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Abstract

We propose a consistent functional estimator for the occupation time of the spot

variance of an asset price observed at discrete times on a finite interval with the mesh

of the observation grid shrinking to zero. The asset price is modeled nonparametrically

as a continuous-time Itô semimartingale with non-vanishing diffusion coefficient. The

estimation procedure contains two steps. In the first step we estimate the Laplace

transform of the volatility occupation time and, in the second step, we conduct a regu-

larized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator

has good small-sample performance and in particular it is far better at estimating lower

volatility quantiles and the volatility median than a direct estimator formed from the

empirical cumulative distribution function of local spot volatility estimates. An empir-

ical application shows the use of the developed techniques for nonparametric analysis

of variation of volatility.
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1 Introduction

Continuous-time Itô semimartingales are widely used to model financial prices. In its

general form, an Itô semimartingale can be represented as

Xt = X0 +

∫ t

0
bsds+

∫ t

0

√
VsdWs + Jt, (1)

where bt is the drift, Vt is the spot variance, Wt is a Brownian motion and Jt is a pure-

jump process. Both the continuous and the jump components are known to be present in

financial time series. From an economic point of view, volatility and jump risks are very

different and this has spurred the recent interest in separately identifying these risks from

high-frequency data on X; see, for example, Barndorff-Nielsen and Shephard (2006) and

Mancini (2009). In this paper we focus attention on the diffusive volatility part of X while

recognizing the presence of jumps in X.

Most of the existing literature has concentrated on estimating nonparametrically volatil-

ity functionals of the form
∫ T

0 g(Vs)ds for some smooth function g, typically three times

continuously differentiable (see, e.g., Andersen et al. (2013), Renault et al. (2014), Jacod

and Protter (2012), Jacod and Rosenbaum (2013) and many references therein). The most

important example is the integrated variance
∫ T

0 Vsds, which is widely used in empirical

work. These temporally integrated volatility functionals can be alternatively thought of

as spatially integrated moments with respect to the occupation measure induced by the

volatility process (Geman and Horowitz (1980)).

Motivated by this simple observation, Li et al. (2013) consider the estimation of the

volatility occupation time (VOT), defined by

FT (x) =

∫ T

0
1{Vs≤x}ds, ∀x > 0, (2)

which is the pathwise analogue of the cumulative distribution function (CDF).1 Evidently,

the VOT also takes the form
∫ T

0 g(Vs)ds but with g discontinuous. The latency of Vt and

the nonsmoothness of g(·) turn out to cause substantive complications in the estimation of

the VOT.

To see the empirical relevance of the VOT, we note that the widely used integrated

1To make the analogy exact, one may normalize the expression in (2) by T−1. Here, we follow the
convention in the literature (see, e.g., Geman and Horowitz (1980)) without using this normalization.
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variance
∫ T

0 Vsds is nothing but the mean of the occupation measure
∫∞

0 xFT (dx), where

the equivalence is by the occupation formula2. Therefore, the relation between the VOT,

the VOT quantiles and the integrated variance is exactly analogous to the relation between

the CDF, its quantiles and the mean of a random variable. Needless to say, in classical

econometrics and statistics, much can be learned from the CDF and quantiles beyond the

mean. By the same logic, in the study of volatility risk, the VOT and its quantiles provide

additional useful information (such as dispersion) of the volatility risk which has been well

recognized as an important risk factor in modern finance.

Li et al. (2013) provide a two-step estimation method for estimating the VOT from a

high-frequency record of X by first nonparametrically estimating the spot variance process

over [0, T ] and then constructing a direct plug-in estimator corresponding to (2). Their esti-

mation method is based on a thresholding technique (Mancini (2001)) to separate volatility

from jumps and forming blocks of asymptotically decreasing length to account for the time

variation of volatility (Foster and Nelson (1996), Comte and Renault (1998)).

In this paper we develop an alternative estimator for the VOT from a new perspective.

The idea is to recognize that the informational content of the occupation time is the same

as its pathwise Laplace transform, and the latter can be conveniently estimated as a sum

of cosine-transformed logarithmic returns (Todorov and Tauchen (2012b)). Following this

idea, our proposal is to first estimate the Laplace transform of the VOT and then con-

duct the Laplace inversion. The inversion is nontrivial because it is an ill-posed problem

(Tikhonov and Arsenin (1977)). Indeed, Laplace inversion amounts to solving a Fredholm

integral equation of the first kind, and the solution is not continuous in the Laplace trans-

form. In order to obtain stable solutions, we regularize the inversion step by using the

direct regularization method of Kryzhniy (2003a,b). The final estimator is known in closed

form, up to a one-dimensional numerical integration, and can be easily computed using

standard software.

The proposed inversion method and the plug-in method of Li et al. (2013) both involve

some tuning parameters, but they play very different roles and reflect the different tradeoffs

underlying these two methods. For the inversion method, the first-step estimation of the

Laplace transform does not involve any tuning. In fact, the first-step is automatically

robust to the presence of price jumps and achieves the parametric rate of convergence

when jumps are not “too active;” see Todorov and Tauchen (2012b). In the second step, a

2See, for example, (6.4) in Geman and Horowitz (1980).
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tuning parameter is introduced for stabilizing the Laplace inversion, at the cost of inducing

a regularization bias. For the direct plug-in method of Li et al. (2013), the key is to recover

the spot variance process, for which two types of tuning are needed. One is to select a

threshold for eliminating jumps, for which the trade-off is to balance the pass-through of

small jumps and the false elimination of large diffusive movements. The other is to select

the block size of the local window by trading-off the bias induced by the time variation

of the volatility and the sampling error induced by Brownian shocks. For both methods,

the optimal choice of the tuning parameters remains an open, and likely very challenging,

question. We provide some simulation results for assessing the finite-sample impact of

these tuning parameters.

We can further compare our analysis here with Todorov and Tauchen (2012a), where

somewhat analogous steps were followed to estimate the invariant probability density of

the volatility process, but there are fundamental differences between the current paper

and Todorov and Tauchen (2012a). First, unlike Todorov and Tauchen (2012a), the time

span of the data is fixed and hence we are interested in pathwise properties of the latent

volatility process over the fixed time interval. This is further illustrated by our empir-

ical application which studies the randomness of the (occupational) interquartile range

of various transforms of volatility. Thus, in this paper we impose neither the existence

of invariant distribution of the volatility process nor mixing-type conditions. While such

conditions may be reasonable for analyzing data from a long sample period, they are un-

likely to “kick in” sufficiently fast in short samples in view of the high persistence of the

volatility process (Comte and Renault (1998)). In our setup, we allow the volatility pro-

cess to be nonstationary and strongly serially dependent. This asymptotic setting provides

justification for estimating “distributional” or, to be more precise, occupational properties

of the volatility process using data within relatively short (sub)sample periods. Second,

and quite importantly from a technical point of view, the object of interest here (i.e., the

VOT) is a random quantity with limited pathwise smoothness properties. It is well known

that smoothness conditions are important in the analysis of ill-posed problems (Carrasco

et al. (2007)). Indeed, our analysis of the stochastic regularization bias demands technical

arguments that are very different from Todorov and Tauchen (2012a), where the invariant

distribution is deterministic and smoother. As a technical by-product of our analysis, we

provide primitive conditions for the smoothness of the volatility occupation density for

a popular class of jump-diffusion stochastic volatility models. Overall, the current paper

can be viewed as an extension of the results in Todorov and Tauchen (2012a) to the the-
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oretically different setting of fixed time span and provides the theoretical justification for

applying the method in Todorov and Tauchen (2012a) over different time horizons.

Finally, the current paper is also connected with the broad literature on ill-posed prob-

lems in econometrics; see Carrasco et al. (2007) for a comprehensive review. In the current

paper, we adopt a direct regularization method for inverting transforms of the Mellin con-

volution type (Kryzhniy (2003a,b)), which is very different from spectral decomposition

methods reviewed in Carrasco et al. (2007). In particular, we do not consider the Laplace

transform as a compact operator for some properly designed Hilbert spaces. We prove the

functional convergence for the VOT estimator under the local uniform topology, instead

of under a (weighted) L2 norm. The uniform convergence result is then used to prove

consistency of estimators of the (random) VOT quantiles.

Our contribution is twofold. First, the proposed estimator is theoretically novel and

has finite-sample performance that is generally better than the benchmark set by Li et al.

(2013) in the presence of active jumps. To be specific, we provide Monte Carlo evidence

that the regularized Laplace inversion estimates are more accurate than those of the direct

plug-in method for estimating lower volatility quantiles as well as the volatility median

in jump-diffusion models. This pattern appears in all Monte Carlo settings and is indeed

quite intuitive: “small” jumps are un-truncated, and they induce a relatively large finite-

sample bias for volatility estimation for lower quantiles. Moreover, this finding extends even

to the estimation of higher volatility quantiles when (asymptotically valid) non-adaptive

truncation thresholds are used for the direct plug-in method. That noted, we do observe

a partial reversal of this pattern for estimating higher volatility quantiles when certain

adaptive truncation thresholds are used for the direct plug-in method, so the proposed

method does not always dominate that of Li et al. (2013). We further illustrate the empir-

ical use of the proposed estimator by studying the dependence between the (occupational)

interquartile range of various transforms of the volatility and the level of the volatility

process. Such analysis sheds light on the modeling of volatility of volatility. Second, to

the best of our knowledge, the ill-posed problem and the associated regularization is the

first ever explored in a setting with discretely sampled semimartingales within a fixed time

span. Other ill-posed problems within the high-frequency setting will naturally arise, for

example, in nonparametric regressions involving elements of the diffusion matrix of a mul-

tivariate Itô semimartingale; see Härdle and Linton (1994) for a review in the classical

long-span setting.

This paper is organized as follows. In Section 2 we introduce the formal setup and state

5



our assumptions. In Section 3 we develop our estimator of the VOT, derive its asymptotic

properties, and use it to estimate the associated volatility quantiles. Section 4 reports

results from a Monte Carlo study of our estimation technique, followed by an empirical

illustration in Section 5. Section 6 concludes. Section 7 contains all proofs.

2 Setup

2.1 The underlying process

We start with introducing the formal setup. The process X in (1) is defined on a filtered

space (Ω,F , (Ft)t≥0,P) with the jump component Jt given by

Jt =

∫ t

0

∫
R

(
δ (s, z) 1{|δ(s,z)|≤1}

)
µ̃ (ds, dz)

+

∫ t

0

∫
R

(
δ (s, z) 1{|δ(s,z)|>1}

)
µ (ds, dz) ,

(3)

where µ is a Poisson random measure on R+×R with compensator ν of the form ν (dt, dz) =

dt ⊗ λ (dz) for some σ-finite measure λ on R, µ̃ = µ − ν and δ : Ω × R+ × R 7→ R is a

predictable function. Regularity conditions on Xt are collected below.

Assumption A: The following conditions hold for some constant r ∈ (0, 2) and a

localizing sequence (Tm)m≥1 of stopping times.3

A1. X is an Itô semimartingale given by (1) and (3), where the process bt is locally

bounded and the process Vt is strictly positive and càdlàg. Moreover, |δ (ω, t, z)|r ∧ 1 ≤
Γm (z) for all ω ∈ Ω, t ≤ Tm and z ∈ R, where (Γm)m≥1 is a seqeuence of λ-integrable

deterministic functions on R.

A2. For a sequence (Km)m≥1 of real numbers, E|Vt − Vs|2 ≤ Km|t − s| for all t, s in

[0, Tm] with |t− s| ≤ 1.

Assumption A imposes very mild regularities on the process X and is standard in the

literature on discretized processes; see Jacod and Protter (2012). The dominance condition

in Assumption A is only required to hold locally in time up to the stopping time Tm, which

often take forms of hitting times of adapted processes; this requirement is much weaker

than a global dominance condition that corresponds to Tm ≡ +∞. This more general setup,

3A localizing sequence of stopping times is a sequence of stopping times which increases to +∞.
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however, does not add any technical complexity into our proofs, thanks to the standard

localization procedure in stochastic calculus; see Section 4.4.1 in Jacod and Protter (2012)

for a review on the localization procedure.

We note that Assumption A imposes no parametric structure on the underlying process,

allowing for jumps in Xt and Vt, and dependence between various components in an arbi-

trary manner. In particular, we allow the stochastic volatility process Vt to be dependent

on the Brownian motion Wt, so as to accommodate the “leverage” effect (Black (1976)).

The constant r in Assumption A1 controls the activity of small jumps, as it provides a

bound for the generalized Blumenthal–Getoor index. The assumption is stronger when r

is smaller.

Assumption A2 requires the spot variance process Vt to be (locally) 1/2-Hölder con-

tinuous under the L2 norm. This assumption holds in the well-known case in which Vt

is also an Itô semimartingale with locally bounded characteristics. It also holds for long-

memory specifications that are driven by fractional Brownian motion; see Comte and Re-

nault (1996). Assumption A2 coincides, albeit with a different norm, to the one maintained

by Renault et al. (2014).

2.2 Occupation times

We next collect some assumptions on the VOT and the associated occupation density. In

what follows we define Ft(·) as (2) with T replaced by t.

Assumption B: The following conditions hold for some localizing sequence (Tm)m≥1

of stopping times and a constant sequence (Cm)m≥1.

B1. Almost surely, the function x 7→ Ft (x) is piecewise differentiable with deriva-

tive ft (x) for all t ∈ [0, T ]. For all x, y ∈ (0,∞), P({the interval (x, y) contains some

nondifferentiable point of FT (·)} ∩ {T ≤ Tm}) ≤ Cm |x− y|.
B2. For any compact K ⊂ (0,∞), supx∈K E [fT∧Tm (x)] <∞.

Assumption B is used in our analysis on the estimation of FT (x) for fixed x. As in

Assumption A, we only need the dominance conditions to hold locally up to the localiz-

ing sequence Tm. Assumption B1 holds if the occupation density of Vt exists, which is

the case for general semimartingale processes with nondegenerate diffusive component and

large classes of Gaussian processes; see, for example, Geman and Horowitz (1980), Protter

(2004), Marcus and Rosen (2006), Eisenbaum and Kaspi (2007) and references therein.

Assumption B1 holds more generally under settings where Ft(·) can be nondifferentiable
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(and even discontinuous) at random points, as long as these irregular points are located

“diffusively” on the line, as formulated by the second part of Assumption B1. This gener-

ality accommodates certain pure-jump stochastic volatility processes, such as a compound

Poisson process with bounded marginal probability density.4 Assumption B2 imposes some

mild integrability on the occupation density and is satisfied as soon as the probability den-

sity of Vt is uniformly bounded in the spatial variable and over t ∈ [0, T ], which is the case

for typical stochastic volatility models.

To derive uniform convergence results, we need to strengthen Assumption B as follows.

Assumption C: The following conditions hold for some localizing sequence (Tm)m≥1

of stopping times and constants γ̃ > ε > 0.

C1. Almost surely, the function x 7→ Ft (x) is differentiable with derivative ft (x) for

all t ∈ [0, T ].

C2. For any compact K ⊂ (0,∞), supx∈K E
[
fT∧Tm (x)1+ε

]
<∞.

C3. For any compact K ⊂ (0,∞), there exist constants (Cm)m≥1 such that for all

x, y ∈ K, we have E
[
supt≤T |ft∧Tm (x)− ft∧Tm (y)|1+ε

]
≤ Cm |x− y|γ̃ .

Assumptions C1 and C2 are stronger than Assumption B. In addition, the Hölder-

continuity condition in Assumption C3 is nontrivial to verify. We hence devote Section 2.3

to discussing primitive conditions for Assumption C that cover many volatility models used

in financial applications, although this set of conditions is far from exhaustive. Finally, we

note that C3 involves expectations and for establishing pathwise Hölder continuity in the

spatial argument of the occupation density (via Kolmogorov’s continuity theorem or some

metric entropy condition, see, e.g., Ledoux and Talagrand (1991)), one typically needs a

stronger condition than that in C3.

2.3 Some primitive conditions for Assumption C

We consider the following general class of jump-diffusion volatility models:

dVt = atdt+ s (Vt) dBt + dJV,t, (4)

4When Vt is a compound Poisson process, each nondifferentiable point of FT (·) is a realized level of Vt.
Therefore, the probability in Assumption B1 is bounded by P(Vt ∈ (x, y) for some t ∈ [0, T ]) . Since the
expected number of jumps is finite and Vt has a bounded density, this probability is further bounded by
|x− y| up to a multiplicative constant.
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where at is a locally bounded predictable process, Bt is a standard Brownian motion, s (·)
is a deterministic function and JV,t is a pure-jump process. This example includes many

volatility models encountered in applications.

It is helpful to consider the Lamperti transform of Vt. More precisely, we set Ṽt = g (Vt),

where g (·) is any primitive of the function 1/s (·), that is, g (x) =
∫ x

du/s (u) and the

constant of integration is irrelevant. By Itô’s formula, the continuous martingale part of Ṽt

is Bt. Lemma 2.1(a) below shows that under some regularity conditions, the transformed

process Ṽt satisfies Assumption C. To prove Lemma 2.1(a) we compute the occupation

density of Ṽt explicitly in terms of stochastic integrals via the Meyer–Tanaka formula5

and then we bound the corresponding spatial increments. Then Lemma 2.1(b) shows

that Vt inherits the same property, that is, it satisfies Assumption C, provided that the

transformation g (·) is smooth enough.

Lemma 2.1 (a) Let k > 1. Consider a process Ṽt with the following form

Ṽt = Ṽ0 +

∫ t

0
ãsds+Bt +

∫ t

0

∫
R
δ̃ (s, z)µ (ds, dz) , (5)

where ãt is a locally bounded predictable process, Bt is a Brownian motion and δ̃ (·) is a

predictable function. Suppose the following conditions hold for some constant C > 0.

(i) |δ̃ (ω, t, z) | ≤ Γ̃m (z) for all (ω, t, z) with t ≤ Sm, where (Sm)m≥1 is a localizing

sequence of stopping times and each Γ̃m is a nonnegative deterministic function satisfying∫
R

(
Γ̃m (z)β + Γ̃m (z)k

)
λ (dz) <∞, for some β ∈ (0, 1).

(ii) The probability density function of Ṽt is bounded on compact subsets of R uniformly

in t ∈ [0, T ].

(iii) The process Ṽt is locally bounded.

Then the occupation density of Ṽt, denoted by f̃t (·), exists. Moreover, for any compact

K̃ ⊂ R, there exists a localizing sequence of stopping times (Tm)m≥1, such that for some

K > 0 and for any x, y ∈ K̃, we have E[f̃T∧Tm (x)k] ≤ K and E[supt≤T∧Tm |f̃t (x) −
f̃t (y) |k] ≤ K |x− y|(1−β)k∧(1/2).

(b) Suppose, in addition, that Ṽt = g (Vt) for some continuously differentiable strictly

increasing function g : R+ 7→ R. Also suppose that for some γ̄ ∈ (0, 1] and any compact

5This is possible because the continuous martingale part of Ṽt is a Brownian motion.
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K ⊂ (0,∞), there exists some constant C > 0, such that |g′ (x)− g′ (y)| ≤ C |x− y|γ̄ for

all x, y ∈ K. Then Vt satisfies Assumption C.

3 Estimating volatility occupation times

We now present our estimator for the VOT and its asymptotic properties. We suppose

that the process Xt is observed at discrete times i∆n, i = 0, 1, . . . , on [0, T ] for fixed T > 0,

with the time lag ∆n → 0 asymptotically when n → ∞. Our strategy for estimating the

VOT is to first estimate its Laplace transform and then to invert the latter.

We define the volatility Laplace transform over the interval [0, T ] as

LT (u) ≡
∫ T

0
e−uVsds, ∀u > 0.

By the occupation density formula (see, e.g., (6.5) in Geman and Horowitz (1980)), the

temporal integral above can be rewritten as a spatial integral under the occupation measure,

that is,

LT (u) =

∫ ∞
0

e−uxfT (x)dx =

∫ ∞
0

e−uxFT (dx), ∀u > 0.

The Laplace transform of the VOT can then be obtained by using Fubini’s theorem and is

given by
LT (u)

u
=

∫ ∞
0

e−uxFT (x)dx. (6)

Following Todorov and Tauchen (2012b), we estimate the volatility Laplace transform

LT (u) using the realized volatility Laplace transform defined as

L̂T,n(u) = ∆n

[T/∆n]∑
i=1

cos
(√

2u∆n
i X/∆

1/2
n

)
, ∀u > 0, (7)

where [·] denotes the largest smaller integer function and ∆n
i X ≡ Xi∆n−X(i−1)∆n

. Todorov

and Tauchen (2012b) show that L̂T,n(·) P−→ LT (·) locally uniformly with an associated

central limit theorem. These convergence results are robust to the presence of price jumps

without appealing to the thresholding technique as in Mancini (2001) and Li et al. (2013).

Consequently, u−1L̂T,n(u)
P−→ u−1LT (u) for each u ∈ (0,∞).

Once the Laplace transform of the VOT is estimated from the data, in the next step
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we invert it in order to estimate FT (x). Inverting a Laplace transform, however, is an ill-

posed problem and hence requires a regularization (Tikhonov and Arsenin (1977)). Here,

we adopt an approach proposed by Kryzhniy (2003a,b) and implement the following reg-

ularized inversion of u−1LT (u):

FT,R(x) =

∫ ∞
0
LT (u)Π(R, ux)

du

u
, ∀x > 0, (8)

where R > 0 is a regularization parameter and the inversion kernel Π (R, x) is defined as6

Π (R, x) =
4√
2π2

(
sinh (πR/2)

∫ ∞
0

√
s cos (R ln (s))

s2 + 1
sin (xs) ds

+ cosh (πR/2)

∫ ∞
0

√
s sin (R ln (s))

s2 + 1
sin (xs) ds

)
.

It can be shown that the regularized inversion FT,R(x) can be also written as (see (27))

FT,R (x) =
2

π

∫ ∞
0

FT (xu)
√
u

sin (R lnu)

u2 − 1
du.

That is, FT,R(x) is generated by smoothing the VOT via the kernel 2u1/2 sin(R lnu)/π(u2−
1), which approaches the Dirac mass at u = 1 as R→∞.7

Our estimator for the VOT is constructed by simply replacing LT (u) in (8) with L̂T,n(u),

that is, it is given by

F̂T,n,R(x) =

∫ ∞
0
L̂T,n(u)Π(R, ux)

du

u
=

∫ ∞
−∞
L̂T,n(ez)Π(R, xez)dz. (9)

Todorov and Tauchen (2012a) use a similar strategy to estimate the (deterministic) invari-

ant probability density of the spot volatility process under a setting with T →∞. However,

the problem here is more complicated, since the estimand FT (·) itself is a random func-

tion, which in particular renders the regularization bias random, whereas in Todorov and

Tauchen (2012a) and Kryzhniy (2003a,b), the object of interest is deterministic.

We now turn to the asymptotic properties of the estimator F̂T,n,Rn(x), where Rn is a

6This seemingly complicated inversion kernel corresponds to a simple stabilizing procedure for the Mellin
transform of the integral equation (6); see Section 2 in Kryzhniy (2003a) for technical details.

7The fact that the regularized quantity can be considered as a type of convolution between the object of
interest and a smoothing kernel that asymptotically collapses to a Dirac mass also arises in nonparametric
kernel density estimation; see, for example, (9) in Härdle and Linton (1994).
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sequence of (strictly positive) regularization parameters that grows to +∞ asymptotically.

Here, we allow Rn to be random so that it can be data-dependent, while the rate at which

it grows is given by a deterministic sequence ρn. It is conceptually useful to decompose

the estimation error F̂T,n,Rn(x) − FT (x) into two components: the regularization bias

FT,Rn(x) − FT (x) and the sampling error F̂T,n,Rn(x) − FT,Rn(x). Lemmas 3.1 and 3.2

below characterize the order of magnitude of each component.

Lemma 3.1 Let x > 0 be a constant. Suppose that Rn = Op(ρn) and R−1
n = Op(ρ

−1
n ) for

some deterministic sequence ρn with ρn →∞. Under Assumptions A and B,

FT,Rn (x)− FT (x) = Op(ρ
−1
n ln(ρn)).

Lemma 3.2 Let η ∈ (0, 1/2) be a constant and K ⊂ (0,∞) be compact. Suppose that

Rn ≤ ρn for some deterministic sequence ρn with ρn →∞. Under Assumption A,

supx∈K

∣∣∣F̂T,n,Rn (x)− FT,Rn (x)
∣∣∣

= Op

(
exp

(
πρn

2

)(
ρ

(r∧1)/2
n ∆

(r∧1)(1/r−1/2)
n + ρn ln (ρn) ∆

1/2
n + ρ2

n∆
(1+η)/2
n

))
.

Lemma 3.1 describes the order of magnitude of the regularization bias. Lemma 3.2

describes the order of magnitude of the sampling error uniformly over x ∈ K, where the set

K is assumed bounded both above and away from zero. Lemma 3.2 holds for any constant

η ∈ (0, 1/2). This constant arises as a technical device from the proof and should be taken

close to 1/2 so that the bound in Lemma 3.2 is sharper.

Combining Lemmas 3.1 and 3.2 and choosing the regularization parameter properly,

we obtain the pointwise consistency of the VOT estimator.

Theorem 3.1 Suppose (i) Assumptions A and B; (ii) ρn = δ ln
(
∆−1
n

)
for some δ ∈(

0, 2δ̄/π
)
, where δ̄ ≡ min{(r ∧ 1)(1/r − 1/2), 1/2}; (iii) Rn ≤ ρn and R−1

n = Op(ρ
−1
n ).

Then for each x > 0,

F̂T,n,Rn (x)− FT (x)
P−→ 0.

In Theorem 3.1, we set the regularization parameter Rn to grow slowly to infinity so

that both the regularization bias and the sampling error vanish asymptotically. Condition

(ii) specifies the admissible range of the tuning parameter, which depends on r when

r > 1 and shrinks as r approaches 2 (the theoretical upper bound for jump activity of

semimartingales). This phenomenon reflects the well-known difficulty of disentangling
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active jumps from the diffusive component. Estimators for jump activity (see, e.g., Aı̈t-

Sahalia and Jacod (2009)) may be used to assess the restrictiveness of this condition in a

given sample.

More generally, the inversion method is not limited to the realized Laplace transform

estimator L̂T,n (·). With a generic estimator L̃T,n (·) for LT (·), we can associate an inversion

estimator for the VOT as

F̃T,n,R(x) =

∫ ∞
0
L̃T,n(u)Π(R, ux)

du

u
, ∀x > 0.

Theorem 3.2 below shows that F̃T,n,Rn(x) is a consistent estimator for FT (x) under a

high-level condition concerning the estimation error of L̃T,n (·) under the L1 norm.

Theorem 3.2 Suppose (i) there exist a localizing sequence (Tm)m≥1 of stopping times and

a sequence (Cm)m≥1 of positive constants such that for some c̄ ∈ (0, 1/2), δ̄ > 0 and all

u > 0,

E
∣∣∣L̃Tm,n (u)− LTm (u)

∣∣∣ ≤ Cm (u−c̄ + u1+c̄
)

∆δ̄
n; (10)

(ii) ρn = δ ln
(
∆−1
n

)
for some δ ∈

(
0, 2δ̄/π

)
; (iii) Rn ≤ ρn and R−1

n = Op(ρ
−1
n ). Then for

each x > 0,

F̃T,n,Rn (x)
P−→ FT (x) .

Theorem 3.1 can also be proved by using Theorem 3.2. Indeed, it can be seen from the

proof of Lemma 3.2 that the estimator L̂T,n (·) verifies (10) for any c̄ ∈ (0, 1/2) with δ̄ as

given in Theorem 3.1. In other settings, alternative estimators might be required to verify

these conditions. The key to the proof of Theorem 3.2 is an extension of Lemma 3.2 under

condition (10), but with a coarser bound.

A pessimistic theoretical bound on the rate of convergence for Theorem 3.1 is essentially

ln
(
∆−1
n

)
, which is driven by the regularization bias. The plug-in estimator of Li et al.

(2013), in contrast, can formally be bounded by a polynomial rate of convergence. However,

the bounds might not be sharp. Efficiency issues in the estimation of integrated volatility

functionals of the form
∫ T

0 g(Vs)ds has recently been tackled by Jacod and Reiß (2013),

Clément et al. (2013), Jacod and Rosenbaum (2013) and Renault et al. (2014) for smooth

g(·). The VOT, on the other hand, corresponds to a discontinuous transform g(·) = 1{·≤x}.

Assessing the efficiency of the VOT estimators remains to be an open question that is

likely very challenging. That being said, at least intuitively, more efficient estimators of

13



the integrated Laplace transform of volatility than the one in (7), like the ones considered

in Renault et al. (2014), can help improve the efficiency of the VOT estimators based on

regularized inversion. The theoretical results in Theorem 3.2 provide the foundations for

doing this.

Another open question is how to optimally choose tuning parameters in order to min-

imize some loss criterion, such as the mean square error. Such analysis remains to be a

technical challenge, not only for the current paper, but also for the in-fill analysis of high-

frequency semimartingale data in general.8 In Section 4, we provide simulation results in a

realistically calibrated Monte Carlo setting for comparing the finite-sample performance of

the two methods and for assessing the robustness of the proposed estimator with respect

to the tuning parameter.

The pointwise convergence in Theorems 3.1 and 3.2 can be further strengthened to be

uniform in the spatial variable, as shown below.

Theorem 3.3 Suppose Assumption C. Then the following statements hold for any compact

K ⊂ (0,∞).

(a) Under the conditions of Theorem 3.1,

sup
x∈K

∣∣∣F̂T,n,Rn (x)− FT (x)
∣∣∣ P−→ 0. (11)

(b) Under the conditions of Theorem 3.2,

sup
x∈K

∣∣∣F̃T,n,Rn (x)− FT (x)
∣∣∣ P−→ 0. (12)

Next, we provide a refinement to the functional estimator F̂T,n,Rn (·). The discussion

below only requires the uniform convergence (11) to hold, so it also applies to the generic

estimator F̃T,n,Rn (·) under (12). While the occupation time x 7→ FT (x) is a pathwise

increasing function by design, the proposed estimator F̂T,n,Rn (·) is not guaranteed to be

monotone. We propose a monotonization of F̂T,n,Rn (·) via rearrangement, and, as a by-

8The key difficulty lies in the characterization and estimation of asymptotic bias terms under a setting
with asymptotically varying tuning parameters. In a recent paper, Kristensen (2010) considers the chal-
lenging question of the optimal choice of a bandwidth parameter in the estimation of spot volatility. In the
setting without leverage effect and jumps, Kristensen (2010) remarks (see p. 77) that the optimal choice of
tuning parameter is still difficult when the sample path of the volatility process is not differentiable with
respect to time. Nondifferentiable paths, however, are common for the typical stochastic volatility models
as the ones considered here.
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product, consistent estimators of the quantiles of the occupation time. To be precise, for

τ ∈ (0, T ), we define the τ -quantile of the occupation time as its pathwise left-continuous

inverse:

QT (τ) = inf {x ∈ R+ : FT (x) ≥ τ} .

For any compact interval K ⊂ (0,∞), we define the K-constrained τ -quantile of FT (·) as

QKT (τ) = inf {x ∈ K : FT (x) ≥ τ} ,

where the infimum over an empty set is given by supK. While QT (τ) is of natural interest,

we are only able to consistently estimate QKT (τ), although K ⊂ (0,∞) can be arbitrarily

large. This is due to the technical reason that the uniform convergence in Theorem 3.3 is

only available over a nonrandom index set K, which is bounded above and away from zero,

but every quantile QT (τ) is itself a random variable and thus may take values outside K on

some sample paths. Such a complication would not exist if FT (·), and hence QT (τ), were

deterministic—the standard case in econometrics and statistics. Of course, if the process Vt

is known a priori to take values in some set K ⊂ (0,∞), then QT (·) and QKT (·) coincide.

In practice, the “K-constraint” is typically unbinding as long as we do not attempt to

estimate extreme (pathwise) quantiles of the process Vt.

We propose an estimator forQKT (τ) and aK-constrained monotonized version F̂KT,n,Rn (·)
of the occupation time as follows:

Q̂KT,n,Rn (τ) = inf K+

∫ supK

inf K
1{F̂T,n,Rn (y)<τ}dy, τ ∈ (0, T ) ,

F̂KT,n,Rn (x) = inf
{
τ ∈ (0, T ) : Q̂KT,n,Rn (τ) > x

}
, x ∈ R,

where on the second line, the infimum over an empty set is given by T . By construction,

Q̂KT,n,Rn : (0, T ) 7→ K is increasing and left continuous and F̂KT,n,Rn : R 7→ [0, T ] is increasing

and right continuous. Moreover, Q̂KT,n,Rn is the quantile function of F̂KT,n,Rn , i.e., for τ ∈
(0, T ), Q̂KT,n,Rn (τ) = inf{x : F̂KT,n,Rn(x) ≥ τ}. Asymptotic properties of F̂KT,n,Rn (·) and

Q̂KT,n,Rn (τ) are given in Theorem 3.4 below.

Theorem 3.4 Let K ⊂ (0,∞) be a compact interval. If FT (·) is continuous and

sup
x∈K

∣∣∣F̂T,n,Rn(x)− FT (x)
∣∣∣ P−→ 0,
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then we have the following.

(a)

sup
x∈K

∣∣∣F̂KT,n,Rn (x)− FT (x)
∣∣∣ P−→ 0.

(b) For every τ∗ ∈ {τ ∈ (0, T ) : QT (·) is continuous at τ almost surely},

Q̂KT,n,Rn (τ∗)
P−→ QKT (τ∗) .

We note that the monotonization procedure here is similar to that in Chernozhukov

et al. (2010), which in turn has a deep root in functional analysis (Hardy et al. (1952)).

Chernozhukov et al. (2010) shows that rearrangement leads to finite-sample improvement

under very general settings; see Proposition 4 there.9 Our asymptotic results are distinct

from those of Chernozhukov et al. (2010) in two aspects. First, the estimand considered

here, i.e. the occupation time, is a random function. Second, as we are interested in the

convergence in probability, we only need to assume that supx∈K |F̂T,n,Rn(x)− FT (x)| P→ 0

and, of course, our argument does not rely on the functional delta method.

4 Monte Carlo

We now examine the finite-sample performance of our estimator and compare it with the

direct plug-in method proposed by Li et al. (2013). We consider the following jump-

diffusion volatility model in which the log-volatility is a Lévy-driven Ornstein-Uhlenbeck

(OU) process, that is,

dXt =
√
eVt−1dWt + dYt, dVt = −0.03Vtdt+ dLt, (13)

where Lt is a Lévy martingale uniquely defined by the marginal law of Vt which in turn

has a self-decomposable distribution (see Theorem 17.4 of Sato (1999)) with characteris-

tic triplet (Definition 8.2 of Sato (1999)) of (0, 1, ν) for ν(dx) = 2.33e−2.0|x|

|x|1+0.5 1{x>0}dx with

respect to the identity truncation function. Our volatility specification is quite general as

it allows for both diffusive and jump shocks in volatility, with the latter being of infinite

9Monotonization methods may also improve the rate of convergence; see Carrasco and Florens (2011) for
such an example in the study of deconvolution problems. It may be interesting to explore this theoretical
possibility in future research.
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activity. The mean and the persistence of the volatility process are calibrated realistically

to observed financial data. In particular, we set E[eVt−1] = 1 (our unit of time is a trading

day and we measure returns in percentage) and the persistence of a shock in Vt has a

half-life of approximately 23 days. Finally, Yt in (13) is a tempered stable Lévy process,

i.e., a pure-jump Lévy process with Lévy measure c e
−λ|x|

|x|β+1 , which is independent from Lt

and Wt. The tempered stable process is a flexible jump specification with separate param-

eters controlling small and big jumps: λ controls the jump tails and β coincides with the

Blumenthal-Getoor index of Yt (and hence controls the small jumps). We consider three

cases in the Monte Carlo: (a) no price jumps, which corresponds to c = 0, (b) low-activity

price jumps, with parameters c = 6.2908, λ = 7 and β = 0.1 and (c) high-activity price

jumps, with parameters c = 1.3408, λ = 7 and β = 0.9. The value of λ in each case is set to

produce jump tail behavior consistent with nonparametric evidence reported in Bollerslev

and Todorov (2011). Further, in all considered cases for Yt, we set the parameter c so

that the second moment of the increment of Y on unit interval is equal to 0.3 which pro-

duces jump contribution in total quadratic variation of X similar to earlier nonparametric

empirical evidence from high-frequency financial data.10

In the Monte Carlo we fix the time span to be T = 22 days, equivalent to one calendar

month, and we consider n = 80 which corresponds to 5-minute sampling of intraday obser-

vations of X in a 6.5-hour trading day. For each realization we compute the 25-th, 50-th

and 75-th volatility quantiles over the interval [0, T ] and assess the accuracy in measuring

these random quantities by reporting bias and mean absolute deviation (MAD) around the

true values for the considered estimators.

We first analyze the effect of the regularization parameter Rn on the volatility quantile

estimation. For brevity, we conduct the analysis in the case when Xt does not contain price

jumps, while noting that similar results hold in the other cases. In Table 1 we report results

from the Monte Carlo for regularized Laplace inversion with values of the regularization

parameter of Rn = 2.5, Rn = 3.0 and Rn = 3.5. Overall, the performance of our volatility

quantile estimator is satisfactory with biases being small in relative terms. In general, the

10The price jumps specifications considered here are both of infinite activity, hence there are infinite
numbers of jumps within a finite interval. However, “big” jumps are always of finite number. For example
jumps of size bigger than 0.34%, which corresponds to an average three standard deviation move of the
continuous price price increment at the 5-minute interval, occur on average 9.17 (case b) and 3.87 (case c)
times on an interval of length 22 days. The low-activity jump specification generates more big jumps than
the high-activity one, with the role reversed for the small jump sizes (recall that the quadratic variation of
both jump specifications is constrained to be the same).
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difference across the different values of the regularization parameter are relatively small.

From Table 1 we can see the typical bias-variance tradeoff that arises in nonparametric

estimation: for lower value of Rn (more smoothing) the biases are larger but the sampling

variability is smaller, while for higher value of Rn (less smoothing) the opposite is true.

The value of Rn that leads to the smallest MAD is Rn = 3.0 and henceforth we keep the

regularization parameter at this value.

We next compare the performance of the regularized Laplace inversion approach for

volatility quantile estimation with the direct plug-in method of Li et al. (2013). The latter

is based on local estimators of the volatility process over blocks given by

V̂i∆n =
1

un

kn∑
j=1

(
∆n
i+jX

)2
1{|∆n

i+jX|≤vn,i∆n}, i = 0, ..., [T/∆n]− kn,

where un = kn∆n and kn denotes the number of high-frequency elements within a block (kn

satisfies kn →∞ and kn∆n → 0); vn,t is the threshold which takes the form vn,t = αn,t∆
$
n

for some strictly positive process αn,t and $ ∈ (0, 1/2). These local estimators are then

used to approximate the volatility trajectory via

V̂t = V̂iun , t ∈ [iun, (i+ 1)un), and V̂t = V̂([T/un]−1)un , [T/un]un ≤ t ≤ T,

and from here the direct estimator of the volatility occupation time is given by

F̂ dT,n (x) =

∫ T

0
1{V̂s≤x}ds, x ∈ R.

The direct estimator F̂ dT,n (x) has two tuning parameters. The first is the block size kn

which plays a similar role as the regularization parameter Rn in the regularized Laplace

inversion method. We follow Li et al. (2013) and set kn = 4 throughout. The second tuning

parameter is the choice of the threshold vn,t. There are various ways of setting this thresh-

old which all lead to asymptotically valid results. One simple choice is a time-invariant

threshold of the form vn,t = 3σ∆0.49
n , where σ is an estimator of

√
E(Vt). Another is a time-

varying threshold that takes into account the stochastic volatility. Here we follow Li et al.

(2013) (and earlier work on threshold estimation) and experiment with vn,t = 3
√
BVj∆

0.49
n

and vn,t = 4
√
BVj∆

0.49
n for t ∈ [j − 1, j), where BVj = π

2

∑[j/∆n]
i=[(j−1)/∆n]+2 |∆

n
i−1X||∆n

i X| is
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the Bipower Variation estimator of Barndorff-Nielsen and Shephard (2004).11

In Tables 2 and 3 we compare the precision of estimating the monthly volatility quantiles

via regularized Laplace inversion (with Rn = 3.0) and via the direct method for the above

discussed ways of setting the threshold parameter.12 We consider only the empirically

realistic scenarios in which X contains jumps in the comparison. An immediate observation

from the tables is that the threshold parameter in F̂ dT,n plays a crucial role. Indeed, a

constant threshold does a very poor job: it yields huge biases and it results also in very noisy

estimates. The volatility quantile estimators based on F̂ dT,n work well only when a time-

varying adaptive (to the current level of volatility) threshold is selected. Comparing these

estimators with the one based on the regularized Laplace inversion, we see an interesting

pattern. The estimation of the lower volatility quantiles is done significantly more precisely

via the inversion method. For the lower volatility quantiles, the estimates based on F̂ dT,n
contain nontrivial bias. This is due to small un-truncated jumps which play a relatively

bigger role when estimating the lower volatility quantiles. The above observation continues

to hold, albeit to a far less extent, for the volatility median. For the highest volatility

quantile, we see a partial reverse. This volatility quantile is estimated more precisely

via F̂ dT,n but mainly when the lower time-varying threshold vn,t = 3
√
BVj∆

0.49
n is used.

Overall, we find mixed results in this comparative analysis, but the evidence in Tables 2 and

3 clearly illustrates that the proposed volatility quantile estimator based on the regularized

Laplace inversion provides an important alternative to the direct plug-in method.

5 Empirical Application

We illustrate the nonparametric quantile reconstruction technique with an empirical ap-

plication to two data sets: Euro/$ exchange rate futures (for the period 01/01/1999-

12/31/2010) and S&P 500 index futures (for the period 04/22/1982-12/30/2010). Both

series are sampled every 5 minutes during the trading hours. The time spans of the two

data sets differ because of data availability but both data sets include some of the most

11In principle, the direct plug-in method of Li et al. (2013) can be applied to other jump-robust spot
volatility estimators and may achieve better finite-sample performance. Improving the direct plug-in method
in this direction is beyond the scope of the current paper.

12Comparing the results for F̂T,n in Tables 2 and 3 with those in Table 1, we notice that the negative
biases for the first two quantiles in the case of no price jumps turn into positive biases in the two cases of
price jumps. In the simulation scenarios with price jumps, the estimator F̂T,n contains biases both due to
the regularization error and due to the separation of volatility from jumps. The bias due to the presence
of price jumps is positive and dominates the bias due to the regularization error.
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quiescent and also the most volatile periods in modern financial history. These data sets

thereby present a serious challenge for our method.

In the calculations of the volatility quantiles we use a time span of T = 1 month and

as in the Monte Carlo we fix the regularization parameter at Rn = 3. Figure 1 shows

the results for the Euro/$ rate and Figure 2 shows those for the S&P 500 index. The left

panels show the time series of the 25-th and 75-th monthly quantiles of the spot variance

Vt, the spot volatility
√
Vt and the logarithm of the spot variance ln(Vt). The estimated

quantiles appear to track quite sensibly the behavior of volatility during times of either

economic moderation or distress. The right panels show the associated interquartile range

(IQR) versus the median of the logarithm of the spot variance; we use the IQR to measure

the variation of the (transformed) volatility process. The aim of these plots is to discover

how the dispersion of volatility relates to the volatility level. We see that for both data

sets, the IQRs of the spot variance and the spot volatility exhibit a clearly positive, and

generally convex, relationship with the median log-variance. In contrast, the IQR of the

log-variance process shows no such pattern, suggesting that the log volatility process is

homoscedastic, or at least independent from the level of volatility, innovations.

To guide intuition about our empirical findings, suppose we have f(Vt) = f(V0) + Lt

on [0, T ], for Lt a Lévy process and f(·) some monotone function (this is approximately

true for the typical volatility models like the ones in the Monte Carlo when T is relatively

short and the volatility is very persistent as in the data).13 In this case, the interquartile

range of the volatility occupation time of f(Vt) on [0, T ] will be independent of the level

V0. On the other hand, for other functions h(Vt) the dispersion will depend in general

on the level V0. The IQR of the volatility occupation measure can be used, therefore, to

study the important question of modeling the variation of volatility. The evidence here

points away from affine volatility models towards those models in which the log volatility

has innovations that are independent from the level of volatility like the exponential OU

model in (13). This is consistent with earlier parametric evidence for superior performance

of log-volatility models over affine models.14

13This also holds approximately true for two-factor models in which one of the factors is fast mean
reverting and the other is very persistent (which is the case for most of the estimates of such models
reported in empirical work). In such a setting, the fast mean reverting factor plays minimal role in the
dependence of the interquantile range of various transforms of the spot variance over the interval on the
level of volatility.

14Regarding log volatility, Chernov et al. (2003) present evidence from time series data while Cont and
da Fonseca (2002) present evidence from the options-implied volatility surface.
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Figure 1: Estimated Quantiles of the Monthly Occupation Measure of the
Spot Volatility of the Euro/$ return, 1999–2010. The three left-hand panels
show the 25 and 75 percent quantiles of the monthly occupation measure of
volatility expressed in terms of the local variance (left-top), the local standard
deviation (left-middle), and the local log-variance (left-bottom). Each right-
side panel is a scatter plot of the interquartile ranges of the associated monthly
left-side distributions versus the medians of the distributions (in log-variance).
Volatility is quoted annualized and in percentage terms.
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Figure 2: Estimated Quantiles of the Monthly Occupation Measure of the Spot
Volatility of the S&P500 index futures return, 1982–2010. The organization
is the same as Figure 1.
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6 Conclusion

In this paper we use inverse Laplace transforms to generate a quick and easy nonparametric

estimator of the volatility occupation time (VOT). The estimation is conducted based on

discretely sampled Itô semimartingale increments over a fixed time interval with asymp-

totically shrinking mesh of the observation grid. We derive the asymptotic properties of

the VOT estimator locally uniformly in the spatial argument and further invert it to esti-

mate the corresponding quantiles of volatility over the time interval. Monte Carlo evidence

shows good finite-sample performance that is significantly better than that of the bench-

mark estimator of Li et al. (2013) for estimating lower volatility quantiles. An empirical

application illustrates the use of the estimator for studying the variation of volatility.

7 Appendix: Proofs

The appendix is organized as follows. We collect some preliminary estimates in Section 7.1.

The rest of this appendix is devoted to proving results in the main text. Throughout the

proof, we use K to denote a generic positive constant that may change from line to line.

We sometimes write Km to emphasize the dependence of the constant on some parameter

m.

7.1 Preliminary estimates

7.1.1 Estimates for the kernel Π (R, x)

Lemma 7.1 Fix c > 0, η1 ∈ [0, 1/2) and η2 ∈ [0, 1/2). There exists some K > 0, such

that for any R ≥ c and x > 0,

|Π (R, x)| ≤ K exp

(
πR

2

)
min

{
xη1 , Rx−1, R2x−1−η2

}
.

Proof. To simplify notations, we denote

hR (s) =

√
s sin (R ln (s))

s2 + 1
, gR (x) =

∫ ∞
0

hR (s) sin (xs) ds.
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Since η1 ∈ [0, 1/2), we have

|gR (x)| ≤
∫ ∞

0

√
s |sin (xs)|
s2 + 1

ds ≤
∫ ∞

0

√
s |sin (xs)|η1

s2 + 1
ds ≤ Kxη1 . (14)

Using integration by parts, we have gR (x) = x−1
∫∞

0 h′R (s) cos (xs) ds. With h′R (s)

explicitly computed, we have

|gR (x)| ≤ KRx−1. (15)

Using integration by parts again, we get gR (x) = −x−2
∫∞

0 h′′R (s) sin (xs) ds. By explicit

computation, it is easy to see |h′′R(s)| ≤ KR2s−3/2/(1 + s2). Hence, for η2 ∈ [0, 1/2),

|gR (x)| ≤ KR2x−2

∫ ∞
0

|sin (xs)|
s3/2 (1 + s2)

ds

≤ KR2x−2

∫ ∞
0

|sin (xs)|1−η2

s3/2 (1 + s2)
ds

≤ KR2x−1−η2

∫ ∞
0

1

s1/2+η2 (1 + s2)
ds

≤ KR2x−1−η2 .

Combining the inequality above with (14) and (15), we derive

|gR (x)| ≤ K min
{
xη1 , Rx−1, R2x−1−η2

}
.

Similarly, we can also show that∣∣∣∣∫ ∞
0

√
s cos (R ln (s))

s2 + 1
sin (xs)

∣∣∣∣ ≤ K min
{
xη1 , Rx−1, R2x−1−η2

}
.

The assertion of the lemma then readily follows. �

7.1.2 Estimates for the underlying process X

As often in this kind of problems, it is convenient to strengthen Assumption A as follows.

Assumption SA: We have Assumption A. Moreover, the processes bt, Vt and V −1
t

and the sequence Km are bounded, and for some bounded λ-integrable deterministic func-

tion Γ on R, we have |δ (ω, t, z)|r ≤ Γ (z).
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For notational simplicity, we set

b′t =

{
bt if r > 1,

bt −
∫
R δ (t, z) 1{|δ(t,z)|≤1}λ (dz) if r ≤ 1,

where r is the constant in Assumption A1. We also set σt =
√
Vt, X

′
t = X0 +

∫ t
0 b
′
sds +∫ t

0 σsdWs, X
′′
t = Xt −X ′t, and

χni = ∆n
i X
′/∆1/2

n , βni = σ(i−1)∆n
∆n
iW/∆

1/2
n , λni = χni − βni .

Lemma 7.2 Under Assumption SA, there exists K > 0 such that for all u ∈ R+,

E

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos
(√

2uχni

)
− cos

(√
2uβni

))∣∣∣∣∣∣ ≤ K min
{
u1/2∆1/2

n , 1
}
, (16)

E

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

exp
(
−uV(i−1)∆n

)
−
∫ T

0
exp (−uVs) ds

∣∣∣∣∣∣ ≤ K min
{
u∆1/2

n , 1
}

+ ∆n, (17)

E

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos
(√

2uβni

)
− exp

(
−uV(i−1)∆n

))∣∣∣∣∣∣ ≤ K∆1/2
n min {u, 1} , (18)

E

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos

(√
2u

∆n
i X√
∆n

)
− cos

(√
2uχni

))∣∣∣∣∣∣ ≤ K
(
u1/2∆1/r−1/2

n

)r∧1
. (19)

Proof. By the Burkholder–Davis–Gundy inequality and Assumption SA, E |λni | ≤ K∆
1/2
n .

Then (16) follows from a mean-value expansion and the triangle inequality. Turning to (17),

we have, for s ∈ [(i−1)∆n, i∆n], E| exp
(
−uV(i−1)∆n

)
−exp (−uVs) | ≤ Ku∆

1/2
n , by using a

mean-value expansion and Assumption SA. By the triangle inequality, (17) readily follows.

Now, consider (18). Denote ζni = cos
(√

2uβni
)
− exp

(
−uV(i−1)∆n

)
. It is easy to see that

(ζni ,Fi∆n)i≥1 forms an array of martingale differences. Moreover,

E
[
(ζni )2 |F(i−1)∆n

]
=

1

2

(
1− exp

(
−2uV(i−1)∆n

))2 ≤ K min
{
u2V 2

(i−1)∆n
, 1
}
.

Hence, E[(∆n
∑[T/∆n]

i=1 ζni )2] ≤ K∆n min{u2, 1}. We then deduce (18) by using Jensen’s

inequality. Finally, we show (19). When r ∈ (0, 1], by Assumption SA and Lemma 2.1.7
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in Jacod and Protter (2012),

E
∣∣∣∣cos

(√
2u

∆n
i X√
∆n

)
− cos

(√
2uχni

)∣∣∣∣ ≤ KE
∣∣∣∣cos

(√
2u

∆n
i X√
∆n

)
− cos

(√
2uχni

)∣∣∣∣r
≤ Kur/2∆−r/2n E

∣∣∆n
i X
′′∣∣r

≤ Kur/2∆1−r/2
n .

When r ∈ [1, 2), we use Assumption SA and Lemmas 2.1.5 and 2.1.7 in Jacod and Prot-

ter (2012) to derive E| cos(
√

2u∆n
i X/
√

∆n)− cos(
√

2uχni )|r ≤ Kur/2∆
1−r/2
n , and then use

Jensen’s inequality to get E| cos(
√

2u∆n
i X/
√

∆n) − cos(
√

2uχni )| ≤ Ku1/2∆
1/r−1/2
n . Com-

bining the above estimates, we have for each r ∈ (0, 2),

E
∣∣∣∣cos

(√
2u

∆n
i X√
∆n

)
− cos

(√
2uχni

)∣∣∣∣ ≤ K (u1/2∆1/r−1/2
n

)r∧1
.

Then (19) readily follows. �

7.2 Proof of Lemma 2.1

Part (a). The existence of occupation density of Ṽt follows directly from Corollary 1

of Theorem IV.70 in Protter (2004). Since ãt and Ṽt are locally bounded, we can find

a localizing sequence of stopping times (Tm)m≥1 such that Tm ≤ Sm and the stopped

processes ãt∧Tm and Ṽt∧Tm are bounded. We first show

E

[
sup

t≤T∧Tm

∣∣∣f̃t (x)− f̃t (y)
∣∣∣k] ≤ K |x− y|(1−β)k∧(1/2) . (20)

By Theorem IV.68 of Protter (2004), we have for x, y ∈ K̃, x < y,

f̃t (y)− f̃t (x) = 2
5∑
j=1

A
(j)
t , (21)
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where

A
(1)
t =

(
Ṽt − y

)+
−
(
Ṽt − x

)+
+
(
Ṽ0 − x

)+
−
(
Ṽ0 − y

)+
,

A
(2)
t =

∫ t

0
1{x<Ṽs−≤y}dṼs,

A
(3)
t =

∑
s≤t

1{Ṽs−>y}

[(
Ṽs − x

)−
−
(
Ṽs − y

)−]
,

A
(4)
t =

∑
s≤t

1{x<Ṽs−≤y}

[(
Ṽs − x

)−
−
(
Ṽs − y

)+
]
,

A
(5)
t =

∑
s≤t

1{Ṽs−≤x}

[(
Ṽs − x

)+
−
(
Ṽs − y

)+
]
.

Clearly, for any t, |A(1)
t | ≤ 2 |x− y|. Hence, E[ supt≤T∧Tm |A

(1)
t |k] ≤ K|x− y|k.

By (5), we have

A
(2)
t =

∫ t

0
1{x<Ṽs−≤y} (ãsds+ dBs) +

∫ t

0

∫
R

1{x<Ṽs−≤y}δ̃ (s, z)µ (ds, dz) . (22)

By Hölder’s inequality, the boundedness of ãt∧Tm and condition (ii), we have

E

[
sup

t≤T∧Tm

∣∣∣∣∫ t

0
1{x<Ṽs−≤y}ãsds

∣∣∣∣k
]
≤ K |x− y| . (23)

By the Burkholder–Davis–Gundy inequality and Jensen’s inequality,

E

[
sup

t≤T∧Tm

∣∣∣∣∫ t

0
1{x<Ṽs−≤y}dBs

∣∣∣∣k
]
≤ KE

[(∫ T

0
1{x<Ṽs−≤y}ds

)k/2]
≤ K |x− y|1/2 . (24)

Moreover, condition (i) implies that
∫
R(Γ̃m(z)k+Γ̃m(z))λ(dz) <∞. Then by Lemma 2.1.7
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of Jacod and Protter (2012), we have

E

[
sup

t≤T∧Tm

∣∣∣∣∫ t

0

∫
R

1{x<Ṽs−≤y}δ̃ (s, z)µ (ds, dz)

∣∣∣∣k
]

≤ KE
[∫ T

0

∫
R

1{x<Ṽs−≤y}Γ̃m (z)k λ (dz) ds

]
+KE

[(∫ T

0

∫
R

1{x<Ṽs−≤y}Γ̃m (z)λ (dz) ds

)k]
≤ K |x− y| .

(25)

Combining (22)-(25), we derive E
[
supt≤T∧Tm |A

(2)
t |k

]
≤ K |x− y|1/2.

Turning to A
(3)
t and A

(5)
t , we first can bound them as follows

sup
t≤T∧Tm

(
|A(3)

t |+ |A
(5)
t |
)
≤

∫ T∧Tm

0

∫
R

(
(y − x) ∧ |δ̃ (s, z) |

)
µ (ds, dz)

≤ (y − x)1−β
∫ T

0

∫
R

Γ̃m (z)β µ (ds, dz) .

From here, we readily obtain

E

[
sup

t≤T∧Tm

(
|A(3)

t |+ |A
(5)
t |
)k]

≤ K (y − x)(1−β)k E

[(∫ T

0

∫
R

∣∣∣Γ̃m (z)
∣∣∣β µ (ds, dz)

)k]
≤ K (y − x)(1−β)k ,

where the second inequality is obtained by using Lemma 2.1.7 of Jacod and Protter (2012)

and condition (i).

Finally, since |A(4)
t | ≤

∫ t
0

∫
R 1{x<Ṽs−≤y}|δ̃ (s, z) |µ (ds, dz), the same calculation as in

(25) yields E[supt≤T∧Tm |A
(4)
t |k] ≤ K |x− y| . We have shown that E[supt≤T∧Tm |A

(j)
t |k] ≤

K|x− y|(1−β)k∧(1/2) for each j ∈ {1, . . . , 5}. In view of (21), we derive (20).

It remains to show E[f̃T∧Tm(x)k] ≤ K for all x ∈ K̃. Since Ṽt∧Tm is bounded, f̃T∧Tm(x∗) =

0 for x∗ large enough. The assertion then follows from (20) and the compactness of K̃.

Part (b). Denote F̃t (y) =
∫ t

0 1{Ṽs≤y}ds. Then Ft (x) = F̃t (g (x)). By the chain rule, Ft (x)

is differentiable with derivative ft (x) = f̃t (g (x)) g′ (x). Assumption C1 is thus verified.

Let K ⊂ (0,∞) be compact. Since g is continuously differentiable, g′ (·) is bounded on K.

Moreover, the set g (K) is compact; hence by part (a), E[|f̃T∧Tm(g(x))|k] is bounded for
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x ∈ K, yielding E[|fT∧Tm(x)|k] = E[|f̃T∧Tm(g(x))|k]|g′(x)|k ≤ K. By Jensen’s inequality, for

any ε ∈ (0, k − 1), supx∈K E[|fT∧Tm(x)|1+ε] ≤ K. This verifies Assumption C2. Moreover,

for x, y ∈ K,

E
[
|fT∧Tm (x)− fT∧Tm (y)|k

]
= E

[∣∣∣f̃T∧Tm (g (x)) g′ (x)− f̃T∧Tm (g (y)) g′ (y)
∣∣∣k]

≤ KE
[∣∣∣f̃T∧Tm (g (x))− f̃T∧Tm (g (y))

∣∣∣k]
+KE

[∣∣∣f̃T∧Tm (g (y))
∣∣∣k ∣∣g′ (x)− g′ (y)

∣∣k]
≤ K |g (x)− g (y)|(1−β)k∧(1/2) +K |x− y|γ̄k

≤ K |x− y|(1−β)k∧(1/2) +K |x− y|γ̄k .

Hence, for any ε ∈ (0, k − 1), by Jensen’s inequality,

E
[
|fT∧Tm (x)− fT∧Tm (y)|1+ε

]
≤ K |x− y|(1−β)∧ 1

2k +K |x− y|γ̄ .

By setting γ̃ = (1− β)∧ 1
2k∧γ̄ and picking any ε ∈ (0,min {γ̃, k − 1}), we verify Assumption

C3 for the process Vt. �

7.3 Proof of Theorem 3.1

We first prove Lemmas 3.1 and 3.2, and then prove Theorem 3.1.

Proof of Lemma 3.1. By localization, we can suppose Assumption SA and strengthen

Assumptions B with the additional condition that T ≤ Tm. Since Rn = Op(ρn) and

R−1
n = Op(ρ

−1
n ), we can also assume that

Rn ≤Mρn, R−1
n ≤Mρ−1

n (26)

for some fixed M ≥ 1 in the proof without loss of generality. Otherwise, we can restrict

calculations on the set for which (26) hold, while noting that the probability of the exception

set can be made arbitrarily small by picking M large. The proof proceeds via several steps.

Step 1. Note that the inversion kernel Π(R, x) differs from that in Kryzhniy (2003b)

(see (3) there) by a factor of 1/ coth(πR). Hence, by (4) in Kryzhniy (2003b), we can
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rewrite (8) as

FT,Rn (x) =
2

π

∫ ∞
0

FT (xu)
√
u

sin (Rn lnu)

u2 − 1
du. (27)

With a change of variable, we have the following decomposition:

FT,Rn (x)− FT (x) = FT (x)

(
2

π

∫ ∞
−∞

e3z/2 sin (Rnz)

e2z − 1
dz − 1

)
+

2

π

∫ ∞
0

GT (z;x) sin (Rnz) dz,

(28)

where we set

gT (z;x) = (FT (xez)− FT (x))h (z) , h (z) =
e3z/2

e2z − 1
,

GT (z;x) = gT (z;x)− gT (−z;x) .

The first term in (28) can be bounded as follows. By direct integration, we have

2

π

∫ ∞
−∞

e3z/2 sin (Rnz)

e2z − 1
dz = tanh (πRn) .

Hence,

sup
t≤T,x≥0

∣∣∣∣∣Ft (x)

(
2

π

∫ ∞
−∞

e3z/2 sin (Rnz)

e2z − 1
dz − 1

)∣∣∣∣∣ ≤ Ke−2πRn = Op(ρ
−1
n ). (29)

Below, we complete the proof by showing that the second term in (28) is Op(ρ
−1
n ln(ρn)).

Step 2. We denote an = π/2Rn and, without loss of generality, we suppose that Rn ≥ 1.

In this step, we show that∫ an

0
GT (z;x) sin (Rnz) dz = Op(ρ

−1
n ). (30)

Let An = {z 7→ FT (xez) is differentiable on (−Mπ/2ρn,Mπ/2ρn)}. By Assumption B and
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(26), we have P(Acn) ≤ Kρ−1
n and

E
∣∣∣∣1An ∫ an

0
GT (z;x) sin (Rnz) dz

∣∣∣∣ = E

∣∣∣∣∣1An
∫ an

−an
(FT (xez)− FT (x))

e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
≤ E

∣∣∣∣∣1An
∫ Mπ/2ρn

−Mπ/2ρn

|FT (xez)− FT (x)| 1

|ez − 1|
dz

∣∣∣∣∣
≤ Kρ−1

n .

From here, (30) follows.

Step 3. For each k ≥ 0, we denote an,k = an + 2πk/Rn. Let Nn = min{k ∈ N : an,k ≥
3 ln(ρn)}, where we assume that ln(ρn) ≥ 2π without loss of generality. Note that for

0 ≤ k ≤ Nn, we have π/2Mρn ≤ an ≤ an,k ≤ 4 ln(ρn). Moreover, Nn ≤ [Mρn ln(ρn)]. In

this step, we show that

E

∣∣∣∣∣
∫ an+2πNn/Rn

an

GT (z;x) sin (Rnz) dz

∣∣∣∣∣ ≤ Kρ−1
n ln(ρn). (31)

For k ≥ 1, we define a binary random variable In,k as follows: let In,k = 1 if the function

z 7→ FT (xez) is continuously differentiable on (an,k−1, an,k) and In,k = 0 otherwise. We

first note that for each k ≥ 1, if In,k = 1, then∫ an,k

an,k−1

GT (z;x) sin (Rnz) dz

=

∫ an,k−π/Rn

an,k−1

(GT (z;x)−GT (z + π/Rn;x)) sin (Rnz) dz

= R−1
n

∫ an,k−π/Rn

an,k−1

(GT,z (z;x)−GT,z (z + π/Rn;x)) cos (Rnz) dz,

where GT,z (z;x) ≡ ∂GT (z;x) /∂z, the first equality is obtained by a change of variable and

the second equality follows an integration by parts, using that cos (Rnz) = 0 for z = an,k−1
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and z = an,k − π/Rn. Therefore,

E

∣∣∣∣∣
∫ an,k

an,k−1

In,kGT (z;x) sin (Rnz) dz

∣∣∣∣∣
≤ Kρ−1

n E

[∫ an,k−π/Rn

an,k−1

In,k |GT,z (z;x)−GT,z (z + π/Rn;x)| dz

]
.

(32)

To bound the integrand on the majorant side of (32), we note that GT,z (z;x) =

gT,z (z;x) +gT,z (−z;x), where gT,z (z;x) ≡ ∂gT (z;x) /∂z. By setting φT (x) = xfT (x), we

can write gT,z (z;x) = φT (xez)h (z) + (FT (xez)− FT (x))h′ (z). Hence, for any y, z ∈ R,

|gT,z (z;x)− gT,z (y;x)|

≤ |φT (xez)h (z)− φT (xey)h (y)|

+
∣∣(FT (xez)− FT (x))h′ (z)− (FT (xey)− FT (x))h′ (y)

∣∣
≤ |φT (xez)− φT (xey)| · h (z) + φT (xey) · |h (y)− h (z)|

+ |FT (xez)− FT (xey)| ·
∣∣h′ (z)∣∣+ |FT (xey)− FT (x)| ·

∣∣h′ (y)− h′ (z)
∣∣ .

We further note that under Assumption SA, fT (·) and therefore φT (·) are supported on a

compact subset of (0,∞). Then, by Assumption B, (26) and (32),

E

∣∣∣∣∣
∫ an,k

an,k−1

In,kGT (z;x) sin (Rnz) dz

∣∣∣∣∣ ≤ Kρ−1
n k−1. (33)

Next, by Assumption B1,

E

[∣∣∣∣∣
∫ an,k

an,k−1

(1− In,k)GT (z;x) sin (Rnz) dz

∣∣∣∣∣
]

≤ KE

[
(1− In,k)

∫ an,k

an,k−1

|h(z)| dz

]
≤ Kk−1E [1− In,k]
≤ Kρ−1

n k−1.

(34)
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Therefore,

E

∣∣∣∣∣
∫ an+2πNn/Rn

an

GT (z;x) sin (Rnz) dz

∣∣∣∣∣ ≤ E

[
Nn∑
k=1

∣∣∣∣∣
∫ an,k

an,k−1

GT (z;x) sin (Rnz) dz

∣∣∣∣∣
]

≤ Kρ−1
n

[Mρn ln(ρn)]∑
k=1

k−1,

where the first inequality is by the triangle inequality; the second inequality is by (33),

(34) and Nn ≤ [Mρn ln(ρn)]. From here, we readily derive (31).

Step 4. Now, note that∣∣∣∣∣
∫ ∞
an+2πNn/Rn

gT (z;x) sin (Rnz) dz

∣∣∣∣∣ ≤
∫ ∞

3 ln(ρn)

∣∣∣∣∣(FT (xez)− FT (x))
e3z/2

e2z − 1

∣∣∣∣∣ dz
≤ K

∫ ∞
3 ln(ρn)

e−z/2dz,

and∣∣∣∣∣
∫ ∞
an+2πNn/Rn

gT (−z;x) sin (Rnz) dz

∣∣∣∣∣ ≤
∫ ∞

3 ln(ρn)

∣∣∣∣∣(FT (xe−z)− FT (x)
) e−3z/2

e−2z − 1

∣∣∣∣∣ dz
≤ K

∫ ∞
3 ln(ρn)

e−3z/2dz.

Recalling GT (z;x) = gT (z;x)− gT (−z;x), we derive∣∣∣∣∣
∫ ∞
an+2πNn/Rn

GT (z;x) sin (Rnz) dz

∣∣∣∣∣ ≤ Kρ−3/2
n . (35)

Combining (30), (31) and (35), we have∫ ∞
0

GT (z;x) sin (Rnz) dz = Op
(
ρ−1
n ln (ρn)

)
. (36)

The assertion of the lemma then follows from (28), (29) and (36). �

Proof of Lemma 3.2. With a standard localization procedure, we can suppose that

Assumption SA holds without loss of generality. We can further suppose that Rn ≥ 2 and
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∆n ≤ 1. It is easy to see that

sup
x∈K

∣∣∣F̂T,n,Rn (x)− FT,Rn (x)
∣∣∣ ≤ 4∑

j=1

ζj,n, (37)

where, with the notations of Lemma 7.2 and Π∗ (R, u) = supx∈K |Π (R, ux)|, we set

ζ1,n =

∫ ∞
0

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos
(√

2uχni

)
− cos

(√
2uβni

))∣∣∣∣∣∣ Π∗ (Rn, u)

u
du,

ζ2,n =

∫ ∞
0

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

exp
(
−uV(i−1)∆n

)
−
∫ T

0
exp (−uVs) ds

∣∣∣∣∣∣ Π∗ (Rn, u)

u
du,

ζ3,n =

∫ ∞
0

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos
(√

2uβni

)
− exp

(
−uV(i−1)∆n

))∣∣∣∣∣∣ Π∗ (Rn, u)

u
du,

ζ4,n =

∫ ∞
0

∣∣∣∣∣∣∆n

[T/∆n]∑
i=1

(
cos

(√
2u

∆n
i X√
∆n

)
− cos

(√
2uχni

))∣∣∣∣∣∣ Π∗ (Rn, u)

u
du.

By Lemma 7.1 and Rn ≤ ρn, given any η1, η2 ∈ [0, 1/2), we have for all u > 0,

Π∗ (Rn, u) ≤ K exp
(πρn

2

)
min

{
uη1 , ρnu

−1, ρ2
nu
−1−η2

}
, (38)

where we have used the fact that K is bounded above and away from zero.

By (16) and (38), where the latter is applied with η1 = 0 and η2 = η for η being the

constant in the statement of the lemma, we have

E |ζ1,n| ≤ K exp
(πρn

2

)∫ ∞
0

min
{
u1/2∆1/2

n , 1
}

min
{
u−1, ρnu

−2, ρ2
nu
−2−η} du

≤ K exp
(πρn

2

)(
ρ1/2
n ∆1/2

n + ρ2
n∆1+η

n

)
, (39)

where the second line is obtained by a direct (but somewhat tedious) calculation of the

integral above.
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By (17) and (38), for η1 ∈ (0, 1/2), we have

E |ζ2,n| ≤ K exp
(πρn

2

)∫ ∞
0

min
{
u∆1/2

n , 1
}

min
{
u−1, ρnu

−2, ρ2
nu
−2−η} du

+K∆n exp
(πρn

2

)∫ ∞
0

min
{
uη1−1, ρnu

−2, ρ2
nu
−2−η} du.

Moreover, by direction calculation, we have∫ ∞
0

min
{
uη1−1, ρnu

−2, ρ2
nu
−2−η} du ≤ Kρη1/(1+η1)

n +Kρ1−1/η
n ,

and ∫ ∞
0

min
{
u∆1/2

n , 1
}

min
{
u−1, ρnu

−2, ρ2
nu
−2−η} du

≤ Kρn ln (ρn) ∆1/2
n +Kρ2

n∆(1+η)/2
n .

Hence,

E |ζ2,n| ≤ K exp
(πρn

2

)(
ρn ln (ρn) ∆1/2

n + ρ2
n∆(1+η)/2

n

)
. (40)

By (18) and (38), we have

E |ζ3,n| ≤ K∆1/2
n exp

(πρn
2

)∫ ∞
0

min {u, 1}min
{
u−1, ρnu

−2, ρ2
nu
−2−η} du

≤ K exp
(πρn

2

)
ln (ρn) ∆1/2

n . (41)

Now, consider ζ4,n. We denote r̃ = r ∧ 1. By (19) and (38), and a direct calculation of

the integral below, we have

E |ζ4,n| ≤ K∆r̃(1/r−1/2)
n exp

(πρn
2

)∫ ∞
0

ur̃/2 min
{
u−1, ρnu

−2, ρ2
nu
−2−η} du

≤ K exp
(πρn

2

)
ρr̃/2n ∆r̃(1/r−1/2)

n . (42)

Finally, we combine (37) and (39)–(42) to derive the assertion of the lemma. �

Proof of Theorem 3.1. The assertion follows directly from Lemmas 3.1 and 3.2. �
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7.4 Proof of Theorem 3.2.

By localization, we can assume (10) holds for Tm = T and Cm = K without loss of

generality. Since ρn → ∞, we can also suppose ρn ≥ 1. Let Π∗ (Rn, u) be defined as in

the proof of Lemma 3.2. Recall from (38) that, given any η1, η2 ∈ [0, 1/2), we have for all

u > 0,

u−1Π∗ (Rn, u) ≤ K exp
(πρn

2

)
min

{
u−1+η1 , ρnu

−2, ρ2
nu
−2−η2

}
. (43)

Below, we fix η1 and η2 such that η1 ∈ (c̄, 1/2) and η2 ∈ (max{c̄, 1/3}, 1/2).

We start with an estimate. Let a ∈ (−η1, 1 + η2) be a constant. Straightforward algebra

yields ∫ ∞
0

ua min
{
u−1+η1 , ρnu

−2, ρ2
nu
−2−η2

}
du

=

∫ ρ
1/(1+η1)
n

0
u−1+η1+adu+ ρn

∫ ρ
1/η2
n

ρ
1/(1+η1)
n

ua−2du+ ρ2
n

∫ ∞
ρ

1/η2
n

ua−2−η2du

≤ K
(
ρ
a+η1
1+η1
n + ρ

1+ a−2
1+η1

+ 1
η2

n + ρ
a−1+η2
η2

n

)
≤ Kρ4

n.

(44)

Now, observe that for any compact K ⊂ (0,∞),

E
[
sup
x∈K

∣∣∣F̃T,n,Rn (x)− FT,Rn (x)
∣∣∣] ≤ ∫ ∞

0
E
∣∣∣L̃T,n (u)− LT (u)

∣∣∣ Π∗ (Rn, u)

u
du

≤ K∆δ̄
n

∫ ∞
0

(
u−c̄ + u1+c̄

) Π∗ (Rn, u)

u
du

≤ K exp
(πρn

2

)
∆δ̄
nρ

4
n, (45)

where the first inequality is by the triangle inequality; the second inequality follows from

(10); the third inequality follows from (43) and (44). Under condition (ii), the majorant

side of the above display goes to zero. The assertion of the theorem then readily follows

from Lemma 3.1 and (45). �

7.5 Proof of Theorem 3.3

Part (a) Let (Tm)m≥1 be the localizing sequence of stopping times as in Assumption

C. By localization, we can suppose that the stopped process (Vt∧Tm)t≥0 takes values in

Km = [cm, Cm] for some constants Cm > cm > 0 without loss of generality. By enlarging
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Km if necessary, we suppose that K ⊆ Km without loss. Let Mm = ln (Cm/cm). Observe

that x, y ∈ K and |z| ≥Mm imply FT∧Tm (xez)−FT∧Tm (yez) = 0. Hence, for any x, y ∈ K,

E

[∣∣∣∣∣
∫ ∞
−∞

(
FT∧Tm (xez)− FT∧Tm (x)

− (FT∧Tm (yez)− FT∧Tm (y))
)e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε]

≤ KE

[
|FT∧Tm (x)− FT∧Tm (y)|1+ε

∣∣∣∣∣
∫

(−∞,−Mm]∪[Mm,∞)

e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε]

+KE

[∣∣∣∣∣
∫ Mm

−Mm

(
FT∧Tm (xez)− FT∧Tm (x)

− (FT∧Tm (yez)− FT∧Tm (y))
)e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε]

.

(46)

By Assumption C2 and Hölder’s inequality,

E

[
|FT∧Tm (x)− FT∧Tm (y)|1+ε

∣∣∣∣∣
∫

(−∞,−Mm]∪[Mm,∞)

e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε]

≤ KmE
[
|FT∧Tm (x)− FT∧Tm (y)|1+ε

]
≤ Km |x− y|1+ε .

(47)

Note that for any x, y ∈ K and z ∈ R,

|FT∧Tm (xez)− FT∧Tm (x)− (FT∧Tm (yez)− FT∧Tm (y))|

=

∣∣∣∣∫ y

x
fT∧Tm (v) dv −

∫ y

x
ezfT∧Tm (vez) dv

∣∣∣∣
≤

∫ y

x
fT∧Tm (vez) |ez − 1| dv +

∫ y

x
|fT∧Tm (vez)− fT∧Tm (v)| dv.

Thus by Hölder’s inequality, the second term on the majorant side of (46) can be bounded

by

KmE

∫ Mm

−Mm

(∫ y

x
fT∧Tm (vez) |ez − 1| dv

)1+ε
∣∣∣∣∣ e3z/2

e2z − 1

∣∣∣∣∣
1+ε

dz


+KmE

∫ Mm

−Mm

(∫ y

x
|fT∧Tm (vez)− fT∧Tm (v)| dv

)1+ε
∣∣∣∣∣ e3z/2

e2z − 1

∣∣∣∣∣
1+ε

dz

 . (48)
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The two terms in (48) can be further bounded as follows. By Hölder’s inequality and

Assumption C2, the first term in (48) can be bounded by

KmE

[∫ Mm

−Mm

(∫ y

x
fT∧Tm (vez) dv

)1+ε

dz

]
≤ Km |x− y|1+ε .

By Hölder’s inequality and Assumption C3, the second term in (48) can be bounded by

Km

∫ Mm

−Mm

E

[(∫ y

x
|fT∧Tm (vez)− fT∧Tm (v)| dv

)1+ε
] ∣∣∣∣ 1

ez − 1

∣∣∣∣1+ε

dz

≤ Km |x− y|1+ε
∫ Mm

−Mm

1

|ez − 1|1+ε−γ̃ dz

≤ Km |x− y|1+ε .

Thus, (48) can be further bounded by Km |x− y|1+ε. Combining this estimate with (47),

we deduce that

The left-hand side of (46) ≤ Km |x− y|1+ε . (49)

Next, observe that by Assumption C2,

E

∣∣∣∣∣
∫ ∞
−∞

(FT∧Tm (xez)− FT∧Tm (x))
e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε


≤ KE

∣∣∣∣∣
∫ 1

−1
(FT∧Tm (xez)− FT∧Tm (x))

e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε


+KE

∣∣∣∣∣
∫
R\[−1,1]

(FT∧Tm (xez)− FT∧Tm (x))
e3z/2 sin (Rnz)

e2z − 1
dz

∣∣∣∣∣
1+ε


≤ KE

[∫ 1

−1
|FT∧Tm (xez)− FT∧Tm (x)|1+ε

∣∣∣∣ 1

ez − 1

∣∣∣∣1+ε

dz

]
+K

≤ KE

∫ 1

−1

∣∣∣∣∣
∫

[x∧xez ,x∨xez ]
fT∧Tm (v) dv

∣∣∣∣∣
1+ε ∣∣∣∣ 1

ez − 1

∣∣∣∣1+ε

dz

+K

≤ K.

Equipped with (49) and the estimate displayed above, we can apply Theorem 20 in Ibrag-
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imov and Has’minskii (1981) to show that the collection of processes∫ ∞
−∞

(FT∧Tm (xez)− FT∧Tm (x))
e3z/2 sin (Rnz)

e2z − 1
dz, x ∈ K, n ≥ 1,

is stochastically equicontinuous. By (29), we see that the processes FT∧Tm,Rn(x)−FT∧Tm(x),

x ∈ K, n ≥ 1, are also stochastically equicontinuous. Combining this result with Lemma

3.2, we deduce that F̂T,n,Rn(x)−FT (x), x ∈ K, n ≥ 1, are stochastically equicontinuous in

restriction to the event {T ≤ Tm}. By Theorem 3.1, (F̂T,n,Rn(x)−FT (x))1{T≤Tm} = op (1)

for each x ∈ K. Hence, for each m ≥ 1,

sup
x∈K

∣∣∣(F̂T,n,Rn (x)− FT (x)
)

1{T≤Tm}

∣∣∣ P−→ 0.

By using a standard localization argument, we readily derive the asserted convergence.

Part (b) The proof of part (b) is the same as part (a) except for the following difference:

instead of using Lemma 3.2 and Theorem 3.1, we use (45) and Theorem 3.2 in the proof.�

7.6 Proof of Theorem 3.4

Part (a). Let N1 be an arbitrary subsequence of N. Under the condition of the theorem,

there exists a further subsequence N2 ⊆ N1, such that supx∈K |F̂T,n,Rn (x) − FT (x) | → 0

as n→∞ along N2 on some P-full event Ω∗.

Now, fix a sample path in Ω∗. Let T be the collection of continuity points of QKT (·). We

have 1{F̂T,n,Rn (x)<τ} → 1{FT (x)<τ} along N2 for x ∈ {x ∈ K : FT (x) 6= τ}. For each τ ∈ T ,

the set {x ∈ K : FT (x) = τ} charges zero Lebesgue measure. By bounded convergence,

along N2,

Q̂KT,n,Rn (τ)→ inf K+

∫ supK

inf K
1{FT (x)<τ}dx = QKT (τ) , ∀τ ∈ T . (50)

Since FT (x) is continuous in x, by Lemma 21.2 of van der Vaart (1998) and (50), we have

F̂KT,n,Rn (x)→ FT (x) along N2 for all x ∈ K. Since F̂KT,n,Rn (·) is also increasing, we further

have supx∈K |F̂KT,n,Rn (x)− FT (x) | → 0 along N2.

We have shown that for any subsequence, we can extract a further subsequence along

which supx∈K |F̂KT,n,Rn (x) − FT (x) | → 0 almost surely. Hence, supx∈K |F̂KT,n,Rn (x) −
FT (x) | = op (1).
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Part (b). Let N1 and N2 be given as in part (a). Since the continuity points of QT (·) are

also continuity points of QKT (·), by (50), we have Q̂KT,n,Rn (τ∗)→ QKT (τ∗) along N2 almost

surely. The assertion of part (b) then follows a subsequence argument as in part (a). �
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