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Abstract

This paper introduces and studies the econometric properties of a general new class of

models, which I refer to as jump-driven stochastic volatility models, in which the volatility

is a moving average of past jumps. I focus attention on two particular semiparametric classes

of jump-driven stochastic volatility models. In the first the price has a continuous component

with time-varying volatility and time-homogenous jumps. The second jump-driven stochastic

volatility model analyzed here has only jumps in the price, which have time-varying size. In

the empirical application I model the memory of the stochastic variance with a CARMA(2,1)

kernel and set the jumps in the variance to be proportional to the squared price jumps. The

estimation, which is based on matching moments of certain realized power variation statistics

calculated from high-frequency foreign exchange data, shows that the jump-driven stochastic

volatility model containing continuous component in the price performs best. It outperforms a

standard two-factor affine jump-diffusion model, but also the pure-jump jump-driven stochastic

volatility model for the particular jump specification.
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1 Introduction

Continuous-time stochastic volatility models have been used for a long time in the theoretical

and empirical finance literature. The typical way of modeling the volatility process in these

models is with (a superposition of) nonnegative diffusion processes (e.g. square-root processes).

However, empirical results in the studies of Eraker et al. (2003) and Pan (2002) among others

suggest that including jumps in the stochastic volatility is necessary in order to account for

sudden big changes in volatility. The main goal of this paper is to introduce and analyze some

of the econometric properties of a general class of continuous-time models, referred to as jump-

driven stochastic volatility (hereafter JDSV) models, and check empirically whether models in

this class can provide good fit to high-frequency financial data. The distinctive characteristic

of the JDSV models is that the stochastic variance is purely jump-driven. It is modeled as a

general moving average of past positive jumps. This way of modeling the variance has several

attractive features. First, it allows for flexible and at the same time parsimonious modeling of

the persistence in the variance by an appropriate choice of the weights which past jumps receive

in the current value of the variance. Second, since the variance is driven by jumps it has the

natural ability to change quickly. Third, the linearity of the stochastic variance with respect to

the jumps makes the JDSV models analytically tractable.

The paper analyzes two classes of JDSV models. In the first class, the price is comprised of

a continuous component with stochastic volatility plus a time-homogenous jump component. I

refer to these models as jump-diffusion JDSV models. In the second class of models, referred

to as pure-jump JDSV models, the price contains only jumps. The price jumps in this second

class of models exhibit stochastic volatility. I derive moments of the return process in closed

form for both classes of JDSV models.

In the empirical part of the paper I estimate semiparametric specifications of the JDSV

models and compare their performance with a standard two-factor affine jump-diffusion model.

The estimation of the models is based on matching moments of daily realized power variation

statistics constructed from high-frequency FX data, and Monte Carlo study documents satisfac-

tory performance of the estimator. In the estimated JDSV models the memory of the stochastic

variance is modeled with a CARMA(2,1) kernel1 and the jumps in the variance are set pro-

portional to the squared price jumps without specifying the jump measure itself. The jump

dependence in the estimated JDSV models is quite appealing - it bears analogy with GARCH

models in discrete time, and at the same time it illustrates nicely the flexibility of the jump

1CARMA stands for continuous-time autoregressive moving average. As later explained in the paper, the choice
of CARMA(2,1) kernel in the current setting produces dynamics of the stochastic variance analogous to that of the
traditional two-factor stochastic volatility models.
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modeling in the JDSV models.

My empirical results show that the model providing best fit to the data is the jump-diffusion

JDSV model for the particular jump specification. This model is found to outperform the

standard two-factor affine jump-diffusion model. On the other hand the estimation results show

that the pure-jump JDSV model in which variance jumps are proportional to the squared price

jumps does not fit the high-frequency data. Intuitively, the two-factor affine jump-diffusion

model cannot generate enough volatility in the stochastic variance. On the other hand, the

pure-jump JDSV model generates too much volatility of the stochastic variance to be consistent

with the value of the fourth power variation observed in the data. Finally, the estimation results

provide empirical support for the CARMA Lévy-driven modeling of the volatility, which was

recently analyzed theoretically in Brockwell (2001).

I proceed with a short comparison of the current paper with the related literature. Barndorff-

Nielsen and Shephard (2001) were the first to propose a model in which the stochastic variance

is purely jump-driven. Their Non-Gaussian OU-SV model is nested in the jump-diffusion JDSV

class defined here. In the Non-Gaussian OU-SV model the memory function is exponential and

the jumps in the price are proportional to the jumps in the variance. Brockwell (2001) extended

the Non-Gaussian OU-SV model by considering CARMA memory functions2. The jump-driven

JDSV class that I propose here improves/generalizes these models in the following directions:

(i) the memory function is allowed to be completely general (subject to integrability conditions),

(ii) the dependence between the jumps in the price and the variance encompasses all possible

cases (and not just that of a perfect linear dependence that was previously considered), (iii) the

activity of the price jumps is unrestricted (it can be even of infinite variation).

While the first class of JDSV models generalizes a particular model that was already available

in the literature, the second class, i.e. the pure-jump JDSV class, has no known precedents. The

closest model is the pure-jump COGARCH of Klüppelberg et al. (2004) - it is comparable with a

pure-jump JDSV model in which the jumps in the variance are proportional to the squared price

jumps. Common for both models is that the time-variation in the price jumps is introduced

through time-variation in the jump size3. The difference is that in the COGARCH model the

stochastic variance is driven by the price jumps which are time-varying, while in the jump-driven

JDSV models the driving jumps in the variance specification are time-homogeneous.

Turning to the estimation, the current work is naturally related to previous studies which

derive in closed form moments of returns associated with continuous-time stochastic volatility

2To generate richer autocorrelation structure of the stochastic variance, Barndorff-Nielsen and Shephard (2001)
propose also superpositions of Lévy-driven OU processes for modeling the stochastic variance.

3An alternative way of introducing stochastic volatility in pure-jump models is to introduce time-variation in the
compensator of the price jumps. Examples of such models in the literature are the time-changed Lévy processes
studied in Carr et al. (2003), Carr and Wu (2004) and Barndorff-Nielsen and Shephard (2006).
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models. Das and Sundaram (1999) derive unconditional moments of the Heston’s model. Pan

(2002) derives joint moments of returns and spot volatility in one-factor affine jump-diffusion

model. She uses these moments for joint inference in an implied-state GMM estimation based

on spot and option data. Meddahi (2002) derives both conditional and unconditional moments

of general eigenfunction stochastic volatility models, which nest most of the diffusive-volatility

continuous-time models used in finance. All these studies consider estimation at low frequency.

In contrast, in this paper the estimation is based on aggregating high-frequency data in daily

statistics and matching moments of these statistics. This estimation method has been analyzed

theoretically in a time-homogeneous context in Ait-Sahalia (2004). Empirical applications so far

have restricted attention to matching moments only of the realized variance. Bollerslev and Zhou

(2002) treat the realized variance as the unobservable integrated variance in a GMM estimation

of affine jump-diffusion models4. Barndorff-Nielsen and Shephard (2002, 2006) have used the

realized variance to estimate via QMLE part of the parameters of Non-Gaussian OU-SV models

and time-changed Lévy models5. But because Barndorff-Nielsen and Shephard (2002, 2006) use

only the realized variance, they are unable to separate the continuous and discontinuous price

components. In this paper I use not only the realized variance in the estimation, but also the

realized fourth power variation. That enables me to separate the two price components. As

the results show including the forth power variation in the estimation penalizes strongly for the

omission of price jumps from the estimated model.

The rest of the paper is organized as follows. In Section 2 I introduce the JDSV models

in their general form and in Subsections 2.1 and 2.2 I analyze two classes of these models

- the jump-diffusion and the pure-jump JDSV models respectively. Section 3 contains the

empirical part of the paper. Subsection 3.1 gives details on the method of estimation that is

used. In Subsection 3.2 and 3.3 I specify the memory function and the jump dependence in

the estimated JDSV models. Subsection 3.4 specifies the two-factor affine jump-diffusion model

that is used to compare with the JDSV models. Section 3.5 contains a Monte Carlo study to

assess the performance of the estimator. Finally, in Subsection 3.6 I discuss the estimation

results. Section 4 concludes the paper and points out directions for future research. The proofs

of all results in the paper are contained in Appendix available upon request.

4A Similar approach is adopted by Garcia et al. (2006) in the estimation of objective and risk-neutral distributions.
5Roberts et al. (2004) and Griffin and Steel (2006) use MCMC techniques to estimate, based on daily data,

parametric specifications of the Non-Gaussian OU-SV model.
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2 Jump-Driven Stochastic Volatility Model

The JDSV model for the logarithmic asset price p(t) is specified with the following two equations

p(t) = p(0) + αt +
∫ t

0

σ1(s−)dW (s) +
∫ t

0

∫

Rn
0

σ2(s−)g(x)µ̃(ds, dx), (1)

σ2
i (t) = σ̄i0 +

∫ t

−∞

∫

Rn
0

fi(t− s)ki(x)µ(ds, dx) for i = 1, 2, (2)

where W (t) is a standard Brownian motion; µ denotes homogenous Poisson random measure

on R × Rn
0 with compensator ν(ds, dx) = dsG(dx) for some positive σ-finite measure G(·) and

µ̃ is the compensated version of µ, i.e. µ̃ = µ − ν; g : Rn
0 → R0; ki : Rn

0 → R+, fi : R → R+

and σ̄i0 ≥ 0 for i = 1, 2. Since fi(·) and ki(·) take only nonnegative values the integral in (2) is

nonnegative. The assumption for a constant drift term in equation (1) is for simplicity.

The main distinctive feature of this class of models is that the state variables (when time-

varying) are modeled as moving averages of past jumps. σ2
i (t) can be written equivalently as

(with the normalization fi(0) = 1)

σ2
i (t) = σ̄i0 +

∑

s≤t

fi(t− s)∆σ2
i (s).

From this representation it is clear that the function fi(·) determines the weight which past jumps

have in the current value of the state variable σ2
i (t). Therefore the function fi(·) is referred to

as the memory function or kernel. Thus, the memory functions f1(·) and f2(·) determine the

pattern of the persistence in the stochastic variance. The specification of σ2
i (t) in (2) is to be

contrasted with the traditional way of modeling the stochastic variance, which is done by a

superposition of independent variance factors6. The advantage of modeling σ2
i (t) with a moving

average of jumps is that it allows for a succinct way of generating flexible dependence in the

stochastic variance without the need of introducing many factors which in general are hard to

identify and price. Drawing on an analogy with time series modeling in discrete time, a natural

choice for fi(·) is a CARMA kernel studied in Brockwell (2001). Intuitively, with a CARMA

kernel for fi(·), σ2
i (t) is a continuous-time analogue of the discrete-time ARMA process with

non-Gaussian innovations. However, other kernels which satisfy certain integrability conditions

(given below) could also be used.

In addition to the convenient way of generating persistence in the volatility, the modeling

of σ2
i (t) as a moving average of positive jumps has the natural ability of generating sudden big

moves in the variance. As already mentioned in the introduction, this is found empirically to be

an important characteristic of the variance. Thus, these two important features of the variance,

6Superposition of processes can be nested in the JDSV models by making the functions fi(·) and ki(·) conformable
vectors.
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persistence and ability to change quickly, can be easily captured by the JDSV models. Im-

portantly, this is achieved without nonlinear transformations of underlying stochastic processes

(like in the standard log-normal stochastic volatility model for example). This makes possible

deriving moving average type representation for the integrated state variables (given in equation

(4) below), which is a key for many of the subsequent results.

The modeling of the jumps in the JDSV models provides a very convenient framework

for describing the dependence between the jumps in the price and in the state variables. All

jumps in the JDSV models are written as different functions of the jumps associated with a

common Poisson measure, which is of arbitrary big dimension. Thus, for example, independence

between the jumps in the price and in the state variables can be generated by specifying x to

be multidimensional with independent marginals and letting the jump functions ki(x) and g(x)

depend on different elements of the vector x. On the other extreme, perfect linear dependence

between the jumps can be generated by making ki(x) ∝ g(x). The empirical Section further

illustrates the convenience of this way of modeling the jumps. It should be noted that the

dependence between the price jumps and the jumps in the state variables is the only way

through which the so-called “leverage effect” can be generated in the JDSV models. Therefore,

in these models modeling of the jump dependence is at the same time modeling of the “leverage

effect”.

I continue with fixing some notation associated with the JDSV model, which will be used

throughout. I denote the continuously-compounded return over the period (t, t+a] with ra(t) =

p(t + a)− p(t). The quadratic variation of the price process over the period (t, t + a] is given by

[p, p](t,t+a] =
∫ t+a

t

σ2
1(s)ds +

∫ t+a

t

∫

Rn
0

σ2
2(s)g2(x)µ(ds, dx) (3)

=
∫ t+a

t

σ2
1(s)ds +

∫ t+a

t

σ2
2(s)ds

∫

Rn
0

g2(x)G(dx) +
∫ t+a

t

∫

Rn
0

σ2
2(s)g2(x)µ̃(ds, dx).

An easy application of Fubini’s theorem gives the following representation for the integrated

state variables over the period (t, t + a]7

IV i
a (t) := aσ̄i0 +

∫ t+a

t

σ2
i (s)ds = aσ̄i0 +

∫ t+a

−∞

∫

Rn
0

Ha
i (t, s)ki(x)µ(ds, dx), (4)

where

Ha
i (t, s) =





∫ t+a

t
fi(z − s)dz if s < t

∫ t+a

s
fi(z − s)dz if t ≤ s < t + a.

(5)

Equation (4) shows that, like σ2
i (t), the integrated quantity IV i

a (t) is a weighted sum of past

jumps. The only difference between σ2
i (t) and IV i

a (t) is in the weights which past jumps receive.

7Note that σ2
i (t) is defined as a pathwise integral, which is almost surely finite.
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In the next two subsections I study two classes of the JDSV models in which either σ2
1(t) or

σ2
2(t) is equal to a constant. Therefore, to simplify notation, I remove the index i of the non-

constant state variable σ2
i (t) in these models8 and refer to σ2(t) and

∫ t+a

t
σ2(s)ds as stochastic

variance and integrated variance respectively.

2.1 Jump-Diffusion JDSV Model

The jump-diffusion JDSV model is a special case of the JDSV model in which the price jumps

do not exhibit time variation, i.e. σ2
2(t) = 19 and thus its dynamics is given by

p(t) = p(0) + αt +
∫ t

0

σ(s−)dW (s) +
∫ t

0

∫

Rn
0

g(x)µ̃(ds, dx) with σ2(t) =
∫ t

−∞

∫

Rn
0

f(t− s)k(x)µ(ds, dx).

This way of modeling the price is “traditional” in terms of the role which price jumps play.

The continuous component of the price is expected to generate most of the small moves of the

price, while the jump component of the price should account for the sudden relatively bigger

changes in the price. However, note that unlike most jump-diffusion models in the financial

literature here the price jumps are left unrestricted with respect to their activity - they can

be even of infinite variation. This is due to the modeling of the price jumps as integrals with

respect to the compensated jump measure, µ̃, which is adopted in this paper.

For the existence of moments of the return process we need integrability conditions, which

are given in assumptions H1-H4 below10

H1.
∫
Rn

0
g2(x)G(dx) < ∞,

H2.
∫∞
0

f(s)ds < ∞ and
∫
Rn

0
k(x)G(dx) < ∞,

H3.
∫∞
0

f2(s)ds < ∞ and
∫
Rn

0
k2(x)G(dx) < ∞,

H4.
∫
Rn

0
g4(x)G(dx) < ∞.

In the next theorem I derive moments of the return process which will be used in the estimation.

Theorem 1 (Moments of the Jump-Diffusion JDSV model) For the Jump-Diffusion

JDSV model assume that conditions H1-H4 are satisfied. Then we have

Var(ra(t)) = a

∫ ∞

0

f(s)ds

∫

Rn
0

k(x)G(dx) + a

∫

Rn
0

g2(x)G(dx), (6)

E(ra(t)− E(ra(t)))3 = 3
∫ a

0

Ha(0, u)du

∫

Rn
0

k(x)g(x)G(dx) + a

∫

Rn
0

g3(x)G(dx), (7)

8This applies also for all quantities associated with the process σ2
i (t) like fi(·) and ki(·).

9And, as mentioned above, to ease notation I set σ2
1(t) = σ2(t) and drop the index 1 from all other quantities

associated with the process σ2
1(t).

10Of course, these conditions imply that the integrals used in defining p(t) and σ2(t) are square-integrable.
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E(ra(t)− E(ra(t)))4 = 3
∫ a

−∞
(Ha(0, u))2du

∫

Rn
0

k2(x)G(dx) + 3
(

a

∫ ∞

0

f(s)ds

∫

Rn
0

k(x)G(dx)
)2

+a

∫

Rn
0

g4(x)G(dx) + 6a2

∫ ∞

0

f(s)ds

∫

Rn
0

k(x)G(dx)
∫

Rn
0

g2(x)G(dx)

+6
∫ a

0

Ha(0, u)du

∫

Rn
0

g2(x)k(x)G(dx) + 3a2

( ∫

Rn
0

g2(x)G(dx)
)2

. (8)

and for h = a, 2a, 3a.... we also have

Cov((ra(0)− E(ra(0)))2, (ra(h)− E(ra(h)))2) =∫ a

0

Ha(h, u)du

∫

Rn
0

g2(x)k(x)G(dx) +
∫ a

−∞
Ha(h, u)Ha(0, u)du

∫

Rn
0

k2(x)G(dx).
(9)

Equation (7) reveals the source of the skewness in the returns in this model. The first term

in (7) is from the presence of leverage effect, which in this model reduces to negative linear

relationship between the jumps in the price and the jumps in the stochastic variance σ2(t). In

addition, skewness in the returns could be generated through skewness in the jump component

of the price, which is the second component of equation (7). Turning to the covariance between

the demeaned squared returns, we see from equation (9) that it consists of two terms. The first

term is due to the link between jumps in the price and those in the variance. If the jumps in

the price and the variance are independent then this term will disappear. The second term in

equation (9) is due to the time-variation in σ2(t).

2.2 Pure-Jump JDSV Model

The pure-jump JDSV model is a special case of the JDSV model in which the price does not

contain continuous component, i.e. in which σ2
1(t) = 011 and therefore its dynamics is

p(t) = p(0) + αt +
∫ t

0

∫

Rn
0

σ(s−)g(x)µ̃(ds, dx) with σ2(t) =
∫ t

−∞

∫

Rn
0

f(t− s)k(x)µ(ds, dx).

In contrast to the jump-diffusion JDSV model, in this model the jumps should account for

big as well as very small moves in the price. Therefore, it is expected that the price jumps will

exhibit paths of infinite variation, so that enough small moves in the price can be generated. The

modeling of the asset price as solely driven by jumps was recently used in finance by Carr et al.

(2003) and Barndorff-Nielsen and Shephard (2006). In these papers the stochastic volatility is

generated by time-changing time-homogeneous (i.e. Lévy) jumps. In contrast, in the pure-jump

JDSV model stochastic volatility is generated by introducing time-variation in the size of the

price jumps.

Conditions similar to H1-H4 are assumed to hold here as well

S1.
∫
Rn

0
g2(x)G(dx) < ∞,

11Again, to simplify notation, I set σ2
2(t) = σ2(t) and drop the index 2 from all quantities associated with the

process σ2
2(t).
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S2.
∫∞
0

f(s)ds < ∞ and
∫
Rn

0
k(x)G(dx) < ∞,

S3.
∫∞
0

f2(s)ds < ∞ and
∫
Rn

0
k2(x)G(dx) < ∞,

S4.
∫
Rn

0
g4(x)G(dx) < ∞.

As in the jump-diffusion JDSV model, these conditions guarantee that the returns and σ2(t)

are weakly stationary. Condition S4 is needed for deriving the fourth moment of the returns

as well as for the covariance of the squared returns and it guarantees the finiteness of these

moments. In addition, for deriving some of the moments of the return process we need the

following additional condition

S5.
∫
Rn

0
g(x)k(x)G(dx) = 0 and

∫
Rn

0
g3(x)G(dx) = 0.

Assumptions S1-S4 are not restrictive in the sense that they are the minimal assumptions

needed to estimate the model by a method-of-moments type estimator. Condition S5 on the

other hand rules out linear dependence between the jumps and the variance and it is used for

deriving closed form analytical expression for the fourth moment of the returns and covariance

of the squared returns. Therefore, condition S5 is restrictive as it rules out leverage effect in

the model. However, note that condition S5 does not preclude dependence between the jumps

in p(t) and σ2(t). It only rules out linear dependence.

I finish this Section with a theorem which gives moments of the return process for the

pure-jump JDSV model to be used in the empirical application in Section 3.

Theorem 2 (Moments of the Pure-Jump JDSV Model) For the pure-jump JDSV model

assume conditions S1-S5 hold. Then we have

Var(ra(t)) = a

∫ ∞

0

f(s)ds

∫

Rn
0

g2(x)G(dx)
∫

Rn
0

k(x)G(dx), (10)

E(ra(t)− E(ra(t)))4 = a

∫ ∞

0

f2(s)ds

∫

Rn
0

k2(x)G(dx)
∫

Rn
0

g4(x)G(dx)

+a

( ∫ ∞

0

f(s)ds

∫

Rn
0

k(x)G(dx)
)2 ∫

Rn
0

g4(x)G(dx)

+6
∫ a

0

∫ s

0

f(s− u)duds

∫ ∞

0

f(s)ds

∫

Rn
0

g2(x)G(dx)
∫

Rn
0

k(x)G(dx)
∫

Rn
0

g2(x)k(x)G(dx)

+3a2

( ∫ ∞

0

f(s)ds

∫

Rn
0

g2(x)G(dx)
∫

Rn
0

k(x)G(dx)
)2

+6
∫ a

0

∫ u

−∞
Hu(0, s)f(u− s)dsdu

∫

Rn
0

k2(x)G(dx)
( ∫

Rn
0

g2(x)G(dx)
)2

, (11)

and for h = a, 2a, ...

Cov(r2
a(t), r2

a(t + h)) =
∫ a

−∞
Ha(h, u)Ha(0, u)du

∫

Rn
0

k2(x)G(dx)
( ∫

Rn
0

g2(x)G(dx)
)2

+
∫ ∞

0

f(s)ds

∫ a

0

Ha(h, u)du

∫

Rn
0

k(x)G(dx)
∫

Rn
0

g2(x)G(dx)
∫

Rn
0

g2(x)k(x)G(dx). (12)
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3 Empirical Application

The goal of this Section is to estimate models in the two classes of JDSV models that were

analyzed in the previous Section and to compare their performance with the widely used in the

finance literature affine jump-diffusion models. I start this Section with a description of the

method of estimation.

3.1 Realized Power Variation and Estimation

The estimation in this paper is based on matching moments of daily returns and realized (daily)

power variation. The realized p-power variation over a day t computed from high-frequency

observations with length δ is defined as

RPV p
δ (t) =

M∑

i=1

|rδ(t + (i− 1)δ)|p, p > 0, M = b1/δc. (13)

In this paper the realized power variation statistics that are used are the Realized Variance

(RVδ(t) :=
∑M

i=1 |rδ(t + (i − 1)δ)|2, hereafter RV) and the Realized Fourth Power Variation

(FVδ(t) :=
∑M

i=1 |rδ(t + (i− 1)δ)|4, hereafter FV). As δ ↓ 0, RVδ(t) converges in probability to

the quadratic variation over day t, while FVδ(t) converges to the sum of the price jumps raised

to the power four (over day t). Therefore, using RV and FV in the estimation we can identify

the parameters controlling the variance of the continuous and discontinuous components of the

price. Of course, to improve efficiency in the estimation potentially we need to consider also

other realized power variation statistics. The choice of RV and FV for the estimation here is

driven by the fact that these statistics can be used to disentangle continuous and discontinuous

components of the price and importantly moments of RV and FV can be computed in closed

form for the JDSV models which makes the estimation easy to apply. Moreover, the method of

estimation used here has the advantage that it can provide an answer whether a whole class of

models is appropriate in modeling asset prices without being fully parametric.

The particular moments used in the estimation of all models in this paper are the following:

mean, variance and autocorrelation of RV; mean of FV and mean of fourth moment of daily

returns. These moments can be computed in closed-form for the JDSV models introduced in

Subsections 2.1 and 2.2 using Theorems 1 and 2 respectively. For the autocorrelation of RV I

use lags one, four, seven, ten as well as the sum of the autocorrelations from lag twenty till lag

forty. Thus, altogether I end up with nine conditions. Adding more conditions could increase

the asymptotic efficiency of the estimator, but in a finite sample this is also associated with a

lower precision in estimating the optimal weighting matrix (see the Monte Carlo evidence in

Andersen and Sørensen (1996)).
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I proceed with further details about the estimation. In the estimation of all models I set the

drift term to zero and use demeaned stock market return data. For the optimal weighting matrix

I use a HAC estimator of the covariance matrix with a Bartlett kernel and a lag-length of eighty.

The estimation is performed using the MCMC approach of Chernozhukov and Hong (2003) of

treating the Laplace transform of the objective function as an unnormalized likelihood function

and applying MCMC to the pseudo posterior. Then the parameter estimates are the resulting

mode of the pseudo posterior. In the estimation I impose all restrictions on the parameters that

guarantee nonnegativity and stationarity of the state variables in the estimated models12.

To estimate the JDSV models with the method-of-moments type estimator proposed here we

need to impose more structure on these models. In particular, we need to specify the memory

function f(·) and in addition we need to model the jumps in the price and the variance. This is

done in the next two Subsections.

3.2 Modeling the memory of the stochastic variance

For the memory function f(·) in the estimation I use CARMA(2,1) kernel with two distinct real

autoregressive roots. The CARMA(2,1) kernel generates the same autocorrelation in σ2(t) as the

two-factor stochastic volatility models, which in turn are found to be successful in fitting financial

asset prices. Based on previous estimation of the two-factor models, one of the autoregressive

roots is expected to be slowly mean reverting, corresponding to a persistent factor in the variance.

The second autoregressive root is expected to be fast mean reverting which corresponds to a

less persistent factor in the variance.

The (normalized) CARMA(2,1) kernel with two distinct negative autoregressive roots is

given by (see Brockwell (2001) for details)

f(u) =
b0 + ρ1

ρ1 − ρ2
eρ1u +

b0 + ρ2

ρ2 − ρ1
eρ2u, u ≥ 0. (14)

For this choice of f(·) the kernel of the integrated variance Ha(t, s) in (5) becomes

Ha(t, s) =





b0+ρ1
ρ1−ρ2

eρ1a−1
ρ1

eρ1(t−s) + b0+ρ2
ρ2−ρ1

eρ2a−1
ρ2

eρ2(t−s) if s < t

b0+ρ1
ρ1−ρ2

eρ1(t−s+a)−1
ρ1

+ b0+ρ2
ρ2−ρ1

eρ2(t−s+a)−1
ρ2

if t ≤ s < t + a.

(15)

The necessary and sufficient condition for the CARMA(2,1) kernel to be nonnegative is b0 ≥
−max{ρ1, ρ2} > 0 (see Todorov and Tauchen (2006)). The CARMA(2,1) kernel in equation

(14) reduces to a CARMA(1,0) kernel when b0 = −min{ρ1, ρ2}. Therefore, the results for

the CARMA(2,1) kernel could be specialized for the CARMA(1,0) case. In the empirical part

I estimate both JDSV models with CARMA(2,1) and CARMA(1,0) kernel. Note that the

12The restrictions guaranteeing stationarity are given in Subsections 3.2 and 3.4 below.
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CARMA(1,0) choice for the kernel f(·) corresponds to the case where the stochastic variance

follows a Lévy-driven OU process as in Barndorff-Nielsen and Shephard (2001).

3.3 Jump Specification

In this Subsection I model the jumps in both JDSV models. The approach adopted in this paper

is to specify the functional form of g(·) and k(·) (and thus the jump dependence), but to leave

the Poisson measure µ unspecified. Instead, in each of the models I estimate (parameterize)

only cumulants associated with µ. This way the difference in the performance of the different

models will not be influenced by a potentially wrong parametric choice for the distribution of

the jumps, which can happen if a fully parametric approach is adopted instead.

3.3.1 The Jump-Diffusion JDSV Model

I make the following assumption for g(·) and k(·) in the jump-diffusion JDSV model

H5. g(x) = const1× x and k(x) = const2× x2.

This assumption means that the jumps in the variance are proportional to the squared price

jumps. This jump specification bears analogy with the GARCH modeling in discrete time where

the conditional variance is determined by the past squared returns. It is important also to note

that this specification of the jumps does not rule out jumps of infinite variation in the price

(which will be the case for example if the jumps in the price are proportional to the jumps in

the variance as in the Non-Gaussian OU-SV model).

In the estimation I treat as parameters the following cumulants associated with the Poisson

measure µ: mc :=
∫
Rn

0
k(x)G(dx) b0

ρ1ρ2
, md :=

∫
Rn

0
g2(x)G(dx) and v :=

∫
Rn

0
k2(x)G(dx). The

factor b0
ρ1ρ2

in the expression for mc is associated with the memory function, but makes mc

equal to the variance of the continuous component of the price and thus easier to interpret. The

expression md is the variance of the discontinuous component. The cumulants mc, md and v are

all we need to know for the measure µ in order to compute the moments used in the estimation

of the jump-diffusion JDSV model (under the the jump specification H5 of course).

3.3.2 The Pure-Jump JDSV Model

The specification of the jumps in the pure-jump JDSV model that is used in the estimation is

analogous to assumption H5

S6. g(x) = const1× x and k(x) = const2× x2.

Assumption S6 does not rule out jumps of infinite variation, which as already mentioned is

particularly important for the pure-jump models. Note also that combining S5 and S6 we have

the implication
∫
R0

x3G(dx) = 0.

12



Under assumption S6 we can see that the jumps in σ2(t) are proportional to the quadratic

variation of the Lévy process driving the price. This is very similar to the COGARCH modeling

(Klüppelberg et al. (2004), Brockwell et al. (2006)) where the jumps in σ2(t) are proportional to

the quadratic variation of the discontinuous component of the price. What makes the pure-jump

JDSV model analyzed here different from the COGARCH intuitively is the fact that σ2(t) is an

infinite moving average of the past squared Lévy jumps driving the price (i.e. under S6 we have

k(x) ∝ g2(x)), while in the COGARCH model σ2(t) is a moving average of the past squared

price jumps.

For the estimation of the pure-jump JDSV model under the assumptions S6 and S7, I

parameterize the following two expressions related with the Poisson random measure µ m :=
∫
Rn

0
g2(x)G(dx)

∫
Rn

0
k(x)G(dx) b0

ρ1ρ2
and v :=

√∫
Rn

0
g4(x)G(dx)

∫
Rn

0
k2(x)G(dx). Similar to the

jump-diffusion JDSV model, the scaling of m by the factor b0
ρ1ρ2

makes it equal to the variance of

the return over a unit interval and thus much easier to interpret. Given S6, m and v synthesize

all information about µ needed in the estimation (with the method-of-moment type estimator

specified in Subsection 3.1).

3.4 A Two-Factor Affine Jump-Diffusion Model

To compare the performance of the JDSV models I estimate also a standard one and two-

factor affine jump-diffusion models13. The realized variance in the two-factor case has the same

autocorrelation structure as in the JDSV models analyzed here for the choice of the CARMA(2,1)

kernel. The two-factor affine jump-diffusion stochastic volatility model is given by

dp(t) = αdt +
√

V (t)dW (t) +
∫

Rn
0

g(x)µ̃(ds, dx), (16)

V (t) = V1(t) + V2(t), dVi(t) = κi(θi − Vi(t))dt + σi

√
Vi(t)dBi(t), i = 1, 2, (17)

where W (t), B1(t) and B2(t) are independent standard Brownian motions14; the function g(·)
and the compensated random measure µ̃ are as introduced in the JDSV models.

Like the jump-diffusion JDSV model, the jumps in the affine jump-diffusion model (16)-(17)

are time-homogenous 15: ∆p(t) = g(x). The two variance factors follow square-root diffu-

sion processes and take nonnegative values. Note that unlike the JDSV models the stochastic

volatility model (16)-(17) does not have jumps in the variance, i.e. ∆V (t) = 0.

For the estimation of the affine jump-diffusion models, I parametrize the fourth cumulant of

the jumps in the price. That is I estimate v :=
∫
Rn

0
g4(x)G(dx). In addition, instead of working

13The estimation method is the same as the one used for the JDSV models and was discussed in Subsection 3.1.
14The assumption for the independence of the Brownian motions allows for closed-form expressions for the moments

needed in the estimation in the general two-factor case.
15Of course in the general affine jump-diffusion models, the jumps could have time-varying intensity (but it should

be affine in the factors), see e.g. Duffie et al. (2003) for details.
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with σ1 and σ2, I estimate σ1v := σ1

√
θ1
2κ1

and σ2v := σ2

√
θ2
2κ2

, which are the standard deviations

of the two variance factors. Further, I set θ := θ1 + θ2 +
∫
Rn

0
g2(x)G(dx) and estimate θ, since

θ1, θ2 and
∫
Rn

0
g2(x)G(dx) are not identified separately (with the moment conditions used here).

Finally, to guarantee that the estimated parameters correspond to stationary variance factors

V1 and V2, I impose the following restriction on σ1v and σ2v
16

σ1v + σ2v < θ. (18)

3.5 Monte Carlo Study

Before estimating the different models using real data I conduct a Monte Carlo study to as-

sess the finite sample properties of the estimation method. The model estimated in the Monte

Carlo is the jump-diffusion JDSV model with CARMA(1,0) kernel and jump specification H517.

Table 1 contains details on the particular parametric distribution for the jumps used in the

Monte Carlo as well as the parameter values in the different cases. Since the estimated model

is an “one-factor” type model, I drop from the moment vector (given in Subsection 3.1) two

of the moment conditions which identify the memory of the stochastic variance. These mo-

ments are the autocorrelation of RV at lag ten and the sum of the autocorrelations from lag

twenty till lag forty. The estimated parameters are ρ1, −
∫
Rn

0
k(x)G(dx)/ρ1,

∫
Rn

0
g2(x)G(dx) and√

−0.5
∫
Rn

0
k2(x)G(dx)/ρ1

18. In the Monte Carlo I analyze scenarios of high and low level of

volatility of the stochastic variance and of high and low persistence in the stochastic variance,

which makes a total of four different cases. In all the cases I set the variance of the continuous

price component to be 0.45 and that of the jump price component to be 0.05, following the non-

parametric empirical findings in Andersen et al. (2007) and Huang and Tauchen (2005). Finally,

to match the FX high-frequency data that I am going to use in the empirical application, I set

the sample size to 3000 and the number of intraday observations to 288. The results from the

Monte Carlo study are summarized in Table 2. Below I outline the key findings.

1) The moments of the realized power variation statistics used in the estimation can efficiently

separate the total variance into two parts - one due to the continuous price component and

the other one due to the discontinuous price component. Both estimates, − ∫
Rn

0
k(x)G(dx)/ρ1

and
∫
Rn

0
g2(x)G(dx), are slightly downward biased, more so the variance of the continuous price

component. This is consistent with the downward bias in the mean of the stochastic volatility

16Condition (18) follows from the restriction guaranteeing stationarity of a square-root process.
17The reason for using a model in the jump-diffusion JDSV class in the Monte Carlo is that models in this class

are more challenging to estimate as the estimation involves separation of continuous and discontinuous components.
Moreover the estimation results later in this Section show that the jump-diffusion JDSV models outperform the
pure-jump JDSV models when variance jumps are proportional to squared price jumps.

18The last parameter is the volatility of σ2(t), but only for the CARMA(1,0) case and this is why this transformation
of

∫
Rn

0
k2(x)G(dx) is not used when reporting the estimation results for the JDSV models in Subsection 3.6.
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that is found in the Monte Carlo studies of Andersen and Sørensen (1996) and Bollerslev and

Zhou (2002).

2) The autocorrelations of the realized variance used in the estimation are able to identify ρ1.

This parameter estimate is again slightly downward biased.

3) The volatility of the stochastic variance parameter,
√
−0.5

∫
Rn

0
k2(x)G(dx)/ρ1, is the hardest

parameter to estimate. This is reflected in the relatively bigger (as compared with the other

parameters) bias and RMSE. Similar conclusion is made also in Andersen and Sørensen (1996).

4) Increasing either the persistence of the stochastic variance or the volatility of the stochastic

variance worsens the results, i.e. the biases and the RMSE-s of all parameters increase.

Overall, the Monte Carlo study shows satisfactory performance of the estimator in empiri-

cally realistic situations.

3.6 Estimation and Discussion of the Results

I finally proceed with the estimation. For the empirical application I use continuously com-

pounded five-minute returns on the German Deutsch Mark/US Dollar (DM/$) spot exchange

rate series. It spans the period from December 1, 1986 till June 30, 1999. From the data set

were removed missing data, weekends, fixed holidays and similar calendar effects, with details

explained in Andersen et al. (2001). The total number of days left in the data set is 3045, each

of which consists of 288 five-minute continuously compounded returns. The results from the

estimation of the different models are reported in Tables 3-4.

The first important question, which I try to answer using the estimation results, is whether

price jumps matter for the ability of the models to fit the data. Looking at the results for the

jump-diffusion JDSV model in Table 3 and the affine jump-diffusion model in Table 4 one can

see that inclusion of jumps in the price significantly improves the fit of the model. This holds

true regardless of the choice of the memory function for the jump-diffusion JDSV model and the

number of factors in the affine jump-diffusion model. Also, this conclusion for the importance

of the price jumps is robust to the different ways of modeling the stochastic variance (as a

sum of square-root processes or moving average of positive jumps). The big difference in the

performance of the models with or without price jumps indicates that the moments used in

the estimation significantly penalize for their omission. On the other hand, both estimated

pure-jump JDSV models provide very bad fit to the data. Therefore, pure-jump JDSV model

in which the jumps in the variance are proportional to the squares of the driving Lévy process

in the price does not seem to provide good description of the data.

The second question of interest is how well is the persistence of the realized variance described

by a CARMA(2,1) kernel. Comparing the performance of the JDSV models with CARMA(1,0)
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kernel with those with CARMA(2,1) kernel, one can see that the CARMA(2,1) kernel provides

a much better fit for the autocorrelation structure of RV. The same pattern emerges when

comparing the one-factor affine jump-diffusion model with the two-factor one. This finding is

in line with results in most of the empirical studies of multi-factor stochastic volatility models.

What is important to note here is that the CARMA(2,1) kernel does as good job as a two-factor

stochastic volatility model in capturing the persistence in the realized variance without the

need of introducing multiple factors. On Figure 1 I compare the autocorrelation of the realized

variance with that implied by the parameter estimates of the jump-diffusion JDSV model with

CARMA(2,1) kernel, which contains price jumps. In the estimation, as already discussed in

Subsection 3.1, I use only the first forty autocorrelations of the realized variance. Figure 1

shows that the CARMA(2,1) kernel provides pretty good fit and matches well the observed

autocorrelations even beyond lag forty.

The model that provides best fit to the moments used in the estimation is the CARMA(2,1)

jump-diffusion JDSV model containing price jumps. The level of the J-statistic is well below

commonly accepted critical values. In fact, the only other model which cannot be rejected at a

5% significance level is the two-factor affine jump-diffusion model with price jumps. I compare

these two models closer19. Both of them generate the same autocorrelation structure. Therefore

the difference in their performance comes from the jump specification and the fact that in the

JDSV model the variance is solely driven by jumps while in the affine jump-diffusion model it is

driven by a sum of square-root diffusion processes. Following Tauchen (1985), in Table 5 for each

of the two models I report the t-statistics associated with the moments used in the estimation.

These statistics should give an idea which moments the models have difficulty in matching20.

Firstly, as expected both models produce comparable fit for the autocorrelations used in the

estimation. The difference comes in the fit to the rest of the moments. As seen from Table 5,

the CARMA(2,1) jump-diffusion JDSV model has no difficulty in fitting the variance of RV, the

mean of FV and the fourth moment of the daily returns. In contrast, the affine jump-diffusion

model does not provide a good fit to those moments. In fact, looking at the parameter estimates

of the affine jump-diffusion model, reported in the last column of Table 4, it can be seen that

the volatility parameters for the two square-root processes driving the stochastic variance are

on the boundary of the stationarity condition (18) (in the estimation I impose this restriction).

That is, the square-root diffusion processes, used for modeling the stochastic variance, could

not produce enough volatility in the stochastic variance. This is in contrast with JDSV models

19Note that these two models are non-nested. They both have the same number of parameters and are estimated
with the same number of moment conditions. Therefore the difference in their J statistics can be used to compare
their performance, see Andrews (1999) for example.

20Of course, these statistics should be interpreted with care because inconsistence of parameter estimates in general
would lead to inconsistence of even correctly specified moment conditions.
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where volatility in the stochastic variance is very easy to generate.

I end this Section with a short discussion on the parameter estimates for the best performing

model from the ones compared here, i.e., the CARMA(2,1) jump-diffusion JDSV model with

jump specification given in H5. The parameter estimates of this model are reported in the

last column of Panel A in Table 3. The estimation results confirm our expectation regarding

the autoregressive coefficients of the CARMA(2,1) kernel. The first autoregressive root has a

half-life of approximately thirty days and is therefore relatively slow mean reverting. On the

other hand, the second autoregressive root has a half-life of approximately half a day and thus

has much faster mean reversion. Figure 1 illustrates that this kernel does provide a good fit of

the empirical autocorrelation function. Turning to the parameters controlling the jumps, it can

be seen that the jump component in the price has around 9% share in the total variance of the

return process. This level is similar to the proportion of jumps found in financial asset prices

in the studies of Andersen et al. (2007) and Huang and Tauchen (2005). These studies use

the nonparametric jump detection tests developed in Barndorff-Nielsen and Shephard (2004)

to disentangle the jumps from the continuous price component. Thus, overall I conclude that

the jump-driven JDSV model with CARMA(2,1) kernel containing jumps in the price with

specification given in H5 is able to fit well the moments used in the estimation and captures

the main empirical features observed in the high-frequency data.

4 Conclusion

In this paper a general semiparametric class of jump-driven stochastic volatility models is intro-

duced and their econometric properties are analyzed. These models have the distinctive feature

that the state variables determining the time-variation of the continuous and discontinuous com-

ponent of the price, when time-varying, are representable as moving averages of positive jumps.

This allows for writing the integrated variance itself as another moving average of the same

positive jumps. Using that, I derive moments of the return process and use them in estimation

of the models in the JDSV class via GMM. The empirical results in the paper confirm the abil-

ity of models in the JDSV class to capture salient features of the high-frequency financial fata,

better than traditionally used stochastic volatility models.

Finally, there are two directions in which the analysis of the current paper should be ex-

tended. First, in the estimated models the leverage effect is either ruled out or linked in a

one-to-one relationship with the skewness of the returns, which is potentially rather restrictive.

Therefore, more general specifications of the jumps in the price and the variance (and conse-

quently their dependence) need to be considered in order to capture this feature of the data.

The modeling of the jumps proposed here provides convenient framework for this. For example,
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following an analogy with the asymmetric GARCH in discrete-time, one possibility is to set the

variance jumps proportional to the squared price jumps but with coefficient of proportionality

being different for the negative and positive price jumps. However, for identifying such more gen-

eral jump structures in estimation, moments of other realized (multi)power variation statistics

are needed and this is the second direction in which the current work should be extended.
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Table 2: Monte Carlo Results

Parameter True
value

Mean RMSE 5%
percantile

Median 95%
percantile

Panel A. Low persistence, low volatility

−ρ1 0.1000 0.0998 0.0120 0.0810 0.0996 0.1191

− ∫
Rn

0
k(x)G(dx)/ρ1 0.4500 0.4433 0.0200 0.4127 0.4430 0.4759

∫
Rn

0
g2(x)G(dx) 0.0500 0.0499 0.0052 0.0414 0.0497 0.0590

√
−0.5

∫
Rn

0
k2(x)G(dx)/ρ1 0.2236 0.2105 0.0252 0.1773 0.2092 0.2482

Panel B. Low persistence, high volatility

−ρ1 0.1000 0.0981 0.0127 0.0776 0.0982 0.1182

− ∫
Rn

0
k(x)G(dx)/ρ1 0.4500 0.4348 0.0358 0.3825 0.4338 0.4910

∫
Rn

0
g2(x)G(dx) 0.0500 0.0480 0.0065 0.0385 0.0479 0.0582

√
−0.5

∫
Rn

0
k2(x)G(dx)/ρ1 0.3873 0.3401 0.0715 0.2568 0.3379 0.4304

Panel C. High persistence, low volatility

−ρ1 0.0300 0.0279 0.0088 0.0140 0.0279 0.0419

− ∫
Rn

0
k(x)G(dx)/ρ1 0.4500 0.4387 0.0354 0.3870 0.4377 0.4970

∫
Rn

0
g2(x)G(dx) 0.0500 0.0472 0.0115 0.0299 0.0471 0.0654

√
−0.5

∫
Rn

0
k2(x)G(dx)/rho1 0.2236 0.1984 0.0411 0.1514 0.1955 0.2558

Panel D. High persistence, high volatility

−ρ1 0.0300 0.0275 0.0085 0.0142 0.0277 0.0409

− ∫
Rn

0
k(x)G(dx)/ρ1 0.4500 0.4271 0.0594 0.3410 0.4227 0.5238

∫
Rn

0
g2(x)G(dx) 0.0500 0.0453 0.0126 0.0262 0.0456 0.0640

√
−0.5

∫
Rn

0
k2(x)G(dx)/ρ1 0.3873 0.3150 0.1055 0.2095 0.3072 0.4495

Note: The table reports the results of the Monte Carlo experiment. The number of Monte Carlo
replications is 1000 and each simulation contains 3000 days of 288 high-frequency observations.
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Table 3: Parameter Estimates for the JDSV Models

Panel A: Jump-Diffusion JDSV Models

CARMA(1,0) CARMA(1,0) CARMA(2,1) CARMA(2,1)

no price jumps with price jumps no price jumps with price jumps

b0 0.0609(0.0402) 0.1533(0.0634)

−ρ1 0.2736(0.0458) 0.1838(0.0383) 0.0079(0.0097) 0.0221(0.0162)

−ρ2 1.9516(0.2297) 1.4960(0.1845)

mc 0.3881(0.0143) 0.2752(0.0131) 0.4147(0.0244) 0.4285(0.0268)

md 0.1229(0.0141) 0.0435(0.0155)

v 0.0007(0.0002) 0.0047(0.0011) 0.2080(0.1068) 0.1564(0.0485)

J test 46.3400(6)[0.0000] 32.4440(5)[0.0000] 21.2280(4)[0.0003] 5.1458(3)[0.1614]

Panel B: Pure-Jump JDSV Models

CARMA(1,0) CARMA(2,1)

b0 241.4600(53609.3)

−ρ1 0.5680(0.1320) 0.5266(0.4335)

−ρ2 3.0439(17.0097)

m 0.4296(0.0129) 0.4102(0.0164)

v 0.0447(0.0097) 0.0004(0.0929)

J test 51.2000(6)[0.0000] 45.958(4)[0.0000]

Note: The table reports the parameter estimates for the JDSV models with choices for the memory
function f(·): CARMA(1,0) and CARMA(2,1) and jump specifications given in assumption H5
and S6 respectively. The data used in the estimation is DM/$ exchange rate over the period from
December 1 1986 till June 30 1999, for a total of 3045 daily observations, each of which consists
of 288 five-minute returns. The power variation statistics were computed using the intraday five-
minute returns. The asymptotic variance-covariance matrix is calculated using Bartlett weights
with a lag-length of eighty. The numbers in parenthesis after the J tests are the degrees of freedom
and those in square brackets are the corresponding p-values.
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Table 4: Parameter Estimates for the Affine Jump-Diffusion SV Models

one-factor one-factor two-factor two-factor

no price jumps with price jumps no price jumps with price jumps

θ 0.3881(0.0223) 0.3980(0.0136) 0.4140(0.0269) 0.4429(0.0280)

κ1 0.2707(5.7096) 0.1872(0.0389) 0.0084(0.7818) 0.0122(0.0119)

σ1v 0.0360(0.8432) 0.1561(0.0151) 0.1118(4.3350) 0.1696(0.0344)

κ2 1.9496(0.1807) 1.4957(0.2052)

σ2v 0.2299(0.0872) 0.2733(0.0626)

v 0.0278(0.0072) 0.0272(0.0085)

J test 46.2800(6)[0.0000] 32.4400(5)[0.0000] 21.1680(4)[0.0003] 6.9470(3)[0.0736]

Note: The table reports the parameter estimates for the affine jump-diffusion stochastic volatility
models given in (16)-(17), applied to the DM/$ exchange rate. θ = θ1 + θ2 +

∫
Rn

0
g2(x)G(dx),

σ1v = σ1

√
θ1
2κ1

and σ2v = σ2

√
θ2
2κ2

. The data spans the period from December 1 1986 till June 30
1999, for a total of 3045 daily observations, each of which consists of 288 five-minute returns. The
power variation statistics were computed using the intraday five-minute returns. The asymptotic
variance-covariance matrix is calculated using Bartlett weights with a lag-length of eighty. The
numbers in parenthesis after the J tests are the degrees of freedom and those in square brackets
are the corresponding p-values.
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Table 5: Moment Condition Tests

CARMA(2,1) Two-factor Affine

Jump-Diffusion Jump-Diffusion Model

JDSV Model

autocorrelation at lag 1 2.1654 2.5694

autocorrelation at lag 4 2.3476 2.1448

autocorrelation at lag 7 1.7215 1.2226

autocorrelation at lag 10 1.3912 0.8910

aver. autocorrelation for lags 20− 40 0.0161 −1.2865

E(RVδ(t)) 1.8370 3.5623

E(RV 2
δ (t)) 1.8791 3.8200

E(FVδ(t)) −1.7197 7.1224

E(r4
1(t)) −0.1585 5.0830

Note: The table reports the diagnostic t-statistics for each of the moment conditions underlying
the estimation results for the CARMA(2,1) Jump-Diffusion JDSV Model and the two-factor Affine
Jump-Diffusion Model, both containing price jumps, reported in the last columns of Table 3 and
Table 4 respectively.
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Figure 1: The figure shows the fit of the CARMA(2,1) kernel. The empirical autocorrelation of the
Realized Variance is marked with +. The solid line is the autocorrelation implied from the jump-
diffusion JDSV model given in (1)-(2) with CARMA(2,1) memory function and jump specification
given in assumption H5. The parameters were set at the estimated values reported in the last
column of Table 3.
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Rosiński, J. (2007). Tempering Stable Processes. Stochastic Processes and Their Applica-

tions 117, 677–707.

Tauchen, G. (1985). Diagnostic Testing and Evaluation of Maximum Likelihood Models. Journal

of Econometrics 30, 415–443.

Todorov, V. and G. Tauchen (2006). Simulation Methods for Lévy -Driven CARMA Stochastic

Volatility Models. Journal of Business and Economic Statistics 24, 450–469.

27


