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Abstract

We develop a nonparametric estimator of the stochastic volatility density of a discretely-
observed Itô semimartingale in the setting of an increasing time span and finer mesh of the
observation grid. There are two steps. The first is aggregating the high-frequency increments
into the realized Laplace transform, which is a robust nonparametric estimate of the underlying
volatility Laplace transform. The second step is using a regularized kernel to invert the realized
Laplace transform. The two steps are relatively quick and easy to compute, so the nonparametric
estimator is practicable. We derive bounds for the mean squared error of the estimator. The
regularity conditions are sufficiently general to cover empirically important cases such as level
jumps and possible dependencies between volatility moves and either diffusive or jump moves in
the semimartingale. Monte Carlo work indicates that the nonparametric estimator is reliable and
reasonably accurate in realistic estimation contexts. An empirical application to 5-minute data
for three large-cap stocks, 1997-2010, reveals the importance of big short-term volatility spikes in
generating high levels of stock price variability over and above that induced by price jumps. The
application also shows how to trace out the dynamic response of the volatility density to both
positive and negative jumps in the stock price.
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1 Introduction

Continuous-time models are widely used in empirical finance to model the evolution of financial

asset prices. Absence of arbitrage (under some technical conditions) implies that traded financial

assets should be semimartingales and typically most, if not all, applications restrict attention

to Itô semimartingales, i.e., semimartingales with characteristics absolutely continuous in time.

Thus the standard asset pricing model for the log-financial price Xt is of the form

dXt = αtdt+
√
VtdWt + dJt, (1)

where αt and Vt > 0 are processes with càdlàg paths, Wt is a Brownian motion, Jt is a jump

process.

In Section 2 further below we give the technical conditions for the components comprising X in

(1), while here we briefly describe their main roles in determining the dynamics of X. αt captures

risk premium (and possibly risk-free rate) and is well-known to be present but will not be the

object of interest in this paper. As will be seen below, it gets filtered out in our estimation process.

The jump component, Jt, highlighted by Barndorff-Nielsen and Shephard (2004), among others,

accounts according to earlier empirical evidence typically for 5 to 15 percent of the total variance

of the increments in X. Jumps reflect the fact that financial time series exhibit very sharp short-

term moves incompatible with the continuous sample paths implied by diffusive models. Much

of the evidence on jumps has been adduced using very high frequency data, see e.g., Barndorff-

Nielsen and Shephard (2006) and Ait-Sahalia and Jacod (2009); earlier efforts using coarsely

sampled (daily) data were at best mildly successful in handling both jumps and diffusive price

moves. Similar to αt, Jt will be filtered out in our analysis. The volatility term, Vt, represents

the dominant component of the variance of increments in X and thus is most widely studied,

see e.g., Mykland and Zhang (2009) and the many references therein. The volatility process is

well known to be negatively correlated with the increments in the driving diffusion Wt. This

negative correlation is the so called “leverage” effect, a term due to Black (1976), and the effect
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has been extensively documented in a wide variety of studies using various statistical methods. Of

course, price and volatility can have dependence beyond the “leverage” effect as in the symmetric

GARCH processes, e.g., Klüppelberg et al. (2004).

This paper develops a method to estimate nonparametrically from high-frequency data (by

way of a Laplace transform) the marginal law of the stochastic volatility process Vt as well as its

conditional law for certain interesting events. For reasons just described, we develop the density

estimation method within a very general setting where Vt and Wt can be dependent and jumps

and a drift term are present as well. Although the preceding discussion is for X being a financial

asset price, the results in this paper obviously apply to any statistical application where high-

frequency observations of an Itô semimartingale (which includes many continuous-time models)

are available.

On intuitive level, our method can be described as follows. We use a cosine transformation of

appropriately re-scaled high-frequency returns data (which is akin to using a bounded influence

function) that essentially separates out the jumps and the drift, thereby leaving (essentially) the

diffusive piece scaled by
√
Vt. Averaging the transform over time yields the realized Laplace

transform of volatility studied in Todorov and Tauchen (2012). This transform estimates the

real-valued Laplace transform of the underlying spot volatility process, and it further achieves

this without any need for staggering of price increments, explicit truncation, or other techniques

involving tuning parameters commonly used for jump-robust measures of volatility.

Real Laplace transforms uniquely identify the distribution of nonnegative random variables,

so a second step in the estimation is to invert the realized Laplace transform of volatility and

thereby recover an estimate of the volatility density. The task of inverting real Laplace transforms

also arise in analysis of certain physical phenomena. Historically, inversion of the real Laplace

transform, where transform values are only available on the nonnegative real axis but not the

entire complex plane, was among the most notorious of all ill-posed problems. However, recent

regularization algorithms developed by Kryzhniy (2003a,b) along with the availability of high
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speed computing equipment (for nested numerical integrations) render the inversion a quick and

easy task to compute in a matter of a few minutes using standard software like Matlab.

The role of regularization in this context is to guarantee statistical consistency when the

volatility Laplace transform is recovered with sampling error, as is case here. Our nonparametric

volatility density estimate is an integral on R+ of the realized Laplace transform multiplied by

a (deterministic) regularized kernel. To analyze the asymptotic behavior of the above integral,

the local uniform asymptotics of the realized Laplace transform derived in Todorov and Tauchen

(2012) does not suffice. Here, therefore, we derive the asymptotic behavior of the realized Laplace

transform considered as a process in a weighted L2(R+) space, which requires in particular to

bound the discretization error for increasing values of the argument of the Laplace transform. We

further derive bounds on the magnitude of the error in the nonparametric density estimation due

to the regularization. Combining these results, we are able to bound the mean squared error of our

nonparametric volatility density estimate and show that it achieves optimal rate of convergence

(for the assumed smoothness of the density).

We can compare our method with the deconvolution approach of Van Es et al. (2003) and

Comte and Genon-Catalot (2006). The methods of these papers are developed for a process

without jumps, i.e., without Jt in (1), and with stochastic volatility Vt independent from the

Brownian motion Wt in (1) (and further without drift in the case of Comte and Genon-Catalot

(2006)). In such a setup, the logarithm of the squared price increments is (approximately) a sum

of signal (the log volatility) and noise, and one can apply a deconvolution kernel (Van Es et al.

(2003)) or a penalized projection (Comte and Genon-Catalot (2006)) to generate a nonparametric

estimate of the distribution of the log volatility. The rate of convergence of this estimation

depends, of course, on the smoothness of the volatility density, with a logarithmic rate in the

least favorable situation. In our case, similar rates apply on comparable smoothness conditions

for the density, but under the much weaker and empirically plausible assumptions on jumps and

leverage for X in (1). On a more practical level, the method here avoids taking logarithms of
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high-frequency squared price increments, which could be problematic in some instances, because

the log transformation inflates (despite the centering) the non-trivial number of zero returns due

to discretization, and it further weighs more heavily the smaller increments which are more prone

to microstructure noise effects.

We test our method on simulated data that mimics a typical data set available in finance

and find that the method can recover reasonably well the volatility density. We further provide

guidance on the choice of the regularization parameter.

In an empirical application, we investigate the distribution of the spot volatility for three large-

cap stocks. Earlier work by Andersen et al. (2001) investigated the distribution of daily realized

volatility (which is the sum of the squared daily high-frequency increments) of financial series,

exchange rates in their case. Here we go one step further and recover the distribution of spot

volatility. Spot and realized volatility differ due to the time-aggregation as well as the presence

of price jumps. The evidence suggests that the density of spot volatility is less concentrated

around the mode with more mass in the extreme tails than that of a (jump-robust) realized

volatility measure. This latter finding underscores the presence of short-term volatility spikes. We

also invert the realized Laplace transform on days following a significant price jump and provide

nonparametric evidence that volatility increases significantly after jumps with diminishing impact

over time. Overall, the nonparametric analysis sheds light on the importance of the variability of

the stochastic volatility process Vt in accounting for big moves in asset prices in addition to pure

price jumps generated by Jt.

The rest of the paper is organized as follows. Section 2 states the problem and the assump-

tions and presents the main asymptotic results. Section 3 reports numerical experiments on the

inversion of real-valued Laplace transform using our proposed method, both in the case when the

latter is the true transform and the case where it is recovered from high-frequency observations of

a jump-diffusion process. Section 4 reports on the empirical application to high-frequency stock

data. Section 5 concludes. Section 6 contains the proof of the theoretical results.

5



2 Main results

We start with describing our estimation method and deriving its asymptotic behavior.

2.1 Setup and definitions

We first state the necessary assumptions that we will need. The observed process X is given by

its dynamics specified in (1) and is defined on a filtered probability space (Ω,F , (Ft)t≥0,P) which

satisfies the usual conditions. Our assumption for X is given in the following.

Assumption A. For the process X specified in (1) assume

A1. For every t ≥ 0 we have E
{
|αt|2 + |Vt|2 + |Jt|2

}
≤ K for some positive constant K.

A2. Jt is a jump process of the form Jt =
∫ t
0

∫
R κ(x)µ̃(ds, dx) +

∫ t
0

∫
R κ′(x)µ(ds, dx) where µ

is integer-valued measure on R+ × R with compensator ν(ds, dx); µ̃(ds, dx) = µ(ds, dx) −

ν(ds, dx); κ(x) is continuous function with κ(x) = x around zero, or is identically zero

around zero, and it is zero outside a compact set containing the zero; κ′(x) = x− κ(x).

A3. For every t,s ≥ 0 we have E
(
|Vt − Vs|2|Fs∧t

)
≤ Ks∧t|t−s| for some Fs∧t-measurable random

variable Ks∧t with E|Ks∧t|2+ι < K for some positive constant K and arbitrary small ι > 0,

and E|Jt − Js|p ≤ K|t− s| for every p ∈ (β, 2], some β ∈ [0, 2) and a positive constant K.

A4. Vt is a stationary and α-mixing process with αmix
t = O(t−1−ι) when t → ∞ for some arbitrary

small ι > 0, where

αmix
t = sup

A∈F0, B∈F t

|P(A∩B)−P(A)P(B)|, F0 = σ(Vs, s ≤ 0) and F t = σ(Vs, s ≥ t). (2)

Assumption A1 imposes some mild integrability conditions on the different components of X.

Some of them can be potentially relaxed, but nevertheless they are very weak and satisfied in

virtually all parametric models used in empirical finance. Assumption A2 specifies the jump

process in Xt. We note that there is very little structure that is assumed for the jumps and

in particular time-variation in the jump compensator (both in the form of time-varying jump
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size and time-varying jump intensity) is allowed for. In assumption A3 we impose restriction on

the variability in the processes Vt and Jt. The part of A3 concerning Vt is very minimal and in

particular is satisfied when Vt is an Itô semimartingale (as is the case in the popular affine jump-

diffusion framework) but it also holds for certain long-memory specifications (A3 also strengthens

slightly the integrability condition for Vt in A1). We also point out that assumption A allows for

jumps in Vt that can have arbitrary dependence with Jt which will be of practical importance

as we will see in the empirical application. The restriction of A3 on the jump component Jt is

that the so-called Blumenthal-Getoor index of the latter (which can be random) is bounded by

β. We note that we allow for β > 1 which means that infinite variation jumps are included in

our analysis as well. Finally A4 is a (standard) mixing condition on the volatility process and it

is satisfied in wide classes of volatility models.

As stated already in the introduction, our goal in this paper is to recover nonparametrically

the density of the spot volatility marginal law (with respect to Lebesgue measure), which we

denote with f(x) (and assume to exist almost everywhere, and it further does not depend on t

as we are interested in the case when volatility is a stationary process). Our next assumption

imposes the necessary conditions on f(x).

Assumption B. The marginal law of the stationary process Vt has density f(x) which is piecewise

continuous and has piecewise continuous derivatives on [0,∞) with f(0+) and f ′(0+) possibly

infinite. We further have

B1. f ′(x) = O(x−q) as x → 0 and f ′(x) = O(x−1/2−ι) and f(x) = o(1) as x → ∞, for some

nonnegative q < 5/2 and arbitrary small ι > 0.

B2. f(x) and f ′(x) are bounded on R+ with f(x) = o(x−1−ι) and f ′(x) = o(x−2−ι) for some

arbitrary small ι > 0 when x → ∞ and f(0+) = 0.

The degree of smoothness of the density naturally impacts the precision of estimation as in

standard nonparametric density estimation (based on direct observations of the process) and the
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above assumption provides such conditions. Assumption B1 is quite weak and allows for the

density of Vt to explode around zero. Assumption B2 strengthens B1 by ruling out explosions

around zero and further requiring a rate of decay of the volatility density (and its derivative) at

infinity.

Our strategy of estimating nonparametrically the volatility density from high-frequency obser-

vations of Xt is based on first recovering the Laplace transform of the volatility density and then

inverting it. To this end, we denote the real-valued Laplace transform of the marginal distribution

of the process Vt with

L(u) = E [exp (−uVt)] , u ≥ 0. (3)

In Todorov and Tauchen (2012) we have proposed the following nonparametric estimate of the

unobserved volatility Laplace transform from high-frequency observation of Xt on the discrete

equidistant grid 0, 1
n , ...,

j
n , ..., T

L̂(u) = 1

nT

nT∑
i=1

cos
(√

2un∆n
i X
)
, ∆n

i X = X i
n
−X i−1

n
, u ≥ 0, (4)

which we refer to as realized Laplace transform. As shown in Todorov and Tauchen (2012), for

T → ∞ and n → ∞, we have locally uniformly in u

L̂(u) P−→ L(u), (5)

and their is an associated Central Limit theorem but we will not make use of it here. We note,

in particular, that L̂(u) is robust to presence of jumps in X (the component Jt in (1)) as well as

any dependence between the volatility process Vt and the Brownian motion Wt.

The results that follow will continue to hold if the observation times are non-equidistant but

still nonrandom (by conditioning they can be also further extended to the case when the sampling

is random but independent from the process X), i.e., if on the interval [0, T ] we observe X on

the discrete grid, 0 = τ(n, 0) < τ(n, 1) < .... < τ(n, i) < ... ({τ(n, i) : i ≥ 0, n ≥ 1} is a double

sequence with n indexing the sequence of discretization grids). We denote ∆(n, i) = τ(n, i) −
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τ(n, i− 1) and with πn
T = supi: τ(n,i)≤T ∆(n, i) the mesh of the grid on [0, T ]. Then L̂(u) in the

non-equidistant case gets generalized to L̂(u) = 1
T

∑
i: τ(n,i)≤T ∆(n, i) cos

(√
2u∆(n, i)−1∆n

i X
)

and we need πn
T → 0 as T → ∞ and n → ∞ for the consistency in (5). Further, the limit results

in Theorem 1 below continue to hold with n−1 replaced with πn
T .

The (real-valued) Laplace transform of a nonnegative random variable uniquely identifies its

distribution (see e.g., Feller (1971)). However recovering the distribution from the Laplace trans-

form is an ill-posed problem (Tikhonov and Arsenin (1977)) and hence one needs a regularization

to make the inversion problem a continuous operator on the space of Laplace transforms. Here,

we adopt an approach proposed in Kryzhniy (2003a,b) and propose the following regularized

inversion of the true Laplace transform L(u)

fR(x) =

∫ ∞

0
L(u)Π(R, xu)du, (6)

where R > 0 is a regularization parameter and the kernel Π(R, x) is defined as

Π(R, x) =
4√
2π2

[
sinh

(
πR

2

)∫ ∞

0

√
u cos(R ln(u))

u2 + 1
sin(xu)du

+ cosh

(
πR

2

)∫ ∞

0

√
u sin(R ln(u))

u2 + 1
sin(xu)du

]
.

(7)

As shown in Kryzhniy (2003a), fR(x) → f(x−)+f(x+)
2 for every x > 0 (pointwise) as R → ∞ where

we define f(x+) = limy↓x f(y) and f(x−) = limy↑x f(y). We further have

∣∣∣∣∫ ∞

0
(L1(u)− L2(u))Π(R, xu)du

∣∣∣∣ ≤ K sup
u∈R+

|L1(u)− L2(u)|,

for any two Laplace transforms L1(u) and L2(u) (Kryzhniy (2003a), Theorem 2) and a positive

constant K, which shows that this is indeed a regularization of the ill-posed inversion problem

(Tikhonov and Arsenin (1977)).

It is easy to develop intuition about the regularization by using the connection between the

regularized and true density derived in Kryzhniy (2003a)

fR(x) =

∫ ∞

0
f(u)δR,x(u)du, δR,x(u) =

2
√
ux

π(u2 − x2)
sin (R ln(u/x)) , x > 0. (8)
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The function δR,x(u) is a smooth approximation of the Dirac delta function at the point x. The

regularization parameter R determines the degree of smoothing and corresponds to the choice of

the bandwith in regular nonparametric kernel estimators where one has direct observations of the

variable of interest (unlike here where we do not observe directly Vt). Higher values of R means

that δR,x(u) is closer to the Dirac delta and hence this implies less smoothing. However, these

higher values can lead to a good result only if the precision of the input (here the realized Laplace

transform) is high, otherwise the oscillations in δR,x(u) will cause very noisy density estimates.

Exactly the opposite holds for low values of R. This is further confirmed from Figure 1 where we

plot the function δR,x(u) for several different values of x and a low and a high value of R that we

will actually use in our numerical work later on.
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Figure 1: The function δR,x(u). The solid lines correspond to the theoretical value of
δR,x(u) given in (8). The dots on the plots correspond to our numerical evaluation of
δR,x(u) via evaluating the integral in (6) with L(u) = exp(−ux).

An alternative representation of δR,x(u) is as the regularized inverse of the function exp(−ux),

that is δR,x(u) =
∫∞
0 exp(−tx)Π(R, ut)dt. We can use this connection to check the impact on the

estimation of the error due to the numerical integration involved in computing (6) and (7). We
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plot the resulting estimates of δR,x(u) with the dotted lines on Figure 1. As seen from the figure,

the dotted lines plot on the top of the solid lines (which correspond to the theoretical value of

δR,x(u) in (8)) which indicates that the numerical error is negligible for the values of R used in

the computations (which covers the range of R that we are going to use in practice).

The feasible analogue of fR(x), based on the realized Laplace transform, is naturally defined

as

f̂R(x) =

∫ ∞

0
L̂(u)Π(R, xu)du, (9)

and this will be our nonparametric estimate of the density of Vt from the discrete observations

of the underlying process X0, X 1
n
,...,XT . The local uniform asymptotics for L̂(u) developed in

Todorov and Tauchen (2012) does not suffice to study f̂R(x) since the integral in (9) is defined

on R+. To analyze the asymptotics of f̂R(x) (both pointwise and as a function) we need: (i)

asymptotics of L̂(u) considered as a process on weighted L2(R+) space and (ii) bounds for the

order of magnitude of the regularization error. We turn to this next.

2.2 Inversion of Real-Valued Laplace Transforms

We have the following asymptotic result for the regularized estimated density f̂R(x).

Theorem 1 For the process X in (1), we assume that assumption A holds and denote f̃(x) =

f(x−)+f(x+)
2 . Let n → ∞, T → ∞ and R → ∞.

(a) If assumption B1 holds then(
fR(x)− f̃(x)

)2
= O

(
R−2( 5−2q

3
∧1) × log2(R)

)
, (10)

E
(
f̂R(x)− fR(x)

)
= O

(
exp (πR/2)R2n−((1/β)∧1−(β∧1)/2)∧1/4+ι

)
,

E
(
f̂R(x)− fR(x)

)2
= O

(
exp (πR)R4

(
T−1 + n−(1/2)∧(1−β/2)+ι

))
, ∀ι > 0.

(11)

(b) If assumption B2 holds then

E
{∫

R+

w(x)
(
f̂R(x)− f̃(x)

)2
dx

}
= O

(
log2(R)

R2

∨
exp (πR)R4

(
T−1 + n−1+β/2+ι

))
, ∀ι > 0,

(12)

where w(x) is a bounded nonnegative-valued function with w(x) = o(x2) for x → 0.
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If we further denote

f̃R(x) =

∫ ∞

0
L̂(u)Π̃(R, xu)du, Π̃(R, xu) = χ(R2x)Π(R, xu), χ(u) = u ∧ 1, (13)

then (under assumption B2)

E
{∫

R+

(
f̃R(x)− f̃(x)

)2
dx

}
= O

(
log2(R)

R2

∨
exp (πR)R8

(
T−1 + n−1+β/2+ι

))
, ∀ι > 0.

(14)

The result of Theorem 1 implies that f̂R(x) is a consistent estimate of the volatility density f(x)

at the points of continuity of the latter and estimates the average of the right and left limits

(which exist by assumption B) at the points of discontinuity. The theorem goes one step further

and provides bounds on the bias and the variance of the estimator. There are two sources of

bias in the estimation. One, that is deterministic, arises from the regularization of the inversion,

and naturally depends only on the regularization parameter R. Its bound is given in (10). The

second source of bias is stochastic and arises from the discretization error, i.e., we do not observe

directly the empirical volatility Laplace transform 1
T

∫ T
0 exp (−uVs) ds but we need to recover it

from high-frequency data. The magnitude of this bias is given by the first expression in (11) and

naturally depends only on the mesh of the observation grid, i.e., 1/n. Finally, the bound on the

variance of the estimator is given in the second expression in (11). It depends both on the span

of the data and the mesh of the observation grid. The leading component of E
(
f̂R(x)− fR(x)

)2
(provided n is increasing sufficiently fast relative to T and R is fixed) is given by

1

T

∫ ∞

0

∫ ∞

0

∫ ∞

0
Π(R, xu)Π(R, xv)Σu,vdudvdx,

where Σu,v is the long-run variance-covariance kernel of 1
T

∫ T
0 (exp(−uVs)− L(u)) ds, i.e.,

Σu,v =

∫ ∞

0

{E [(exp (−uVt)− L(u)) (exp (−vV0)− L(v))] + E [(exp (−uV0)− L(u)) (exp (−vVt)− L(v))]} dt.

In the most common case of assumption B2 and provided n ∝ Tα for some α > 0, we can set

R = γ log(T )
π for some positive γ < α(1 − β/2)

∧
1, and get the squared bias and the variance of

the estimator of (almost) the same order of magnitude. Such choice of R will result in (only)
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logarithmic rate of convergence for our volatility density estimator. This is not surprising given

our weak assumption B2 for the density f(x). Squared logarithmic rate of convergence for the

log-volatility density, in a setting where Xt does not contain jumps and Vt is independent from Wt,

is obtained via a deconvolution approach in Van Es et al. (2003) where it is connected with the

optimal rate of deconvoluting a density in the presence of super-smooth noise derived in Fan (1991)

(in the context of i.i.d. data). Van Es et al. (2003) assume f(x) is twice continuously differentiable

and obtain optimal rate of convergence for their density estimator of squared logarithmic rate

while here we assume only first-order derivatives for f(x) and hence we end up with (almost)

logarithmic rate of convergence (which is the optimal deconvolution rate under this smoothness

assumption for f(x) in the presence of super-smooth noise, see Fan (1991)).

Similarly, here if we assume more smoothness conditions for the volatility density f(x) we

can show that the deterministic bias due to the regularization f(x)− fR(x) is of smaller order of

magnitude than the bound given in (10). This in turn will imply faster rate of convergence for

our volatility density estimator (provided R is chosen optimally). Thus we have a natural link

between the rate of convergence of our density estimator and the degree of smoothness of the

unknown volatility density. This is similar to the results in Comte and Genon-Catalot (2006). In

the setting of no drift and no jumps as well as independent Wt and Vt, Comte and Genon-Catalot

(2006) show that a penalized projection type volatility density estimator can provide faster rates

of convergence for smoother volatility densities.

Under the minimal smoothness requirement for the volatility density in assumption B, the

relative speed condition between T and n is relatively weak, i.e., as pointed above it is of the form

n ∝ Tα for some α > 0. Such a condition, in particular, is much weaker than the corresponding

requirement in the problem of parametric estimation of diffusions from discrete observations, see

e.g., Prakasa Rao (1988). This of course is no surprise and is a mere reflection of the much

smaller role (in relative terms) played by the discretization error in our nonparametric volatility

density estimation. We also point out that, quite naturally, the discretization error is bigger, the
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bigger is the bound on the activity index of jumps in X, β. This is because higher activity jumps

become harder to separate from diffusive innovations in the increments of X, which in particular

implies that
∣∣cos (√2un∆n

i X
)
− cos

(√
2un(∆n

i X −∆n
i J)
)∣∣ is larger for a higher value of β (its

order of magnitude is n(β∧1)/2−(1/β)∧1+ι for ι > 0 arbitrary small). We also point out that the

discretization error is of smaller magnitude in (12) versus (11) (provided β < 1) because of the

extra assumption on the behavior of the volatility density around zero in assumption B2 (the

volatility density approaches zero around the origin).

We note further that the result in part (a) is pointwise, i.e., for fixed x, while that in part

(b) is for the mean integrated squared error (note that under B1, f(x) does not need to belong

to L2(R)). For the estimator f̂R(x), we provide in (12) a bound for its mean integrated squared

error weighted by a function w(x) that is bounded and o(x2) as x → 0 but is otherwise arbitrary.

The role of w(x) is to down-weight the estimation error in f̂R(x) around zero. In (13) we propose

a slight modification of f̂R(x) which we define as f̃R(x). We have f̃R(x) = χ(R2x)f̂R(x) and the

function χ(R2x) serves to dampen our original density estimate around zero. This dampening

in turn allows us to bound in (14) the mean integrated squared error of f̃R(x) with w(x) = 1,

i.e., without any down-weighting of the estimation error around zero. In our applications below

we will use f̂R(x) but we will evaluate it starting from sufficiently small value of x that is above

zero, guidance for which can be easily obtained from the quantiles of any nonparametric daily

integrated volatility estimates.

Finally, the analysis here can be easily extended to recovering the volatility density conditioned

on some set. One interesting example, that we will consider in our empirical application, is the

occurrence of big price jumps. The analysis in Bollerslev and Todorov (2011) can be used to

bound the discretiation error in identifying the set of big jumps (under some conditions for Jt).

Also, one can consider a setting of fixed span, i.e., T fixed, in which f̂R(x) will recover the

density of the empirical volatility distribution over the given interval of time. Of course, for

this we will need the smoothness assumption B to hold for the empirical volatility distribution.
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An example where this will be the case is when Vt is a non-Gaussian OU (Ornstein-Uhlenbeck)

process (see equation (20) below) in which the driving Lévy process is compound Poisson (note

that assumption B allows for discontinuities in the density). Such models for volatility have been

considered for example in Barndorff-Nielsen and Shephard (2001). More generally, however, the

density of the empirical distribution will not be differentiable and one can instead recover the

empirical cumulative distribution of volatility.

3 Numerical Experiments

We proceed next with numerical experiments to test our estimation method developed in the

previous section. We first investigate how well our estimator can recover the volatility density

in the infeasible scenario when the volatility Laplace transform is measured without error. We

then consider the feasible scenario where the volatility Laplace transform is recovered from high-

frequency price data via the realized Laplace transform.

3.1 Inverting Known Laplace Transforms

We use two distributions in our numerical analysis here which will be the marginal laws of two

popular volatility specifications that we will use in our Monte Carlo analysis below. The first is

the Gamma distribution. We denote Y ∼ G(a, b) for a random variable with probability density

fG(x) =
baxa−1

Γ(a)
exp (−bx) 1{x>0}, a, b > 0, (15)

with corresponding real-valued Laplace transform given by

LG(u) =

(
1

1 + u/b

)a

. (16)

The second distribution we use is the Inverse-Gaussian. We denote Y ∼ IG(µ, ν) for a variable

with probability density given by

f IG(x) =

√
ν

2πx3
exp

[
− ν

2µ2x
(x− µ)2

]
1{x>0}, (17)
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with corresponding real-valued Laplace transform

LIG(u) = exp
{
(ν/µ)

[
1−

√
1 + 2µ2u/ν

]}
. (18)

It is easy to check that the two distributions satisfy assumption B2. In Table 1 we list all the

different cases considered in this section and give the corresponding parameters. We look in

particular at settings with small, average, and big dispersion around the mode of the density.

The Gamma and Inverse Gaussian distributions are the marginal laws of two volatility spec-

ifications, widely used in empirical finance. The first is the square-root diffusion process given

by

dVt = κ(θ − Vt)dt+ σ
√

VtdBt, κ, σ, θ > 0, σ ≤
√
2κθ. (19)

The marginal distribution of the square-root diffusion process is the Gamma distribution with

parameters a = 2κθ
σ2 and b = 2κ

σ2 in the parametrization of (15).

The second volatility specification is a non-Gaussian OU process given by

dVt = −κVtdt+ dLt, κ > 0, (20)

where Lt is a Lévy subordinator. Following Barndorff-Nielsen and Shephard (2001), we specify

the non-Gaussian OU process via its marginal distribution which will be the Inverse-Gaussian

(which is self-decomposable and hence this is possible, see e.g., Sato (1999)) with parametrization

given in the previous subsection. It can be shown, see e.g., Todorov et al. (2011), that the Lévy

measure of Lt is given by
κν exp(−ν2x/(2µ2))√

2Γ(0.5)

[
x−1.5

2 + ν2x−0.5

2µ2

]
. Further, both volatility specifications

in (19) and (20) satisfy assumption A. In Table 1 we report the parameter values of the volatility

specifications corresponding to the different cases considered for their marginal distributions.

In Table 2 we report the Integrated Squared Error (ISE) in recovering the volatility density

from the exact Laplace transform (over the quantile range Q0.005-Q0.995). The precision across

all cases is very high. When we use the exact Laplace transform, there is obviously no estimation

error and all error is due to the regularization and the numerical integration. We consider a range
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Table 1: Parameter Setting for the Monte Carlo

Case Marginal Distribution of Vt Parameter Values
G-L Gamma κ = 0.02, θ = 1.0, σ2 = 2κθ

4.0

G-M Gamma κ = 0.02, θ = 1.0, σ2 = 2κθ
2.5

G-H Gamma κ = 0.02, θ = 1.0, σ2 = 2κθ
1.5

IG-L Inverse-Gaussian κ = 0.02, µ = 1.0, ν = 3.0
IG-M Inverse-Gaussian κ = 0.02, µ = 1.0, ν = 1.0
IG-H Inverse-Gaussian κ = 0.02, µ = 1.0, ν = 0.5

Note: Cases G-L, G-M and G-H correspond to the square-root diffusion process in
(19) and the parameters of the Gamma distribution are given by a = 2κθ

σ2 and b = 2κ
σ2 .

Cases IG-L, IG-M and IG-H correspond to the non-Gaussian OU process in (20)
with Inverse-Gaussian marginal distribution.

Table 2: Integrated Squared Error of Density Estimate: Known Laplace Transform

Case
∫
R f

2(x)dx Regularization Paramater
R = 2.0 R = 3.0 R = 4.0 R = 5.0

G-L 0.6247 5.40× 10−2 1.11× 10−2 1.60× 10−3 1.92× 10−4

G-M 0.5301 1.83× 10−2 2.10× 10−3 2.32× 10−4 8.65× 10−4

G-H 0.4765 4.10× 10−3 3.90× 10−3 6.99× 10−2 1.21× 10−0

IG-L 0.6518 5.01× 10−2 8.10× 10−3 1.10× 10−3 2.89× 10−5

IG-M 0.5959 8.40× 10−3 4.68× 10−4 2.31× 10−5 1.56× 10−6

IG-H 0.6911 5.30× 10−3 2.74× 10−4 5.15× 10−6 3.28× 10−4

Note: The ISE
∫ Q0.995

Q0.005
(fR(x)− f(x))2 dx is approximated by a Riemann sum with

length of the discretization interval of 0.005. The range of integration is Q0.005-Q0.995

for Qα denoting the α-quantile. Each of the cases is explained in Table 1.

of values for the regularization parameter R and we can see from Table 2 that R plays a big role

in the precision of the estimation. Small values of R result in bias due to over-smoothing (recall

Figure 1) while very big values in R can result in a bigger error due to the numerical integration.

We also point out that the optimal value of R depends on the volatility density which is of course

unknown.

3.2 Inverting Estimated Laplace Transforms

We turn next to the feasible case where the volatility density is not known and has to be estimated

from high-frequency observations of X. In the simulations, the price process is given by (1) with
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volatility following either (19) or (20), αt = 0, Jt is a compound Poisson process with intensity 1/3

(i.e., one jump every three days on average) and normally distributed jump size with mean 0 and

variance of 0.3. For simplicity in the Monte Carlo setup we set the volatility process independent

from the price process. Simulation evidence in Todorov et al. (2011) indicates that the leverage

effect has negligible effect on the realized Laplace transform in finite samples (recall from (5) that

leverage has no asymptotic effect on L̂(u)). In all experiments we set E(Vt) = 1 which implies

jumps contribute approximately 10% of price variation, consistent with prior empirical evidence.

The unit of time in our simulation design is a day and we assume the span is T = 3, 000

days with n = 76 which corresponds to sampling the price process every 5-minutes in a 6.5 hour

trading day for approximately 12 years. In Table 3 we report the precision in recovering the

volatility density from a single simulation from each of the scenarios for a range of values of the

regularization parameter R. Comparing Table 2 with Table 3, not surprisingly, we can see that

the ISE is orders of magnitude higher when Laplace transform has to be estimated from the

data due to the estimation error. Nevertheless, provided the appropriate R is used, the error in

estimation is reasonably small. The values of R for which the precision is highest in the case of

estimated Laplace transform are lower than the case when Laplace transform is known. This is

because estimation error prevents us from using kernels with high “focusing” ability, i.e., we need

to smooth more to remove the effect of the estimation error.

In the case of estimated Laplace transforms we have a U-shaped pattern in the ISE: too large

and too small values of R correspond to bigger ISE. This effect can be most clearly seen from

Figure 2 where we plot the estimated densities for three different values of R for the simulation

scenario G-H. Too low R results in over-smoothing and relatively big estimation bias. Increasing

R improves the precision. However, when R is too big the estimation noise gets “blown up” and

this leads to the oscillations in the estimated density (“inherited” from the more focused kernel)

that can be seen from the last plot on Figure 2.
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Table 3: Integrated Squared Error of Density Estimate: Estimated Laplace Transform

Case
∫
R f

2(x)dx Regularization Paramater
R = 1.0 R = 1.5 R = 2.0 R = 3.0 R = 4.0

G-L 0.6247 0.1882 0.1003 0.0488 0.0128 0.2473
G-M 0.5301 0.1066 0.0437 0.0162 0.0066 0.1275
G-H 0.4765 0.0482 0.0161 0.0102 0.0677 0.9009

IG-L 0.6518 0.2310 0.1390 0.0900 0.0840 0.3574
IG-M 0.5959 0.1130 0.0432 0.0163 0.0099 0.0698
IG-H 0.6911 0.0838 0.0268 0.0326 0.2980 4.3244

Note: The computations are based on a single simulation from the models given in
Table 1 and volatility Laplace transform estimate using the realized Laplace transform
L̂(u) defined in (4). The ISE is approximated the same way as in the calculations for
Table 2.
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Figure 2: The effect of regularization. The figure shows the recovered density of Vt

for a simulated series from model G-H whose integrated squared error is reported in
Table 3. The solid lines correspond to the estimated density and the dashed lines to
the true one.
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3.3 Monte Carlo

We now turn to a Monte Carlo study using the above specified setup and 1, 000 replications. Based

on the analysis in the previous subsections, the crucial question is how to pick R as the optimal

value of R depends on the unknown volatility density. From Figure 2 we know that when R is

“too high” for the precision with which we can recover the Laplace transform of volatility from

the high-frequency data, then the recovered density starts to oscillate. Therefore, a reasonable

and very easy rule is to set R as the largest value which results with a minimum number of

violations of the quasiconcavity conditions (see e.g. Koenker and Mizera (2010)) of the recovered

volatility density. In particular, for the case plotted in Figure 2, this will lead us to picking the

middle value of R = 2.0.

We implement this rule in the Monte Carlo study. We note that this can lead to a different

value of R for the different realizations of the simulated processes. The results from the Monte

Carlo are reported in Table 4. As seen from the results in the table, we have relatively good pre-

cision with which we can recover the volatility densities across the different simulation scenarios.

In general also the mean integrated squared error (MISE) is comparable with the minimal ISE

from the single realizations of the process reported in Table 3. The hardest case of all simulation

scenarios is the IG-H which corresponds to inverse-Gaussian with very high volatility of volatility.

The estimation error involved in this case is relatively big, necessitating small values of R to

attenuate its effect on the inversion, which in turn leads to some bias.

4 Empirical Application

We next illustrate the use of the developed nonparametric technique in a short empirical applica-

tion. We analyze three large-cap stocks that are part of the S&P 100 index: one in the technology

sector (IBM), one in utilities and services (Johnson and Johnson, abbreviated by its ticker JNJ)

and one in the financial sector (Bank of America, abbreviated by its ticker BAC). The sample

period is from April 1997 till December 2010, and we sample every 5-minutes during the trading
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Table 4: Monte Carlo Results: MISE

Case
∫
R f

2(x)dx MISE Case
∫
R f

2(x)dx MISE

G-L 0.6247 0.0249 IG-L 0.6518 0.0532
G-M 0.5301 0.0184 IG-M 0.5959 0.0321
G-H 0.4765 0.0192 IG-H 0.6911 0.0998

Note: The computations are based on 1, 000 replica of the models given in Table 1
with T = 3, 000 and n = 76. The MISE is a sample average over the replications of
the ISE which in turn is approximated the same way as in the calculations for Table 2.
The choice of the regularization parameter R is over the discrete grid 1 : 0.25 : 3.5 and
is the largest number of this set with least violations of quasiconcavity of the density
estimate.

hours on each trading day (which is our unit of time) and this results in 76 high-frequency return

observations per day (we omit the price at the open and at the close to attenuate potential special

effects with start and end of trading). We exclude days in which there was no trading of the stock

for more than half of the day. This resulted in a total of 3423 days for IBM, 3421 for BAC and

3420 days for JNJ in our sample. The 5-minute sampling frequency is coarse enough so that the

effect of microstructure noise is negligible. Using the truncated variation defined later in (22),

we estimate that jumps contribute the nontrivial 11.6, 11.1 and 12.7 percent of the total price

variation for IBM, BAC and JNJ stocks respectively.

Before turning to the actual estimation we “standardize” the high-frequency returns, when

using them in the calculation of the realized Laplace transform, in order to account for the well-

known presence of a diurnal deterministic within-day pattern in volatility, see e.g., Andersen and

Bollerslev (1997). To this end, Vt in (1) is replaced by Ṽt = Vt × d(t − ⌊t⌋) where Vt is our

original stationary volatility process satisfying assumption A and d(s) is a positive differentiable

deterministic function on [0, 1] that captures the diurnal pattern. Then we standardize each

high-frequency increment ∆n
i X with 1/

√
d̂i for

d̂i =
ĝi
ĝ
, ĝi =

n

T

T∑
t=1

|∆n
itX|21(|∆n

itX| ≤ αn−ϖ), ĝ =
1

n

n∑
i=1

ĝi, i = 1, ..., nT, α > 0, ϖ ∈ (0, 1/2),

where it = t−1+ i− [i/n]n, for i = 1, ..., nT and t = 1, ..., T . We set ϖ = 0.49 and α = 3×
√
BVt
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for BVt denoting the Bipower variation of Barndorff-Nielsen and Shephard (2004, 2006) defined

as

BVt =
π

2

nt∑
i=n(t−1)+1

|∆n
i−1X||∆n

i X|. (21)

Intuitively, d̂i estimates the deterministic component of the stochastic variance, and then we

“standardize” the high-frequency increments with it. Todorov and Tauchen (2012) derive the

asymptotic effect of this “cleaning” procedure but since d̂i estimates quite precisely the determin-

istic pattern, naturally this effect is rather small.

We plot the estimated densities of the spot volatility obtained from the estimation method

based on the regularized inverse of the realized Laplace transform in (9) for each of the three stocks

on the three top panels of Figure 3. For ease of interpretation we present the density estimates

for
√
Vt (and not Vt) in percentage terms, as this is the standard way of quoting volatility on the

market. We can contrast these spot volatility density estimates with estimates of the density of a

jump-robust measure of the daily integrated volatility obtained by inverting its direct empirical

Laplace transform. We measure the integrated volatility using the truncated variation, originally

proposed in Mancini (2009), and applied here as

TVt =

nt∑
i=n(t−1)+1

|∆n
i X|21(|∆n

itX| ≤ αn−ϖ), (22)

for the same choice of ϖ = 0.49 and α = 3×
√
BVt as for the estimation of the diurnal component

of volatility d̂i. Under our assumption A, TVt is a consistent estimate for the unobservable

integrated volatility (and this is the reason for using it as a benchmark for the volatility density),

i.e., we have for each fixed t ≥ 1 (see e.g., Jacod (2008))

TVt
P−→

∫ t

t−1
σ2
s ds, as n → ∞. (23)

The dashed lines in the top three panels of Figure 3 show the implied density for the daily

integrated volatility from using our method to invert the empirical Laplace transform of the
√
TVt

series, while the three lower panels show standard kernel-density estimates of
√
TVt obtained from
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Figure 3: Nonparametric Spot and Integrated Volatility Density Estimates. The solid
lines correspond to our nonparametric estimate for the density of

√
Vt while the dashed

lines are nonparametric density estimates of daily
√
TVt. The dashed lines in the top

plots are based on inverting the empirical Laplace transform of TVt using our estimator
in (9) while the ones in the bottom plots are standard kernel estimates with Silverman’s
automatic bandwidth of h = 0.79 × IQR × T−1/5 for IQR denoting the inter-quartile
range.
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the same observations. There are several conclusions to be made from Figure 3. First, there is

significant volatility of volatility: the spot volatility can take values as high as five to six times

its modal value. Thus volatility dynamics (and in particular short-lived sharp changes in it)

play an important role in generating tail events in individual stock returns in addition to the

price jumps. We recall that the realized Laplace transform is robust to presence of price jumps.

Therefore our nonparametric separation of volatility from jumps identifies a rather nontrivial

role of stochastic volatility for generating extreme events in asset prices. Comparing the spot

with integrated volatility we can see a common pattern in the three stocks. The mode of the

spot volatility density is slightly to the left of that for the daily integrated volatility, and spot

volatility has somewhat fatter distribution than that of the integrated volatility. The reason for

this is in the presence of short term volatility moves in the form of volatility jumps and the mean

reversion. The daily integrated volatility “averages out” the sharp moves in volatility. Overall our

nonparametric evidence here points to stochastic volatility with significant volatility of volatility

possibly generated by volatility jumps.

We investigate further the hypothesis of volatility jumps and their interaction with the price

jumps by computing conditional density estimates. In particular, we will use the methodology

developed here to gather nonparametric evidence regarding the effect of price jumps on stochastic

volatility. In standard volatility models, volatility is a diffusion process and thus by construction

stochastic volatility does not jump when the price jumps (volatility and price jumps though

can still be dependent in such setting as volatility can drive the jump intensity). More recent

parametric work has allowed for volatility jumps as in the non-Gaussian OU model of Barndorff-

Nielsen and Shephard (2001), although in some specifications volatility and price jumps are

constrained to be uncorrelated.

To investigate the effect of price jumps on volatility we do the following. We identify the days

in the sample where relatively large jumps occurred (we will be precise about what constitutes a

large jump below) and then construct the realized Laplace transform of volatility on a given (fixed)
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number of days after the day with the large jump. We then use our nonparametric procedure

to invert the estimated Laplace transform and recover the density of volatility a fixed number of

days after the occurrence of price jumps. More formally, for some “big” fixed τ > 0 we define for

any integer k ≥ 1 the set of days with a “big” positive, respectively negative, jump as

I±τ
n (k) =

{
t = k + 1, ..., T : {i = (t− k − 1)n+ 1, ..., (t− k)n}∩{

i = 1, ..., nT : ∆n
i X ≷ ±(αn−ϖ ∨ τ)

}
̸= ∅
}
,

where α and ϖ are the same as the ones used in the construction of TVt. I±τ
n (k) is the set of

days in the sample where k days ago a big positive or negative jump has occurred. We can then

construct the realized Laplace transform on the sets I±τ
n (k), i.e.,

L̂±τ (k) =
1

|I±τ
n (k)|

∑
t∈I±τ

n (k)

 tn∑
i=(t−1)n+1

cos
(√

2un∆n
i X
) , (24)

where |I±τ
n (k)| denotes the size of the set I±τ

n (k). Finally, we can invert L̂±τ (k) using (9). Our

goal is to produce a nonparametric estimate of the densities of
√
Vt1{t∈I−τ (k)} and

√
Vt1{t∈I+τ (k)}

where the set I±τ (k) is defined via

I±τ (k) =
{
t : [⌊t⌋ − k − 1; ⌊t⌋ − k]

∩
{s > 0 : ∆Xs ≷ ±τ} ̸= ∅

}
. (25)

In our actual application we set τ to τ =
√

E(TVt) × 5/
√
n which is five-standard deviation

move for the continuous part of the high-frequency return (the mean of the truncated variation

is estimated by the corresponding sample average). This results in approximately 100 jumps of

each sign in our sample to estimate the realized Laplace transforms in (24). We further set k to

1 and 22 which amounts to looking at volatility 1 day and 1 calendar month after a “big” jump.

The result of the calculations are presented on Figure 4. Comparing the estimated volatility

densities on Figure 4 with the unconditional ones on Figure 3 we can see a very pronounced

shift of the mode towards the right, i.e., volatility unambiguously increases after a “big” jump.

Interestingly, the density of the volatility one month after the jump starts moving towards the

unconditional one (compared with the density the day following the jump). The interpretation
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is that a big price jump “feeds” into higher future volatility with the effect diminishing over

time due to the mean reversion in volatility. Of course, one should be careful in interpreting

the above evidence, as high volatility might be generating the big price jumps which in turn

are followed by higher volatility. This will be the case where price jump intensity depends on

volatility. Nevertheless, our analysis clearly shows that price jumps are very closely related with

the stochastic volatility dynamics and in particular in terms of parametric volatility modeling

we need models that allow for this connection as for example in the non-Gaussian OU model of

Barndorff-Nielsen and Shephard (2001). Another interesting common pattern across the three

stocks is that there is a significant spread in the estimated volatility densities on Figure 4. This

suggests that the size of the price jumps plays a big role in determining the size of the impact it

has on the future stochastic volatility. Thus the connection between volatility and price jumps

is size dependent. Further, comparing the left and the right side of Figure 4 we can see that the

volatility densities after a positive and a negative jump are rather similar for these three stocks.

Finally, it is interesting to point out that among the three stocks, the one whose volatility reacts

strongest to the occurrence of price jumps is BAC. This is consistent with the view that stocks in

the financial sector are most sensitive to financial distress in the form of extreme market events.

5 Conclusion

In this paper we propose a nonparametric method for estimation of the spot volatility density in a

jump-diffusion model from high-frequency data with increasing time span. The method consists of

aggregating the high-frequency returns data into a function known as realized Laplace transform,

which provides a consistent estimate of the unobservable real-valued volatility Laplace transform.

On a second stage the estimated volatility Laplace transform is inverted using a regularized kernel

method to obtain an estimate of the density of spot volatility. We derive bounds on the MISE in

the density estimation and provide guidance on the feasible choice of the regularization parameter.

An empirical application for three large-cap stocks indicates the importance of short-term high
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Figure 4: Nonparametric Volatility Density Estimates After a Price Jump. The solid
(dashed) line is a nonparametric density estimate of

√
Vt over the days in the sample

which follow a day (respectively 22 days) after a positive (left side) or negative “big”
jump (right side) in the price. The threshold for the “big” jumps is set to five standard
deviations of the continuous part of the high-frequency return based on the sample
mean of TVt of each individual series.

frequency movements in volatility that get smoothed over in forming estimates of daily realized

variation, and it shows how to trace out the dynamic response of the spot volatility density to

large price jumps of either sign as it relaxes back to the steady state unconditional density.

6 Proofs

The proof of Theorem 1 consists of two parts. The first part is analysis of the deterministic bias

fR(x) − f̃(x) (respectively
∫
R(fR(x) − f̃(x))2dx) and the second part deals with the estimation

error f̂R(x)−fR(x) (respectively
∫
Rw(x)(f̂R(x)−fR(x))

2dx and
∫
R(f̃R(x)−fR(x))

2dx). In what

follows we will denote with K a positive constant that does not depend on R, x, T and n.
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6.1 The deterministic bias fR(x)− f̃(x)

Using the representation of fR(x) in Kryzhniy (2003a) as an integral with respect to the true

density f(x), we have

fR(x) =
2

π

∫ ∞

0
f(xu)

√
u
sin(R ln(u))

u2 − 1
du =

2

π

∫ ∞

−∞
f(x exp(z)) exp(3z/2)

sin(Rz)

exp(2z)− 1
dz. (26)

Using the above, we can make the decomposition (recall the definition of f̃(x) in the theorem)
for some constant δ > 1/R

fR(x)− f̃(x) =

4∑
i=1

Ai(x), (27)

A1(x) =
2

π

∫ 0

−δ

[f(x exp(z))− f(x−)]
exp(3z/2) sin(Rz)

exp(2z)− 1
dz+

2

π

∫ δ

0

[f(x exp(z))− f(x+)]
exp(3z/2) sin(Rz)

exp(2z)− 1
dz,

A2(x) =
2

π

∫ −δ

−∞
[f(x exp(z))− f(x−)]

exp(3z/2) sin(Rz)

exp(2z)− 1
dz,

A3(x) =
2

π

∫ ∞

δ

[f(x exp(z))− f(x+)]
exp(3z/2) sin(Rz)

exp(2z)− 1
dz,

A4(x) = f(x−)

(
1

π

∫ 0

−∞

exp(z/2) sin(Rz)

sinh(z)
dz − 1

2

)
+ f(x+)

(
1

π

∫ ∞

0

exp(z/2) sin(Rz)

sinh(z)
dz − 1

2

)
.

Starting with A1(x), we can split the range of integration (−δ, 0) to (−δ,−1/R) and (−1/R, 0)

(and similarly for the positive side) and we use different arguments to bound each of the integrals.

First, since f(x) is piecewise differentiable, we can apply Taylor expansion and trivially get∣∣∣∣∣
∫ 0

−1/R
[f(x exp(z))− f(x−)]

exp(3z/2) sin(Rz)

exp(2z)− 1
dz

∣∣∣∣∣+
∣∣∣∣∣
∫ 1/R

0
[f(x exp(z))− f(x+)]

exp(3z/2) sin(Rz)

exp(2z)− 1
dz

∣∣∣∣∣
≤ sup

u∈[exp(−1/R)x, exp(1/R)x]
|f ′(u)u|K

R
.

(28)

Next, using integration by parts, we have∫ −1/R

−δ
[f(x exp(z))− f(x−)]

exp(3z/2) sin(Rz)

exp(2z)− 1
dz =

1

R

∫ −1/R

−δ
g′(z) cos(Rz)dz

− 1

R
(g(−1/R) cos(−1)− g(−δ) cos(−Rδ)),

(29)

where g(z) = (f(x exp(z))−f(x−)) exp(3z/2)
exp(2z)−1 and g′(z) is its derivative. Using the fact that f(x) has a

piecewise continuous derivative, we get that

|g(−1/R)|+ |g(−δ)| ≤ K sup
u∈[exp(−δ)x, x]

|f ′(u)u|. (30)
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We further have

g′(z) =
f ′(x exp(z))x exp(5z/2)

exp(2z)− 1
+
1.5 exp(3z/2) [f(x exp(z))− f(x−)]

exp(2z)− 1
−2e7z/2 [f(x exp(z))− f(x−)]

(exp(2z)− 1)2
,

from which it follows

|g′(z)| ≤ K sup
u∈[exp(−δ)x, x]

|f ′(u)u| 1

1− exp(z)
, z ∈ (−δ,−1/R). (31)

Therefore,
∫ −1/R
−δ g′(z) cos(Rz)dz = O(log(R)) for a given x > 0. Similar analysis of course can

be made on the interval (1/R, δ), and thus altogether we have

A1(x) = O

(
log(R)

R

)
, ∀x > 0. (32)

We continue next with A2(x). We can decompose it as

A2(x) =
2

π

[
A

(1)
2 (x) +A

(2)
2 (x)−A

(3)
2 (x)

]
, A

(1)
2 (x) =

∫ −δ−⌊R log(R)
3π ⌋ 2π

R

−∞
f(x exp(z)) exp(3z/2)

sin(Rz)

exp(2z)− 1
dz,

A
(2)
2 (x) =

∫ −δ

−δ−⌊R log(R)
3π ⌋ 2π

R

f(x exp(z)) exp(3z/2)
sin(Rz)

exp(2z)− 1
dz, A

(3)
2 (x) = f(x−)

∫ −δ

−∞
exp(3z/2)

sin(Rz)

exp(2z)− 1
dz.

First, using the behavior of f(x) around zero from assumption B1 (and the identity f(y) =

f(x) +
∫ y
x f ′(u)du for each interval [x, y] on which f(u) and f ′(u) are continuous), we trivially

have

A
(1)
2 (x) = O

(
R−(5/3−2q/3)∧1

)
, ∀x > 0, (33)

for q being the constant in assumption B1. We further have

A
(2)
2 (x) =

⌊R log(R)
3π

⌋∑
k=1

h(−δ − 2πk/R)

∫ −δ−2π(k−1)/R

−δ−2πk/R
exp(3z/2) sin(Rz)dz

+

⌊R log(R)
3π

⌋∑
k=1

∫ −δ−2π(k−1)/R

−δ−2πk/R
(h(z)− h(−δ − 2πk/R)) exp(3z/2) sin(Rz)dz,

(34)

where we denote h(z) = f(x exp(z))
exp(2z)−1 . Using assumption B1, we have |h(z)|/ exp (−z((q − 1) ∨ 0)) ≤

K(x) for z sufficiently small (and fixed x). Therefore, using direct integration, we have for every

x > 0

⌊R log(R)
3π

⌋∑
k=1

h(−δ − 2πk/R)

∫ −δ−2π(k−1)/R

−δ−2πk/R
exp(3z/2) sin(Rz)dz = O(R−(5/3−2q/3)∧1 × log(R)).
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Similarly, using |h′(z)|/ exp (−z((q − 1) ∨ 0)) ≤ K(x) for z sufficiently small (and fixed x), we

have for every x > 0

⌊R log(R)
3π

⌋∑
k=1

∫ −δ−2π(k−1)/R

−δ−2πk/R
(h(z)− h(−δ − 2πk/R)) exp(3z/2) sin(Rz)dz

= O(R−(5/3−2q/3)∧1 × log(R)).

Thus altogether we have

A
(2)
2 (x) = O

(
R−(5/3−2q/3)∧1 × log(R)

)
, ∀x > 0. (35)

Finally, using integration by parts it is easy to show

A
(3)
2 (x) = O (1/R) , ∀x > 0. (36)

Similar analysis can be made of course for A3(x), and thus altogether we have

|A2(x)|+ |A3(x)| = O
(
R−(5/3−2q/3)∧1 × log(R)1{q≤1}

)
, ∀x > 0. (37)

We are left with A4(x). We can write

A4(x) =
f(x−)

π

∫ 0

−∞

(exp(z/2)− 1) sin(Rz)

sinh(z)
dz +

f(x+)

π

∫ ∞

0

(exp(z/2)− 1) sin(Rz)

sinh(z)
dz

+ f̃(x)

(
1

π

∫ ∞

0

sin(Rz)

sinh(z)
dz − 1

2

)
.

(38)

Using integration by parts for the first two integrals on the right side of the above equality and

the identity
∫∞
0

sin(Rz)
sinh(z) dz = π

2 tanh
(
πR
2

)
for the third one, we trivially get

A4(x) = O(1/R), ∀x > 0. (39)

Combining the results in (32), (37) and (39) we have the second claim in (10).

For the claim in (12) we will show here that

∫ ∞

0

(
fR(x)− f̃(x)

)2
dx = O

(
log2(R)

R2

)
. (40)

We make use of the decomposition of fR(x)− f̃(x) =
∑4

i=1Ai(x). Then using the bounds in (28),

(30), (31) and (38) and assumption B2, we have

∫ ∞

0
(A2

1(x) +A2
4(x))dx =

(
log2(R)

R2

)
. (41)
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For the two terms A2(x) and A3(x) we use a different decomposition than the one we used above

for showing (10). In particular, we now decompose A2(x) using integration by parts as

A2(x) =
1

R

∫ −δ

−∞
g′(z) cos(Rz)dz − 1

R
(g(−δ) cos(−Rδ)− g(−∞) cos(−∞)),

where recall we denote g(z) = [f(x exp(z))−f(x−)] exp(3z/2)
exp(2z)−1 and g′(z) is its derivative, and we do

exactly the same decomposition for A3(x). Then using the boundedness of f(x) as well as f ′(x)

with f(x) = o(x−1−ι) and f ′(x) = o(x−2−ι) for x → ∞ together with Fubini’s theorem (integrating

first over x), we can easily get

∫ ∞

0

(
A2

2(x) +A2
3(x)

)
dx = O

(
log2(R)

R2

)
. (42)

Finally, for the deterministic bias component of the bound in (14), we can use directly (40)

combined with ∫ ∞

0

(
χ(R2x)− 1

)2
dx ≤ K/R2,

to get ∫ ∞

0

(
f̃R(x)− f(x)

)2
dx = O

(
log2(R)

R2

)
. (43)

6.2 The estimation error f̂R(x)− fR(x)

We first decompose the error in estimating the volatility Laplace transform as follows

L̂(u)− L(u) = B1(u) +B2(u) +B3(u) +B4(u) +B5(u),

B1(u) =
1

T

∫ T

0
[exp(−uVs)− L(u)] ds, B2(u) =

1

T

∫ T

0

[
exp(−uV⌊sn⌋/n)− e−uVs

]
ds,

B3(u) =
1

nT

nT∑
i=1

[
cos
(√

2un∆n
i X
)
− cos

(
√
2un

∫ i
n

i−1
n

√
V sdWs

)]
,

B4(u) =
1

nT

nT∑
i=1

[
cos

(
√
2un

∫ i
n

i−1
n

√
V sdWs

)
− cos

(√
2un

√
V i−1

n
∆n

i W

)]
,

B5(u) =
1

nT

nT∑
i=1

[
cos

(√
2un

√
V i−1

n
∆n

i W

)
− euV⌊sn⌋/n

]
.

Starting with the first term, we can apply Lemma VIII.3.102 in Jacod and Shiryaev (2003), which

provides bounds on conditional expectations of centered mixing processes, and our assumption
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A4, to get

E (B1(u)) = 0 and E |B1(u)|2 ≤
K

T

∫ ∞

0
αmix
s ds. (44)

We note that
∫∞
0 αmix

s ds is finite due to our assumption on the rate of decay of the mixing

coefficients in assumption A4.

We continue next with B2(u). First, using Taylor expansion we can get the inequality

| exp(−xp) − exp(−yp)| ≤ K|x − y| for x, y ∈ R+ and some constant K and p ≥ 1. Then

using the classical inequality

||x|r − |y|r| ≤ |x− y|r, for some r ∈ (0, 1],

we can get | exp(−x) − exp(−y)| ≤ K|x − y|r for x, y ∈ R+ and any r ≤ 1. Applying the last

inequality with x = V⌊sn⌋/n and y = Vs, and then using assumption A3, together with Lemma

VIII.3.102 in Jacod and Shiryaev (2003) and our assumption A4, we get

E |B2(u)| ≤
K

T
u1/2−2ι

∫ T

0
E|V⌊sn⌋/n − Vs|1/2−2ιds ≤ Ku1/2−2ιn−1/4+ι,

E |B2(u)|2 =
1

T 2
E
{∫ T

0

∫ T

0

[
exp(−uV⌊tn⌋/n)− exp(−uVt)

] [
exp(−uV⌊sn⌋/n)− exp(−uVs)

]
dsdt

}
≤ Kuιn−ι/2

T 2

∫ T

0

∫ T

0
1{|t−s|≥1/n}

(
αmix
|t−s|−1/n

)1−ι
dtds ≤ Kuιn−ι/2

T
,

(45)

for sufficiently small ι > 0. Turning next to B3(u), we first can derive the following bounds,
using the trigonometric identity for cos(a) − cos(b) and the inequality | sin(x)| ≤ |x|, as well as
assumptions A1 and A3 and the Hölder inequality:

E

∣∣∣∣∣cos(√2un(∆n
i X −∆n

i J
)
− cos

(
√
2un

∫ i
n

i−1
n

√
V sdWs

)∣∣∣∣∣
p

≤ Ku
p(1−ι)

2 n− p(1−ι)
2 , ∀ι ∈ (0, 1), p = 1, 2,

E
∣∣∣cos(√2un∆n

i X
)
− cos

(√
2un(∆n

i X −∆n
i J)
)∣∣∣ ≤ { Ku

β+ι
2 n−1+β+ι

2 , ∀ι ∈ (0, 1− β), if β < 1,

Ku(1−ι)/2n1/2−1/β+ι/2, ∀ι ∈ (0, 2−β
β ), if β ≥ 1,

E
∣∣∣cos(√2un∆n

i X
)
− cos

(√
2un(∆n

i X −∆n
i J)
)∣∣∣2 ≤ Ku(β+ι)/2nβ/2+ι/2−1, ∀ι ∈ (0, 2− β).

Using the above bounds, the inequality (x+y)2 ≤ 2x2+2y2, and the Cauchy-Schwartz inequality,

we get altogether

E |B3(u)| ≤ K(u1/2−ι∨1)n[(β∧1)/2−1∧(1/β)]∨(−1/2)+ι and E |B3(u)|2 ≤ K(u1−ι∨1)nβ/2−1+ι, (46)
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where ι > 0 is arbitrary small. Turning to B4(u), we can distinguish two cases: when assumption

B1 holds and when the stronger B2 holds. In the case of B1 only, we can use Itô isometry and

Hölder inequality to get

E |B4(u)| ≤ Ku1/2−ιn−1/4+ι and E |B4(u)|2 ≤ Ku1−ιn−1/2+ι, ∀ι > 0, under B1. (47)

When the stronger condition B2 holds, we can make use of the following identity

√
x−√

y =
1

2
√
x
(x− y) +

(√
x−√

y
)2

2
√
x

⇒ |
√
x−√

y| ≤ |x− y|
2
√
x

, ∀x > 0, y ≥ 0.

Applying the above, together with Itô isometry, Holder’s inequality, the fact that f(x) ≤ Kx for x

around zero (because of the boundedness of f ′(x) and f(0+) = 0) which implies that E|Vt|ι−2 ≤ K

for any ι ∈ (0, 2), as well as assumption A3, we can get the stronger bound

E |B4(u)| ≤ Ku1/2−ιn−1/2+ι and E |B4(u)|2 ≤ Ku1−ιn−1+ι, ∀ι > 0, under B2. (48)

Finally, for B5(u), we can use successive conditioning and get

E(B5(u)) = 0 and E(B5(u))
2 ≤ K

nT
. (49)

Now we are ready to show the result in (11) and its equivalent for the integrated squared error,

and we note for this that the constant K in (45)-(49) does not depend on u. In what follows we

will make use of

E
(
L̂(u)− L(u)

)2
≤ K

5∑
i=1

E (Bi(u))
2 ,

and the bounds in (44)-(49). Recalling the definition of f̂R(x) in (9), we have

f̂R(x)− fR(x) =

∫
R+

Π(R, xu)
(
L̂(u)− L(u)

)
du.

Using integration by parts twice, we have for x > 0∫ ∞

0

√
u sin(R ln(u))

u2 + 1
sin(xu)du =

1

x2

∫ ∞

0
sin(xu)Ξ(u,R)du,

Ξ(u,R) = −0.25u−3/2 sin(R ln(u))

u2 + 1
− u−3/2 sin(R ln(u))

(u2 + 1)3/2
− 3u1/2 sin(R ln(u))

(u2 + 1)2
+

4u5/2 sin(R ln(u))

(u2 + 1)3

− 4Ru1/2 cos(R ln(u))

(u2 + 1)2
− R2u−3/2 sin(R ln(u))

u2 + 1
.
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From here, using the identity | sin(x)/x| ≤ 1, we have
∣∣∣∫∞

0

√
u sin(R ln(u))

u2+1
sin(xu)du

∣∣∣ ≤ KR2(x1/2−ι∧

x−3/2+ι) (for the first part of this bound we do not need the above decomposition but only the

inequality | sin(x)/x| ≤ 1) for any ι > 0. Similar results holds for
∫∞
0

√
u cos(R ln(u))

u2+1
sin(xu)du as

well and we thus have |Π(R, z)| ≤ exp(πR)R2Π̂(z) for some Π̂(z) with Π̂(z) = o(z1/2−ι) for z → 0

and Π̂(z) = o(z−3/2+ι) for z → ∞ and arbitrary small ι > 0. From here an application of Fubini’s

theorem, together with the results in (44), (45), (46), (47), (48) and (49), yields

E
{∫ ∞

0

∫ ∞

0

∫ ∞

0
w(x)Π(R, xu)Π(R, xv)|L̂(u)− L(u)||L̂(v)− L(v)|dudvdx

}
≤ K exp(πR)R4

(
T−1 + n−1+β/2+ι

)∫ ∞

0

w(x)(1 + x)

x3−ι
dx ≤ K exp(πR)R4

(
T−1 + n−1+β/2+ι

)
,

E
{∫ ∞

0

∫ ∞

0

∫ ∞

0
χ2(R2x)Π(R, xu)Π(R, xv)|L̂(u)− L(u)||L̂(v)− L(v)|dudvdx

}
≤ K exp(πR)R4

(
T−1 + n−1+β/2+ι

)∫ ∞

0

χ2(R2x)(1 + x)

x3−ι
dx ≤ K exp(πR)R8

(
T−1 + n−1+β/2+ι

)
.

From here the rate in (11) as well as their analogues for the integrated squared estimation error
in (12) and (14) follow. �
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