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1. Introduction

The idea that only systematic market price risk should be priced represents one of the

cornerstones of finance. Even though numerous studies over the past half-century have called

into question the ability of the CAPM to fully explain the cross-section of expected stock

returns, the beta of an asset arguably remains the most commonly used systematic risk

measure in financial practice.1 Meanwhile, more recent empirical evidence pertaining to the

equity risk premium and the pricing of risk at the aggregate market level suggests that the

expected return variation associated with discontinuous price moves, or jumps, is priced

higher than the expected continuous price variation.2

Set against this background, we propose a general pricing framework involving three

separate market betas: a continuous beta reflecting “smooth” intraday comovements with

the market, and two “rough” betas associated with intraday price discontinuities, or jumps,

during the active part of the trading day, and the overnight close-to-open return, respec-

tively.3 Consistent with the idea that investors view intraday smooth, and easier to hedge

price moves quite differently from intraday rough and day-to-day overnight price changes,4

we find that the risk premiums associated with the two jump betas are both statistically

significant and indistinguishable, while the continuous beta does not appear to be priced in

the cross-section.

The theoretical framework motivating our empirical investigations and the separate cross-

sectional pricing of continuous and discontinuous market price risks is very general, and

merely assumes the existence of a generic pricing kernel along the lines of Duffie, Pan, and

1Early work by Fama, Fisher, Jensen, and Roll (1969) and Blume (1970) generally supports the CAPM.
Subsequent prominent empirical studies that call into question the explanatory power of market betas for
satisfactorily explaining the cross-section of expected returns include Basu (1977, 1983), Roll (1977), Banz
(1981), Stattman (1983), Rosenberg, Reid, and Lanstein (1985), Bhandari (1988), and Fama and French
(1992).

2Empirical evidence based on aggregate equity index options in support of this hypothesis includes Pan
(2002), Eraker, Johannes, and Polson (2003), Bollerslev and Todorov (2011), and Gabaix (2012), among
others.

3The seminal paper by Merton (1976) hypothesizes that jump risks for individual stocks are likely to
be nonsystematic. On the other hand, empirical evidence of increased cross-asset correlations for higher (in
an absolute sense) returns showed in Ang and Chen (2002), among many others, indirectly suggest nonzero
systematic jump risk, as do the downside risk asset pricing model recently explored by Lettau, Maggiori,
and Weber (2014).

4Optimally managing market diffusive and jump price risks require the use of different hedging tools
and derivative instruments; see e.g., the theoretical analysis in Liu, Longstaff, and Pan (2003a,b). The
increased availability of short-maturity out-of-the-money options, which provide a particular convenient tool
for managing jump tail risk, also directly speaks to the practical importance of separately accounting for
these different types of risks.
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Singleton (2000). Importantly, we make no explicit assumptions about the pricing of other

nonmarket price risks. As such, our setup includes the popular long-run risk model of Bansal

and Yaron (2004), the habit persistence model of Campbell and Cochrane (1999), and the

rare disaster model of Gabaix (2012), as special cases obtained by further restricting the

functional form of the pricing kernel, the set of other priced risk factors, and the connections

with fundamentals.

The statistical theory underlying our estimation of the separate betas builds on recent

advances in financial econometrics related to the use of high-frequency intraday data and

so-called realized volatilities. Bollerslev and Zhang (2003), Barndorff-Nielsen and Shephard

(2004a), and Andersen, Bollerslev, Diebold, and Wu (2005, 2006), in particular, have previ-

ously explored the use of high-frequency data and the asymptotic notion of increasingly finer

sampled returns over fixed time intervals for more accurately estimating realized betas. In

contrast to these earlier studies, which do not differentiate among different types of market

price moves, we rely on the theory originally developed by Todorov and Bollerslev (2010)

for explicitly estimating separate continuous and discontinuous betas for the open-to-close

active part of the trading day, together with overnight betas for the close-to-open returns.5

Our actual empirical investigations are based on a novel high-frequency data set of all

the 985 stocks included in the S&P 500 index over the 1993-2010 sample period. We begin

by estimating the three separate betas as well as a standard CAPM regression-based beta

for each of the individual stocks on a rolling one-year basis. Consistent with the basic

tenets of the simple CAPM, we find that sorting the stocks in our sample on the basis of

their betas, results in a positive return differential between the High- and Low-beta quantile

portfolios for all of the four different beta estimates. However, even though all of the return

differentials are quite large numerically, the difference in the monthly returns between the

High- and Low-beta portfolios constructed on the basis of the standard CAPM betas is not

significantly different from zero at conventional levels. Similarly, sorting by our continuous

beta estimates, the monthly long-short excess return for the High- minus Low-beta quantile

portfolios is not significantly different from zero. On the other hand, sorting stocks on the

basis of their discontinuous and overnight betas, as well as their “relative betas” defined

by the difference between either of the two jump betas and the standard beta, results in

significantly positive risk-adjusted returns on the High-Low portfolios.6 More importantly

from a practical perspective, we show that these same significant contemporaneous return

5Branch and Ma (2012), Cliff, Cooper, and Gulen (2008), and Berkman, Koch, Tuttle, and Zhang (2012)
also show distinctly different return patterns during trading and nontrading hours.

6As discussed further in Section 5.2 below, this contrasts with the recent results in Frazzini and Pedersen
(2014), who report an almost flat security market line and highly significant positive CAPM alphas for
portfolios “betting against beta.”
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differentials carry over to a predictive setting, in which we compare the subsequent realized

monthly returns of the quintile portfolios based on grouping the stocks according to their

past rolling one-year beta estimates.

These predictive return differentials associated with the discontinuous and overnight be-

tas remain statistically significant in double portfolio sorts designed to control for a number

of other firm characteristics and risk factors previously associated with the cross-section of

expected returns, including firm size, book-to-market ratio, momentum, short-term reversal,

idiosyncratic volatility, maximum daily return, illiquidity, and various measures of skewness

and kurtosis. Standard predictive Fama-MacBeth regressions further corroborate the idea

that only rough market risks are priced: while the estimated risk premiums associated with

the intraday discontinuous and overnight betas are both significant after simultaneously

controlling for a long list of firm characteristics and other risk factors, the estimated risk

premium associated with the continuous beta is not.

Our main empirical findings rely on a relatively coarse 75-minute intraday sampling

frequency for the one-year rolling continuous and jump beta estimation, as a way to guard

against nonsynchronous trading effects and other market microstructure complications that

arise at the highest intraday sampling frequency. However, our results remain robust to

the use of other sampling frequencies and inference procedures for the estimation of the

betas. Similarly, while our main cross-sectional regressions are based on a standard one-year

estimation and subsequent one-month holding period, respectively, even stronger results

hold true for other estimation windows and return holding periods. Also, while some of the

jumps that occur at the aggregate market level are naturally associated with news about

the economy, our results remain robust to the exclusion of several important macroeconomic

news announcement days.7

The idea of allowing for time-varying market betas to help explain the cross-section of

expected stock returns is related to the large literature on testing conditional versions of the

CAPM.8 In contrast to this literature, however, our empirical investigations should not be

interpreted as a test of the conditional CAPM per se. Instead, motivated by our general

pricing framework, we simply show that market risks with different degrees of “jumpiness,” as

determined by our high-frequency-based estimates of the time-varying continuous and jump

7Initial studies showing large changes in high-frequency intraday returns in response to macroeconomic
news announcements include Fleming and Remolona (1999) and Andersen, Bollerslev, Diebold, and Vega
(2003, 2007b).

8Early contributions to this literature include Ferson, Kandel, and Stambaugh (1987), Bollerslev, Engle,
and Wooldridge (1988) and Harvey (1989), among others, along with more recent cross-sectionally oriented
studies by Jagannathan and Wang (1996) and Lettau and Ludvigson (2001). Bali, Engle, and Tang (2015)
have also recently argued that GARCH-based time-varying conditional betas help explain the cross-sectional
variation in expected stock returns.
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betas, are priced differently, and that these cross-sectional differences in the returns can not

be explained by other firm characteristics or commonly used risk factors. In particular, we

are not arguing that market risk is the only source of priced risk in the cross-section.

Our work is also related to, but fundamentally different from, several recent studies

that have examined how jump risk can help explain the cross-section of expected stock

returns. Jiang and Yao (2013) argue that the size premium, the liquidity premium, and to

a lesser extent the value premium are all realized in the cross-sectional differences of jump

returns. Cremers, Halling, and Weinbaum (2015) show that market expectations of aggregate

jump risk implied from options prices are useful for explaining the cross-sectional variation

in expected returns, while Yan (2011) shows that expected stock returns are negatively

related to average jump sizes. Our work differs from these studies in at least two important

dimensions. First, we focus explicitly on systematic jump risk, as measured by the exposure

to nondiversifiable marketwide jumps and the two rough betas. Second, our use of high-

frequency data to directly identify the intraday jumps and estimate the betas, sets our study

apart from other research inferring the jump risk from daily or lower-frequency data.

Our cross-sectional pricing results also complement recent time-series estimates of the

equity risk premium reported in Bollerslev and Todorov (2011) and Gabaix (2012), among

others, which suggest that a large portion of the aggregate equity premium and the temporal

variation therein could be attributable to jump tail risk. In line with these findings for

the aggregate market, the two rough betas associated with intraday jumps and day-to-day

overnight price changes directly reflect the individual stocks’ systematic response to jump

risk, and in turn receive the largest compensation in the cross-section. Intuitively, large

stock price movements likely provide better signals about true changes in fundamentals and

equity valuations than do smaller within-day price fluctuations, which could simply represent

“noise” in the price formation process.

The remainder of the paper is organized as follows. Section 2 formally defines the different

betas and the theory underlying their separate pricing within a conventional equilibrium-

based asset pricing framework. The statistical procedures used for estimating the separate

betas are discussed in Section 3. Section 4 describes the high-frequency data that we use to

estimate the betas and the control variables employed in our empirical investigations. Section

5 presents our initial empirical evidence pertaining to various portfolio sorts. Section 6

discusses the results from the predictive firm-level cross-sectional pricing regressions and the

estimates of the risk premiums for the different betas. Section 7 presents a series of robustness

checks related to the intraday sampling frequency used in the estimation of the betas, possible

nonsynchronous trading effects, errors-in-variables in the cross-sectional pricing regressions,
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the length of the beta estimation and return holding periods, and the influence of specific

macroeconomic news announcements. Section 8 concludes. The Data Appendix details the

high-frequency data cleaning rules and the definitions of the explanatory variables used in

the analysis.

2. Continuous and discontinuous market risk pricing

Our theoretical framework motivating the different betas and the separate pricing of

continuous and discontinuous market price risks is very general, and merely relies on no-

arbitrage and the existence of a pricing kernel. By the same token, we do not provide

explicit equilibrium-based expressions for the separate risk premiums. Doing so would require

additional assumptions beyond the ones necessary for simply separating the continuous and

discontinuous market risk premiums and the corresponding market betas.

To set out the notation, let the price of the aggregate market portfolio be denoted by P
(0)
t ,

with the corresponding logarithmic price denoted by lowercase p
(0)
t ≡ logP

(0)
t . We assume

the following general dynamic representation for the instantaneous return on the market,

dp
(0)
t = α

(0)
t dt+ σtdWt +

∫
R
xµ̃(dt, dx), (1)

where Wt denotes a Brownian motion describing continuous Gaussian, or “smooth,” market

price shocks with diffusive volatility σt, and µ̃ is a (compensated) jump counting measure ac-

counting for discontinuous, or “rough,” market price moves.9 The drift term α
(0)
t is explicitly

related to the pricing of these separate market risks.

We denote the cross-section of individual stock prices by P
(i)
t , i = 1, ..., n. In parallel

to the representation for the market portfolio above, we assume that the instantaneous

logarithmic price process, p
(i)
t ≡ logP

(i)
t , for each of the n individual stocks could be expressed

as,

dp
(i)
t = α

(i)
t dt+ β

(c,i)
t σ

(i)
t dWt +

∫
R
β

(d,i)
t xµ̃(dt, dx) + σ̃

(i)
t dW

(i)
t +

∫
R
xµ̃(i)(dt, dx), (2)

where the W
(i)
t Brownian motion is orthogonal to Wt, but possibly correlated with W

(j)
t for

i 6= j, and the µ(i) jump measure is orthogonal to µ in the sense that µ({t},R)µ(i)({t},Rp) = 0

for every t, so that µ(i) only counts firm specific jumps occurring at times when the market

does not jump. By explicitly allowing the individual loadings, or betas, associated with the

market diffusive and jump risks to be time-varying, this decomposition of the continuous and

9The compensated jump counting measure is formally related to the actual counting measure µ for the
jumps in P (0) by the expression µ̃(dt, dx) ≡ µ(dt, dx) − dt ⊗ νt(dx), where νt(dx) denotes the (possibly
time-varying) intensity of the jumps, thus rendering the µ̃ measure a martingale.
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discontinuous martingale parts of asset i’s return into separate components directly related

to their market counterparts and orthogonal components (in a martingale sense) is extremely

general. For the diffusive part, in particular, this entails no assumptions and follows merely

from the partition of a correlated bivariate Brownian motion into its orthogonal components

(see, e.g., Theorem 2.1.2 in Jacod and Protter, 2012). For the discontinuous part, the

decomposition implicitly assumes that the relation between the systematic jumps in the

asset and the market index, while time-varying, does not depend on the size of the jumps.10

This type of restriction is arguably unavoidable. By their very nature, systematic jumps are

relatively “rare,” and as such it isn’t feasible to identify different jump betas for different

jump sizes, let alone identify the “small” jumps in the first place. As discussed further below,

this assumption also maps directly into the way in which we empirically estimate jump betas

for each of the individual stocks based solely on the “large” sized jumps.

To analyze the pricing of continuous and discontinuous market price risks, we follow

standard practice in the asset pricing literature and assume the existence of an economy-

wide pricing kernel of the form (see, e.g., Duffie, Pan, and Singleton, 2000),

Mt = e−
∫ t
0 rsdsE

(
−
∫ t

0

λsdWs +

∫ t

0

∫
R
(κ(s, x)− 1)µ̃(ds, dx)

)
M ′

t , (3)

where rt denotes the instantaneous risk-free interest rate, and E(·) refers to the stochastic

exponential.11 The càdlàg λt process and the predictable κ(t, x) function account for the

pricing of diffusive and jump market price risks, respectively. The last term M ′
t encapsulates

the pricing of all other (orthogonalized to the market price risks) systematic risk factors. In

parallel to the first part of the expression for Mt, we assume that this additional part of the

pricing kernel takes the form,

M ′
t = E

(
−
∫ t

0

λ′sdW
′
s +

∫ t

0

∫
R
(κ′(s,x)− 1)µ̃′(ds, dx)

)
, (4)

where the W ′
t Brownian motion is orthogonal to Wt, and the two jump measures µ and µ′

are orthogonal in the sense that µ({t},R)µ′({t},Rp) = 0 for every t, so that the respective

jumps never arrive at the exact same instant. The pricing kernel jointly defined by Eq. (3)

and (4) encompasses almost all parametric asset pricing models hitherto analyzed in the

literature as special cases.

10Formally, let s denote a time when the market jumps, and ∆p
(0)
s 6= 0. The representation in (2) then

implies that ∆p
(i)
s /∆p

(0)
s = β

(d,i)
s , allowing the jump beta to vary with the time s but not the actual size of

the jump.
11Formally, for some arbitrary process Z, E(Z) is defined by the solution to the SDE, dY

Y−
= dZ, with

initial condition Y0 = 1.
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To help fix ideas, consider the case of a static pure-endowment economy, with i.i.d.

consumption growth and a representative agent with Epstein-Zin preferences. In this basic

CCAPM setup, the dynamics of the pricing kernel will be driven solely by consumption.

Assuming that the market portfolio represents a claim on total consumption, it therefore

follows thatM ′
t ≡ 1, resulting in a pricing kernel that solely depends on the diffusive Gaussian

and discontinuous market price shocks. This same analysis continues to hold true for a

representative agent with habit persistence as in Campbell and Cochrane (1999), the only

difference being that in this situation the prices of the diffusive and jump market risks will be

time-varying due to the temporal variation in the degree of risk-aversion of the representative

agent. In general, of course, temporal variation in the investment opportunity set, as in the

ICAPM of Merton (1973), could induce additional sources of priced risks. Leading examples

of other state variables that might affect the pricing kernel include the conditional mean

and volatility of consumption growth as in Bansal and Yaron (2004), and the time-varying

probability of a disaster as in Gabaix (2012) and Wachter (2013).12 However, given our

primary focus on the pricing of market price risk, we purposely do not take a stand on what

these other risk factors might be, instead simply relegating their influence over and above

what can be spanned by the market to the additional M ′
t part of the pricing kernel.

The pricing kernel in (3) has also been widely used in the literature on derivatives pricing.

For reasons of analytical tractability, in that literature the common assumptions are that λt is

proportional to the market diffusive volatility σt, the jump intensity νt(dx) is affine in σ2
t , and

the price of jump risk κ(t, x) is time-invariant; see, e.g., Duffie, Pan, and Singleton (2000) who

show that these assumptions greatly facilitate the calculation of “closed form” derivatives

pricing formulas. These same assumptions also imply that the equity risk premium should

be proportional to the variance of the aggregate market portfolio.13

In general, it follows readily by a standard change-of-measure (see, e.g., Jacod and

Shiryaev, 2002) that without any additional restrictions on the pricing kernel defined by

(3) and (4), the instantaneous market risk premium must satisfy,

α
(0)
t − rt − δ

(0)
t − q

(0)
t = γct + γdt , (5)

where δ
(0)
t refers to the dividend yield on the market portfolio, and the compensation for

continuous and discontinuous market price risks are determined by,

γct ≡ σtλt, and γdt ≡
∫
R
xκ(t, x)νt(dx), (6)

12In models involving nonfinancial wealth, so that the market portfolio and the total wealth portfolio
aren’t perfect substitutes, additional sources of risks will also naturally arise.

13This simple relation has, of course, been extensively investigated in the empirical asset pricing literature;
see, e.g., Bollerslev, Sizova, and Tauchen (2012) and the many additional references therein.
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respectively, while q
(0)
t represents a standard convexity adjustment term.14 Since the com-

pensation stemming from M ′
t is orthogonal to the compensation for market price risk, this

expression for α
(0)
t only depends on the first part of the pricing kernel.

For the individual assets, however, even though the W
(i)
t and µ(i) diffusive and jump risks

are orthogonal to the corresponding market diffusive and jump risk components, they could

nevertheless be priced in the cross-section as they could be correlated with the W ′
t and µ′

risks that appear in the M ′
t part of the pricing kernel. Denoting the part of the instantaneous

risk premium for asset i arising from this separate pricing of W
(i)
t and µ(i) by α̃

(i)
t , it follows

again by standard arguments that,

α
(i)
t − rt − δ

(i)
t − q

(i)
t = β

(c,i)
t γct + β

(d,i)
t γdt + α̃

(i)
t , (7)

where δ
(i)
t refers to the dividend yield of asset i, and q

(i)
t denotes a standard convexity

adjustment term stemming from the pricing of market price risks.15

If α̃
(i)
t ≡ 0, as would be implied by M ′

t ≡ 1, and if β
(c,i)
t and β

(d,i)
t were also the same,

the expression in (7) trivially reduces to a simple continuous-time one-factor CAPM that

linearly relates the instantaneous return on stock i to its single beta. The restriction that

β
(c,i)
t = β

(d,i)
t implies that the asset responds the same to market diffusive and jump price

increments, or intuitively that the asset and the market comove the same during “normal”

times and periods of “extreme” market moves. If, on the other hand, β
(c,i)
t and β

(d,i)
t differ,

empirical evidence for which is provided below, the cross-sectional variation in the continuous

and jump betas could be used to identify their separate pricing. Importantly, this remains

true in the presence of other priced risk factors, when α̃
(i)
t is not necessarily equal to zero.

In practice, of course, the returns on the assets have to be measured over some nontrivial

time-interval, say h > 0. Let r
(i)
t,t+h ≡ p

(i)
t+h−p

(i)
t denote the corresponding logarithmic return

on asset i. For empirical tractability assume that the betas remain constant over that same

(short) time-interval. The integrated conditional risk premium for asset i could then be

expressed as,

Et
(
r

(i)
t,t+h −

∫ t+h

t

(rs + δ(i)
s + q(i)

s )ds

)
= β

(c,i)
t Et

(∫ t+h

t

γcsds

)
+ β

(d,i)
t Et

(∫ t+h

t

γdsds

)
+ Et

(∫ t+h

t

α̃(i)
s ds

)
.

(8)

This expression for the discrete-time expected excess return maintains the same two-beta

14The q
(0)
t term is formally given by 1

2σ
2
t +

∫
R (ex − 1− x) νt(dx).

15In parallel to the expression for q
(0)
t above, q

(i)
t = 1

2

(
β
(c,i)
t σt

)2
+
∫
R

(
eβ

(d,i)
t x − 1− β(d,i)

t x
)
νt(dx).
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structure as the expression for the instantaneous risk premiums in (7).16 It clearly highlights

how the pricing of continuous and discontinuous market price risks could manifest differently

in the cross-section of expected stock returns, and in turn how separately estimating β
(c,i)
t

and β
(d,i)
t could allow for more accurate empirical predictions of the actual realized returns.

We turn next to a discussion of the new high-frequency based econometric procedures

that we use for estimating the betas and investigate the separate pricing of the two different

types of market price risks.

3. Continuous and discontinuous beta estimation

The decompositions of the prices for the market and each of the individual assets into

separate diffusive and jump components that formally underly β
(c,i)
t and β

(d,i)
t in Eq. (1) and

(2) above, are, of course, not directly observable. Instead, the different continuous-time price

components, and in turn the betas, have to be deduced from actually observed discrete-time

prices and returns.

To this end, we assume that high-frequency intraday prices are available at time grids of

length 1/n over the active intraday part of the trading day [t, t+1). For notational simplicity,

we denote the corresponding logarithmic discrete-time return on the market over the τ ’th

intraday time-interval by r
(0)
t:τ ≡ p

(0)
t+τ/n − p

(0)
t+(τ−1)/n, with the τ ’th intraday return for asset

i defined accordingly as r
(i)
t:τ ≡ p

(i)
t+τ/n − p

(i)
t+(τ−1)/n. The theory underlying our estimation

is formally based on the notion of fill-in asymptotics and n → ∞, or ever finer sampled

high-frequency returns.17 To allow for reliable estimation, we further assume that the betas

stay constant over multi-day time-intervals of length l > 1.18

To begin, consider the estimation of the continuous betas. To convey the intuition,

suppose that neither the market nor stock i jumps, so that µ ≡ 0 and µ(i) ≡ 0 almost surely.

For simplicity, suppose also that the drift terms in (5) and (7) are both equal to zero, so

16This contrast with the derivations in Longstaff (1989), who shows how temporally aggregating the simple
continuous-time CAPM results in a multi-factor model, and the more recent paper by Corradi, Distaso, and
Fernandes (2013) that delivers conditional time-varying alphas and betas within a similar setting. Instead,
our derivation is based on a general continuous-time jump-diffusion representation, and arrives at a consistent
two-factor discrete-time pricing relation under the assumption that the separate jump and diffusive betas
remain constant over the (short) return horizons.

17As discussed further below, a host of practical market microstructure complications invariably prevents
us from sampling too finely. To assess the sensitive of our results to the specific choice of n, we experiment
with the use of several different sampling schemes, including ones in which n(i) varies across stocks.

18Due to the relatively rare nature of jumps, in our main empirical results, we base the estimation on a
full year. However, as discussed further below, we also experiment with the use of shorter estimation periods,
if anything, resulting in even stronger results and more pronounced patterns.
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that,

r(i)
s:τ = β

(i,c)
t r(0)

s:τ + r̃(i)
s:τ , where r̃(i)

s:τ ≡
∫ s+τ/n

s+(τ−1)/n

σ̃(i)
u dW

(i)
u , (9)

for any s ∈ [t− l, t]. Thus, in this situation, the continuous beta could simply be estimated

by an OLS regression of the discrete-time high-frequency returns for stock i on the high-

frequency returns for the market. Using a standard “polarization” of the covariance term,

the resulting regression coefficient can be expressed as,

∑t−1
s=t−l

∑
τ r

(i)
s:τr

(0)
s:τ∑t−1

s=t−l
∑

τ (r
(0)
s:τ )2

≡

∑t−1
s=t−l

∑
τ

[
(r

(i)
s:τ + r

(0)
s:τ )2 − (r

(i)
s:τ − r(0)

s:τ )2
]

4
∑t−1

s=t−l
∑

τ (r
(0)
s:τ )2

. (10)

In general, of course, the market and stock i could both jump over the [t− l, t] time-interval,

and the drift terms are not identically equal to zero. Meanwhile, it follows readily by stan-

dard arguments that for n→∞, the impact of the drift terms are asymptotically negligible.

However, to allow for the possible occurrence of jumps, the simple estimator defined above

needs to be appropriately modified by removing the discontinuous components. The “polar-

ization” of the covariance provides a particularly convenient way of doing so by expressing

the estimator in terms of sample portfolio variances. In particular, as shown by Todorov

and Bollerslev (2010), the truncation-based estimator defined by,19

β̂
(c,i)
t =

∑t−1
s=t−l

∑n
τ=1

[
(r

(i)
s:τ + r

(0)
s:τ )21{|r(i)s:τ+r

(0)
s:τ |≤k

(i+0)
s,τ } − (r

(i)
s:τ − r(0)

s:τ )21{|r(i)s:τ−r
(0)
s:τ |≤k

(i−0)
s,τ }

]
4
∑t−1

s=t−l
∑n

τ=1(r
(0)
s:τ )21{|r(0)s:τ |≤k

(0)
s,τ}

, (11)

consistently estimates the continuous beta for n→∞ under very general conditions.

Next, consider the estimation of the discontinuous beta. Assuming that β
(d,i)
t is positive,

it follows that for any s ∈ [t − l, t] such that ∆p
(0)
s 6= 0, the discontinuous beta is uniquely

identified by,

β
(d,i)
t ≡

√√√√√√
(

∆p
(i)
s ∆p

(0)
s

)2

(
∆p

(0)
s

)4 . (12)

Moreover, assuming that the beta is constant over the [t − l, t] time-interval, this same

ratio holds true for all of the market jumps that occurred between time t − l and t. The

19In the empirical analysis below we follow Bollerslev, Todorov, and Li (2013) in setting k
(·)
t,τ = 3 ×

n−0.49(RV
(·)
t ∧ BV (·)

t × TOD
(·)
τ )1/2, where RV

(·)
t and BV

(·)
t denote the so-called realized variation and

bipower variation on day t, respectively, and TOD
(·)
τ refers to an estimate of the intraday Time-of-Day

volatility pattern.
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actually observed high-frequency returns, of course, contain both diffusive and jump risk

components. However, by raising the high-frequency returns to powers of order greater than

two (four in the expression above), the diffusive martingale components become negligible,

so that the systematic jumps dominate asymptotically for n→∞.20 This naturally suggests

the following sample analogue to the expression for β
(d,i)
t above as an estimator for the

discontinuous beta,21

β̂
(d,i)
t =

√√√√√√
∑t−1

s=t−l
∑n

τ=1

(
r

(i)
s:τr

(0)
s:τ

)2

∑t−1
s=t−l

∑n
τ=1

(
r

(0)
s:τ

)4 . (13)

As formally shown in Todorov and Bollerslev (2010), this estimator is indeed consistent for

β
(d,i)
t for n→∞.

The continuous-time processes in (1) and (2) underlying the definitions of the separate

betas portray the prices as continuously evolving over time. In practice, of course, we only

have access to high-frequency prices for the active part of the trading day when the stock

exchanges are officially open. It is natural to think of the change in the price from the

close on day t to the opening on day t + 1 as a discontinuity, or a “jump.”22 As such, the

general continuous-time setup discussed in the previous section needs to be augmented with

a separate jump term and jump beta measure β
(n,i)
t accounting for the overnight comove-

ments. The notion of an ever-increasing number of observations for identifying the intraday

discontinuous price moves underlying the β̂
(d,i)
t estimator in (13) does, of course, not apply

with the overnight jump returns. However, β
(n,i)
t could be similarly estimated by applying

the same formula to all of the l overnight jump return pairs.

In addition to the high-frequency based separate intraday and overnight betas, we also

calculate standard regression-based CAPM betas for each of the individual stocks, say β̂
(s,i)
t .

These are simply obtained by regressing the l daily returns for stock i on the corresponding

daily returns for the market. In the following, we refer to each of these four different beta

estimates for stock i without the explicit time subscript and hat as βci , β
d
i , βni , and βsi for

short. We turn next to a more detailed discussion of the data that we use in implementing

20The basic idea of relying on higher order powers of returns to isolate the jump component of the price
has previously been used in many other situations, both parametrically and nonparametrically; see, e.g.,
Barndorff-Nielsen and Shephard (2003) and Aı̈t-Sahalia (2004).

21Since the sign of the jump betas gets lost by this transformation, our actual implementation also involves
a sign correction, as detailed in Todorov and Bollerslev (2010). From a practical empirical perspective this
is immaterial, as all of the estimated jump betas in our sample are positive.

22This characterization of the overnight returns as discontinuous movements occurring at deterministic
times mirrors the high-frequency modeling approach recently advocated by Andersen, Bollerslev, and Huang
(2011).
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these different estimators.

4. Data and variables

We begin this section with a discussion of the high-frequency data that we use in our

analysis, followed by a discussion of the key properties of the resulting beta estimates. We

also briefly discuss the other explanatory variables and controls that we use in our double

portfolio sorts and cross-sectional pricing regressions.

4.1. Data

The individual stocks included in our analysis are comprised of the 985 constituents

of the S&P 500 index over the January 1993 to December 2010 sample period.23 All the

high-frequency data for the individual stocks are obtained from the Trade and Quote (TAQ)

database. The TAQ database provides all the necessary information to create our data set

containing second-by-second observations of trading volume, number of trades, and transac-

tion prices between 9:30am and 4:00pm EST for the 4,535 trading days in the sample.24 We

rely on high-frequency intraday S&P 500 futures prices from Tick Data Inc. as our proxy

for the aggregate market portfolio.

Our cleaning rule for the TAQ data follows Barndorff-Nielsen, Hansen, Lunde, and Shep-

hard (2009). It consists of two main steps: removing and assigning. The removing step

filters out recording errors in prices and trade sizes. This step also deletes data points that

TAQ flags as “problematic.” The assigning step ensures that every second of the trading

day has a single price. Additional details are provided in Appendix A.1.

The sample consists of 738 stocks per month on average. Altogether, these stocks account

for approximately three-quarters of the total market capitalization of the entire stock universe

in the Center for Research in Securities Prices (CRSP) database. Average daily trading

volume for each stock increases from 302,026 in 1993 to 5,683,923 in 2010. Similarly, the

daily number of trades for each stock rises from an average of 177 in 1993 to 20,197 in 2010.

Conversely, the average trade size declines from 1,724 shares per trade in 1993 to just 202

in 2010.

We supplement the TAQ data with data from CRSP on total daily and monthly stock

returns, number of shares outstanding, and daily and monthly trading volumes for each

23This more liquid S&P sample has the advantage of allowing for relatively reliable high-frequency esti-
mation.

24The original data set on average consists of more than 17 million observations per day for each trading
day.

12



individual stock. To guard against survivorship biases associated with delistings, we take

the delisting return from CRSP as the return on the last trading day following the delisting of

a particular stock. We also use stock distribution information from CRSP to adjust overnight

returns computed from the high-frequency prices.25 We rely on Kenneth R. French’s website

for daily and monthly returns on the Fama-French-Carhart four-factor portfolios. Lastly, we

use the Compustat database for book values and other accounting information required for

some of the control variables.

4.2. Beta estimation results

Our main empirical results are based on continuous, discontinuous, and overnight betas

estimated from high-frequency data for each of the individual stocks in the sample. We rely

on a one-year rolling overlapping monthly estimation scheme to balance the number of ob-

servations available for the estimation with the possible temporal variation in the systematic

risks.26 We also experiment with the use of shorter 3- and 6-month estimation windows. If

anything, as further discussed in Section 7 below, these shorter estimation windows tend to

result in even stronger return-beta patterns than the ones from the one-year moving windows

detailed below.

We rely on a fixed intraday sampling frequency of 75 minutes in our estimation of the

continuous and jump betas, with the returns spanning 9:45am to 4:00pm.27 A 75-minute

sampling frequency may seem quite coarse compared to the 5-minute sampling frequency

commonly advocated in the literature on realized volatility estimation; see, e.g., Andersen,

Bollerslev, Diebold, and Labys (2001) and the survey by Hansen and Lunde (2006). Yet

estimation of multivariate realized variation measures, including betas, is invariably plagued

by additional market microstructure complications relative to the estimation of univariate

realized volatility measures. Coarser sampling frequencies are often used as a simple way to

guard against any biases induced by these complications; see, e.g, the discussion in Sheppard

(2006) and Bollerslev, Law, and Tauchen (2008), along with the survey by Barndorff-Nielsen

and Shephard (2007). However, we also experiment with a number of other intraday sampling

25The TAQ database provides only the raw prices without considering price differences before and after
distributions. We use the variable, “Cumulative Factor to Adjust Price”(CFACPR), from CRSP to adjust
the high-frequency overnight returns after a distribution.

26The use of a relatively long estimation period is especially important for the discontinuous betas, as
there can be few or even no systematic jumps for a particular stock during a particular month; see also the
discussion in Todorov and Bollerslev (2010). Annual horizon moving windows are also commonly used for
the estimation of traditional CAPM betas based on coarser daily or monthly observations, as in, e.g., Ang,
Chen, and Xing (2006a) and Fama and French (2006).

27Starting the trading day at 9:45am ensures that on most days most stocks will have traded at least once
by that time. Patton and Verardo (2012) adopt a similar trading day convention in their high-frequency
based realized beta estimation.
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frequencies, ranging from 5 minutes to 3 hours, as well as a “mixed frequency” explicitly

related to the trading activity of each of the individual stocks. As further detailed in Section

7 below, our key empirical findings remain robust across all of these different sampling

schemes.

In parallel to our high-frequency-based estimates for βc, βd, and βn, our estimates for

the monthly standard CAPM βss are based on rolling overlapping regressions of the daily

returns for each of the individual stocks over the past year on the daily returns for the S&P

500 market portfolio.28

Turning to the actual estimation results, Panel A in Fig. 1 depicts kernel density esti-

mates of the unconditional distributions of the four different betas averaged across time and

stocks. The discontinuous and overnight betas both tend to be somewhat higher on average

and also more right-skewed than the continuous and standard betas.29 At the same time,

the figure also suggests that the continuous betas are the least dispersed of the four betas

across time and stocks. Part of the dispersion in the betas, could, of course, be attributed

to estimation errors. Based on the expressions derived in Todorov and Bollerslev (2010), the

asymptotic standard errors for βc and βd averaged across all of the stocks and months in the

sample equal 0.06 and 0.12, respectively, compared to 0.14 for the conventional OLS-based

standard errors for the βs estimates.30

Panel B of Fig. 1 shows the autocorrelograms for the four different betas averaged across

stocks. The apparent kink in all four correlograms at the 11th lag is directly attributable to

the use of overlapping annual windows in the monthly beta estimation. Still, the figure clearly

suggests a higher degree of persistence in βc and βs than in βd and βn. This complements

the existing high-frequency based empirical evidence showing that continuous variation for

most financial assets tends to be much more persistent and predictable than variation due to

jumps; see, e.g., Barndorff-Nielsen and Shephard (2004b, 2006), and Andersen, Bollerslev,

and Diebold (2007a).

28As an alternative to the standard CAPM betas, we have also investigated high-frequency realized betas
as in Andersen, Bollerslev, Diebold, and Wu (2005, 2006). The cross-sectional pricing results for these
alternative “standard” beta estimates are very similar to the ones reported for the standard daily CAPM
betas. Further details on these additional results are available upon request.

29The value-weighted averages of all the different betas should be equal to unity when averaged across the
exact 500 stocks included in the S&P 500 index at a particular point in time. In practice, we are measuring
the betas over nontrivial annual time-intervals, and the S&P 500 constituents and their weights also change
over time, so the averages will not be exactly equal to one. For example, the value-weighted averages for βs,
βc, βd and βn based on the exact 500 stocks included in the index at the very end of the sample, equal 1.04,
0.98, 1.01, and 1.06, respectively.

30Intuitively, the continuous beta estimator could be interpreted as a regression based on truncated high-
frequency intraday returns. As such, the standard errors should be reduced by a factor of approximately
1/
√
n, relative to the standard errors for the standard betas based on daily returns, where n denotes the

number of intradaily observations used in the estimation.
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To visualize the temporal and cross-sectional variation in the different betas, Fig. 2 shows

the time series of equally weighted portfolio betas, based on monthly quintile sorts for each

of the four different betas and all of the individual stocks in the sample. The variation in

the βs and βc sorted portfolios in Panels A and B are evidently fairly close. The plots for

the βd and βn quintile portfolios in Panels C and D, however, are distinctly different and

more dispersed than the standard and continuous beta quintile portfolios.

To further illuminate these relations, Table 1 reports the results from Fama-MacBeth style

regressions for explaining the cross-sectional variation in the standard betas as a function

of the variation in the three other betas. Consistent with the results in Fig. 1 and 2, the

continuous beta βc exhibits the highest explanatory power for βs, with an average adjusted

R2 of 0.76. The two jump betas βd and βn each explain 62% and 46% of the variation in βs,

respectively. Altogether, 81% of the cross-sectional variation in βs can be accounted for by

the high-frequency betas, with βc having by far the largest and most significant effect.

The differences in information content of the betas also manifest in different relations

with the underlying continuous and discontinuous price variation. Relying on the truncation

rules discussed in Section 3, the intraday discontinuous variation and the overnight variation

account for approximately 9% and 30% of the total variation at the aggregate market level.

Applying the same truncation rule to the individual stocks, the discontinuous and overnight

variation account for an average of 10% and 32%, respectively, at the individual firm level.

Meanwhile, when sorting the stocks according to the four different betas, the sorts reveal

a clear monotonic relation between βd and the jump contribution and between βn and the

overnight contribution, but an inverse relation between βc and the proportion of the total

variation accounted for by jumps.

4.3. Other explanatory variables and controls

A long list of prior empirical studies have sought to relate the cross-sectional variation

in stock returns to other explanatory variables and firm characteristics. To guard against

some of the most prominent previously showed effects and anomalies vis-a-vis the stan-

dard CAPM, in the double portfolio sorts and cross-sectional regressions reported below,

we explicitly control for: firm size (ME), book-to-market ratio (BM), momentum (MOM),

reversal (REV), idiosyncratic volatility (IVOL), coskewness (CSK), cokurtosis (CKT), real-

ized skewness (RSK), realized kurtosis (RKT), maximum daily return (MAX), and illiquidity

(ILLIQ). Our construction of these different control variables follows standard procedures in

the literature, as discussed in more detail in Appendix A.2.

Table 2 displays time-series averages of monthly firm-level cross-sectional correlations
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between the four different betas and the various explanatory variables listed above. All

of the four betas are negatively related to book-to-market and positively correlated with

momentum. The betas are also generally positively correlated with idiosyncratic volatility,

and the two jump betas more strongly so. On the other hand, while βs and βc are both

negatively correlated with illiquidity, βd and βn both appear to be positively related to

illiquidity.

To help further gauge these relations, Table 3 reports the results from a series of simple

single-sorts. At the end of each month, we sort stocks by each of their betas. We then

form five equal-sized portfolios and compute the time-series averages of the various firm

characteristics for the stocks within each of these quintile portfolios. Consistent with the

results discussed above, the portfolio sorts reveal a strong positive relation between all of

the four different betas. Meanwhile, it also follows from Panels C and D that stocks with

higher βd and βn tend to be smaller firms, stocks with lower book-to-market ratios, higher

momentum, and higher idiosyncratic volatility.31 Higher discontinuous and overnight betas

also tend to be associated with higher illiquidity, while the differences in illiquidity between

High- and Low-quintile portfolios for the continuous and standard beta sorts in Panels A

and B are both negative.32

5. Portfolio sorts

We begin our empirical investigations pertaining to the pricing of different market price

risks with an examination of the return differentials among portfolios sorted according to the

different betas. We consider single-sorted contemporaneous and predictive portfolios, double-

sorted predictive portfolios designed to control for other risk factors and firm characteristics,

as well as reverse double-sorted predictive portfolios by first sorting on betas and then on

explanatory variables. We begin by considering the contemporaneous single sorts.

5.1. Contemporaneous single-sorted portfolios

At the beginning of each month, we estimate the four different betas based on the next

12-month returns. We then sort the stocks into quintile portfolios based on their betas and

record the returns over the same 12-month period. Rebalancing monthly, we record the

excess returns on each portfolio, starting with the first portfolio formation period spanning

31In a recent study, Alexeev, Dungey, and Yao (2015) find that smaller stocks tend to have higher
discontinuous betas than larger stocks, and that during periods of financial distress, high leverage stocks are
more exposed to continuous risks.

32Bali, Engle, and Tang (2015) and Fu (2009) also report a negative relation between standard betas and
illiquidity.
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the first full year of the sample, ending with the last full year of the sample. This approach

directly mirrors the single portfolio sorts commonly employed in the literature (see, e.g. Ang,

Chen, and Xing, 2006a, among numerous other studies).

Panel A in Table 4 reports the average monthly returns for portfolios sorted by the

standard beta. Consistent with the standard CAPM, the average excess returns increase

across the βs segments.33 The spread between the High- and Low-βs quintile portfolios is

only weakly statistically significant, however. The results for the continuous beta portfolio

sorts reported in Panel B are comparable, with the return spread and t-statistic for the

High-Low βc-sorted portfolios equal to 1.61% and 1.81, respectively. By comparison, the

results for the two rough beta sorts reported in Panels C and D, respectively, both show

a stronger and more reliable relation between the betas and the contemporaneous portfolio

returns. For the βd-sorts the return spread for the High-Low portfolio equals 1.71% with a

t-statistic of 2.63, while for the βn-sorts the spread and the corresponding t-statistic equal

1.64% and 2.59, respectively.

To more directly explore the idea that most of the premiums for market price risks stem

from the compensation for jump risk, Panels E and F report the results based on portfolios

sorted by the relative betas βd − βs and βn − βs, respectively. As evident from the almost

flat βs loadings coupled with the increasing βd or βn loadings over the different quintiles, the

relative betas effectively eliminate the part of the cross-sectional variation in each of the two

jump betas that could be explained by the variation in the standard beta.34 Even though

the spreads in the returns are smaller when sorting on these relative jump betas compared

to the sorts based on the individual betas, the t-statistics equal to 3.34 and 3.18 are both

higher than the t-statistics associated with any of the individual beta sorts. Similarly, sorting

the stocks into portfolios according to the two jump betas in excess of the continuous beta,

βd − βc and βn − βc, generate return spreads of 1.21% and 0.77% in panels G and H,

with statistically significant t-statistics of 3.34 and 2.48, respectively. As such these relative

beta sorts clearly highlight the differences in the risks measured by the jump betas and the

standard and continuous betas, and the pricing thereof.

33Note that even though the relation is monotonic, most of the spread in the returns between the High
and Low portfolios comes from the spread between the 4th and highest quintile. This is true for many of
the other portfolio sorts discussed below as well.

34Analogous relative beta measures have also been used by Ang, Chen, and Xing (2006a) in their study
of downside beta risk, and by Bali, Engle, and Tang (2015) in their study of dynamic conditional betas.
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5.2. Predictive single-sorted portfolios

The portfolio sorts discussed in the previous section pertain to returns and betas esti-

mated over the same holding period. While this represents the essence of the risk-return

relation implied by the theoretical framework in Section 2, these results are not of much

practical value if the betas can not be used to predict the future returns. In this section, we

therefore extend the previous sorts to a predictive setting.

In parallel to the previous contemporaneous sorts, we first estimate the different betas

based on the past 12-month returns. We then sort the stocks according to each of the different

betas and record the returns for the following month. In addition to the resulting pre-

formation beta estimates and the predictive ex-post excess returns for each of these equally-

weighted quintile portfolios, we also record the ex-post betas for the different portfolios based

on the beta estimates for the 12 months proceeding the pre-formation period, together with

the risk-adjusted excess returns, as measured by the intercept from a time-series regression

of the monthly portfolio returns on the four Fama-French-Carhart factors.

Table 5 summarizes the results. Comparing the ex-post betas with the pre-formation

beta estimates, the High-Low quintile spreads are naturally dampened somewhat relative

to the ex-ante measures. However, consistent with the slowly decaying autocorrelations

for the betas shown in Fig. 2, the High-Low spreads remain quite sizeable for all of the

four individual beta sorts in Panels A–D. The spreads in the ex-post relative betas for the

corresponding sorts reported in Panels E–H, are, not surprisingly, reduced by more than the

spreads in the ex-post betas for the individual beta sorts, but the spreads remain nontrivial.

This persistence in the betas translate into similar predictive return-beta relations to the

ones showed for the contemporaneous return in the previous section. Specifically, we continue

to see a monotone relation between the future portfolio returns and the past betas. Directly

in line with the previous contemporaneous portfolio sorts, the relations are stronger and

more statistically significant for the rough betas than for the standard and continuous betas.

In particular, focusing on the risk-adjusted FFC4 alphas, the t-statistics for the High-Low

quintile portfolios based on the βs and βc sorts equal 1.76 and 1.44, respectively, compared

to 2.04 and 2.74 for the βd and βn predictive sorts, while the t-statistics for the four relative

βd−βs, βn−βs, βd−βc and βn−βc sorts equal 2.29, 3.05, 1.91 and 2.90, respectively. Thus,

not only do the results suggest that the discontinuous and overnight betas are better able to

predict the cross-sectional variation in the future returns than the continuous and standard

betas, these relations between the rough betas and the future returns cannot be explained by

the size, book-to-market ratio, and momentum effects captured by the Fama-French-Carhart

factors.
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The positive relations between betas and future returns contrast with the recent results

in Frazzini and Pedersen (2014), who report an almost flat security market line and highly

significant positive risk-adjusted alphas for portfolios “betting against beta” (BAB). Com-

pared to our investigations, which are limited by the availability of reliable high-frequency

intraday data and as such “only” involves 985 relatively large company stocks over the past

two decades, the results in Frazzini and Pedersen (2014) are based on a much larger sample

of more than 20 thousand stocks spanning almost a full century. Both our more recent sam-

ple and our sample of stocks help explain the differences. Restricting the sample period to

be the same as the one used here, the FFC4 alpha of the monthly BAB factor equals 0.41%,

with a t-statistic of 1.40.35 This indicates a weaker BAB effect compared to the alpha of

0.55%, with a t-statistic of 5.59, for the much longer sample period analyzed in Frazzini and

Pedersen (2014). However, the more important explanation for the difference in the results

arguably stems from the differences in the samples of stocks. Constructing a BAB factor

from the same 985 S&P 500 constituent stocks used here based on the standard betas and the

same approach as in Frazzini and Pedersen (2014), results in a FFC4 alpha for the High-Low

portfolio of -0.38%, with a t-statistic of -1.42, consistent with the results for the single-sorts

reported in Panel A of Table 5.36 Irrespective of these results, it is important to recognize

that a priced BAB factor is not at odds with the idea that continuous and discontinuous

market price moves could be priced differently by investors.

5.3. Predictive double-sorted portfolios

Our single portfolio sorts discussed above reveal that stocks with high discontinuous and

overnight betas tend to have high returns, and that the return differences are greater than

the differences for stocks sorted by their continuous and standard betas. This predictive

power of the discontinuous and overnight betas cannot be explained by the standard or

continuous betas, as there is little variation in those betas across the corresponding relative

beta quintiles. However, the relative beta sorts do not explicitly separate the effects of βd

or βn from those of βs or βc. In an effort to more directly pin down the source of the

risk premiums for the different betas, we therefore augment the single-sorts with a series

of double-sorts that first control for each of the different betas. Moreover, as discussed in

Section 4.3, since the cross-sectional variation in the betas could be related to other firm

35The monthly BAB factor is available from the AQR data library via https://www.aqr.com/library/

data-sets/betting-against-beta-equity-factors-monthly.
36It would be interesting, but beyond the scope and main focus of the present paper, to further explore

whether these differences in the significance of the BAB factor over different time periods and different
samples of stocks can be explained by differences in liquidity and/or the influence of financially constrained
investors.
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characteristics and explanatory variables that have previously been shown to help predict

the cross-sectional variation in stock returns, we also report the results from double-sorts

designed to control for some of these other explanatory variables.

To implement the double sorts, we first sort all of the stocks into five quintiles according

to each of the different explanatory variables for each of the months in the sample. Within

each quintile, we then sort stocks into five additional quintiles according to one of the four

different beta measures. Finally, we average the returns on the five beta portfolios across the

five different control variable portfolios to produce beta portfolios with large cross-portfolio

variations in their betas, but little variation in the control variable.

The first two columns in Panels A–D in Table 6 display the results from these double-

sorts for the different beta controls. In Panel A, for example, the two columns labeled βd and

βn report the average returns for the βs quintile portfolios after controlling for βd and βn,

respectively. The resulting FFC4 alphas of the High-Low spreads equal 0.34% and 0.23%,

respectively, with t-statistics of 1.56 and 1.00. Both of these alphas and t-statistics are smaller

than the alpha of 0.58% and the t-statistic of 1.76 in Panel A of Table 5, suggesting that βd

and βn absorb much of the predictability inherent in βs. Similarly, looking at Panel B shows

that first controlling for βd or βn absorbs almost all of the spread in the βc sorted portfolios.

By contrast, first controlling for βs or βc, the predicability of βd or βn remains intact.

Specifically, the FFC4 alphas for the High-Low βd and βn sorted quintile portfolios that first

control for βc equal 0.69% and 0.68%, respectively, with highly significant t-statistics of 3.76

and 3.62. First controlling for the standard beta also produces a spread in both of the βd

and βn sorts, although the magnitude of the spreads and the significance of the t-statistics

are somewhat reduced. This, of course, is to be expected since the standard betas already

contain some of the information in the discontinuous betas, as the discontinuous returns are

included in their calculation.

Turning next to the controls for the other firm characteristics and explanatory variables,

the results in Panels C and D again show that higher discontinuous and overnight betas

are always associated with higher portfolio returns. For βd in particular, the spread in the

returns between the High- and Low-quintile portfolios ranges from 0.48% (MOM) to 1.05%

(RKT), while the spreads in the FFC4 alphas range from 0.26% (MOM) to 0.73% (REV and

RKT). Similarly, for the βn portfolio sorts the spreads range from 0.65% (MOM) to 1.21%

(RKT), while the spreads in the FFC4 alphas range from 0.43% (MOM) to 0.91% (RKT).

Most of these alphas are not only statistically significant at the usual 5% level, but they

also translate into economically meaningful differences, ranging from 0.26% × 12 = 3.1%

to 1.21% × 12 = 14.5% per year. Comparison of the results across different betas in the
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four different panels for a given control variable also reveals that the High-Low portfolio

return differences are generally the greatest for the βd and βn based double-sorts, further

corroborating the idea that systematic jump risk is priced higher than continuous market

price risk.

The double-sorts presented in Table 6 indicate that the firm characteristics and explana-

tory variables used as controls cannot fully account for the predictive power of the jump

betas. Conversely, to investigate whether the jump betas could help explain some of the

abnormal returns associated with the different firm characteristics and other explanatory

variables, Table 7 presents the results from reversing the order of the sorts, by first sorting

on the betas and then on the explanatory variables.37 Comparing the spreads in the same

column across different panels shows that the predictive powers of the other explanatory

variables are generally reduced when controlling for the jump betas, with almost all of the

High-Low portfolio returns being lower (in an absolute sense) in Panels C and D than in

Panels A and B. Looking specifically at the results in Panel A that control for the variation

in the standard βs, the ME, IVOL, CKT and ILLIQ sorts all yield t-statistics for the FFC4

alphas greater than the usual critical value of two. Meanwhile, in the double sorts that con-

trol for the jump betas reported in Panels C and D, only the t-statistics for ME and ILLIQ

are significant. Hence, it appears that the separate pricing of systematic jump risk could at

least in part help explain the abnormal returns associated with idiosyncratic volatility and

cokurtosis observed over the present sample.38

6. Cross-sectional pricing regressions

The portfolio sorts discussed in the previous section impose no model assumptions. How-

ever, they ignore potentially important cross-sectional firm-level information by aggregating

the stocks into quintile portfolios. Also, even though the double-sorted portfolios do control

for other explanatory variables, they only control for one variable at a time. Hence, we

turn next to a standard Fama and MacBeth (1973) type cross-sectional approach based on

firm-level data for estimating the risk premiums associated with the different betas, while

37In an interesting recent study, Lou, Polk, and Skouras (2015) find that most of the abnormal returns
on momentum strategies tend to occur overnight, while the abnormal returns on other strategies primarily
occur intraday.

38The positive premium for IVOL observed here is counter to the idiosyncratic volatility puzzle first
highlighted by Ang, Hodrick, Xing, and Zhang (2006b). However, as previously showed in the literature, the
idiosyncratic volatility puzzle is primarily driven by small firms (Fu, 2009), firms that are dominated by retail
investors (Han and Kumar, 2013), and lottery-like firms (Bali, Cakici, and Whitelaw, 2011). By contrast,
our sample of S&P 500 constituents consists entirely of relatively large firms. For a recent discussion of the
idiosyncratic volatility puzzle see also Stambaugh, Yu, and Yuan (2015).
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simultaneously controlling for multiple explanatory variables.

For ease of notation, let the unit time interval be a month. The cross-sectional pricing

regression for each of the months t = 1, 2, . . . , T , and all of the stocks i = 1, 2, . . . , Nt

available for a particular month t in the sample, could then be expressed as,

r
(i)
t,t+1 = γ0,t + γcβ,tβ

(c,i)
t + γdβ,tβ

(d,i)
t + γnβ,tβ

(n,i)
t +

p∑
j=1

γj,tZ
(i)
j,t + ε

(i)
t,t+1, (14)

where r
(i)
t,t+1 denotes the excess return for stock i from month t to month t + 1, and the

explanatory variables Z
(i)
j,t and the betas β

(c,i)
t , β

(d,i)
t , and β

(n,i)
t are measured at the end of

month t.39 For comparison, we also estimate similar regressions by replacing the three betas

by the standard CAPM beta β
(s,i)
t . Based on these cross-sectional regression results, we then

estimate the risk premiums associated with the different betas and explanatory variables as

the time-series means of the T = 204 individual monthly gamma estimates. Specifically, for

k = s, c, d, n and j = 1, . . . , p,

γ̂kβ =
1

T

T∑
t=1

γ̂kβ,t, and γ̂j =
1

T

T∑
t=1

γ̂j,t. (15)

The average risk premium estimates, with robust t-statistics in parentheses, are reported

in Table 8 for a range of different combinations of explanatory variables. Panel A gives

the results from simple univariate regressions involving a single beta measure or a single

explanatory variable. Consistent with the standard CAPM, all the beta risk premiums are

estimated to be positive. The premium associated with βc is the highest of the four, and that

of βn is the lowest, although the t-statistic associated with βn is actually the highest and the t-

statistic with βc the lowest. Many of the previously showed CAPM-related anomalies appear

fairly weak in the present sample of relatively large liquid stocks. Still, the significant positive

premiums for ILLIQ and RKT do corroborate the empirical findings in Amihud (2002) and

Amaya, Christoffersen, Jacobs, and Vasquez (2015), respectively. The negative estimates

for ME, CSK, and RSK are also in line with the empirical evidence reported in Fama and

French (1992), Harvey and Siddique (2000), and Amaya, Christoffersen, Jacobs, and Vasquez

(2015), among many others, while as previously noted the positive albeit statistically weak

premium for IVOL is counter to Ang, Hodrick, Xing, and Zhang (2006b).

Turning to the multiple regression results in Panel B, Regression I shows that the stan-

dard beta βs becomes insignificant when controlling for all the other explanatory variables.

39Following common practice in the literature (e.g., Ang, Chen, and Xing, 2006a, among many others),
in an effort to reduce the effect of extreme observations or outliers, we Winsorize the independent variables
at their 0.5% and 99.5% levels. The results from the non-Winsorized regressions, available upon request, are
very similar to the results reported here.
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Similarly, the risk premium for βc in Regression II is also insignificant, suggesting that the

explanatory power of the continuous beta is effectively subsumed by the other explanatory

variables. The t-statistic for the discontinuous beta βd in Regression III, however, is largely

unchanged from the results in the simple regression in Panel A. For the overnight beta βn

the t-statistic for Regression IV is even higher than in the simple regression in Panel A.

Regressions V – XIII show the results from simultaneously including the continuous,

discontinuous, and overnight betas, controlling for ME, BM, MOM and each of the other

explanatory variables in turn. The high correlations across the different beta estimates,

previously discussed in Table 2, invariably render lower slope coefficients and t-statistics

than in Regressions II – IV. Nonetheless, the estimated risk premiums associated with βd

and βn remain close to significant across all the specifications when judged by their one-sided

t-statistics at the usual 5% level. The t-statistics for βc, on the other hand, are practically

zero for all specifications, suggesting that the premium for systematic continuous market

risk is fully absorbed by the premiums for the two rough betas and the other explanatory

variables.

The estimated premiums for βd and βn risks are also remarkably robust across the dif-

ferent specifications, with typical values of around 0.3% for each of the rough betas. Indeed,

the t-statistic for testing that the two premiums are the same after controlling for all the

other explanatory variables equals just 0.26. Hence, in Regression XIV, we report the results

including the three betas and all control variables, explicitly restricting the premiums for

βd and βn risks to be the same. The estimated common rough beta risk premium equals

0.31% with a t-statistic of 2.33.40,41 Given that the cross-sectional standard deviations of βd

and βn are equal to 1.14 and 1.20, respectively, a two-standard deviation change in each of

the two rough betas also translates into large and economically meaningful expected return

differences of about 2× 1.14× 0.33%× 12 = 9.03% and 2× 1.20× 0.33%× 12 = 9.50% per

year, respectively.

The last Regression XV further constrains all three βc, βd, and βn risks to have the same

premium. This results in a marginally significant t-statistic of 1.96 for the beta risk premium.

However, a robust F -test easily rejects the null hypothesis that the three risk premiums are

the same. By contrast, the assumption that the risk premiums for βd and βn are the same

40This value is very much in line with the options-based estimate of the aggregate equity risk premium
attributable to jump tail risk of close to 5% per year reported in Bollerslev and Todorov (2011). That study
also suggests the premium for jump tail risk could change over time with changes in investors’ attitude to
risk, or fear.

41To investigate the sensitivity of our results to the financial crisis, we have also redone the estimation
excluding January 2007 to December 2008 from the sample, resulting in a jump beta risk premium of 0.43%
and an even more significant t-statistic of 3.07.
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and different from the premium for βc, as in Regression XIV, cannot be rejected.

7. Robustness checks

To further help corroborate the robustness of our findings, we carry out a series of addi-

tional tests and empirical investigations. To begin, we investigate the sensitivity of our main

empirical findings to the choice of intraday sampling frequency used in the estimation of

the betas, possible biases in the estimation of the betas induced by nonsynchronous trading

effects, and errors-in-variables in the cross-sectional pricing regressions stemming from esti-

mation errors in the betas. Next, we analyze how the cross-sectional regression results and

the estimated risk premiums for the different betas are affected by the length of the sample

period used in the estimation of the betas and the holding period of the future returns.

Finally, we compare our main results to those obtained by excluding specific macroeconomic

news announcement days in the estimation of the betas.

7.1. Sampling frequency and beta estimation

The continuous-time framework of the empirical investigations and the consistency of the

βc and βd estimates hinge on increasingly finer sampled intraday returns. In practice, non-

synchronous trading and other market microstructure effects invariably limit the frequency

of the data available for estimation. To assess the sensitivity of the beta estimates to the

choice of sampling frequency, we compute betas for five different fixed sampling frequencies:

5-, 25-, 75-, 125- and 180-minute. These five sampling schemes, ranging from a total of 75

observations per day (5-minute) to only two observations per day (180-minute), span most of

the frequencies used in the literature for computing multivariate realized variation measures.

The extent of market microstructure frictions obviously varies across different stocks. Less

frequently traded stocks are likely more prone to estimation biases in their betas from too

frequent sampling than more liquid stocks. Thus, we also adopt a mixed-frequency strategy

in which we apply different sampling frequencies to different stocks. Specifically, at the end

of each month t, we sort all stocks into quintiles according to their ILLIQ measure. We

then use the ith highest of the five fixed sampling frequencies for stocks in the ith illiquidity

quintile; i.e., 5-minute frequency for stocks in the lowest ILLIQ quintile (the most liquid)

and 180-minute frequency for stocks in the highest ILLIQ quintile (the least liquid).

Fig. 3 plots the sample means averaged across time and stocks for the resulting βc and

βd estimates as a function of the five different fixed sampling frequencies. The sample means

of the mixed-frequency beta estimates are shown as a flat dashed line in both panels. The
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average βc estimates, reported in Panel A, increase quite substantially from the 5- to the 25-

minute sampling frequency, but appear to flatten at around 0.93 at the 75-minute sampling

frequency used in our empirical results reported so far. The average βd estimates reported

in Panel B, however, are remarkably stable across different sampling frequencies and close to

the average mixed-frequency value of 1.35. The specific choice of sampling frequency within

the range of values considered here appears largely irrelevant to the two discontinuous beta

estimates.

To further investigate the role of sampling frequency in our key empirical findings, Table

9 reports results of cross-sectional pricing regressions based on the different beta estimates.

Panel A gives the results obtained by varying the sampling frequency used in the estimation

of βc, keeping the sampling frequency for the βd estimation fixed at 75 minutes. Panel B

reports the results for the different βd estimates, using the same 75-minute βc estimates. To

conserve space, we report only results corresponding to the full Regression XIV reported in

Panel B of Table 8 that restricts the premiums for the two rough betas to be the same.

None of the t-statistics for the continuous systematic risk premiums in Panel A are close

to significant. All of the t-statistics for the rough beta risk premiums, on the other hand,

are higher than two. The estimated risk premiums are also very similar across the different

regressions and close to the value of 0.31% for the benchmark Regression XIV in Table 8.

The regressions in Panel B for the different βd estimates tell a very similar story. The risk

premiums for the rough betas are always significant, while those for the continuous betas

are not. Overall, our key cross-sectional pricing results appear robust to choice of intraday

sampling frequency used in the estimation of the βc and βd risk measures.

7.2. Nonsynchronous trading and beta estimation

The results in the previous section indicate that the estimated jump betas are very stable

across different sampling frequencies, while the continuous betas appear to be downward

biased for the highest sampling frequencies. This downward bias could in part be attributed

to nonsynchronous trading effects. To more directly investigate this, following the original

ideas of Scholes and Williams (1977) and Dimson (1979), we calculate high-frequency based

lead and lag continuous betas as,

β̂
(c,i)
t,− =

n

n− 1

∑t−1
s=t−l

∑n
τ=2

[
(r

(i)
s:τ + r

(0)
s:τ−1)21{|r(i)s:τ+r

(0)
s:τ−1|≤k

(i+0)
s,τ } − (r

(i)
s:τ − r(0)

s:τ−1)21{|r(i)s:τ−r
(0)
s:τ−1|≤k

(i−0)
s,τ }
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4
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s=t−l
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(0)
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(16)
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and

β̂
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(17)

where n denotes the number of high-frequency observations within a day used in the es-

timation; i.e., n = 5 for the 75-minute sampling underlying our main empirical results.

The theory behind the high-frequency betas implies that the lead and lag betas should be

asymptotically negligible and thus have no significant impact on the cross-sectional pricing.42

To test for this, we repeat the single sorts in Table 4, by instead sorting the stocks

according to their β̂
(c,i)
t,− and β̂

(c,i)
t,+ estimates. The monthly return differences between the

resulting High and Low quintile portfolios equal -0.37% with a t-statistic of −0.77 for the

lagged continuous beta sorts, and 0.03% with a t-statistic of 0.17 for the lead continuous

beta sorts, thus corroborating the idea that neither the lead nor the lagged continuous betas

are priced in the cross-section. Further along these lines, we also calculate an adjusted

continuous beta by adding all three continuous beta estimates, β̂
(c,i)
t,adj ≡ β̂

(c,i)
t + β̂

(c,i)
t,− + β̂

(c,i)
t,+ .

Sorting by these adjusted continuous betas produces a spread in the returns between the

High and Low quintile portfolios of a 1.51%, very close to the value of 1.61% reported in

Table 4.

Taken as a whole, the results discussed in the previous section together with the results

for the lead-lag beta adjustments discussed above, indicate that nonsynchronous trading

effects and biases in the high-frequency betas are not of great concern.43

7.3. Errors-in-variables in the cross-sectional pricing regression-
s

Another potential concern when testing linear factor pricing models relates to the errors-

in-variables problem arising from the first-stage estimation of the betas. In particular, as

42It is not possible to similarly adjust the jump betas by including leads and lags in their calculation.
The lead-lag adjustment for the continuous betas rely on the notion that the “true” high-frequency returns
are approximately serially uncorrelated. However, the construction of the jump betas is based on higher
order powers of the high-frequency returns, and the squared returns, in particular, are clearly not serially
uncorrelated. Meanwhile, the “signature plots” for the jump betas in Panel B of Fig. 3 discussed in the
previous section, show that the estimates of the jump betas are very robust to the choice of sampling
frequency, and as such much less prone to any systematic biases arising from nonsynchronous trading effects.

43We also experimented with the use of alternative discontinuous beta estimates based on simple OLS
regressions for the high-frequency returns that exceed a jump threshold. The results from the corresponding
portfolio sorts and Fama-MacBeth regressions were generally close to the results based on the discontinuous
beta estimator in (13) formally developed in Todorov and Bollerslev (2010) that we rely on throughout the
paper.
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formally shown by Shanken (1992), the first-stage estimation error generally results in an in-

crease in the asymptotic variance of the risk premium estimates from the second-stage cross-

sectional regressions. In our setting, however, the betas are estimated from high-frequency

data, resulting in lower measurement errors, and in turn less of an errors-in-variables prob-

lem, than in traditional Fama-MacBeth type regressions that rely on betas estimated with

lower frequency data. At the same time, this also means that the standard adjustment

procedures, as in, e.g., Shanken (1992), are not applicable in the present context.44

Instead, we conduct a small-scale Monte Carlo experiment by appropriately perturbing

the high-frequency beta estimates. For β̂
(c,i)
t and β̂

(d,i)
t , we rely on the results in Todorov and

Bollerslev (2010) to generate replicates {β̂(c,i,rep)
t } and {β̂(d,i,rep)

t } from two independent nor-

mal distributions with means equal to the estimated β̂
(c,i)
t and β̂

(d,i)
t , respectively, and stan-

dard deviations equal to the corresponding theoretical asymptotic standard errors. For β̂
(n,i)
t ,

we rely on a bootstrap procedure to generate random samples of β̂
(n,i,rep)
t from the actual

sampling distribution. Given a random sample of the three betas (β̂
(c,i,rep)
t , β̂

(d,i,rep)
t , β̂

(n,i,rep)
t ),

we then estimate the key Fama-MacBeth Regression XIV in Table 8 based on the perturbed

beta estimates keeping all of the other controls the same. We repeat the simulations a total

of one-hundred times.

The resulting simulation-based estimates for the risk premiums are in the range of -0.12

to 0.27 for βc with t-statistic between -0.24 and 0.87, and in the range of 0.20 to 0.38 with

t-statistic between 1.62 and 3.16 for βd and βn. The magnitudes of these simulated risk

premiums and their t-statistics are all fairly close to the values for the actual regression

reported in Table 8, thus confirming that the errors-in-variables problem is not of major

concern in the present context, and that it does not materially affect the statistical nor

economic significance of the rough betas.

7.4. Beta estimation and return holding periods

All the cross-sectional pricing regressions in Tables 8 and 9 are based on betas estimated

from returns over the past year and a future one-month return holding period. These are

typical estimation and holding periods used to test for the significant pricing ability of

explanatory variables and risk factors. To assess the robustness of our results to different

lagged beta estimation periods (L) and longer future return horizons (H), Table 10 reports

results based on shorter 3- and 6-month beta estimates and longer 3-, 6- and 12-month

44Formally accounting for the estimation errors in the high-frequency betas would require a new asymptot-
ic framework in which both the time span of the data used for the cross-sectional regression-based estimates
of the risk premiums and the sampling frequency used for the estimation of the betas go to infinity. We
leave this for future work.
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prediction horizons.45

Regressions I–V pertain to the standard beta. Although the regression coefficients asso-

ciated with the standard beta seem to increase with the forecast horizon, their t-statistics

are at most weakly significant. Regressions VI–X pertain to the continuous and rough betas.

The regressions show that the t-statistics associated with the two rough betas are always

significant, while the continuous systematic risk is not priced in the cross-section. In fact, if

anything, the results for the shorter estimation periods and longer return horizons are even

more significant than the results for the baseline Regression XIV in Panel B of Table 8 and

the typical choice of L = 12 and H = 1.

The significance of the results for the longer 3-, 6-, and 12-month return horizons also

highlights nontrivial persistence in the cross-sectional predictability. Converting the resulting

estimates for the different return horizons to an annual level implies rough beta risk premiums

of 1.65% × 4 = 6.60%, 2.73% × 2 = 5.46%, and 4.07 × 1 = 4.07% per year, respectively,

compared to 0.31× 12 = 3.72% per year for the one-month future return horizon implied by

Regression XIV in Table 8.

It is also worth noting that while ME, REV, and RKT are each significant in one or more

of the regressions reported in Table 10, they are not systematically so. Short-term reversal

and realized kurtosis, in particular, both lose their significance for the longer 6- and 12-

month holding periods. The only variable that remains highly significant across all different

estimation periods and return predictability horizons is the rough beta risk premium.

7.5. Betas and macroeconomic news announcements

An extensive literature has been devoted to studying the effects of macroeconomic news

announcements on asset prices. Andersen, Bollerslev, and Diebold (2007a), Lee (2012),

Lahaye, Laurent, and Neely (2011), in particular, have all sought to relate jumps in high-

frequency asset prices, with the significant jumps identified through similar techniques to

the ones used here, to regularly scheduled macroeconomic news releases. Related to this,

Savor and Wilson (2014) have also recently argued that cross-sectional return patterns are

different on news announcement days.46

To investigate whether macroeconomic announcement days confound our beta estimates

and the significant cross-sectional relation between the two rough betas and expected stock

returns, we exclude three specific announcement days in our estimation of βc, βd, and βn,

45All of the cross-sectional regressions are estimated monthly. The robust t-statistics for the longer H =
3-, 6- and 12-month return horizons explicitly adjust for the resulting overlap in the return observations.

46Patton and Verardo (2012) also show that standard realized betas calculated from high-frequency in-
traday data tend to be higher on individual firms’ earnings announcement days.
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including days on which the employment report (Employment) and the Producer Price Index

(PPI) are announced by the Bureau of Labor Statistics, and days when scheduled interest

rates are announced by the Federal Open Market Committee (FOMC). Employment and

PPI are both announced monthly at 8:30am before the stock market officially opens, while

FOMC is announced at 2:15pm every six weeks.47

Relying on the same test for significant intraday jumps used above, Fig. 4 compares the

average jump intensity for the S&P 500 market portfolio for the three announcement days and

all other days in the sample (Non-Ann), as a function of the time-of-day. Not surprisingly,

the FOMC announcements at 2:15pm have the greatest intraday effect, increasing the jump

intensity from an average of about 1% per day on non-announcement days to 9% on FOMC

days.48 The employment report also makes a market jump more likely in the first few

minutes of trading, although not dramatically so. Of course, Employment and PPI are both

announced before the market officially opens, and thus might be expected to affect estimation

of the overnight betas the most.

Table 11 reports results of the full firm-level cross-sectional regressions excluding the

three different types of announcement days. Both the size and the statistical significance

of the risk premium estimates are very similar to those in Table 8, Panel B. In fact, the

estimated risk premium for the discontinuous and overnight betas in Regression X in Table

11 is identical within two decimal points to the estimate from Regression XIV in Table 8.

The predictive power and significant cross-sectional pricing ability of the two rough betas

do not appear to be solely driven by important macroeconomic news announcements.

8. Conclusion

Building on a general continuous-time representation for the return on the aggregate

market portfolio coupled with an economy-wide pricing kernel that separately prices market

diffusive and jump risks, we show how standard asset pricing theory naturally results in

separate risk premiums for continuous, or smooth, market betas and discontinuous, or rough,

market betas. Importantly, our theoretical framework explicitly allows for other systematic

risk factors to enter the pricing kernel and possibly affect the cross-sectional pricing. Only

if nonmarket risks are not priced, and the premiums for continuous and jump market risks

are the same, does the standard conditional CAPM hold.

47Andersen, Bollerslev, Diebold, and Vega (2003) provide a comprehensive list of U.S. macroeconomic
news announcements and their release times.

48Lucca and Moench (2015) have also recently showed large average pre-FOMC one-day equity returns
in anticipation of monetary policy decisions.
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Motivated by these theoretical results, we empirically investigate whether market diffu-

sive and jump risks are priced differently in the cross-section of expected stock returns. Our

empirical investigations rely on a novel high-frequency data set for a large cross-section of

individual stocks together with new econometric techniques for separately estimating con-

tinuous, discontinuous and overnight betas. We find that the discontinuous and overnight

betas are different from, and more cross-sectionally dispersed than, the continuous and s-

tandard CAPM betas. When we sort individual stocks by the different betas, we find that

stocks with high discontinuous and overnight betas earn significantly higher returns than

stocks with low discontinuous and overnight betas, while at best there is only a weak re-

lation between a stock’s return and its continuous beta. We also find the estimated risk

premiums for the discontinuous and overnight betas to be both statistically significant and

indistinguishable from one another, and that this rough beta risk cannot be explained by a

long list of other firm characteristics and explanatory variables commonly employed in the

literature. In contrast, the estimated continuous beta risk premium is insignificant.

Intuitively, market jumps more likely reflect true information surprises than do continuous

price moves, which could simply be attributed to random “noise” in the price formation pro-

cess. Moreover, important news are often announced during overnight non-trading hours.49

As such, the two rough betas could more accurately reflect the systematic market price risks

that are actually priced, than do the continuous betas and the standard conditional CAPM

betas that do not differentiate between “smooth” and “rough” market price moves.

The theoretical setup in Section 2 that motivates our empirical investigations is delib-

erately very general. However, a more formal investigation into the reasons behind the

differences in the pricing of the “smooth” and “rough” betas, and whether the differences

could be explained by different loadings on diffusive and jump fundamental shocks, or d-

ifferences of opinion and learning, possibly influenced by behavioral effects, would be very

interesting. We leave this for future research.

49Conversely, Berkman, Koch, Tuttle, and Zhang (2012) and Lou, Polk, and Skouras (2015) find that
institutional investors tend to trade relatively more during the day while individual investors trade relatively
more overnight, thus indirectly suggesting that the overnight betas might by more susceptible to the influence
of “noise” trading.
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Data Appendix

A.1 High-frequency data cleaning

We begin by removing entries that satisfy at least one criteria as follows: (i) a time stamp

outside the exchange open window between 9:30am and 4:00pm; (ii) a price less than or equal

to zero; (iii) a trade size less than or equal to zero; (iv) corrected trades, i.e., trades with

Correction Indicator, CORR, other than 0, 1, or 2; and (v) an abnormal sale condition, i.e.,

trades for which the Sale Condition, COND, has a letter code other than ‘@’, ‘*’, ‘E’, ‘F’,

‘@E’, ‘@F’, ‘*E’ and ‘*F’. We then assign a single value to each variable for each second within

the 9:30am–4:00pm time interval as follows. If one or multiple transactions have occurred in

that second, we calculate the sum of volumes, the sum of trades, and the volume-weighted

average price within that second. If no transaction has occurred in that second, we enter

zero for volume and trades. For the volume-weighted average price, we use the entry from

the nearest previous second, i.e., forward-filtering. If no transaction has occurred before

that second, we use the entry from the nearest subsequent second, i.e., backward-filtering.

Motivated by our analysis of the trading volume distribution across different exchanges

over time we purposely incorporate information from all exchanges covered by the TAQ

database.50

A.2 Additional explanatory variables

Our empirical investigations rely on the following explanatory variables and firm charac-

teristics.

• Size (ME): Following Fama and French (1993), a firm’s size is measured at the end of

June by its market value of equity – the product of the closing price and the number

of shares outstanding (in millions of dollars). Market equity is updated annually and

is used to explain returns over the subsequent 12 months. Following common practice,

we also transform the size variable by its natural logarithm to reduce skewness.

• Book-to-market ratio (BM): Following Fama and French (1992), the book-to-market

ratio in June of year t is computed as the ratio of the book value of common equity

in fiscal year t − 1 to the market value of equity (size) in December of year t − 1.51

BM for fiscal year t is used to explain returns from July of year t+ 1 through June of

50Further details on the exchange analysis are upon request.
51Book common equity is defined as book value of stockholders’ equity, plus balance-sheet deferred taxes

and investment tax credit (if available), minus book value of preferred stock for fiscal year t− 1.
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year t+ 2. The time gap between BM and returns ensures that information on BM is

publicly available prior to the returns.

• Momentum (MOM): Following Jegadeesh and Titman (1993), the momentum variable

at the end of month t is defined as the compound gross return from month t − 11

through month t− 1; i.e., skipping the short-term reversal month t.52

• Reversal (REV): Following Jegadeesh (1990) and Lehmann (1990), the short-term re-

versal variable at the end of month t is defined as the return over that same month

t.

• Idiosyncratic volatility (IVOL): Following Ang, Hodrick, Xing, and Zhang (2006b),

a firm’s idiosyncratic volatility at the end of month t is computed as the standard

deviation of the residuals from the regression based on the daily return regression:

ri,d − rf,d = αi + βi(r0,d − rf,d) + γiSMBd + φiHMLd + εi,d, (18)

where ri,d and r0,d are the daily returns of stock i and the market portfolio on day d,

respectively, and SMBd and HMLd denote the daily Fama and French (1993) size and

book-to-market factors.

• Coskewness (CSK): Following Harvey and Siddique (2000) and Ang, Chen, and Xing

(2006a), the coskewness of stock i at the end of month t is estimated using daily returns

for month t as:

ĈSKi,t =
1
N

∑
d(ri,d − r̄i)(r0,d − r̄0)2√

1
N

∑
d(ri,d − r̄i)2( 1

N

∑
d(r0,d − r̄0)2)

, (19)

where N denotes the number of trading days in month t, ri,d and r0,d are the daily

returns of stock i and the market portfolio on day d, respectively, and r̄i and r̄0 denote

the corresponding average daily returns.

• Cokurtosis (CKT): Following Ang, Chen, and Xing (2006a), the cokurtosis of stock i

at the end of month t is estimated using the daily returns for month t as:

ĈKTi,t =
1
N

∑
d(ri,d − r̄i)(r0,d − r̄0)3√

1
N

∑
d(ri,d − r̄i)2( 1

N

∑
d(r0,d − r̄0)2)3/2

, (20)

where variables are the same as for CSK.
52Jegadeesh (1990) shows that monthly returns on many individual stocks are significantly and negatively

serially correlated.
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• Realized skewness (RSK): Following Amaya, Christoffersen, Jacobs, and Vasquez (2015),

the realized skewness for stock i on day d is constructed from high-frequency data as:

RSKi,d =

√
L
∑L

l=1 r
3
i,d,l

(
∑L

l=1 r
2
i,d,l)

3/2
, (21)

where ri,d,l refers to the lth intraday return on day d for stock i, and L denotes the

number of intraday returns available on day d. Consistent with Amaya, Christoffersen,

Jacobs, and Vasquez (2015), we use 5-minute returns from 9:45am to 4:00pm, so that

for the full intraday time period L = 75. The RSK for stock i at the end of month t is

computed as the average of the daily RSKi,d for that month.

• Realized kurtosis (RKT): Following Amaya, Christoffersen, Jacobs, and Vasquez (2015),

the realized kurtosis for stock i on day d is computed as:

RKTi,d =
L
∑L

l=1 r
4
i,d,l

(
∑L

l=1 r
2
i,d,l)

2
, (22)

where variables and estimation details are the same as for RSK.

• Maximum daily return (MAX): Following Bali, Cakici, and Whitelaw (2011), the MAX

variable for stock i and month t is defined as the largest total daily return observed

over that month.

• Illiquidity (ILLIQ): Following Amihud (2002), the illiquidity for stock i at the end of

month t is measured as the average daily ratio of the absolute stock return to the dollar

trading volume from month t− 11 through month t:

ILLIQi,t =
1

N

∑
d

(
|ri,d|

volumei,d × pricei,d

)
, (23)

where volumei,d is the daily trading volume, pricei,d is the daily price, and other vari-

ables are as defined before. We further transform the illiquidity measure by its natural

logarithm to reduce skewness.
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Table 1: Cross-sectional relation of βs, βc, βd, and βn
The table reports the estimated regression coefficients, robust t-statistics (in parentheses) and adjusted R2s from Fama-MacBeth
type regressions for explaining the cross-sectional variation in the standard βs as a function of the continuous beta βc, the
discontinuous beta βd, and the overnight beta βn. All of the betas are computed from high-frequency data using a 12-month
overlapping monthly estimation scheme.

Regression βc βd βn Adjusted-R2

I 1.03 0.76
(58.67)

II 0.79 0.62
(26.72)

III 0.51 0.46
(16.15)

IV 0.78 0.17 0.10 0.81
(29.64) (6.87) (7.10)
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Table 2: Sample correlations
The table displays time-series averages of monthly cross-sectional correlations. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight
betas, respectively. ME denotes the logarithm of the market capitalization of the firms. BM denotes the ratio of the book value
of common equity to the market value of equity. MOM is the compound gross return from month t− 11 through month t− 1.
REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and CKT are the measures of coskewness and
cokurtosis, respectively. RSK and RKT denote the realized skewness and the realized kurtosis, respectively, computed from
high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ refers to the logarithm of the average
daily ratio of the absolute stock return to the dollar trading volume from month t− 11 through month t. The asterisks indicate
significance at the 5% (*) and 1% (**) levels, respectively.

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

βs 1 0.88∗∗ 0.76∗∗ 0.63∗∗ −0.12∗∗ −0.15∗∗ 0.10∗∗ 0.01 0.46∗∗ 0.04∗ 0.38∗∗ −0.03∗∗ −0.07∗∗ 0.47∗∗ −0.04∗

βc 1 0.77∗∗ 0.60∗∗ −0.02 −0.17∗∗ 0.09∗∗ 0.01 0.43∗∗ 0.07∗∗ 0.26∗∗ −0.03∗∗ −0.15∗∗ 0.43∗∗ −0.08∗∗

βd 1 0.74∗∗ −0.27∗∗ −0.11∗∗ 0.08∗∗ 0.01 0.58∗∗ 0.01 0.06∗∗ −0.05∗∗ −0.02∗ 0.53∗∗ 0.15∗∗

βn 1 −0.22∗∗ −0.11∗∗ 0.03∗∗ 0.01 0.53∗∗ 0.01 −0.01 −0.04∗∗ −0.02 0.48∗∗ 0.13∗∗

ME 1 −0.15∗∗ −0.04∗∗ −0.03∗∗ −0.34∗∗ 0.04∗∗ 0.30∗∗ 0.00 −0.40∗∗ −0.28∗∗ −0.91∗∗

BM 1 −0.04 0.00 −0.08∗∗ −0.06∗∗ −0.07∗∗ 0.01 0.05∗∗ −0.07∗∗ 0.14∗∗

MOM 1 0.02∗ 0.00 −0.07∗∗ 0.06∗ −0.02 0.04∗∗ 0.00 0.05∗∗

REV 1 0.03∗ −0.01 −0.02∗∗ 0.37∗∗ 0.02∗∗ 0.30∗∗ −0.01∗

IVOL 1 0.00 −0.22∗∗ −0.04∗∗ 0.11∗∗ 0.81∗∗ 0.26∗∗

CSK 1 −0.03 0.02∗∗ −0.05∗∗ 0.03∗ −0.05∗∗

CKT 1 0.00 −0.16∗∗ −0.11∗∗ −0.27∗∗

RSK 1 0.04∗∗ 0.04∗∗ 0.00
RKT 1 0.07∗∗ 0.41∗∗

MAX 1 0.21∗∗

ILLIQ 1
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Table 3: Portfolio characteristics sorted by betas
The table displays time-series averages of equal-weighted characteristics of stocks sorted by the four different betas. The sample
consists of the 985 individual stocks included in the S&P 500 index over 1993-2010. βs, βc, βd, and βn are the standard,
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT are the measures of coskewness and cokurtosis, respectively. RSK and RKT denote the realized skewness and the realized
kurtosis computed from high-frequency data. MAX represents the maximum daily raw return over month t. ILLIQ refers to
the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t − 11 through
month t. Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd, and Panel D by βn.

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

Panel A: Sorted by βs

1(Low) 0.45 0.52 1.02 1.11 8.48 0.56 8.37 0.76 1.37 -0.10 1.51 0.03 5.31 3.54 -2.78
2 0.73 0.70 1.12 1.22 8.56 0.54 9.59 0.86 1.48 -0.10 2.04 0.04 5.42 4.03 -3.08
3 0.93 0.83 1.23 1.37 8.58 0.47 10.59 0.95 1.60 -0.10 2.31 0.03 5.39 4.52 -3.18
4 1.18 1.03 1.45 1.67 8.62 0.50 12.80 1.26 1.83 -0.09 2.48 0.02 5.26 5.33 -3.28
5(High) 1.83 1.58 2.08 2.43 8.43 0.43 13.84 1.48 2.57 -0.09 2.52 0.02 5.10 7.78 -3.40

Panel B: Sorted by βc

1(Low) 0.57 0.44 0.99 1.14 8.54 0.54 7.80 0.81 1.39 -0.11 1.73 0.03 5.54 3.68 -2.32
2 0.79 0.67 1.09 1.22 8.73 0.50 11.28 0.83 1.47 -0.11 2.12 0.03 5.40 4.07 -2.86
3 0.95 0.83 1.23 1.38 8.77 0.45 10.55 0.95 1.59 -0.10 2.31 0.03 5.31 4.53 -3.29
4 1.18 1.05 1.46 1.67 8.86 0.49 11.40 1.13 1.83 -0.10 2.45 0.03 5.13 5.29 -3.52
5(High) 1.80 1.65 2.15 2.45 8.63 0.41 12.60 1.44 2.54 -0.08 2.44 0.02 4.94 7.64 -3.57

Panel C: Sorted by βd

1(Low) 0.60 0.53 0.80 0.93 8.94 0.54 9.16 0.78 1.15 -0.10 1.96 0.04 5.46 3.14 -3.35
2 0.81 0.71 1.03 1.17 8.91 0.49 9.68 0.83 1.39 -0.10 2.22 0.04 5.32 3.90 -3.23
3 0.96 0.85 1.22 1.40 8.86 0.49 10.62 0.90 1.60 -0.10 2.28 0.03 5.22 4.54 -3.26
4 1.18 1.03 1.50 1.72 8.68 0.49 11.24 1.09 1.92 -0.09 2.32 0.03 5.16 5.51 -3.19
5(High) 1.73 1.51 2.37 2.63 8.14 0.37 13.33 1.56 2.77 -0.09 2.27 0.02 5.16 8.16 -2.82

Panel D: Sorted by βn

1(Low) 0.64 0.59 0.90 0.78 8.95 0.55 9.48 0.71 1.14 -0.10 2.06 0.04 5.38 3.11 -3.56
2 0.83 0.74 1.09 1.08 8.91 0.50 10.11 0.81 1.41 -0.10 2.24 0.04 5.30 3.93 -3.27
3 0.98 0.86 1.26 1.34 8.81 0.49 10.83 0.93 1.61 -0.10 2.27 0.03 5.26 4.58 -3.23
4 1.20 1.04 1.50 1.72 8.66 0.48 11.83 1.12 1.93 -0.10 2.32 0.02 5.18 5.56 -3.20
5(High) 1.65 1.42 2.17 2.95 8.20 0.35 14.51 1.60 2.75 -0.09 2.17 0.02 5.19 8.09 -2.97

36



Table 4: Contemporaneous single-sorted portfolios
The table reports the average returns and betas for single-sorted portfolios. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. At the beginning of each month, stocks are sorted into quintiles according to
betas computed from the next 12-month returns. Each equal-weighted portfolio is held for 12 months. The column labeled
“Return” reports the average monthly excess return in the 12-month holding period for each portfolio. The row labeled “High-
Low” reports the difference in returns between portfolio 5 and portfolio 1, with Newey-West robust t-statistics in parentheses.
βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight betas, respectively. Panel A displays the results
sorted by βs, Panel B by βc, Panel C by βd, Panel D by βn, Panel E by βd − βs, Panel F by βn − βs, Panel G by βd − βc,
and Panel H by βn − βc.

Panel A: Sorted by βs

Decile βs βc βd βn Return

1(Low) 0.45 0.52 1.02 1.11 0.77
(3.66)

2 0.73 0.70 1.12 1.22 0.81
(3.14)

3 0.93 0.83 1.23 1.37 0.97
(3.21)

4 1.18 1.03 1.45 1.67 1.17
(3.18)

5(High) 1.83 1.58 2.08 2.43 2.39
(2.90)

High-Low 1.38 1.06 1.06 1.32 1.62
(1.85)

Panel B: Sorted by βc

Decile βs βc βd βn Return

1(Low) 0.57 0.44 0.99 1.14 0.80
(3.55)

2 0.79 0.67 1.09 1.22 0.82
(3.14)

3 0.95 0.83 1.23 1.38 0.91
(3.15)

4 1.18 1.05 1.46 1.67 1.20
(3.26)

5(High) 1.80 1.65 2.15 2.45 2.41
(2.92)

High-Low 1.23 1.21 1.16 1.31 1.61
(1.81)

Panel C: Sorted by βd

Decile βs βc βd βn Return

1(Low) 0.60 0.53 0.80 0.93 0.78
(3.80)

2 0.81 0.71 1.03 1.17 0.83
(3.21)

3 0.96 0.85 1.22 1.40 0.85
(2.99)

4 1.18 1.03 1.50 1.72 1.21
(3.31)

5(High) 1.73 1.51 2.37 2.63 2.48
(2.97)

High-Low 1.13 0.98 1.57 1.70 1.71
(2.63)

Panel D: Sorted by βn

Decile βs βc βd βn Return

1(Low) 0.64 0.59 0.90 0.78 0.75
(3.84)

2 0.83 0.74 1.09 1.08 0.83
(3.37)

3 0.98 0.86 1.26 1.34 0.96
(3.29)

4 1.20 1.04 1.50 1.72 1.22
(3.29)

5(High) 1.65 1.42 2.17 2.95 2.39
(2.91)

High-Low 1.01 0.83 1.27 2.17 1.64
(2.59)

Panel E: Sorted by βd − βs

Decile βs βc βd βn Return

1(Low) 1.17 0.96 1.22 1.43 0.97
(2.68)

2 0.96 0.87 1.13 1.30 0.94
(3.44)

3 0.95 0.84 1.20 1.37 1.08
(3.88)

4 1.02 0.87 1.36 1.55 1.25
(4.13)

5(High) 1.19 1.10 2.02 2.22 1.91
(3.56)

High-Low 0.02 0.14 0.80 0.79 0.94
(3.34)

Panel F: Sorted by βn − βs

Decile βs βc βd βn Return

1(Low) 1.16 1.03 1.29 1.06 0.98
(3.22)

2 0.93 0.84 1.17 1.13 1.17
(3.87)

3 0.97 0.86 1.24 1.33 1.17
(4.16)

4 1.07 0.91 1.38 1.62 1.29
(3.80)

5(High) 1.15 1.00 1.85 2.73 1.68
(3.01)

High-Low -0.01 -0.03 0.56 1.67 0.69
(3.18)

Panel G: Sorted by βd − βc

Decile βs βc βd βn Return

1(Low) 1.08 1.01 1.17 1.32 0.88
(2.55)

2 0.96 0.88 1.12 1.28 0.96
(3.51)

3 0.96 0.88 1.21 1.39 1.09
(3.95)

4 1.05 0.94 1.40 1.60 1.29
(4.33)

5(High) 1.21 1.05 2.02 2.26 2.08
(3.64)

High-Low 0.13 0.04 0.84 0.93 1.21
(3.34)

Panel H: Sorted by βn − βc

Decile βs βc βd βn Return

1(Low) 1.02 1.09 1.25 1.01 0.93
(3.01)

2 0.93 0.86 1.17 1.13 1.06
(3.91)

3 0.97 0.86 1.24 1.33 1.23
(4.29)

4 1.07 0.90 1.38 1.63 1.38
(3.95)

5(High) 1.26 1.04 1.87 2.77 1.70
(3.22)

High-Low 0.24 -0.05 0.62 1.75 0.77
(2.48)
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Table 5: Predictive single-sorted portfolios
The table reports the average returns and betas for predictive single-sorted portfolios. The sample consists of the 985 individual
stocks included in the S&P 500 index over 1993-2010. At the end of each month, stocks are sorted into quintiles according to
betas computed from previous 12-month returns. Each portfolio is held for one month. The column labeled “Ex-Post” reports
the ex-post betas compute from the subsequent 12-month returns. The column labeled “Return” reports the average one-month
ahead excess returns of each portfolio. The column labeled “FFC4 alpha” reports the corresponding Fama-French-Carhart four-
factor alpha for each portfolio. The row labeled “High-Low” reports the difference in returns between portfolio 10 and portfolio
1, with Newey-West robust t-statistics in parentheses. βs, βc, βd, and βn are the standard, continuous, discontinuous, and
overnight betas, respectively. Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd, Panel D by βn, Panel
E by βd − βs, Panel F by βn − βs, Panel G by βd − βc, and Panel H by βn − βc.

Panel A: Sorted by βs

Ex-Post FFC4
Quintile βs βc βd βn βs Return alpha

1(Low) 0.45 0.52 1.02 1.11 0.60 0.76 0.32
(3.09) (2.07)

2 0.73 0.70 1.12 1.22 0.80 0.85 0.31
(2.74) (2.08)

3 0.93 0.83 1.23 1.37 0.95 1.00 0.38
(2.76) (2.95)

4 1.18 1.03 1.45 1.67 1.12 1.23 0.57
(2.86) (4.12)

5(High) 1.83 1.58 2.08 2.43 1.63 1.59 0.90
(2.29) (3.87)

High-Low 1.38 1.06 1.06 1.32 1.04 0.83 0.58
(1.40) (1.76)

Panel B: Sorted by βc

Ex-Post FFC4
Quintile βs βc βd βn βc Return alpha

1(Low) 0.57 0.44 0.99 1.14 0.57 0.79 0.33
(3.05) (2.20)

2 0.79 0.67 1.09 1.22 0.74 0.79 0.29
(2.55) (1.97)

3 0.95 0.83 1.23 1.38 0.84 0.97 0.35
(2.65) (2.59)

4 1.18 1.05 1.46 1.67 1.02 1.19 0.54
(2.80) (4.01)

5(High) 1.80 1.65 2.15 2.45 1.51 1.50 0.82
(2.18) (3.45)

High-Low 1.23 1.21 1.16 1.31 0.93 0.71 0.49
(1.22) (1.44)

Panel C: Sorted by βd

Ex-Post FFC4
Quintile βs βc βd βn βd Return alpha

1(Low) 0.60 0.53 0.80 0.93 0.93 0.72 0.30
(2.94) (2.20)

2 0.81 0.71 1.03 1.17 1.12 0.76 0.23
(2.37) (1.73)

3 0.96 0.85 1.22 1.40 1.24 0.95 0.36
(2.62) (2.77)

4 1.18 1.03 1.50 1.72 1.46 1.17 0.52
(2.72) (3.71)

5(High) 1.73 1.51 2.37 2.63 2.07 1.65 0.94
(2.39) (4.08)

High-Low 1.13 0.98 1.57 1.70 1.13 0.93 0.64
(1.55) (2.04)

Panel D: Sorted by βn

Ex-Post FFC4
Quintile βs βc βd βn βn Return alpha

1(Low) 0.64 0.59 0.90 0.78 1.02 0.64 0.21
(2.53) (1.52)

2 0.83 0.74 1.09 1.08 1.26 0.76 0.24
(2.45) (2.06)

3 0.98 0.86 1.26 1.34 1.45 0.96 0.35
(2.67) (2.69)

4 1.20 1.04 1.50 1.72 1.72 1.14 0.47
(2.61) (3.58)

5(High) 1.65 1.42 2.17 2.95 2.34 1.75 1.06
(2.60) (4.69)

High-Low 1.01 0.83 1.27 2.17 1.32 1.11 0.85
(1.93) (2.74)

Panel E: Sorted by βd − βs
Ex-Post FFC4

Quintile βs βc βd βn βd − βs Return alpha

1(Low) 1.17 0.96 1.22 1.43 0.20 0.99 0.47
(2.35) (3.18)

2 0.96 0.87 1.13 1.30 0.24 0.81 0.27
(2.41) (2.51)

3 0.95 0.84 1.20 1.37 0.27 0.93 0.38
(2.77) (3.61)

4 1.02 0.87 1.36 1.55 0.30 1.02 0.44
(2.87) (3.40)

5(High) 1.19 1.10 2.02 2.22 0.54 1.49 0.78
(2.91) (4.54)

High-Low 0.02 0.14 0.80 0.79 0.34 0.51 0.31
(1.85) (2.29)

Panel F: Sorted by βn − βs
Ex-Post FFC4

Quintile βs βc βd βn βn − βs Return alpha

1(Low) 1.16 0.98 1.29 1.06 0.31 0.68 0.15
(1.80) (0.82)

2 0.93 0.84 1.17 1.13 0.38 0.81 0.23
(2.40) (1.91)

3 0.97 0.86 1.24 1.33 0.47 1.01 0.43
(2.99) (3.74)

4 1.07 0.91 1.38 1.62 0.57 1.03 0.45
(2.67) (3.44)

5(High) 1.15 1.05 1.85 2.73 0.88 1.71 1.09
(3.18) (5.81)

High-Low -0.01 0.07 0.56 1.67 0.57 1.03 0.94
(3.09) (3.05)

Panel G: Sorted by βd − βc
Ex-Post FFC4

Quintile βs βc βd βn βd − βc Return alpha

1(Low) 1.08 1.01 1.17 1.32 0.27 0.94 0.42
(2.32) (2.91)

2 0.96 0.88 1.12 1.28 0.33 0.80 0.24
(2.30) (2.27)

3 0.96 0.88 1.21 1.39 0.37 0.97 0.40
(2.90) (3.70)

4 1.05 0.94 1.40 1.60 0.44 0.96 0.36
(2.60) (2.69)

5(High) 1.21 1.05 2.02 2.26 0.74 1.63 0.90
(3.08) (5.08)

High-Low 0.13 0.04 0.84 0.93 0.47 0.69 0.47
(2.24) (1.91)

Panel H: Sorted by βn − βc
Ex-Post FFC4

Quintile βs βc βd βn βn − βc Return alpha

1(Low) 1.02 1.09 1.25 1.01 0.41 0.68 0.14
(1.78) (0.72)

2 0.93 0.86 1.17 1.13 0.49 0.79 0.20
(2.35) (1.74)

3 0.97 0.86 1.24 1.33 0.58 1.04 0.44
(3.01) (3.78)

4 1.07 0.90 1.38 1.63 0.68 1.06 0.45
(2.75) (3.40)

5(High) 1.26 1.04 1.87 2.77 0.98 1.72 1.08
(3.16) (5.58)

High-Low 0.24 -0.05 0.62 1.75 0.58 1.03 0.95
(2.95) (2.90)38



Table 6: Predictive double-sorted portfolios
The table reports the average returns for predictive double-sorted portfolios. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. For each month, all stocks in the sample are first sorted into five quintiles
on the basis of one control variable. Within each quintile, the stocks are then sorted into five quintiles according to their
betas. These five beta portfolios are then averaged across the five control variable portfolios to produce beta portfolios with
large cross-portfolio variation in their betas but little variation in the control variable. βs, βc, βd, and βn are the standard,
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT are the measures of coskewness and cokurtosis, respectively. RSK and RKT denote the realized skewness and realized
kurtosis computed from high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ refers to the
logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t− 11 through month
t. The first five rows in each panel report time-series averages of monthly excess returns for the beta quintile portfolios. The row
labeled “High-Low” reports the difference in the returns between portfolio 5 and portfolio 1. The row labeled “FFC4 alpha”
reports the average Fama-French-Carhart four-factor alphas. The corresponding Newey-West robust t-statistics are reported
in parentheses. Panels A, B, C, and D display the results for the portfolios first sorted by the control variables listed in the
columns and then by βs, βc, βd, and βn, respectively.

Panel A: Final sort by βs

βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

1 (Low) 0.96 0.91 0.74 0.72 0.92 0.73 0.89 0.85 0.72 0.69 0.59 0.87 0.77
2 0.94 1.08 0.93 0.88 0.96 0.97 1.02 0.82 0.81 0.81 0.86 0.93 0.86
3 0.98 0.98 0.95 1.00 1.11 0.97 1.04 0.96 1.00 0.98 0.95 0.93 0.98
4 0.99 0.99 1.20 1.18 1.13 1.27 1.19 1.20 1.14 1.32 1.23 1.22 1.17
5 (High) 1.38 1.28 1.61 1.58 1.24 1.52 1.30 1.61 1.75 1.50 1.67 1.48 1.63
High-Low 0.41 0.37 0.87 0.86 0.32 0.78 0.41 0.76 1.03 0.81 1.08 0.61 0.86

(1.46) (1.12) (1.54) (1.64) (1.47) (1.55) (1.01) (1.43) (1.91) (1.36) (1.84) (1.58) (1.57)
FFC4 alpha 0.34 0.23 0.63 0.57 0.08 0.52 0.22 0.46 0.70 0.52 0.77 0.42 0.60

(1.56) (1.00) (2.01) (1.87) (1.33) (1.33) (0.84) (1.50) (2.34) (1.56) (2.30) (1.72) (2.19)

Panel B: Final sort by βc

βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

1 (Low) 1.11 1.11 0.76 0.74 0.93 0.81 0.88 0.81 0.80 0.77 0.75 0.90 0.80
2 1.02 1.07 0.90 0.86 0.96 0.93 0.96 0.88 0.81 0.87 0.87 0.87 0.78
3 0.94 0.96 0.90 0.98 0.97 0.91 1.02 0.93 0.95 0.94 0.88 1.00 0.97
4 0.98 0.96 1.10 1.14 1.19 1.10 1.11 1.06 1.06 1.19 1.19 1.04 1.06
5 (High) 1.19 1.17 1.57 1.45 1.23 1.56 1.30 1.59 1.65 1.49 1.60 1.46 1.64
High-Low 0.08 0.06 0.81 0.71 0.30 0.74 0.42 0.78 0.85 0.72 0.85 0.55 0.84

(0.32) (0.21) (1.46) (1.42) (1.61) (1.52) (1.08) (1.50) (1.67) (1.27) (1.51) (1.47) (1.53)
FFC4 alpha 0.07 -0.01 0.60 0.42 0.13 0.51 0.25 0.51 0.55 0.49 0.57 0.37 0.60

(0.32) (0.06) (1.75) (1.35) (1.44) (1.66) (0.90) (1.55) (1.72) (1.45) (1.66) (1.50) (2.11)

Panel C: Final sort by βd

βs βc ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

1 (Low) 0.93 0.79 0.74 0.70 0.82 0.72 0.82 0.73 0.71 0.74 0.70 0.74 0.73
2 1.00 0.94 0.88 0.76 0.90 0.81 0.79 0.81 0.85 0.78 0.78 0.74 0.87
3 0.89 0.89 0.96 0.92 0.97 0.90 1.12 0.96 0.88 0.90 0.92 1.06 0.93
4 0.96 1.00 1.19 1.17 1.15 1.12 1.17 1.07 1.11 1.18 1.12 1.26 1.13
5 (High) 1.44 1.63 1.47 1.62 1.30 1.73 1.33 1.68 1.70 1.66 1.75 1.46 1.56
High-Low 0.51 0.85 0.73 0.92 0.48 1.02 0.50 0.95 0.99 0.92 1.05 0.72 0.83

(1.79) (2.74) (1.32) (1.70) (1.95) (2.02) (1.36) (1.79) (1.87) (1.58) (1.84) (1.90) (1.78)
FFC4 alpha 0.35 0.69 0.51 0.60 0.26 0.73 0.28 0.65 0.66 0.61 0.73 0.48 0.56

(1.84) (3.76) (1.70) (2.10) (1.92) (2.59) (1.21) (2.29) (2.33) (1.95) (2.43) (2.12) (2.06)

Panel D: Final sort by βn

βs βc ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

1 (Low) 0.83 0.78 0.69 0.64 0.79 0.66 0.72 0.62 0.63 0.63 0.64 0.66 0.68
2 0.94 0.83 0.78 0.74 0.86 0.75 0.93 0.83 0.82 0.81 0.79 0.86 0.82
3 0.93 0.98 0.95 0.90 1.05 0.95 0.99 0.91 0.95 0.93 0.87 0.99 0.94
4 1.07 1.08 1.18 1.13 1.12 1.13 1.20 1.18 1.15 1.12 1.12 1.20 1.05
5 (High) 1.43 1.59 1.63 1.75 1.44 1.78 1.40 1.70 1.70 1.75 1.85 1.53 1.75
High-Low 0.60 0.81 0.94 1.10 0.65 1.12 0.68 1.07 1.07 1.12 1.21 0.86 1.07

(2.33) (2.89) (1.83) (2.20) (2.11) (2.35) (1.99) (2.09) (2.13) (2.00) (2.24) (2.46) (2.04)
FFC4 alpha 0.48 0.68 0.76 0.83 0.43 0.86 0.50 0.80 0.78 0.85 0.91 0.66 0.85

(2.53) (3.62) (2.57) (2.96) (1.98) (3.01) (2.24) (2.68) (2.74) (2.81) (3.04) (3.01) (3.17)
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Table 7: Predictive reverse double-sorted portfolios
The table reports the average returns for predicative reverse double-sorted portfolios. The sample consists of the 985 individual
stocks included in the S&P 500 index over 1993-2010. For each month, all stocks in the sample are first sorted into five quintiles
on the basis of one beta. Within each quintile, the stocks are then sorted into five quintiles according to one control variable.
These five control variable portfolios are then averaged across the five beta portfolios to produce control variable portfolios
with large cross-portfolio variation in their control variables but little variation in beta. βs, βc, βd, and βn are the standard,
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT are the measures of coskewness and cokurtosis, respectively. RSK and RKT denote the realized skewness and realized
kurtosis computed from high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ refers to
the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t − 11 through
month t. The first five rows in each panel report time-series averages of monthly excess returns for the control variable quintile
portfolios. The row labeled “High-Low” reports the difference in the returns between portfolio 5 and portfolio 1. The row
labeled “FFC4 alpha” reports the average Fama-French-Carhart four-factor alphas. The corresponding Newey-West robust
t-statistics are reported in parentheses. Panels A, B, C, and D display the results for the portfolios first sorted by βs, βc, βd,
and βn, respectively, and then by the control variables listed in the columns.

ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

Panel A: First sort by βs

1 (Low) 1.99 1.06 1.17 1.36 0.85 1.22 1.64 1.21 0.85 1.10 0.57
2 1.28 1.08 1.04 1.34 0.91 1.17 1.22 1.18 0.94 0.95 0.76
3 0.98 1.03 0.85 0.92 0.98 1.07 1.01 1.04 0.96 1.00 1.01
4 0.63 1.08 0.96 0.89 1.16 1.06 0.77 0.95 1.18 0.95 1.28
5 (High) 0.56 1.13 1.41 0.92 1.54 0.90 0.80 0.92 1.37 1.43 1.81
High-Low -1.43 0.07 0.23 -0.44 0.69 -0.32 -0.84 -0.28 0.52 0.33 1.24

(-5.25) (0.34) (0.64) (-1.73) (2.31) (-1.41) (-3.11) (-1.76) (2.45) (1.28) (4.41)
FFC4 alpha -1.09 -0.20 -0.18 -0.44 0.52 -0.10 -0.56 -0.25 0.25 0.22 0.99

(-7.63) (-1.38) (-0.90) (-1.72) (2.73) (-0.44) (-2.93) (-1.56) (1.24) (1.19) (7.03)

Panel B: First sort by βc

1 (Low) 1.90 1.03 1.16 1.34 0.77 1.19 1.37 1.20 0.88 1.02 0.54
2 1.20 0.97 0.96 1.20 0.91 1.08 1.17 1.16 0.87 0.88 0.79
3 0.93 1.04 0.90 0.98 0.93 1.09 1.06 1.04 0.99 0.95 0.93
4 0.73 1.05 0.92 0.86 1.07 1.02 0.76 0.93 1.18 1.02 1.32
5 (High) 0.49 1.07 1.31 0.89 1.58 0.84 0.89 0.92 1.37 1.39 1.66
High-Low -1.41 0.04 0.15 -0.45 0.81 -0.34 -0.48 -0.29 0.49 0.37 1.12

(-4.90) (0.21) (0.38) (-1.69) (2.50) (-1.50) (-1.85) (-1.82) (2.30) (1.30) (3.74)
FFC4 alpha -1.09 -0.20 -0.29 -0.43 0.66 -0.10 -0.27 -0.26 0.24 0.26 0.91

(-6.82) (-1.41) (-1.38) (-1.55) (3.32) (-0.43) (-1.19) (-1.65) (1.17) (1.37) (6.32)

Panel C: First sort by βd

1 (Low) 1.65 0.96 1.13 1.28 0.90 1.07 1.28 1.25 0.86 0.97 0.61
2 1.34 1.06 0.97 1.26 0.92 1.18 1.16 1.10 0.98 1.07 0.83
3 0.93 1.07 0.91 1.07 0.99 1.07 0.99 1.03 0.99 0.97 1.02
4 0.79 1.06 0.96 0.79 1.13 1.05 0.97 0.90 1.10 1.06 1.29
5 (High) 0.55 1.03 1.26 0.86 1.31 0.85 0.86 0.97 1.35 1.18 1.48
High-Low -1.09 0.06 0.13 -0.42 0.41 -0.21 -0.42 -0.28 0.49 0.22 0.87

(-4.46) (0.31) (0.34) (-1.63) (1.55) (-0.95) (-1.71) (-1.81) (2.52) (0.85) (3.15)
FFC4 alpha -0.81 -0.21 -0.30 -0.40 0.32 0.03 -0.24 -0.24 0.26 0.14 0.69

(-5.15) (-1.50) (-1.49) (-1.51) (1.66) (0.15) (-1.10) (-1.61) (1.34) (0.70) (4.49)

Panel D: First sort by βn

1 (Low) 1.59 1.00 0.99 1.28 0.87 1.15 1.22 1.22 0.89 1.04 0.66
2 1.34 1.09 1.04 1.24 0.99 1.17 1.20 1.13 0.94 0.98 0.85
3 1.03 1.04 0.85 1.05 1.02 1.08 1.02 1.02 0.96 1.04 0.98
4 0.73 0.99 1.04 0.94 1.21 1.02 0.86 0.98 1.14 1.12 1.25
5 (High) 0.57 1.05 1.30 0.76 1.17 0.80 0.98 0.90 1.35 1.05 1.50
High-Low -1.02 0.05 0.30 -0.52 0.30 -0.35 -0.25 -0.32 0.46 0.01 0.85

(-4.01) (0.22) (0.77) (-1.93) (1.09) (-1.44) (-0.99) (-2.04) (2.36) (0.04) (2.99)
FFC4 alpha -0.73 -0.20 -0.13 -0.50 0.17 -0.06 -0.09 -0.26 0.22 -0.11 0.65

(-4.91) (-1.33) (-0.65) (-1.81) (0.99) (-0.27) (-0.45) (-1.74) (1.18) (-0.53) (4.49)
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Table 8: Fama-MacBeth regressions
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from Fama-MacBeth cross-
sectional regressions for monthly stock returns. The sample consists of the 985 individual stocks included in the S&P 500 index
over 1993-2010. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight betas, respectively. ME denotes
the logarithm of the market capitalization of firms. BM denotes the ratio of the book value of common equity to the market
value of equity. MOM is the compound gross return from month t−11 through month t−1. REV is the month t return. IVOL
is a measure of idiosyncratic volatility. CSK and CKT denote the measures of coskewness and cokurtosis, respectively. RSK
and RKT are the realized skewness and realized kurtosis, respectively, computed from high-frequency data. MAX represents
the maximum daily raw return for month t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return
to the dollar trading volume from month t−11 through month t. Panel A reports the results of simple regressions with a single
explanatory variable. Panel B reports the results of multiple regressions with more than one explanatory variable.

Panel A: Simple regressions

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

0.86 0.95 0.82 0.58 -0.37 -0.20 0.01 -0.01 0.23 -1.56 -0.25 -0.63 0.15 0.06 0.31
(1.94) (1.91) (1.99) (2.14) (-4.08) (-0.79) (0.82) (-0.74) (1.36) (-1.83) (-1.43) (-1.91) (1.94) (1.28) (3.33)

Panel B: Multiple regressions

Regression βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I 0.71 -0.45 -0.28 0.01 -0.02 -0.19 0.77 -0.41 -0.18 -0.05 0.02 -0.05
(1.41) (-3.03) (-1.51) (1.31) (-2.06) (-1.73) (1.35) (-2.25) (-0.67) (-0.92) (0.69) (-0.43)

II 0.58 -0.47 -0.31 0.01 -0.02 -0.15 0.78 -0.18 -0.21 -0.05 0.03 -0.03
(1.46) (-3.03) (-1.66) (1.19) (-2.04) (-1.36) (1.39) (-1.27) (-0.78) (-1.00) (0.93) (-0.22)

III 0.55 -0.49 -0.33 0.01 -0.02 -0.17 0.97 -0.15 -0.18 -0.04 0.03 -0.10
(1.97) (-3.10) (-1.71) (1.27) (-2.07) (-1.62) (1.67) (-1.06) (-0.66) (-0.77) (0.80) (-0.73)

IV 0.43 -0.51 -0.32 0.01 -0.03 -0.17 0.86 -0.13 -0.12 -0.03 0.02 -0.11
(2.25) (-3.09) (-1.63) (1.45) (-2.16) (-1.56) (1.48) (-0.90) (-0.47) (-0.62) (0.50) (-0.81)

V -0.06 0.29 0.30 -0.37 -0.25 0.01
(-0.13) (1.68) (2.16) (-4.45) (-0.97) (1.15)

V -0.02 0.28 0.31 -0.38 -0.23 0.00 -0.02
(-0.04) (1.74) (2.22) (-4.59) (-1.19) (0.97) (-2.17)

VII -0.05 0.36 0.32 -0.38 -0.26 0.01 -0.10
(-0.12) (1.61) (2.11) (-4.96) (-1.03) (1.16) (-0.99)

VIII -0.07 0.33 0.29 -0.37 -0.28 0.01 -0.14
(-0.15) (1.72) (2.01) (-4.50) (-1.12) (1.15) (-0.26)

IX -0.01 0.30 0.28 -0.36 -0.28 0.01 -0.05
(-0.03) (1.76) (2.02) (-4.70) (-1.14) (1.12) (-0.36)

X -0.02 0.28 0.30 -0.37 -0.27 0.01 -0.57
(-0.04) (1.71) (2.05) (-4.49) (-1.04) (1.11) (-1.94)

XI -0.07 0.27 0.29 -0.40 -0.31 0.01 -0.05
(-0.15) (1.73) (2.00) (-4.69) (-1.28) (1.27) (-0.85)

XII -0.03 0.39 0.35 -0.38 -0.26 0.01 -0.05
(-0.07) (1.74) (2.47) (-4.86) (-1.02) (1.14) (-1.68)

XIII -0.06 0.29 0.28 -0.42 -0.24 0.01 -0.06
(-0.13) (1.76) (1.96) (-2.65) (-0.92) (1.34) (-0.48)

XIV 0.02 0.31 0.31 -0.47 -0.28 0.01 -0.02 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
(0.05) (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.93) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

XV 0.25 0.25 0.25 -0.45 -0.28 0.01 -0.02 -0.21 0.81 -0.17 -0.18 -0.02 0.02 -0.06
(1.96) (-2.95) (-1.46) (1.33) (-2.09) (-2.00) (1.41) (-1.26) (-0.66) (-0.39) (0.49) (-0.48)
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Table 9: Fama-MacBeth regressions with different beta estimation frequencies
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from monthly Fama-MacBeth
cross-sectional regressions simultaneously controlling for all explanatory variables, restricting the coefficients for βd and βn to
be the same. The sample consists of the 985 individual stocks included in the S&P 500 index over 1993-2010. βc, βd, and βn

refer to the continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization
of firms. BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross
return from month t− 11 through month t− 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK
and CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to the realized skewness and
realized kurtosis, respectively, computed from high-frequency data. MAX represents the maximum daily raw return for month
t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month
t−11 through month t. Panel A reports the results for different βc estimates computed using the sampling frequencies listed in
the first column labeled “Frequency.” Panel B reports the results for different βd estimates based on the sampling frequencies
in the “Frequency” column.

Panel A: Different βc estimates

Frequency βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

5 min -0.36 0.34 -0.52 -0.30 0.01 -2.45 -0.21 0.86 -0.06 -0.15 -0.04 0.02 -0.16
(-0.87) (2.57) (-3.34) (-1.60) (1.37) (-2.13) (-1.96) (1.54) (-0.42) (-0.55) (-0.73) (0.69) (-1.21)

25 min -0.02 0.31 -0.51 -0.31 0.01 -2.39 -0.21 0.82 -0.08 -0.21 -0.03 0.03 -0.10
(-0.04) (2.35) (-3.37) (-1.66) (1.36) (-2.10) (-2.01) (1.50) (-0.61) (-0.79) (-0.69) (0.73) (-0.82)

75 min 0.02 0.31 -0.47 -0.28 0.01 -2.38 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
(0.05) (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.94) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

125 min 0.12 0.27 -0.47 -0.30 0.01 -2.43 -0.21 0.82 -0.15 -0.17 -0.03 0.02 -0.08
(0.35) (2.10) (-3.10) (-1.58) (1.34) (-2.11) (-1.99) (1.46) (-1.05) (-0.65) (-0.59) (0.62) (-0.60)

180 min 0.05 0.29 -0.48 -0.31 0.01 -2.52 -0.20 0.88 -0.15 -0.17 -0.03 0.02 -0.10
(0.14) (2.22) (-3.17) (-1.62) (1.40) (-2.20) (-1.94) (1.59) (-1.11) (-0.62) (-0.64) (0.68) (-0.73)

mix 0.06 0.30 -0.42 -0.31 0.01 -2.49 -0.21 0.86 -0.09 -0.18 -0.03 0.02 -0.08
(0.17) (2.24) (-2.87) (-1.63) (1.42) (-2.18) (-1.96) (1.53) (-0.66) (-0.67) (-0.63) (0.61) (-0.58)

Panel B: Different βd estimates

Frequency βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

5 min 0.12 0.28 -0.48 -0.30 0.01 -2.39 -0.19 0.78 -0.11 -0.17 -0.04 0.03 -0.08
(0.32) (2.10) (-3.19) (-1.57) (1.28) (-2.10) (-1.80) (1.40) (-0.81) (-0.66) (-0.70) (0.76) (-0.61)

25 min 0.05 0.29 -0.48 -0.28 0.01 -2.45 -0.20 0.80 -0.12 -0.16 -0.04 0.03 -0.08
(0.15) (2.32) (-3.19) (-1.47) (1.30) (-2.14) (-1.88) (1.44) (-0.87) (-0.59) (-0.76) (0.80) (-0.61)

75 min 0.02 0.31 -0.47 -0.28 0.01 -2.38 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
(0.05) (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.94) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

125 min 0.04 0.30 -0.47 -0.28 0.01 -2.44 -0.21 0.79 -0.14 -0.19 -0.04 0.03 -0.07
(0.10) (2.28) (-3.14) (-1.51) (1.24) (-2.15) (-2.02) (1.41) (-0.99) (-0.71) (-0.77) (0.85) (-0.58)

180 min 0.04 0.29 -0.47 -0.28 0.01 -2.47 -0.21 0.75 -0.13 -0.20 -0.04 0.03 -0.07
(0.12) (2.22) (-3.15) (-1.49) (1.25) (-2.16) (-2.01) (1.35) (-0.94) (-0.75) (-0.80) (0.88) (-0.59)

mix 0.08 0.28 -0.45 -0.28 0.01 -2.44 -0.20 0.77 -0.13 -0.18 -0.04 0.03 -0.07
(0.22) (2.20) (-3.07) (-1.50) (1.26) (-2.13) (-1.95) (1.37) (-0.93) (-0.70) (-0.72) (0.85) (-0.56)
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Table 10: Fama-MacBeth regressions with different beta estimation periods and return hold-
ing horizons
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from Fama-MacBeth cross-
sectional regressions for predicting the next H-month cumulative returns. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. The regressions simultaneously control for all explanatory variables, restricting
the coefficients for βd and βn to be the same. The betas are computed from the previous L-month high-frequency returns. βs,
βc, βd, and βn refer to the standard, continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm
of the market capitalization of firms. BM denotes the ratio of the book value of common equity to the market value of equity.
MOM is the compound gross return from month t− 11 through month t− 1. REV is the month t return. IVOL is a measure of
idiosyncratic volatility. CSK and CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to
the realized skewness and realized kurtosis, respectively, computed from high-frequency data. MAX represents the maximum
daily raw return for month t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return to the dollar
trading volume from month t− 11 through month t.

Regression L H βs βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I 3 1 0.45 -0.41 -0.34 0.00 -0.03 -0.09 0.88 -0.45 -0.18 -0.14 0.05 0.09
(1.63) (-2.32) (-1.66) (0.99) (-2.75) (-0.69) (1.40) (-3.04) (-0.63) (-2.24) (1.44) (0.59)

II 6 1 0.67 -0.38 -0.34 0.00 -0.03 -0.14 0.87 -0.53 -0.18 -0.12 0.06 0.10
(1.64) (-2.28) (-1.71) (0.96) (-2.81) (-1.17) (1.37) (-3.27) (-0.63) (-2.01) (1.55) (0.70)

III 12 3 2.05 -0.70 -0.73 0.02 -0.05 -0.16 2.04 -1.57 -0.37 -0.36 0.13 0.66
(1.63) (-1.45) (-1.64) (1.37) (-1.86) (-0.70) (1.46) (-3.11) (-0.67) (-2.77) (1.82) (1.38)

IV 12 6 4.25 -1.59 -1.53 0.03 0.00 0.36 3.28 -2.42 -0.96 -0.49 0.03 1.21
(1.48) (-1.39) (-1.74) (1.09) (-0.06) (0.87) (1.32) (-2.43) (-0.89) (-1.45) (0.29) (1.05)

V 12 12 9.57 -5.55 -3.76 0.05 0.09 0.72 3.73 -3.34 -1.35 -0.59 0.07 0.24
(1.42) (-1.95) (-1.73) (1.02) (0.96) (1.23) (0.79) (-1.77) (-0.73) (-0.67) (0.36) (0.10)

VI 3 1 -0.30 0.43 -0.41 -0.34 0.00 -0.03 -0.19 0.76 -0.23 -0.14 -0.14 0.05 0.07
(-1.10) (3.48) (-2.58) (-1.69) (0.94) (-2.78) (-1.68) (1.24) (-1.66) (-0.48) (-2.53) (1.49) (0.53)

VII 6 1 -0.45 0.55 -0.42 -0.34 0.00 -0.03 -0.21 0.85 -0.22 -0.16 -0.12 0.06 0.05
(-1.32) (4.15) (-2.63) (-1.70) (0.90) (-2.87) (-1.91) (1.37) (-1.61) (-0.56) (-2.26) (1.70) (0.39)

VIII 12 3 -1.66 1.65 -0.84 -0.72 0.01 -0.05 -0.32 2.50 -0.65 -0.39 -0.34 0.14 0.46
(-1.39) (3.94) (-1.86) (-1.60) (1.27) (-1.97) (-1.52) (1.86) (-2.12) (-0.74) (-2.85) (1.92) (1.11)

IX 12 6 -1.35 2.73 -1.73 -1.40 0.03 -0.01 0.02 4.01 -1.05 -1.02 -0.39 0.05 0.96
(-0.50) (3.45) (-1.67) (-1.59) (1.06) (-0.23) (0.06) (1.64) (-1.65) (-1.00) (-1.40) (0.50) (0.99)

X 12 12 3.82 4.07 -5.42 -3.15 0.05 0.08 -0.08 4.85 -1.65 -1.33 -0.18 0.08 0.35
(0.65) (3.28) (-2.04) (-1.59) (1.00) (0.89) (-0.11) (1.01) (-1.09) (-0.72) (-0.23) (0.39) (0.17)
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Table 11: Fama-MacBeth regressions excluding macroeconomic news announcement days
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from monthly Fama-MacBeth
cross-sectional regressions simultaneously controlling for all explanatory variables, restricting the coefficients for βd and βn

to be the same. The sample consists of the 985 individual stocks included in the S&P500 index over 1993-2010. The betas
are calculated excluding FOMC, Employment, and PPI announcement days in the estimation. βc, βd, and βn refer to the
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to the realized skewness and realized
kurtosis, respectively, computed from high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ
refers to the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t − 11
through month t.

Regression βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I -0.11 0.30 -0.37 -0.25 0.01
(-0.25) (2.32) (-4.40) (-0.93) (1.03)

II -0.09 0.30 -0.38 -0.23 0.00 -0.02
(-0.21) (2.28) (-4.51) (-1.13) (0.84) (-2.12)

III -0.07 0.33 -0.39 -0.26 0.00 -0.09
(-0.15) (2.31) (-5.04) (-1.00) (1.04) (-0.92)

IV -0.09 0.30 -0.38 -0.28 0.00 -0.23
(-0.21) (2.26) (-4.51) (-1.09) (1.02) (-0.43)

V -0.04 0.29 -0.37 -0.29 0.00 -0.04
(-0.10) (2.30) (-4.72) (-1.12) (0.99) (-0.31)

VI -0.08 0.29 -0.37 -0.26 0.00 -0.59
(-0.18) (2.30) (-4.43) (-0.98) (0.99) (-2.01)

VII -0.11 0.28 -0.41 -0.31 0.01 -0.06
(-0.25) (2.27) (-4.63) (-1.24) (1.16) (-0.89)

VIII -0.05 0.36 -0.39 -0.26 0.00 -0.05
(-0.12) (2.56) (-4.87) (-1.00) (1.02) (-1.61)

IX -0.11 0.28 -0.44 -0.23 0.01 -0.08
(-0.26) (2.29) (-2.74) (-0.87) (1.21) (-0.60)

X -0.01 0.31 -0.50 -0.29 0.00 -0.02 -0.22 0.81 -0.12 -0.17 -0.05 0.03 -0.10
(-0.04) (2.33) (-3.33) (-1.54) (1.14) (-2.16) (-2.05) (1.46) (-0.84) (-0.63) (-0.89) (0.95) (-0.77)

XI 0.24 -0.47 -0.28 0.01 -0.02 -0.22 0.81 -0.17 -0.17 -0.02 0.02 -0.08
(1.95) (-3.05) (-1.49) (1.27) (-2.13) (-2.08) (1.41) (-1.23) (-0.61) (-0.45) (0.66) (-0.62)

44



(A) (B)

Fig. 1: Distributions and autocorrelograms of betas
Panel A displays kernel density estimates of the unconditional distributions of the four different betas av-
eraged across firms and time. Panel B shows the monthly autocorrelograms for the four different betas
averaged across firms.
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(A) βs (B) βc

(C) βd (D) βn

Fig. 2: Time series plots of betas
The figure displays the times series of the averages of the betas for each of the beta-sorted quintile portfolios.
Panel A shows the results for the standard beta βs-sorted portfolios, Panel B the continuous beta βc-sorted
portfolios, Panel C the discontinuous beta βd-sorted portfolios, and Panel D the overnight beta βn-sorted
portfolios.
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(A) (B)

Fig. 3: Signature plots for betas
Panel A shows the mean value of βc (solid line) averaged across stocks and time for different sampling
frequencies (labeled in minutes on the x-axis). The dashed line gives the mean value of the mixed-frequency
βc. Panel B plots the same averaged estimates for βd.

Fig. 4: Jump intensity and macro announcement
The figure plots the average estimated jump intensity (probability) for the S&P 500 market portfolio across
regular trading hours on FOMC announcement days, Employment announcement days, PPI announcement
days, and all other days (Non-Ann).
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