). (SA.96)
We further note that
1 1 Nn kn )
! T o/ _ / _
v Drace [€4(0) T €n(0)| = Z ZZ ()" = Op(An). (SA.97)
With an appeal to the Cauchy—Schwarz inequality, we deduce (SA.93) from (SA.96) and (SA.97).
This finishes the proof of part (d) of Theorem 2. Q.E.D.

SA.5 Proof of Theorem 3

(a) Firstly, by Theorem 2(c,d), it is obvious that Ly (n,7) = O,(1). Hence, the quantile cv, o =
O,(1). Next, we consider the case under the null hypothesis, so M{(p, q) coincides with Mc(p, q).

We partition qu = (~;T, ~3T), where 5; is r-dimensional. By Theorem 2(c,d), we have, for
s e {n, 7},

An(s) = D npiing Si(p)H) Mo(p, )HySi(a)Cs + Y p ,Me(q) + 0p(1),
p,g€{s—,s+} ge{s—,s+}

Bu(n,7)= > D nptbngGy ' Si(p)H, Mo(p, ) HySii(a)C; + 0p(1).
pe{T—,7+} g€{n—m+}

We note that the r-dimensional vectors Hqu;(q)f; are, conditionally on F, standard normal
and mutually independent across ¢ € {7—,7+,n—,n+}. We also observe that for s € {n,7},
N AZ,. Hence,

i(n,s)

* ko~ L|F
(H‘ISTL(CDC(] ’ wn,q) — (qu wq)qe{7_77+7n_7n+}, (SA98)

q€{7_77—+777_777+}

L|F . .y
where —|> denotes the convergence of conditional law in probability. It follows that

(Antn). An(r), Baln,7)) =5 (A (), A7) B0, 7).

Consequently, f/n(n, T) if) L (n, 7). We further note that the F-conditional distribution function
of £ (n,7) is continuous and strictly increasing. Hence, cv, N CUq-

(b) The assertion on the asymptotic level follows from part (a) and Theorem 1. Under the
alternative, A, 1y, diverges to 400 in probability by Proposition 1. The power property then
follows from cvy, o = Op(1). Q.E.D.
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