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Abstract
We propose a test for the rank of a cross-section of processes at a set of jump

events. The jump events are either specific known times or are random and associated
with jumps of some process. The test is formed from discretely sampled data on a
fixed time interval with asymptotically shrinking mesh. In the first step, we form
nonparametric estimates of the jump events via thresholding techniques. We then
compute the eigenvalues of the outer product of the cross-section of increments at
the identified jump events. The test for rank r is based on the asymptotic behavior
of the sum of the squared eigenvalues excluding the largest r. A simple resampling
method is proposed for feasible testing.

The test is applied to financial data spanning the period 2007-2015 at the times
of stock market jumps. We find support for a one-factor model of both industry
portfolio and Dow 30 stock returns at market jump times. This stands in contrast
with earlier evidence for higher-dimensional factor structure of stock returns during
“normal” (non-jump) times. We identify the latent factor driving the stocks and
portfolios as the size of the market jump.
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1 Introduction

Stock prices are commonly modeled as a jump diffusion, where the jumps reflect occasional

abrupt large price moves relative to the usual continuous dynamics. The jump moves

are typically generated either by news related to a particular stock’s growth prospects

or by major economic events such as the release of key macroeconomic data. With the

availability of high-frequency data, a very large empirical and theoretical literature has

emerged on detecting and estimating jump sizes along with determining jump times. For

essentially all estimation contexts, the time span is fixed and the statistical accuracy level

is determined by the width of the sampling interval which shrinks asymptotically, see e.g.,

[1] and the many references therein.

The extensive empirical evidence on stock price jumps naturally leads to the question

as to how a cross-section of stock returns behaves at various jump event times. Earlier

empirical work, e.g., [21] and [5] (see also [9] for more recent evidence based on high-

frequency data), has documented an increased dependence between assets during periods

of large negative moves on the market. The increased dependence is also evident in each

of the two panels of Figure 1. The left panel is based on the returns across 5-minute

increments of the nine large well-diversified industry portfolios comprising the S&P 500

index over the period 2007–2015. The panel shows the eigenvalue decomposition of the

jump covariance matrix of returns across only those intervals with market jumps (dots)

along with a similar decomposition for returns across the remaining non-jump intervals

(triangles). At market jump times, the first common factor accounts for about 90% of

the total variation of the portfolios’ returns while it accounts for a much smaller 70% of

the variation at the non-jump times. Furthermore, the eigenvalues dampen rather quickly

for the covariance from the increments at the market jump times compared with those of
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the covariance formed from non-jump returns. The right panel shows similar eigenvalue

decompositions of the covariance matrices of 5-minute returns on the Dow 30 stocks across

market jump times (same jump events as for the left panel) and across non-jump times.

For the market jump times the first factor accounts for almost 80% of total Dow 30 stock

return variation, while it accounts for only 40% in the non-jump case with the eigenvalues

decaying much more slowly. The evidence in Figure 1 regarding the apparent increased

dependence of asset returns at times of market turmoil motivates our formal statistical

investigation of lower-dimensional factor structures at jump events such as the times at

which the market jumps.

Below we develop formal statistical inference procedures for studying the factor struc-

ture of discretely-observed processes at any specific set of jump events. High-frequency

data is well suited for this because it allows an analysis of the local behavior of the cross-

section of processes around the events of interest. To develop formal inference theory for

the factor structure at the jump events, we need to separate the measurement error due

to the discrete sampling from the true (latent) reaction of the cross-section of processes

to these events. Indeed, the evidence for the stronger asset dependence at the periods

of market stress, discussed in the previous paragraph, might be merely due to the higher

signal-to-noise at these events. That is, at these “extreme” events the measurement error

is much smaller in relative terms than the signal (the asset response to the event) when

compared with “normal” periods in the data. Our high-frequency asymptotics allows us

to separate such an explanation for the observed empirical phenomenon from one in which

the latent factor structure at the extreme events is truly low-dimensional.

The inference procedure developed in the paper can be described as follows. The user

first identifies from the data the jump events of interest. There is considerable flexibility

at this stage and the choice of jump events depends on the particular application. For
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Figure 1: Eigenvalue decompositions of the covariance matrix of 5-minute returns across

market jump intervals (dots) and non-jump intervals (triangles), 2007–2015. The left panel

pertains to the nine industry portfolios comprising the S&P 500 index and the right panel to

the Dow 30 stocks; only the nine largest eigenvalues are plotted. Jump times are identified

using short-term (i.e., 1-minute) moves of the S&P 500 index futures price exceeding 7

local standard deviations in magnitude.

example, one possible choice is jump events associated with fixed (known) times such as

the times of pre-scheduled releases of key macroeconomic data. Another possible choice

of jump events is the set of jumps of an observable process (e.g., risk factor) such as the

stock market index or an industry portfolio. One can also further condition on the sign

and/or magnitude of such jumps. The jump events, in general, are not directly observable

and can happen at random times. Therefore, they need to be inferred from the data via a

thresholding technique (see e.g., [22]) that identifies the jump times in the sample as the

times at which the high-frequency returns of the process of interest are large in magnitude
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relative to the local level of volatility.

Once the jump events are selected, our testing problem reduces to testing the rank of

the matrix of high-frequency returns of the cross-section of processes at the identified jump

events. For this we adapt to the fixed-span infill setting a test proposed by [30] in the

classical long span setting concerning non-random population quantities; see also [12] and

[10, 11] for alternative tests in such a setting. We first compute the eigenvalues of the jump

covariance matrix of high-frequency returns. Provided the d-dimensional cross-section of

processes is driven by r separate factors at the jump events of interest (1 ≤ r ≤ d), then

asymptotically only the r largest eigenvalues should be non-zero. The test is then based

on checking whether the remaining eigenvalues are statistically different from zero.

The limit distribution of our test depends on the asymptotic behavior of the matrix of

high-frequency increments at the jump events. Apart from the jumps, these high-frequency

increments include also other components of the processes which govern their behavior in

the “normal” times outside of the jump events. These residual components shrink asymp-

totically as we sample more frequently around the jump times and they determine the

asymptotic behavior of the test. Our rank test in the high-frequency setting departs from

the one in [30], as the limit distribution of the matrix of high-frequency increments at the

jump events is in general not (conditionally) Gaussian, which is the case in the classical

setting of [30]. Another major difference from the classical setting is that the limit dis-

tribution of the rank test in our case depends on the observed path, and in particular on

the levels of volatility of the processes before and after the jump events. To evaluate the

critical values of the test, we develop a simple resampling technique which involves drawing

uniformly from a local block of high-frequency increments from the left and right of the

detected jump events. This local block resampling technique accounts for the heteroskedas-

ticity of the measurement error around the different jump events in the sample (which is
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reflected in the dependence of the limiting distribution on the volatility trajectory).

We can compare our test with some recent work on factor structures in high frequency

setting. [2] and [27, 28] propose consistent estimators for the number of factors under-

lying the quadratic covariation matrices of the diffusive and the jump components of an

asymptotically increasing cross-section of processes observed at high frequency. Our focus

differs from these papers in three ways. First, instead of estimation, we develop tests for

the number of factors, for which we need to characterize the asymptotic distribution of the

test statistic. Second, we focus on the factor structure at a specific set of jump events and

we are not interested in the diffusive moves that capture the behavior of the processes at

“normal” times; as well known, the techniques needed for studying diffusions and jumps

are very different. Third, unlike [2] and [27, 28], the dimension of the cross-section in this

paper is fixed and this necessitates different asymptotic arguments. Finally, there is a large

literature on estimating factor loadings and testing the validity of factor models (primarily

bivariate) from high-frequency data, see e.g., [3], [7], [13], [16], [18, 19], [25, 26], [29] and

[31]. The main difference between the current paper and this body of work is that in our

case the factors are latent and their number is not known.

We apply our test to high-frequency financial data covering the period 2007–2015. Our

focus in the empirical application is the factor structure of financial assets at the times

of big market jump events. We identify the latter using high-frequency data on a futures

contract written on the S&P 500 index. We then apply the rank test at the market jump

times for various financial assets. Our results point to low-dimensional factor structure of

the cross-sections of industry portfolios comprising the S&P 500 index as well as the Dow

30 stocks at the market jump times.

The rest of the paper is organized as follows. In Section 2 we introduce our setup,

develop the test statistic and derive its asymptotic behavior, and present resampling method
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for feasible testing. Section 3 contains a Monte Carlo evaluation of the test performance.

Section 4 applies the test to study the factor structure of various sets of financial assets at

market jump times. Section 5 concludes. The proofs are given in Section 6.

2 The testing procedure

2.1 The testing problem

We consider a d-dimensional multivariate Itô semimartingale processX defined on a filtered

probability space (Ω,F , (Ft)t≥0,P) with the form

X t = X0 +

∫ t

0

bsds+

∫ t

0

σsdW s +
∑
s≤t

∆Xs, (1)

where b is the drift process, σ is the stochastic (co)volatility process, W is a multivari-

ate Brownian motion and ∆X t ≡ X t − X t− denotes the jump of X at time t. This

setting accommodates most models used in continuous-time economics and finance (see

e.g., [24]), and is the standard model in high-frequency statistics and econometrics; see

[15] and [1]. We assume that the process X is sampled regularly at discrete times i∆n,

i = 0, . . . , bT/∆nc, for some fixed time span T , where b·c denotes the floor function. In our

empirical applications, we take ∆n = 1 minute.

We consider a list of random times τ1 < τ2 < · · · < τp at which a univariate process

Z jumps. The process Z does not need to be part of the vector X. We only need to

have observations of it at the discrete times i∆n. We assume Z is an Itô semimartingale

with a form like (1). In a typical finance application, such as the one considered here, Z

will be an aggregate risk factor (e.g., the S&P 500 index). The jumps of Z can be due

to pre-scheduled macroeconomic announcements or due to the arrival of random events
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such as natural disasters or geopolitical conflicts; see [20] for some empirical examples. For

brevity, henceforth, we will treat all jump times as random times, while noting that the

procedure can be easily adjusted to accommodate known deterministic jump times exactly

as in [18]. More generally, the testing procedure developed here can be applied for any set

of random times τ1 < τ2 < · · · < τp which can be inferred from the available discrete data.

We collect the jump vectors of X at these jump times using the jump matrix denoted

by J =
[
∆Xτ1 , . . . ,∆Xτp

]
. Our goal in this paper is to design a test for the rank of the

d × p jump matrix J . We note that, in general, the matrix J contains the jumps in X

at the jump times of the aggregate factor Z, which only form a subset of all jumps of the

vector X over the interval [0, T ]. Typically, there will be a lot of jumps in the components

of X which are outside the set of events τ1 < τ2 < · · · < τp that we study, which may arise

due to idiosyncratic shocks (e.g., firm-specific announcements).

For economic applications, the test that we develop here can be used to uncover the

factor structure of jump risk for a cross-section of assets during important market-wide

jump events. The focus on market-wide events is natural because, from economic theory,

factor pricing models only concern aggregate risk. Therefore, for such applications we

allow the components of X to contain so-called idiosyncratic jumps which are defined

similar to [23] as jumps that do not occur at the same time as aggregate factor jumps.

The idiosyncratic jumps are modeled nonparametrically in our analysis, in that we impose

essentially no restrictions on them.

We now illustrate with a specific example the type of asset pricing models our test is
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designed for. Specifically, consider the following special case of (1):

Zt = Z0 +

∫ t

0

bZs ds+

∫ t

0

σZs dWs +
∑
s≤t

∆Zs,

X t = X0 +

∫ t

0

bsds+ βc
∫ t

0

σZs dWs +

∫ t

0

σ̃Zs dW̃ s + βd
∑
s≤t

∆Zs +
∑
s≤t

∆J̃ s,

(2)

where W̃ is a multivariate Brownian motion independent of W , J̃ is a multivariate jump

process whose components never jump together with Z (e.g., the components of J̃ being

independent of each other and of Z); βc and βd are vectors of constants. The above

model, with Z capturing the market index, can be viewed as a market model with separate

exposures to market diffusive and jump risks; see e.g., [31] and references therein. In

this model the asset prices in the vector X have exposure to the systematic diffusive

and jump risks in Z, captured by βc and βd, respectively. In addition, the prices in X

are exposed to idiosyncratic diffusive and jump shocks, captured by
∫ t

0
σ̃Zs dW̃ s and J̃ ,

respectively. For the specification in (2) the jump matrix J =
[
∆Xτ1 , . . . ,∆Xτp

]
becomes

J = [∆Zτ1β
d, ...,∆Zτpβ

d] and, hence, has a rank of 1. This is due to the fact that when Z

jumps, there is perfect linear dependence among the jumps of X. Note, however, that due

to the presence of idiosyncratic jumps in X, if we were to define the matrix J by including

the times any of the components of X had a jump, then the rank of J would be higher

(and most likely J would be of full rank).

We continue next with formally defining our testing problem. For some constant r <

min (d, p), we aim to decide in which of the following events the observed path falls:

Ω0,r ≡ {rank (J) = r} , Ωa,r ≡ {rank (J) > r} , (3)

where we remind the reader that the jump matrix J is random. The events Ω0,r and Ωa,r

play the role of the null and the alternative hypotheses in our analysis, respectively, and
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they are analogous to those studied by [30]. Specifying hypotheses in terms of random

events is unlike the classical setting of hypothesis testing (e.g., [17]), but is standard in the

study of high frequency data; see [15] and references therein.

We consider a variant of the test of [30] which itself is a generalization of the one

proposed in [4]. To describe the idea, we start by noting that the rank of J is the same as

that of the d× d jump covariation matrix Q given by

Q ≡ JJ> =

p∑
q=1

∆Xτq∆X
>
τq .

Let λ2
1 ≥ · · · ≥ λ2

d be the ordered eigenvalues of Q and set

Sr ≡
d∑

j=r+1

λ2
j . (4)

Clearly, Sr is the sum of eigenvalues that are zero under the null hypothesis and it is strictly

positive under the alternative. The test for discriminating between the events in (3) can

be carried out equivalently by testing whether Sr is zero or strictly positive.

Our approach differs in important ways from previous work using cumulative sums of

eigenvalues. First, the estimation of the jump matrix J is nonstandard (cf. [30]). We

use a jump detection method to nonparametrically estimate the jump matrix, and the

resultant estimator has a (doubly) mixed Gaussian asymptotic distribution. In particular,

the sampling variability of the estimator generally depends on the random realization of

jump sizes and stochastic volatility before and after jump times. It is important to note that

the asymptotic distribution of the jump estimator is generally not F -conditionally Gaussian

and, hence, violates a key assumption in [30] (see Assumption 2.2 there). Consequently,

the procedure of [30] cannot be directly applied in our setting. We need to take into

account the nonstandard asymptotic distribution in the jump estimation when analyzing

the asymptotic distribution of our test statistic. Second, we provide an easy-to-implement
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local i.i.d. resampling method for computing the critical values for our test. The resampling

scheme may be extended to other inference problems in high-frequency applications.

2.2 The test statistic

We now describe the construction of the test statistic. The first step is to detect the jumps

using a thresholding method (see [22]). To this end, we pick a sequence un of truncation

threshold that satisfies un � ∆$
n for some $ ∈ (0, 1/2). Since the diffusive moves driven by

the Brownian motion are of order Op(∆
1/2
n ), they do not exceed the truncation threshold

un asymptotically. The detected jump times of Z on the sampling grid are collected by

In ≡ {i : |∆n
i Z| > un} . (5)

In applications, it is important to set un in an adaptive way which takes into account

the fact that the diffusive volatility changes over time. Intuitively, what constitutes a big

or small in magnitude move for the diffusive component of Z depends on the level of its

volatility. We recommend scaling the threshold un according to a local estimate of volatility.

We refer to Section 4 for implementation details and the online supplement of this paper

for example code in MATLAB.

In developing our test, we further take into account a feature in financial markets

where the asset prices in X can be more affected by microstructure effects than Z (due to

differences in liquidity). In particular, we note that observed individual assets may have

“gradual jumps” as noted by [6]. That is, a jump in the underlying equilibrium price

may not be immediately reflected in the observed price due to various trading frictions.

In particular, [20] document that during market-wide events, jumps of individual assets

(i.e., X) sometimes take a longer time to realize than the highly liquid market index.

Such complications are not captured in the standard semimartingale model (1), but they
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are important in our empirical analysis on multivariate jump processes. On Figure 2 we

present an example of such a “gradual jump” in the Goldman Sachs stock price. As seen

from the figure, the market (E-mini S&P 500 index futures) adjusted to the new equilibrium

level within a minute while it took two minutes for the Goldman Sachs stock to do so.

We view this type of “gradual jump” phenomenon as a microstructure type effect,

related to the difference in liquidity in the trading of different types of assets. This type

of noise is very different from the bid-ask bounces which can be modeled as mean zero

i.i.d. errors added to X (there is a large literature in high-frequency econometrics about

this, see e.g., [15] and references therein). In order to guard against gradual jumps in finite

samples, we adopt the mixed-scale strategy of [20] by detecting the market jumps at a fine

scale ∆n as in (5), but estimate the jump matrix at a coarse scale k∆n, for some k ≥ 1.

By doing so, we can detect jumps in Z with high precision while being conservative about

the time window used to capture the jumps of X. More precisely, we denote returns at

the coarse scale k∆n using ∆n
i,kX = X(i−1+k)∆n −X(i−1)∆n . Our estimator for the jump

matrix is then given by Ĵn =
[
∆n
i,kX

]
i∈In

.

Before proceeding with formally defining our test statistic, we make an important ob-

servation regarding the jump matrix and its sample estimate Ĵn. In particular, we note

that in the construction of the matrix Ĵn we do not restrict the set In by testing whether

or not the individual components of X jumped together with Z. If some of the elements

of X do not jump at some of the jump times of Z, then the corresponding entries in the

matrix Ĵn will converge to zero asymptotically. This poses no theoretical problem but one

should be careful when interpreting the results of the test. Mainly, a low dimensional factor

structure of J can be also due to the fact that some assets in X never jump together with

Z. From an empirical point of view such a scenario is implausible, see e.g., the empirical

results in [18], and it can never happen in the type of factor models typically used in asset
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pricing such as the market model in (2) with nontrivial factor loadings. Moreover, due to

the nontrivial idiosyncratic risk in X, the detection of jumps in X is prone to significantly

more error than the one done for Z. This misclassification error further compounds by

increasing the dimensionality of the vector X. This is the reason why we do not consider

jump testing in X in our analysis here.

With these considerations in mind, we are now ready to formally define our test. We

consider a test statistic given by the sample analogue of (4). Let λ̂2
n,1 ≥ λ̂2

n,2 ≥ · · · ≥ λ̂2
n,d

be the ordered eigenvalues of the matrix ĴnĴ
>
n . We then set

Ŝn,r ≡
d∑

j=r+1

λ̂2
n,j. (6)

We reject the null hypothesis of rank r when the test statistic Ŝn,r is greater than some

critical value that is described in Section 2.3 below. We note that asymptotically equivalent

variants of this test statistic can be constructed by applying certain transformations (e.g.,

the Box–Cox transformation) on the eigenvalues λ̂2
n,j like in [4] and [30]; such an extension

is straightforward and is omitted for brevity.

In order to determine the critical value, we first characterize the asymptotic distribution

of Ŝn,r under the null hypothesis. We need some notation to do this. Consider the singular

value decomposition for J :

J = UDV >, (7)

where U and V are respectively d × d and p × p orthogonal matrices, D is a d × p

(rectangular) diagonal matrix with its diagonal elements λ1, . . . , λd∧p. We further partition

U = [U 1
...U 2] and V = [V 1

...V 2], where both U 1 and V 1 contain r columns.

We next introduce i.i.d. random variables κq, ξq− and ξq+ for q ≥ 1, such that κq is uni-

formly distributed on [0, 1] and ξq− and ξq+ are independent d-dimensional standard Gaus-

sian random vectors. We then set ζq =
√
κqστq−ξq− +

√
k − κqστqξq and ζ ≡ [ζ1, . . . , ζp].

13



Theorem 1, below, characterizes the asymptotic behavior of Ŝn,r under the null and the

alternative hypotheses. In it we use the notion of stable convergence in law which refers

to convergence in law that holds jointly with any bounded random variable defined on the

original probability space, see e.g., [15] for further details. Below, for any matrix A, we

denote ‖A‖ =
√

Trace
(
A>A

)
.

Theorem 1. Suppose that Assumption 1 in the Appendix holds. Under the null hypothesis,

i.e., in restriction to Ω0,r, ∆−1
n Ŝn,r converges stably in law towards

∥∥U>2 ζV 2

∥∥2
. Under the

alternative hypothesis, i.e., in restriction to Ωa,r, ∆−1
n Ŝn,r diverges in probability to +∞.

The limit behavior of our test is determined by the behavior of the diffusive component

of X around the jump events. Importantly, the error in recovering the timing of the jump

events is of higher asymptotic order and does not impact the limit distribution. The latter

depends both on the level of volatility σ before and after the jump events as well as on the

jumps of X. Even after conditioning on these (random) quantities, the limit distribution

of our test remains non-standard. However, there is an easy resampling method that allows

for conducting feasible testing which we describe next.

2.3 Computing critical values

Our test rejects the null hypothesis of rank r at significance level α ∈ (0, 1) when the test

statistic Ŝn,r is greater than a critical value cvn,α which we construct as follows. Analogously

to (7), we decompose Ĵn as

Ĵn = ÛnD̂nV̂
>
n .

We partition Ûn = [Û 1n
...Û 2n] and V̂ n = [V̂ 1n

...V̂ 2n], where Û 1n and V̂ 1n contain r columns.

The column spaces of Û 2n and V̂ 2n are used to estimate those of U 2 and V 2, respectively.

We approximate the F -conditional distribution of ζ by resampling the diffusive increments
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of X around the jump times from local windows of size kn. We also pick a sequence

vn = (vj,n)1≤j≤d such that vj,n � ∆$
n for $ ∈ (0, 1/2) which is used for trimming increments

containing jumps. We construct the critical value using the following algorithm, for which

a MATLAB package is available in the online supplement.

Algorithm 1. (Computation of Critical Values)

Step 1. For each i ∈ In, draw κ∗i ∼Uniform[0, 1] and draw, with equal probability, ξ∗n,i− from {min(max(∆n
i−jX,−vn),vn) : 1 ≤ j ≤ kn},

ξ∗n,i+ from {min(max(∆n
i+jX,−vn),vn) : 1 ≤ j ≤ kn},

and set ζ∗n,i =
√
κ∗i ξ

∗
n,i− +

√
k − κ∗i ξ

∗
n,i+ and ζ∗n = [ζ∗n,i]i∈In .

Step 2. Repeat step 1 for a large number of times. Set cvn,α as the 1 − α quantile of

‖Û>2nζ∗nV̂ 2n‖2 in the simulated sample. �

Intuitively, the conditional law of ξ∗n,i− (resp. ξ∗n,i+) in Algorithm 1 is used to approxi-

mate that of the diffusive return before (resp. after) the jumps. The truncated returns are

only resampled from local windows around the jump times, so as to accommodate time-

varying volatility and volatility-price co-jumps. In the same vein, the conditional law of

the variables (ζ∗n,i)i∈In approximates that of ζ in Theorem 1.

Theorem 2, below, justifies the asymptotic validity of this critical value construction

and summarizes the asymptotic size and power properties of the proposed feasible test.

Theorem 2. Suppose that Assumption 1 in the Appendix holds, kn →∞ and kn∆n → 0.

Let cvn,α be defined by Algorithm 1. Then ∆−1
n cvn,α converges in probability to the 1 − α

F-conditional quantile of
∥∥U>2 ζV 2

∥∥2
. Consequently, the test associated with the confidence

region {Ŝn,r > cvn,α} has asymptotic level α under the null hypothesis and asymptotic power

one under the alternative hypothesis. That is,

P
(
Ŝn,r > cvn,α

∣∣∣Ω0,r

)
→ α, P

(
Ŝn,r > cvn,α

∣∣∣Ωa,r

)
→ 1.
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We note that the requirement on the asymptotic order of the local block length kn is

rather minimal. We only need kn to increase to infinity at a rate that is slower than the

sampling frequency. This mild requirement suggests that our testing procedure is not very

sensitive to this tuning parameter and we confirm this type of robustness later on in our

Monte Carlo study.

3 Monte Carlo study

We now examine the asymptotic theory above on simulated data that mimic the one used

in our empirical application in Section 4.

3.1 The setting

We set the sample span T = 1 year, or equivalently, 250 trading days. Each day contains

390 high-frequency returns, corresponding to 1-minute sampling, which are generated using

an Euler scheme with a 5-second mesh. As a result, each Monte Carlo realization contains

n = 97, 500 returns which are expressed in annualized percentage terms. We set the fine

scale ∆n = 1/n and implement the mixed-scale jump rank test at the coarse scale k∆n,

for k = 5 and 10. Throughout, we fix the dimension d = 30. There are 2,000 Monte Carlo

trials in each experiment.

The processes of interest are simulated from the following model. We consider mutually

independent standard Brownian motions B, W and W̃ taking values in R, R4 and R30,

respectively. The jump factors are driven by a Poisson process Nt with intensity λN = 40

and the independent Poisson processes {Ñj,t}1≤j≤d (also independent from Nt), each with

intensity of λ̃N = 10, capture so-called idiosyncratic jump risk in the components of X.
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The data generating process in our simulation is then given by

d log (Vt) = −0.1λNdt+ dBt + φtdNt, V0 = 182,

dZt =
√
VtdW 1,t + ϕ1,tdNt,

dX t =
√
VtΞdW t + 0.548

√
VtdW̃ t + β dJ t + dJ̃ t,

dJ t = [ϕ1,tdNt, ϕ2,tdNt]
>, dJ̃ t = [ϕ̃1,tdÑ1,t, . . . , ϕ̃d,tdÑd,t]

>,

and the jump sizes are drawn according to φt
i.i.d.∼ Exponential (0.1) ,

ϕ1,t, ϕ2,t, {ϕ̃j,t}1≤j≤d
i.i.d.∼ Exponential (ϕ̄) .

We calibrate the mean parameter ϕ̄ so that the number of detected jumps in the simulated

data is close to the average number of jumps we find later on in our empirical analysis. We

consider ϕ̄ = 0.25, 0.3 or 0.35, which correspond to approximately 8, 10 or 12, respectively,

detected jumps per year.

The loading matrices Ξ and β are specified as follows. Below, let ιl:m denote a 30-vector

with zeros and ones, with the jth element being one for l ≤ j ≤ m, and the rest of the

elements of the vector being zero. We set the 30×4 matrix Ξ = [0.5 · ι1:30, ι15:22, ι23:28, ι29:30],

which is calibrated so as to match the structure of the eigenvalues of the integrated diffusive

covariance matrix seen in our empirical analysis (see right panel of Figure 1). This choice

of Ξ implies the diffusive component of X loads on four systematic factors (driven by W )

and in addition contains an idiosyncratic piece (driven by W̃ ). This factor structure for

the diffusive returns is in line with existing empirical evidence, see e.g., [2].

The loading matrix β for the jump factors is given by

β =

 [ι1:30, 0] r = 1 (one jump factor in X),

[ι1:30, ς · ι1:15 − ς · ι16:30] r = 2 (two jump factors in X).
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Below, we test for rank(J) = 1, which holds true when r = 1 but is violated when r = 2.

These two cases assess the size and the power properties of our test, respectively. In

particular, ς controls the extent to which the alternative deviates from the null; we conduct

experiments with ς ∈ {0.6, 0.7, 0.8}.

In our model, there are two types of jumps in X: idiosyncratic (captured by J̃ and

representing diversifiable jump risk in the sense of [23]) and systematic (captured by J).

These two groups of jumps arrive at different times almost surely, and our focus is testing

the factor structure of the latter. Our first specification for β implies a one-factor model

for the systematic jumps, with the jump size of Z playing the role of the latent factor. Our

second specification for β implies a two-factor structure, with one factor being the jump

size of Z and another one that is not spanned by the latter.

In the implementation of the test we consider the local window size kn within a range

of values {30, 60}, so as to examine the robustness of the test procedure to this tuning

parameter. Finally, the truncation threshold un (resp. vn) is set to be 7 (resp. 4) times of

local standard deviations of the diffusive component, formed using the bipower variation

estimator of [8]; see the example code in the online supplement for details.

3.2 Results

We report the Monte Carlo rejection rates of our tests in Table 1. As shown in this table,

under the null hypothesis, the finite-sample rejection rates are very close to the associated

nominal levels. The results are robust with respect to the average jump size ϕ̄ as well as

to the choice of the scale parameter k and the local window kn. Under the alternative

hypothesis, the power is adequate in various settings. We observe that, when the jump size

ϕ̄ and the factor loading ς increase, the rejection rate approaches 1; intuitively, the signal

(i.e., the jump component) is stronger relative to the noise (i.e., the diffusive component)
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k = 5 Mixed Scale k = 10 Mixed Scale

kn = 30 kn = 60 kn = 30 kn = 60

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Under the Null Hypothesis

One Jump Factor One Jump Factor

ϕ̄ = 0.25 10.5 4.7 1.1 10.7 5.6 1.3 8.9 4.3 1.1 9.8 5.0 1.2

ϕ̄ = 0.30 11.1 5.8 1.3 10.6 4.9 1.5 10.8 6.3 1.6 11.2 6.2 1.9

ϕ̄ = 0.35 10.0 5.7 1.5 12.2 7.2 1.8 12.3 6.6 1.8 12.1 6.3 1.5

Under the Alternative Hypothesis

Two Jump Factors (ς = 0.6) Two Jump Factors (ς = 0.6)

ϕ̄ = 0.25 75.1 71.7 63.0 77.3 73.0 63.6 65.5 59.2 48.9 64.6 57.8 47.2

ϕ̄ = 0.30 88.0 84.7 78.5 87.5 84.2 77.8 77.5 72.5 62.8 77.9 72.0 61.4

ϕ̄ = 0.35 91.5 90.0 85.2 93.7 91.8 85.9 85.8 82.7 75.0 85.0 81.3 72.7

Two Jump Factors (ς = 0.7) Two Jump Factors (ς = 0.7)

ϕ̄ = 0.25 78.1 74.1 67.8 78.8 74.2 66.9 70.9 66.5 57.5 72.5 66.8 55.8

ϕ̄ = 0.30 88.4 85.7 80.9 88.3 85.7 80.5 82.0 78.6 70.0 82.0 77.6 67.7

ϕ̄ = 0.35 94.2 92.3 88.7 93.8 91.9 87.0 88.3 85.2 78.5 90.0 87.2 79.8

Two Jump Factors (ς = 0.8) Two Jump Factors (ς = 0.8)

ϕ̄ = 0.25 80.8 77.9 71.9 82.2 79.8 72.7 73.0 68.1 59.4 74.1 69.5 59.5

ϕ̄ = 0.30 91.8 89.8 85.1 89.2 87.4 82.9 85.2 81.6 73.6 86.2 82.2 73.7

ϕ̄ = 0.35 95.0 93.6 91.0 95.0 93.5 90.5 91.0 88.5 82.4 90.8 87.8 81.5

Table 1: Monte Carlo rejection rates (%) under the null and the alternative hypotheses.
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when these parameters are larger. The power in the 5-minute mixed-scale setting is greater

than that in the 10-minute setting, because of the higher sampling variability in the latter.

The power results are also robust to the choice of the local window parameter kn. Overall,

the simulation results are consistent with our asymptotic theory and demonstrate good size

and power properties of the proposed test in an empirically relevant simulation design.

4 Empirical application

We use the developed test to study the factor structure of various financial assets at the

times of market jumps. Our proxy for the market is the E-mini S&P 500 index futures,

a leading equity index futures for the U.S. stock market. We study the response of three

groups of assets to market jump events. The first group consists of the exchange traded

funds (ETFs) on the nine industry portfolios comprising the stocks in the S&P 500 index.

The second group consists of the thirty stocks in the Dow Jones Industrial Average index

as of the end of 2015, except that Visa Inc. (NYSE: V) is replaced with Bank of America

(NYSE: BAC) so as to maintain a balanced panel in our sample. Finally, the third group of

assets is formed from the futures on the S&P 500 index, 30-year US Treasury bond, Dollar-

Euro and Dollar-Yen exchange rates. The data covers the period from the beginning of 2007

till the end of 2015. We exclude half-trading days as well as May 6, 2010 and April 23, 2013

when there were periods of malfunctioning (i.e., “Flash Crashes”) on the financial markets.

Altogether we have 2223 trading days in our sample, and in each of them we have 391

one-minute price records of each of the assets included in our analysis. Our sample period

includes the rather turbulent events surrounding the global financial crisis of 2008, the two

recent sovereign debt crises in Europe as well as other major political and economic events

that have caused big moves on the financial markets. As a result, the data set contains a
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lot of market jump events with a rather diverse set of economic forces behind them.

We set the threshold level for identifying the market jump events as in the Monte Carlo

study: we identify as jumps one-minute increments which exceed in absolute value 7 local

volatility estimates. This results in a total of 83 market jump events in our sample. As

in the Monte Carlo, we use aggregation levels of k = 5 and k = 10 to guard against

the gradual jump phenomenon in the cross-section of assets, with the latter being more

conservative. The empirical findings in [20] suggest that these aggregation levels are long

enough to reduce asynchronicity issues in the estimation of jump vectors. Finally, we set

the local window for determining the critical value of the test to kn = 60. The test for the

factor structure at the market jump events is performed on a yearly basis. The reason for

this is that factor loadings typically vary over longer periods of time (see, e.g., [14]) due

to changes in the correlations of the cash flows of the financial assets as well as changes to

discount rates.

We begin our analysis of the jump factor structure of the nine industry portfolios at

the market jump times. Due to diversification, the sector portfolios are largely void of

idiosyncratic risk and, hence, they also tend to have much smaller variances than individual

stocks. Thus, they allow for a much sharper identification of the systematic risks in the

economy and, in particular, their jump factor structure. The results from our test are

reported in Table 2. Overall, the results support a low-dimensional factor structure of the

jumps of the industry portfolios at the times of market jumps. Indeed, the test for rank of

1 rejects the null hypothesis at the 1% significance level only in years 2011 and 2012 when

we use the mixed-scale aggregation with k = 5, and there is no rejection across all years

at the aggregation level k = 10. This finding is consistent with the informal evidence from

the eigenvalue structure of the jump matrix shown in Figure 1.

We continue next with the Dow 30 stocks. The results, reported in Table 3, are quali-
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Year # P-values (%)

of jumps k = 5 k = 10

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

2007 11 4.26 84.34 86.98 14.36 79.94 91.02

2008 8 4.42 77.59 99.11 2.58 86.14 93.96

2009 5 37.76 67.77 94.78 9.30 29.44 40.36

2010 9 25.20 54.15 73.70 71.62 78.36 93.32

2011 6 0.62 13.72 34.12 22.06 49.02 89.90

2012 14 0.60 3.79 14.62 17.82 43.62 73.04

2013 4 16.70 77.83 85.28 35.22 88.64 66.88

2014 12 12.17 43.77 95.45 6.58 76.58 94.50

2015 15 6.57 57.46 85.69 25.46 54.94 80.98

Table 2: Test results for industry portfolios. P-values are reported for testing rank (J) = r

at mixed-scale k ∈ {5, 10} for nine industry portfolios in each year, 2007–2015.

tatively similar to those for the industry portfolios. In general, we continue to find support

for a low-dimensional factor structure at market jump events, though for many of the years

in the sample, the p-values of the hypothesis r = 1 drop somewhat when compared with

those for the industry portfolios. A one-factor jump model at times of market jumps is not

rejected at the 1% level in six out of the nine years. This finding is again in line with the

descriptive evidence seen in Figure 1. One possible explanation for the lower p-values of

the test r = 1 in years 2007, 2012 and 2014 can be small variation in the loadings within
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Year # P-values (%)

of jumps k = 5 k = 10

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

2007 11 0.17 0.48 7.18 0.82 3.32 5.78

2008 8 14.90 90.55 96.43 0.80 36.70 43.70

2009 5 5.49 26.79 58.04 1.26 9.66 20.22

2010 9 11.29 24.55 44.09 52.20 72.88 84.52

2011 6 5.64 11.51 9.75 63.00 83.78 91.46

2012 14 0.01 0.04 2.27 0.52 2.48 7.96

2013 4 3.14 34.93 56.21 10.58 81.44 94.36

2014 12 0.08 0.36 3.74 7.28 64.02 82.90

2015 15 3.62 5.07 11.73 8.84 22.66 52.60

Table 3: Test results for Dow 30 stocks. P-values are reported for testing rank (J) = r at

mixed-scale k ∈ {5, 10} for Dow 30 stocks in each year, 2007–2015.

a one-factor jump model during these years. Tests for higher ranks also suggest that a

three-factor (resp. two-factor) structure is adequate at the aggregation level k = 5 (resp.

k = 10) for these years.

The evidence thus far points to a one-factor model for the jumps of stocks and stock

portfolios at the times of market jumps. A natural question is whether all these assets

share the same factor at the market jump times. To investigate this, we merged these two

cross-sections and implemented our test on the merged data. The results for the jump
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factor structure are very similar to the results for the Dow 30 stocks and we do not report

them to save space. This points to the fact that the stocks and industry portfolios are all

driven by a single common factor during times of market jumps. This factor is treated as

latent in the test but it can be easily identified from the cross-sections of assets up to a

constant. To shed some light on this factor, we consider

f̂ni =

√√√√1

d

d∑
j=1

(∆n
iX

(j))2, i ∈ In,

where X(j) denotes the jth component of X. This quantity will recover the absolute value

of the jump factor up to a constant. The reason for taking the squares is because the factor

loadings of the assets in the latent one factor model can be of different signs. The cross-

sectional aggregation further improves the estimation accuracy. Using the above simple

method, we extract the latent jump factor from the cross-sections of industry portfolios

and the Dow 30 stocks. On Figure 3, we compare the recovered factor f̂ni with the absolute

value of the corresponding market jump; these variables are standardized by centering

and scaling using their sample means and standard deviations. The scatter plots reveal

a remarkable similarity between the recovered factor and the market jumps. Indeed, the

correlation between the series of extracted jumps from the two cross-sections and the market

jumps is above 0.98 in both cases. To contrast these numbers, we performed the same latent

factor extraction for all increments, instead of only those at which the market jumps. The

correlation between the market return and this extracted series from the cross-section drops

to 0.88 for the industry portfolios and 0.46 for the Dow 30 stocks. The significantly lower

correlations outside the market jump times are due to the lack of one-factor structure of

the cross-section of returns at these times.

The above evidence indicates that stock returns at market jump events can be linearly

spanned by the market return. We now study the relationship between the stock market
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index and a set of diverse financial instruments, capturing different economic risks, again

at the times of the market jumps. These additional assets are a long term bond (US

30-Year Treasury bond) and two exchange rates (Dollar-Euro and Dollar-Yen). Existing

empirical work has documented a complicated and time-varying dependence between U.S.

stocks and bonds. Similarly, exchange rates, which are theoretically the ratios of the pricing

kernels of the two countries, are driven by investors’ expectations of future central banks’

policies, among other things. Given time-varying pricing of jump risks, we expect rather

nontrivial connections between the jump risks in the stock market, the bond market, and

the currencies.

In view of such complications, it is far more challenging for the market jump to span

in a linear time-invariant manner the returns on bonds and currencies during market jump

events. We provide formal evidence for this intuition using our test, with results reported

in Table 4. At the aggregation level of k = 5 (resp. k = 10), our test rejects at the 1%

significance level a one-factor model for the jumps of the four assets in this cross-section

during the market jump times in eight (resp. five) out of the nine years in our sample. The

evidence in Table 4 strongly suggests that there should be at least two factors to explain

the behavior of these four assets during the market jump events. Of course, it is possible

that by further conditioning on the economic source of the market jump, for example,

jumps triggered by news about monetary policy, we can detect even for this cross-section

a one-factor structure at this subset of market jump events. We leave this exploration for

future work.
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5 Conclusion

We develop a formal statistical inference procedure for studying the factor structure of a

general d-dimensional semimartingale at any finite set of stopping times associated with

jumps of a discretely-observed process. We test for an exact rank r factor structure, versus

a higher dimensional factor structure, by examining the statistical significance of the sum

of the d−r smallest eigenvalues of the empirical covariance matrix of returns at the market

jump times. The asymptotic theory is non-standard. The reason is that we can only

determine the sampling intervals containing the jumps, not the jump times directly, so

these increments are error-ridden proxies for actual jumps. The measurement errors are

the diffusive components of the semimartingale across the jump intervals and the error

variance in general co-jumps with the process. The observation errors shrink with the

sampling interval and asymptotically follow non-pivotal heteroskedastic mixed Gaussian

distributions, which leads to the non-standard asymptotic distribution of the test statistic.

The statistic, however, is easy to compute via a singular value decomposition, and we

present a simple resampling procedure to compute critical values.

In our empirical application, we first apply the test to high-frequency stock returns,

which generally follow a three- or four-dimensional factor structure; however, the evidence

from our test indicates that stock returns selected at just market jump times collapse to

a one-factor structure. This application uses a panel comprised of nine well-diversified

industry portfolios and another comprised of the DOW 30 stocks. For these two panels,

we find very little evidence to discredit the null hypothesis of a rank-one jump covariation

matrix at market jump times. We filter the panel of jump returns to recover the common

factor, which is seen to be nearly collinear with the S&P 500 index return, consistent

with one-factor market model for jumps. In additional work, we apply the same testing
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procedure to a cross-section that includes bond and currency returns, and we find strong

evidence against a one-factor structure. This alternative finding highlights the different

jump risk structures of bonds and currencies relative to equities, and it illustrates the

power of our test against plausible alternatives in an important empirical context.

6 Appendix

In this technical appendix, we present the regularity conditions and the proofs for the

theorems in the main text. We assume that X is a d-dimensional Itô semimartingale

(see, e.g., [15], Section 2.1.4) of the form (1). The jump part of X can be represented as∫ t
0

∫
R δX (s, u)µ (ds, du) where δX : Ω × R+ × R 7→ Rd is a predictable function and µ is

a Poisson random measure R+ × R with its compensator ν (dt, du) = dt⊗ λ (du) for some

measure λ on R.

Assumption 1. (a) The process (bt)t≥0 is locally bounded; (b) σtσ
>
t is nonsingular for

t ∈ [0, T ] almost surely; (c) ν ([0, T ]× R) <∞.

The only nontrivial restriction in Assumption 1 is the assumption of finite-activity

jumps in X. This assumption is used mainly to simplify our technical exposition because

our empirical focus in this paper is the big jumps. Technically speaking, this means that

we can drop Assumption 1(c) and focus on jumps with size bounded away from zero. Doing

so automatically verifies the finite-activity assumption, but with very little effect on the

empirical investigation in the current paper.

By a standard localization procedure (see Section 4.4.1 in [15]), we can assume that

the processes b and σ are bounded in the proofs below. To simplify notations, we denote

the conditional expectation operator E [ · |F ] by EF [·]. We also denote by (Tm)m≥1 the
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successive jump times of the Poisson process t 7→ µ((0, t]×R). Note that these jump times

are independent of the Brownian motion W . Let i (n,m) denote the unique integer i such

that Tm ∈ ((i− 1)∆n, i∆n]. We use K to denote a generic constant that may change from

line to line.

Proof of Theorem 1. The proof is adapted to the current high-frequency setting from

that of [30]. By Proposition 1 in [18], In coincides with {i (n,m) : ∆ZTm 6= 0, 0 ≤ Tm ≤

T,m ≥ 1} with probability approaching one. Hence, we can assume that Ĵn is a d × p

matrix without loss of generality. In addition, Ĵn
P−→ J and, hence, ĴnĴ

>
n

P−→ JJ>.

Since (λ2
j)1≤j≤d defined above are continuous functions of the elements of JJ>, we have

λ̂2
n,j

P−→ λ2
j , 1 ≤ j ≤ d.

We start with the asymptotics of Ŝn,r under the null hypothesis. Recall (7). In restric-

tion to Ω0,r, we can express the d× p jump matrix J further as J = U 1DrV
>
1 where Dr

is a r× r square diagonal matrix consisting of the first r diagonal elements of D. Since U

and V are orthogonal matrices, we have U>1U 1 = Ir and U>2U 1 = 0, and the same holds

for V . In addition, we recall from Proposition 4.4.10 in [15] that

∆−1/2
n (Ĵn − J)

L-s−→ ζ, (8)

where
L-s−→ denotes stable convergence in law.

We now observe

U>1 Ĵn = DrV
>
1 +Op(∆

1/2
n ), ∆−1/2

n U>2 Ĵn = ∆−1/2
n U>2 (Ĵn − J). (9)

Using (9) and the fact that λ̂2
n,j = op(1) for j = r + 1, . . . , d, we deduce(

U 1,∆
−1/2
n U 2

)>
(ĴnĴ

>
n − λ̂2

n,jId)
(
U 1,∆

−1/2
n U 2

)
=

 D2
r DrV

>
1 ∆
−1/2
n (Ĵn − J)>U 2

• ∆−1
n U

>
2 (Ĵn − J)(Ĵn − J)>U 2

−∆−1
n λ̂2

n,j

 0 0

• Id−r

+ op(1),
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where we have omitted the matrix elements in our notation that are implied by symmetry.

Therefore,

0 =
∣∣∣ĴnĴ>n − λ̂2

n,jId

∣∣∣ =
∣∣∣(U 1,∆

−1/2
n U 2

)>
(ĴnĴ

>
n − λ̂2

n,jId)
(
U 1,∆

−1/2
n U 2

)∣∣∣
=

∣∣∣∣∣∣
 D2

r DrV
>
1 ∆
−1/2
n (Ĵn − J)>U 2

• ∆−1
n U

>
2 (Ĵn − J)(Ĵn − J)>U 2

−∆−1
n λ̂2

n,j

 0 0

· Id−r

∣∣∣∣∣∣+ oP (1)

=
∣∣D2

r

∣∣ ∣∣∣∆−1
n U

>
2 (Ĵn − J)V 2V

>
2 (Ĵn − J)>U 2 −∆−1

n λ̂2
n,jId−r

∣∣∣+ oP (1),

where the last line is obtained by computing the determinant of a partitioned matrix. By

construction, the F -conditional distribution of ζ is non-degenerate. Hence, the limiting

distribution of ∆−1
n U

>
2 (Ĵn−J)V 2V

>
2 (Ĵn−J)>U 2 is also non-degenerate. By the contin-

uous mapping theorem, the limiting distribution of ∆−1
n λ̂2

n,j, j = r+1, . . . , d, is the same as

that of the (d− r) eigenvalues of ∆−1
n U

>
2 (Ĵn−J)V 2V

>
2 (Ĵn−J)>U 2. Hence, the limiting

distribution of Ŝn,r is the same as that of the trace of ∆−1
n U

>
2 (Ĵn−J)V 2V

>
2 (Ĵn−J)>U 2.

By (8) and the properties of stable convergence in law, Ŝn,r
L-s−→

∥∥U>2 ζV 2

∥∥2
in restriction

to Ω0,r.

Under the alternative, it is easy to see that the probability limit of Ŝn,r is strictly

positive. The second assertion of the theorem then readily follows. Q.E.D.

Proof of Theorem 2. Let (j∗m+, j
∗
m−)m≥1 be independent variables drawn uniformly from

{1, . . . , kn}. Let (χ∗m+,χ
∗
m−)m≥1 be independent d-dimensional standard normal variables.

Let (κ̃∗m)m≥1 be independent variables from the Uniform[0,1] distribution. These variables

are all independent of F . Below, for a sequence of random variables An, we write An
L|F−→ A

if the F -conditional law of An converges in probability to that of A under any metric that

is compatible with the weak convergence of probability measures.
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We first show that, under the product topology,(
∆−1/2
n ∆n

i(n,m)+j∗m+
X
)
m≥1

L|F−→
(
σTmχ

∗
m+

)
m≥1

. (10)

We consider a sequence of events Ωn ≡ {there is at most one jump Tm in [i−kn∆n, i+kn∆n]

for all i such that kn ≤ i ≤ bT/∆nc − kn}. Since the jumps of X have finite activity,

P(Ωn) → 1. Therefore, we can restrict attention to Ωn below. In particular, the return

∆n
i(n,m)+j∗m+

X does not contain any jump. We then observe

∆−1/2
n EF

∥∥∥∆n
i(n,m)+j∗m+

X − σTm∆n
i(n,m)+j∗m+

W
∥∥∥

≤ ∆−1/2
n EF

∥∥∥∥∥
∫ (i(n,m)+j∗m+)∆n

(i(n,m)+j∗m+−1)∆n

bsds

∥∥∥∥∥
+∆−1/2

n EF

∥∥∥∥∥
∫ (i(n,m)+j∗m+)∆n

(i(n,m)+j∗m+−1)∆n

(σs − σTm) dW s

∥∥∥∥∥
≤ Op(∆

1/2
n ) + ∆−1/2

n

1

kn

kn∑
j=1

∥∥∥∥∥
∫ (i(n,m)+j)∆n

(i(n,m)+j−1)∆n

(σs − σTm) dW s

∥∥∥∥∥
= op(1),

(11)

where the last line follows from Itô’s isometry, the càdlàg property of σ and the assumption

kn∆n → 0. Next, we observe that(
∆n
i(n,m)+j∗m+

W /∆1/2
n

)
m≥1

L|F−→
(
χ∗m+

)
m≥1

. (12)

Indeed, for each m ≥ 1,

P
(

∆n
i(n,m)+j∗m+

W /∆1/2
n ≤ x

∣∣∣F)
=

1

kn

kn∑
j=1

[
1
{

∆n
i(n,m)+jW /∆1/2

n ≤ x
}] P−→ Φ (x) ,

where Φ (·) is the cumulative distribution function of a d-dimensional standard Gaussian

variable, and the convergence is by a law of large numbers (for which we note that (Tm)m≥1
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and, hence, (i (n,m))m≥1, are independent of W ). Hence, (12) holds for each m. Since the

variables
(
j∗m+

)
m≥1

are drawn independently conditionally on F , (12) also hold jointly for

all m ≥ 1.

From (12), we deduce(
σTm∆n

i(n,m)+j∗m+
W /∆1/2

n

)
m≥1

L|F−→
(
σTmχ

∗
m+

)
m≥1

. (13)

From (11) and (13), (10) readily follows. Similarly, we can show (10) with j∗m+ replaced

by −j∗m− and σTmχ
∗
m+ replaced by σTm−χ

∗
m−; in addition, these convergence results hold

jointly due to the F -conditional independence of these variables. From here, it follows that√
κ̃∗m∆−1/2

n ∆n
i(n,m)−j∗m−

X +
√
k − κ̃∗m∆−1/2

n ∆n
i(n,m)+j∗m+

X
L|F−→

√
κ̃∗mσTm−χ

∗
m− +

√
k − κ̃∗mσTmχ∗m+.

(14)

We denote the trimming function by

f (x;vn) = min(max(x,−vn), vn).

Since (∆n
i(n,m)±j∗m±

X)m≥1 do not contain jumps, ∆n
i(n,m)±j∗m±

X = f(∆n
i(n,m)±j∗m±

X;vn)

with probability approaching one. Moreover, by Proposition 1 in [18], In coincides with

{i (n,m) : ∆ZTm 6= 0, 0 ≤ Tm ≤ T,m ≥ 1} with probability approaching one. Then, from

(14) and the definition of ζ∗n, we deduce

ζ∗n
L|F−→ ζ. (15)

Since Ĵn
P−→ J , Û 2n and V̂ 2n converge in probability to that of U 2 and V 2, re-

spectively, subject to normalization and identifying constraints, to which the functions

‖Û 2nζ
∗
nV̂
>
2n‖ and ‖U 2ζV

>
2 ‖ are invariant. Then, from (15), we have∥∥∥Û 2nζ

∗
nV̂
>
2n

∥∥∥2 L|F−→
∥∥U 2ζV

>
2

∥∥2
.
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From the construction of ζ, it is easy to see that the F -conditional distribution of ζ is

not degenerate. Therefore, the F -conditional distribution of
∥∥U 2ζV

>
2

∥∥2
is continuous. By

Lemma 21.2 in [32], cvn,α converges in probability to the 1−α quantile of
∥∥U 2ζV

>
2

∥∥2
. The

assertions on the asymptotic level and power property then readily follows from Theorem

1. Q.E.D.

References

[1] Y. Aı̈t-Sahalia and J. Jacod. High-Frequency Financial Econometrics. Princeton Uni-

versity Press, 2014.

[2] Y. Aı̈t-Sahalia and D. Xiu. Principal Component Estimation of a Large Covariance

Matrix with High-Frequency Data. Technical report, Princeton University and Uni-

versity of Chicago, 2015.

[3] T. G. Andersen, T. Bollerslev, F. X. Diebold, and G. Wu. Realized Beta: Persistence

and Predictability. In Advances in Econometrics: Econometric Analysis of Financial

and Economic Time Series, volume 20 (Part 2), pages 1–39. Emerald Group Publishing

Limited, 2006.

[4] T. W. Anderson. The Asymptotic Distribution of Certain Characteristic Roots and

Vectors. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics

and Probability, pages 103–130. Berkeley: University of California Press, 1951.

[5] A. Ang and J. Chen. Asymmetric Correlations of Equity Portfolios. Journal of Fi-

nancial Economics, 63:443–494, 2002.

32



[6] O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, and N. Shephard. Realized Kernels

in Practice: Trades and Quotes. The Econometrics Journal, 12(3):C1–C32, 2009.

[7] O. E. Barndorff-Nielsen and N. Shephard. Econometric Analysis of Realized Covari-

ation: High Frequency Based Covariance, Regression, and Correlation in Financial

Economics. Econometrica, 72(3):885 – 925, 2004.

[8] O. E. Barndorff-Nielsen and N. Shephard. Power and Bipower Variation with Stochas-

tic Volatility and Jumps. Journal of Financial Econometrics, 2:1–37, 2004.

[9] T. Bollerslev, V. Todorov, and S. Li. Jump Tails, Extreme Dependencies and the

Distribution of Stock Returns. Journal of Econometrics, 172:307–324, 2013.

[10] J. G. Cragg and S. G. Donald. On the Asymptotic Properties of LDU-based Tests of

the Rank of a Matrix. Journal of the American Statistical Association, 91:1301–1309,

1996.

[11] J. G. Cragg and S. G. Donald. Inferring the Rank of a Matrix. Journal of Econometrics,

76:223–250, 1997.

[12] L. Gill and A. Lewbel. Testing the Rank and Definiteness of Estimated Matrices with

Applications to Factor, State-Space, and ARMA Models. Journal of the American

Statistical Association, 87:766–776, 1992.

[13] F. Gobbi and C. Mancini. Identifying the Brownian Covariation from the Co-Jumps

given Discrete Observations. Econometric Theory, 28:249–273, 2012.

[14] L. P. Hansen and S. F. Richard. The Role of Conditioning Information in Deduc-

ing Testable Restrictions Implied by Dynamic Asset Pricing Models. Econometrica,

55(3):587 – 613, 1987.

33



[15] J. Jacod and P. Protter. Discretization of Processes. Springer, 2012.

[16] I. Kalnina. Nonparametric Tests of Time Variation in Betas. Technical report, Uni-

versity of Montreal, 2013.

[17] E. L. Lehmann and J. P. Romano. Testing Statistical Hypothesis. Springer, 2005.

[18] J. Li, V. Todorov, and G. Tauchen. Jump Regressions. Technical report, Duke Uni-

versity, 2015.

[19] J. Li, V. Todorov, and G. Tauchen. Robust Jump Regressions. Journal of the American

Statistical Association, forthcoming, 2016.

[20] J. Li, V. Todorov, G. Tauchen, and R. Chen. Mixed-Scale Jump Regressions with

Bootstrap Inference. Technical report, Duke University, 2015.

[21] F. M. Longin and B. Solnik. Extreme Correlation of International Equity Markets.

Journal of Finance, 56:649–676, 2001.

[22] C. Mancini. Disentangling the Jumps of the Diffusion in a Geometric Jumping Brow-

nian Motion. Giornale dell’Istituto Italiano degli Attuari, LXIV:19–47, 2001.

[23] R. C. Merton. Option Pricing when Underlying Stock Returns are Discontinuous.

Journal of Financial Economics, 3:125–144, 1976.

[24] R. C. Merton. Continuous Time Finance. Basil Blackwell, New York, N.Y., 1992.

[25] P. Mykland and L. Zhang. ANOVA for Diffusions and Ito Processes. Annals of

Statistics, 34:1931–1963, 2006.

[26] P. Mykland and L. Zhang. Inference for Continuous Semimartingales Observed at

High Frequency. Econometrica, 77:1403–1445, 2009.

34



[27] M. Pelger. Large-Dimensional Factor Modeling based on High-Frequency Observa-

tions. Technical report, Stanford University, 2015.

[28] M. Pelger. Understanding Systematic Risk: A High-Frequency Approach. Technical

report, Stanford University, 2015.

[29] M. Reiss, V. Todorov, and G. Tauchen. Nonparametric Test for a Constant Beta

between Ito Semimartingales based on High-Frequency Data. Stochastic Processes

and their Applications, 125:2955–2988, 2015.

[30] J. M. Robin and R. J. Smith. Tests of Rank. Econometric Theory, 16:151–175, 2000.

[31] V. Todorov and T. Bollerslev. Jumps and Betas: A New Framework for Disentangling

and Estimating Systematic Risks. Journal of Econometrics, 157:220–235, 2010.

[32] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

35



14:15

0

0.01

0.02

0.03

C
u
m

u
la

ti
v

e
 R

e
tu

rn
s

Market

GS

Figure 2: Example of a “gradual jump.” The figure plots one-minute log prices of the

E-mini S&P 500 index futures and the Goldman Sachs stock on September 18, 2007. We

normalize the log price of each of the series at the beginning of the trading day to one. The

plot shows prices 15 minutes before and after the time of the detected market jump which

is at 14:15.
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Figure 3: Recovered jump factor and market jump returns. Standardized recovered jump

sizes (i.e., f̂ni ) are plotted versus the standardized absolute market jumps (dots), compared

with 45-degree lines. Left panel corresponds to the cross-section of industry portfolios and

the right panel to the Dow 30 stocks.
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Year # P-values (%)

of jumps k = 5 k = 10

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

2007 11 0.00 0.07 1.84 0.00 1.34 2.08

2008 8 0.66 16.66 16.65 28.06 49.54 63.50

2009 5 0.89 0.89 4.54 2.44 0.06 75.26

2010 9 0.00 1.70 13.33 6.28 7.38 18.92

2011 6 2.35 24.59 3.92 5.28 51.08 45.26

2012 14 0.00 0.00 0.61 0.00 0.00 24.10

2013 4 0.00 68.19 96.24 0.00 42.70 59.94

2014 12 0.03 0.01 0.36 0.08 0.46 3.98

2015 15 0.08 7.33 75.16 0.26 24.68 30.64

Table 4: Test results for short-term futures. P-values are reported for testing rank (J) = r

at mixed-scale k ∈ {5, 10} for futures contracts on the S&P 500 index, 30-Year Treasury

bond, Dollar-Euro and Dollar-Yen exchange rates in each year, 2007–2015.
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