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Abstract

In a recent paper ([7]), we derived a rate efficient (and in some cases variance efficient) estimator
for the integrated volatility of the diffusion coefficient of a process in presence of infinite variation
jumps. The estimation is based on discrete observations of the process on a fixed time interval
with asymptotically shrinking equidistant observation grid. The result in [7] is derived under the
assumption that the jump part of the discretely-observed process has a finite variation compo-
nent plus a stochastic integral with respect to a stable-like Lévy process with index β > 1. Here
we show that the procedure of [7] can be extended to accommodate the case when the jumps
are a mixture of finitely many integrals with respect to stable-like Lévy processes with indices
β1 > · · · > βM ≥ 1.
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1 Introduction

In this paper we revisit the question of efficient, or at least rate-efficient, estimation of the integrated
volatility of the diffusion coefficient of a one-dimensional process X which is observed at discrete
times. The process X is an Itô semimartingale, whose continuous martingale part is a stochastic
integral

∫ t

0
σs dWs with respect to a standard Brownian motion W , and the integrated volatility over

a given time interval [0, T ] is CT =
∫ t

0
σ2

s ds.
The problem of estimating the integrated volatility CT is arguably the most studied one in

the literature dealing with inference based on high-frequency observations. The volatility inference
problem has been analyzed in various settings. This includes the case when X has jumps, when the
process X is observed with additional microstructure noise, and when the observations take place at
irregularly spaced – and possibly random – times.

In this paper, we discard microstructure and irregular spacing, and concentrate on the case when
X is perfectly observed at times i∆n for i = 0, 1, . . . within a fixed finite time interval [0, T ], and
when the time lag ∆n is small, and eventually goes to 0 (the “high-frequency” setting). We put
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emphasis on the case when X has jumps with a “high” degree of activity, meaning that those jumps
are not locally summable, since the case when they are summable (equivalently, with finite variation)
is well established already (with references given below).

In the above setting we answer the following two questions. First, knowing that in the continuous
case, and also when there are summable jumps (plus a few appropriate technical assumptions), one
can exhibit estimators which converge at the optimal (or, efficient) rate 1/

√
∆n, as ∆n → 0, is it

possible to obtain estimators with the same efficient rate in the non-summable jumps case ? Second,
if this holds, can one find estimators that are variance-efficient, in the sense that their (normalized)
asymptotic variance is the same efficient variance as the one found in the continuous case ?

These two questions have been studied in the paper [7], when the jump part of X can be split
into a sum Z + Z ′ as follows: Z ′t is an absolutely convergent sum

∑
s≤t ∆Z ′s (here, ∆Vs = Vs − Vs−

is the jump size at time s for any càdlàg process V ), and Zt =
∫ t

0
γs dYs for some (unknown)

process γ and a stable or “stable-like” process Y with index β ∈ (1, 2) (we refer to [7] for the formal
definition of “stable-like” processes - they include many processes used in various applications such
as the tempered stable processes). Namely, in this case in [7] we have constructed estimators which
converge at the rate 1/

√
∆n, and which are variance-efficient when further the process Y is symmetric,

whereas if Y is not symmetric the asymptotic variance is twice the efficient variance.
Our goal in this paper is to extend this result in two directions: first we replace the assumption

Zt =
∫ t

0
γs dYs by the fact that the “spot Lévy measures” of Y behave like a stable Lévy measure

with index β near the origin, with a multiplicative coefficient which is a stochastic process at (see
below for the precise statement); this is much weaker than assuming Zt =

∫ t

0
γs dYs. Second, we

replace the single process Z by a sum
∑M

m=1 Zm, where each Zm is as Z above with an index βm,
and β1 > β2 > · · · > βm, and the βm are “regularly spaced”, in the sense that they lie on a grid
of the form {2 − jρ : j = 1, . . . , [2/ρ]} for some (unknown) number ρ > 0 (the assumption is in
fact even weaker than this but too technical to be stated in the introduction). Then, we exhibit
estimators for CT which converge with the efficient rate 1/

√
∆n, and with the asymptotic variance

equal to twice the efficient one. Should we have Zm
t =

∫ t

0
γm

s dY m
s with Zm stable-like with index

βm and symmetric, it would also be possible to construct estimators achieving the efficient variance
bound, but for simplicity we will not do this here.

The method used here is basically the same as in [7], and relies on estimating locally the volatility
(diffusion coefficient) from the empirical characteristic function of the increments of the process over
blocks of decreasing length but containing an increasing number of observations, and then summing
the local volatility estimates. The last step consists in iterating the de-biasing procedure introduced
in that paper.

The rest of the paper is organized as follows. In Section 2 we describe the general setting, and
present a short review of the methods which have been proposed in the literature for jump-robust
volatility estimation. Section 3 is devoted to recalling the estimators of [7] and the associated CLT.
In Section 4 we solve the problem of estimating integrated volatility with a rate 1/

√
∆n under our

generalized assumptions. Proofs are given in Section 5.

2 Estimating integrated volatility: a review

2.1 The general setting

The underlying process X is a one-dimensional Itô semimartingale defined on a filtered space
(Ω,F , (Ft)t≥0,P), so it can be written as

Xt = X0+
∫ t

0

bs ds+
∫ t

0

σs dWs+
∫ t

0

∫

R
δ(s, z) (p= (ds, dz)−q= (ds, dx))+

∫ t

0

∫

R
δ′(s, z) p= (ds, dz), (2.1)

where W is a standard Brownian motion and p= is a Poisson measure on R+×E with (deterministic)
compensator q= (dt, dz) = dt⊗λ(dz). Here E is a Polish space and λ is a σ-finite measure on E. The
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processes bt and σt are optional, the functions δ and δ′ on Ω×R+ ×E are predictable, with |δ| ≤ 1
and they all are such that the integrals in (2.1) make sense (this will be implied by our assumptions
below).

It is perhaps more natural to write the last two terms in (2.1) as

(δ 1{|δ|≤1}) ∗ (p= − q= )t + (δ 1{|δ|>1}) ∗ p= t,

with the same function δ in both terms. However, given the structure that we will introduce on the
infinite variation jumps below (and hence on δ), the formulation (2.1) offers more flexibility. For
example, it allows us to add to X a term such as δ′ ∗ p= with a function δ′ having no regularity in
time.

We will further assume that the volatility process σt is itself an Itô semimartingale, which can
thus be written as

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s +

∫ t

0

∫
R δσ(s, z) 1{|δσ(s,z)|≤1} (p= − q= )(ds, dz)
+

∫ t

0

∫
R δσ(s, z) 1{|δσ(s,z)|>1} p= (ds, dz).

(2.2)

Choosing the same Poisson measure p= to drive both X and σ is not a restriction, and W ′ in (2.2)
is another Brownian motion independent of W . Note that we need both W and W ′ to allow for
general dependence between the diffusion components of X and σ.

Our aim in this paper is to estimate the integrated volatility which is formally defined as

CT =
∫ T

0

cs ds, where ct = σ2
t .

The estimation is done on the basis of the observations Xi∆n for i = 0, · · · , [T/∆n]. We assume that
∆n → 0, and the observed increments are denoted as ∆n

i X = Xi∆n −X(i−1)∆n
.

In order to describe the assumptions we need for our asymptotic results, we first introduce a
property relative to a generic process U . This will be applied to U being b in (2.1) or some of the
coefficients appearing in (2.2). This property is as follows: there is a constant γ such that, for all
s, t ≥ 0, we have

E(|Us+t − Us|2 | Fs) ≤ γt. (2.3)

When U is an Itô semimartingale with locally bounded characteristics, it satisfies this property
“locally” (in the sense that for a sequence τn of stopping times increasing to ∞ the stopped processes
(Uτn∧t)t≥0 satisfies (2.2)). It is also satisfied when the paths of U are Hölder with index 1/2.

Our first assumption, quite standard in almost all high-frequency situations, is as follows

Assumption (A0): We have (2.1) and (2.2), and there exist two numbers r ∈ [0, 1) and r′ ∈ (1, 2),
a sequence τn of stopping times increasing to infinity, two sequences Jn, J ′n of [0, 1]-valued Borel
functions on E such that

∫
Jn(z)r′ λ(dz) < ∞ and

∫
Jn(z)λ(dz) < ∞, and a sequence Γn of numbers,

such that

t < τn ⇒
{ |bt|, |σt|, |bσ

t |, |Hσ
t |, |H ′σ

t | ≤ Γn

|δ(t, z)| ≤ Jn(z), |δ′(t, z)|r ∧ 1 ≤ J ′n(z), |δσ(t, z)|2 ∧ 1 ≤ J ′n(z), (2.4)

and the stopped processes Hσ
t∧τn

and bt∧τn satisfy (2.3) with γ = Γn.

2.2 Some known results

As mentioned in the introduction, the question of estimating CT for a given T > 0, on the basis of
the discrete observations within the time interval [0, T ], has already been thoroughly studied. We
refer to [2] for many bibliographical comments, and only provide a brief sketch below.
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Let us start with the continuous case, that is, δ = δ′ = 0 in (2.1). The most natural estimator at
stage n is the approximate quadratic variation (or, realized volatility)

Ĉn
T =

[T/∆n]∑

i=1

(∆n
i X)2.

The normalized sequence
√

∆n (Ĉn
T − Ct) converges (in the sense of stable convergence in law) to a

limit ZT which is defined on an extension of the space, and which conditionally on F is a centered
Gaussian variable with (conditional) variance VT = 2

∫ T

0
c2
s ds, as ∆n → 0. For this, we do not need

(A0): on top of δ = δ′ = 0, having VT and
∫ T

0
b2
s ds finite-valued is enough, and we do have functional

(in T ) convergence, even.
Moreover, when σt is non-random (so, apart from the drift term, the process X has independent

increments, and is Lévy when further σt = σ is constant), the LAN property holds for the (determin-
istic) parameter CT , and VT above is the inverse of the Fisher information, so indeed the estimators
Ĉn

T are asymptotically efficient. The same efficiency holds, due to the LAMN property now, when
σt has the form σt = σ(t,Xt) for a smooth enough function σ. Efficiency also holds, due to an
infinite-dimensional Hajek type convolution theorem for more general stochastic volatility models,
see [5].

These considerations lead us to postulate that “efficiency” for a sequence Ĉ ′nT of estimators (for
X either continuous or discontinuous) means that the sequence

√
∆n (Ĉ ′nT −Ct) converges stably in

law to a limit which is F-conditionally centered Gaussian with variance VT , whereas rate-efficiency
means the same with again the rate 1/

√
∆n, but with a conditional variance possibly bigger than

VT .
The above described asymptotic properties of the approximate quadratic variation, Ĉn

T , badly fail
when X has jumps since, to begin with, Ĉn

T no longer converges to CT but to CT +
∑

s≤T (∆Xs)2.
However, one can replace Ĉn

T by a truncated version:

Ĉ ′nT =
[T/∆n]∑

i=1

(∆n
i X)2 1{|∆n

i X|≤un}.

This is the truncated realized volatility introduced by Mancini [9, 10]. For a properly chosen sequence
of truncation level un (going to 0), the Ĉ ′nT above enjoy exactly the same properties as Ĉn

T does in
the continuous case, so they are efficient, under the following assumption: we have (2.1) with δ = 0,
and b is locally bounded, and σ is càdlàg, and δ satisfies (2.4) (recall r < 1). We do not need (2.2),
but the key properties are that the jump part of X reduces to the last term in (2.1) and that r < 1.

Another way to annihilate the role of the jumps is to use the multipower variations introduced
by Barndorff-Nielsen and Shephard, see [3], [4]:

Ĉ ′′nT =
[T/∆n]−k+1∑

i=1

k∏
m=1

|∆n
i X|2/k,

where k ≥ 2 is an integer. Then, if k ≥ 3 and under (A0) with δ = 0 and r ≤ 2/k, plus the fact
that σ never vanishes, these estimators are rate efficient, although the asymptotic variance is α(k)VT

for some known constant α(k) > 1 (so we loose a bit of variance-efficiency). If instead we use the
truncated bipower variation:

[T/∆n]−1∑

i=1

|∆n
i X ∆n

i+1X| 1{|∆n
i X|≤un} 1{|∆n

i+1X|≤un}

for a properly chosen sequence un, we obtain the same result, except that we can take any r ≤ 1 in
(A0) (and still δ = 0, of course), see [12].
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Other methods are also available, although less widely used, and they all necessitate δ = 0, or
equivalently that the degree of activity of jumps (see below for this notion) is at most 1.

What happens in the presence of infinite variation jumps? We can examine for example the
behavior of the truncated realized volatility Ĉ ′nT (the same would apply to the other estimators) when
we allow δ 6= 0 in (2.1). Under (A0), no central limit theorem holds, but we have ∆ε−(2−r′)/2

n (Ĉ ′nT −
CT ) P−→ 0, for any ε > 0 (and a sequence un depending on ε): so the rate can approach 1/∆(2−r′)/2

n ,
but not quite reaches it, and this is slower than 1/

√
∆n.

There is a good reason for this restriction, because of a minimax-type result proven in [8]: for
any sequences of estimators Ĉ ′nt and positive reals wn, if the variables wn (Ĉ ′nt −Ct) are bounded in
probability, uniformly in n and also in X ranging through all Itô semimartingales satisfying (A0) for

some fixed sequences Γn and Jn, then necessarily wn ≤ K
( log(1/∆n)

∆n

)(2−r′)/2 for a constant K. This
minimax rate is thus slower than 1/

√
∆n (and becomes much slower when r′ approaches 2).

Note that in (2.4) we assume r′ > 1; of course, it may happen that one can choose Jn satisfying∫
Jn(z)r λ(dz) < ∞ as well, but in this case we could replace the pair (δ, δ′) by the pair (0, δ + δ′).

When we only have
∫

Jn(z)r′ λ(dz) < ∞ for some r′ > 1, the minimax result stated above seems to
rule out the existence of estimators converging to CT at the rate 1/

√
∆n, and it certainly does in a

non-parametric setting.
However, in a parametric or semi-parametric setting, things could be different. For a simpler

heuristic discussion, assume that X is a Lévy process. Then bt = b and σt = σ are constants
and (A0) amounts to saying that the Lévy measure F satisfies

∫
(|x|r′ ∧ 1) F (dx) < ∞: since r′ is

arbitrarily close to 2, this is almost the most general possible Lévy measure. When F is known,
an analysis of the Fisher information for c, or more appropriately here for the parameter CT = cT ,
shows that there should exist estimators with rate 1/

√
∆n and asymptotic variance 2Tc2 (hence,

efficient in the previous sense), see [1]. Such estimators do exist in principle (although they are not
explicit), because one could show in this case that the LAN property holds. The same theoretical
result holds much more generally, for Lévy processes whose Lévy measures are sums of a known
measure F0, plus any number of stable Lévy measures with indices β1 > · · · > βM , even when those
are unknown parameters, and one could prove that this holds also when F0 is unspecified, but subject
to

∫
(|x|r∧1)F0(dx) < ∞ for some r < 1. The reason is that we are then in a semi-parametric setting,

with nuisance parameters b, the βm’s and also the scale and skewness parameters of the stable Lévy
measures, plus a non-parametric nuisance term F0 which plays no role at the end because r < 1.

These heuristic considerations motivate the additional assumptions which are stated in the next
subsection, and which are far more general than the Lévy setting of the previous paragraph. Under
these assumptions we will be able to construct estimators which are at least rate-efficient even though
r′ > 1 in (A0).

2.3 Additional assumptions

The additional hypotheses which are needed are expressed in terms of the spot Lévy measures of the
purely discontinuous martingale term in (2.1), that is of

Xt =
∫ t

0

∫

R
δ(s, z) (p= (ds, dz)− q= (ds, dx)). (2.5)

These spot Lévy measures are the measures Ft = Ft,ω such that the predictable compensator of the
jump measure of X takes the form occurring in the dt⊗Ft,ω(dx) (this factorization exists because X
is an Itô semimartingale). Equivalently, one may take for Ft,ω the restriction to R\{0} of the image
of the measure λ by the map z 7→ δ(ω, t, z). Its symmetric tail for x > 0 is thus

F t(x) := Ft((−∞,−x) ∪ (x,∞)) = λ({z : |δ(t, z)| > x}). (2.6)

With this notation, our main “semi-parametric” assumption is as follows:
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Assumption (A): We have (A0), and also an integer M ≥ 0, a finite family 2 > β1 > · · ·βM > 0
of numbers, and M nonnegative predictable càdlàg or càglàd processes a1

t , . . . , a
m
t such that, with τn

and Γn as in (A0), the stopped processes (am
t∧τn

)1/βm and δ(t ∧ τn, z)/Jn(z) for all z satisfy (2.3)
with γ = Γn, and moreover

t < τn ⇒
∣∣∣F t(x)−

M∑
m=1

am
t

xβm

∣∣∣ ≤ Γn

xr
. (2.7)

Note that the number r′ occurring in (A0) should be bigger than β1. When β1 < 1 (2.7) implies
for each r′′ ∈ (β1 ∨ r, 1) the existence of λ-integrable functions J ′′n such that at |δ(t, z)|r′′ ≤ J ′′n(z)
when t < τn, so in this case we could use the pair (0, δ + δ′) instead of (δ, δ′) and replace r by r′′:
we would be on known grounds with well-established efficient estimators for CT , as explained in
the previous subsection. The same comment a fortiori applies when M = 0. So what follows has
some interest only when β1 ≥ 1 and M ≥ 1, but we use the assumption (A) as stated above for
convenience in the proof. Note that, when M = 1, (A) is comparable, although significantly weaker,
than the assumption made in [7].

(A) implies that the spot Blumenthal-Getoor index of X (BG index, for short, also called “degree
of jump activity”) at time t is βm if a1

t = · · · = am−1
t = 0 < am

t , and analogously the global BG
index of X on the time interval [0, T ] is βm if A1

T = · · · = Am−1
T = 0 < Am

T , where we have set

Am
T =

∫ T

0

am
s ds, (2.8)

and the same holds for the original process X as well, upon substituting βm with r ∨ βm. One can
view the variable Am

T as the “integrated intensity” of the jumps of X with activity degree βm.

Remark 1 Since we split the jumps of X into two separate components δ and δ′, in order to assume
some kind of regularity in time for the component δ only, it seems natural to use in (A) the spot Lévy
measures of X. However, since the same number r occurs in (2.7) and also in in (2.4) to control δ′,
it is easy to see that (2.7) holds for the spot Lévy measures of X, if and only if it holds for the spot
Lévy measures of the process X itself (those are the images of λ by the map z 7→ δ(t, z) + δ′(tz).

Our representation of the jumps in X in (2.1) as integrals with respect to Poisson random
measures is rather general. It accommodates specifications via Lévy-driven SDEs which are often
used in applications. Indeed, any process of the form

Xt = X0 +
∫ t

0

bs ds +
∫ t

0

σs dWs +
M∑

m=1

∫ t

0

γm
s− dY m

s + δ′ ∗ p= t (2.9)

with W and p= as in (2.1), Y m being Lévy processes without Gaussian part and having arbitrary de-
pendencies with p= and with one another, and γm

t being a càdlàg adapted process, can be represented
as in (2.1).

In the setting of (2.9), Assumption (A) concerning the jumps of X is satisfied as soon as the
stopped processes γm

t∧τn
satisfy (2.3) and the (non random and non time-dependent) Lévy measure

Fm of Y m satisfy |Fm(x) − 1/xβm | ≤ K/xr for some constant K. Note that here one has an
implicit (innocuous) standardization of Zm, and the connection with (2.7) is that am

t = |γm
t−|βm .

This explains why we introduce a regularity assumption on (am
t )1/βm in (A), rather than a condition

on at itself.
If we replace

∫ t

0
γm

s− dY m
s by

∫ t

0
γm,+

s− dY m,+
s +

∫ t

0
γm,−

s− dY m,−
s in (2.9) with Lévy processes Y m,±

having only positive jumps, the same comments above apply and therefore the setting of [7], which
uses the above spectrally positive Lévy processes, is a special case of the present one.

6



It turns out that we will need some more structure on the values of the successive BG indices
βm, as given by the next assumption:

Assumption (B): The numbers 2− βm all belong to the set {jρ : j = 1, 2, · · · } for some unknown
constant ρ ∈ (0, 1) (so necessarily M ≤ [2/ρ]). 2

We will heavily use the following integral for β equal to one of the βm’s (it is convergent for all
β > 0, but absolutely convergent when β > 1 only):

β > 0 7→ χ(β) =
∫ ∞

0

sin y

yβ
dy. (2.10)

Finally, the reader should be aware that, in the context of general Itô semimartingales, it is
nevertheless restrictive for at least two distinct reasons:

1. (2.7) stipulates an expansion of the tail function F t(x) near 0, and in particular that F t(x) ∼
a1

t /xβ1 . This is not the case for a typical Lévy measure: when F is a Lévy measure, there is
a unique β (= β1 here) such that 0 < lim supx→0 xβF (x) < ∞, but lim infx→0 xpF (x) can
vanish for p = β, and even for all p ∈ (0, β]. Dealing with Lévy measures Ft having such an
erratic behavior near 0 seems hopeless with the method developed in [7] or below.

So, even in the Lévy case, (2.7) is quite restrictive. Note, however, that the expansion∑M
m=1 am

t /xβm could be replaced by
∑M

m=1 am
t L(x)/xβm , where L is a slowly varying function

(unspecified, but the same for all (ω, t), and also all m). This would necessitate rather obvious
changes in the proofs in [7] and here.

2. In (2.7) am
t may be time-dependent and random. This is not the case of the βm’s, which

should be constants. A more natural assumption would be to assume (2.7) with βm = βm
t (ω)

being time varying and random. Unfortunately, even under strong regularity assumptions on
the maps t 7→ βm

t , the method used here does not work at all in such a generalized setting.
However, upon taking M large and ρ small in (B), we can obtain results for a reasonable (?)
approximation of random and times-varying BG indices. This is perhaps a first step toward a
more general theory.

3 Initial Estimators

In this section we recall the characteristic function based method for efficient estimation of integrated
volatility that we proposed in [7], and we further derive an infeasible CLT for the volatility estimators
in presence of infinite variation jumps with multiple BG indices. We will use the developed limit
theory in the next section to propose feasible and rate efficient inference for the integrated volatility
in the general setting of assumptions (A) and (B).

The volatility estimator of [7] is built from the real part of the “local” empirical characteristic
functions of increments, taken at point un/

√
∆n for some sequence un > 0 going to 0. Here, “local”

means that the empirical characteristic function is computed on asymptotically shrinking windows
of time length vn, where vn = 2kn∆n and kn ≥ 1 is a suitable sequence of integers going to infinity,
to be specified later. In particular, for each u > 0 we set

L(u)n
j =

1
kn

kn−1∑

l=0

cos(u(∆n
2jkn+1+2lX −∆n

2jkn+2+2lX)/
√

∆n ). (3.1)

The reason for forming L(u)n
j on the basis of the first differences of the increments is to “symmetrize”

the jump measure around zero as the difference of the increments of a Lévy process is equal in
distribution to an increment of a Lévy process with symmetric Lévy measure. Of course, if the jumps
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in X are “essentially symmetric” (see [7] for formal statements), one does not need to difference the
increments in the construction of L(u)n

j . Note that L(u)n
j is a local version of the realized Laplace

transform of volatility studied by [11].
Under (A) we have approximately

Ejvn
(L(u)n

j ) ≈ exp

(
−u2cjvn

− 2
M∑

m=1

χ(βm)uβm
n ∆1−βm/2

n am
jvn

)
, (3.2)

with formal results given in the proof. Since we are interested in the integrated volatility, we therefore
form

ĉ(u)n
j = − 1

u2 log
(
L(u)n

j

∨
1

log(1/∆n)

)
, (3.3)

which satisfy 0 ≤ ĉ(u)n
j ≤ log kn

u2 since L(u)n
j are not bigger than 1. ĉ(u)n

j serves as a local estimator
of the volatility on the block, more precisely of the average of ct over the interval (jvn, (j + 1)vn].
The associated estimators for integrated volatility are then:

Ĉ(u)n
t = vn

[t/vn]−1∑

j=0

(
ĉ(u)n

j −
1

u2kn

(
sinh(u2ĉ(u)n

j )
)2

)
, (3.4)

where sinh(x) = 1
2 (ex− e−x) is the hyperbolic sine. The presence of the term involving the function

sinh in the volatility estimator is to eliminate the effect of an asymptotic bias which arises from the
nonlinear transformation of the local empirical characteristic function on the blocks.

Under appropriate assumptions on the sequence un we will see that Ĉ(un)T converges to CT , and
there is an associated Central Limit Theorem with the convergence rate 1/

√
∆n. However, this CLT

exhibits usually a non-negligible bias, and to account for it we consider the following normalized
error processes (recall (2.10) for the function χ(β)):

Z(u)n
t =

1√
∆n

(
Ĉ(u)n

t − Ct −
M∑

m=1

Am(u)n
t

)
, Am(u)n

t = 2χ(βm)uβm−2
n ∆1−βm/2

n Am
t . (3.5)

The next theorem presents the CLT for Z(u)n
t , and also for the differences Z(yu)n

t − Z(u)n
t when

y > 0. The reason for giving a CLT for these differences is that they will play a key role in the
de-biasing procedure developed in the next section.

Theorem 2 Assume (A) and let Y be any finite subset of (0,∞). Choose the two sequences kn and
un in such a way that

kn

√
∆n → 0, kn∆1/2−ε

n →∞ ∀ε > 0, un → 0,
kn

√
∆n

u2
n

→ 0; (3.6)

Then, we have the (functional) stable convergence in law:

(
Z(un)n,

( 1
u2

n

(Z(yun)n − Z(un)n)
)
y∈Y

) L−s=⇒ (
Z, ((y2 − 1)Z)y∈Y

)
, (3.7)

where the limit is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original space (Ω,F , (Ft)t≥0,P)
and can be written as

Zt = 2
∫ t

0

cs dW (1)
s , Zt =

2√
3

∫ t

0

c2
s dW (2)

s . (3.8)

where W (1) and W (2) are two independent Brownian motions, independent of the σ-field F .
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Theorem 2 extends a corresponding result in [7] for Ĉ(u)n
t to the setting of jumps with multiple

BG indices. We note that for the above theorem we assume only assumption (A) and we do not
need assumption (B) for the relationship between the values of the multiple BG indices.

The two limiting processes Z and Z can be equivalently characterized by the fact that, defined on
the extended space, they are globally F-conditional centered Gaussian martingales, F-conditionally
independent, with F-conditional variance

Ẽ((Zt)2 | F) = 4
∫ t

0

c2
s ds, Ẽ((Zt)2 | F) =

4
3

∫ t

0

c4
s ds. (3.9)

We note that since un → 0, (3.7) implies that the difference Z(yun)n −Z(un)n for some y 6= 1 is
of higher asymptotic order. We will make use of this fact when developing the debiasing procedure in
the next section. A consequence of the above result is the following degenerate asymptotic behavior:

(Z(ylun)n)1≤l≤L
L−s=⇒ (Z, · · · , Z). (3.10)

Finally, concerning the choices of the sequences kn and un, one can set kn ³ 1/
√

∆n (log(1/∆n))α

and un ³ 1/(log(1/∆n))α′ , for any reals α, α′ such that 0 < α′ < α
2 .

4 Efficient Estimators

When M = 0 or β1 < 1 the estimators Ĉ(un)n
t converge to Ct at rate 1/

√
∆n, and there is no

asymptotic bias. When M ≥ 1 and β1 ≥ 1 we still have the convergence, but the rate now is
arbitrarily close to, although slower than, 1/∆(2−β1)/2

n (when expressed as a power of ∆n): so the
estimators almost achieve the minimax bound found in [8], and the rate 1/

√
∆n is not achieved. In

view of Theorem 2, the reason for this slow rate of convergence is the presence of biases coming from
the infinite jump variation part of the process. One can therefore estimate the biases and perform
the following bias correction which restores rate efficient estimation of integrated volatility. We fix
the time horizon T > 0, pick some ζ > 1, and then set

Ĉ(u, ζ)n
T = Ĉ(u)n

T −
(Ĉ(ζu)n

T − Ĉ(u)n
T )2

Ĉ(ζ2u)n
T − 2Ĉ(ζu)n

T + Ĉ(u)n
T

. (4.1)

In [7], we proved the following result for the bias-corrected estimator Ĉ(u, ζ)n
T . However, as already

mentioned, the assumption in that paper is stronger than (A), even when M = 1, and it is also
assumed that β1 > 1, so we will have to revisit the proof this theorem:

Theorem 3 Assume (A) with M = 1 and also that CT > 0 a.s. Assume that (3.6) holds for kn, un.
Then the variables 1√

∆n
(Ĉ(un, ζ)n

T − CT ) converge stably in law to the variable ZT .

Notice the additional assumption CT > 0 a.s. in Theorem 3. This assumption is necessary in order
for the denominators in (4.1) to be “non-degenerate” in an appropriate sense. These denominators
could indeed go to 0 with an uncontrolled speed on the set {CT = 0} on which the Brownian part
of X is not active between times 0 and T , so indeed if P(CT > 0) < 1 the above result holds in
restriction to the set {CT > 0} only.

Of course, when β1 < 1 there is no need to de-bias the initial estimators Ĉ(un)n
T , but a priori we

do not know whether β1 < 1 or not. As a matter of fact, we do not know either whether M = 1 or
not, and when M ≥ 2 the above de-biasing is in general not sufficient to remove all the bias due to the
infinite variation jumps which is of higher order than 1/

√
∆n. Under the additional assumption (B),

however, this can be done by “iterating” the previous de-biasing method. The generalized de-biasing
procedure goes as follows, for any given integer N :

Step 1 - initialization: Choose a real ζ > 1 and an integer k ≥ 1, and put Ĉ(u, ζ, 0)n
T = Ĉ(u)n

t .

9



Step 2 - iteration: Assuming Ĉn(u, ζ, j − 1) known for some integer j between 1 and k, define
Ĉn(u, ζ, j) as

Ĉ(u, ζ, j)n
T = Ĉn(u, θ, j − 1)n

T +
(Ĉn(ζu, θ, j − 1)n

T − Ĉ(u, ζ, j − 1)n
T )2

Ĉ(ζ2u, ζ, j − 1)n
T − 2Ĉ(θu, ζ, j − 1)n

T + Ĉ(u, θ, j − 1)n
T

+ u2
√

∆n.

(4.2)
Step 3: The final estimator is set to be Ĉ(un, ζ,N)n

T .

The asymptotic result for Ĉ(un, ζ, N)n
T is given in the following theorem.

Theorem 4 Assume (A) and (B) with ρ ≥ ρ0 for some ρ0 ∈ (0, 1), and also that CT > 0 a.s. Let
N be the biggest integer such that Nρ0 ≤ 1. Take any ζ > 1 and choose the sequences kn and un

satisfying (3.6). Then the variables 1√
∆n

(Ĉ(un, ζ, N)n
T − CT ) converge stably in law to the variable

ZT .

In practice, of course, we don’t know ρ, but we can decide the number of iterations we are ready
to undertake. This amounts to choosing a priori the value of N , and then assume that (B) holds with
some ρ ≥ 1/N . If the “real” ρ is bigger than 1/N ′ for some integer N ′ < N , then we have iterated
the procedure too many times than is actually necessary. This does not harm from an asymptotic
viewpoint.

However, in finite samples de-biasing can make the estimator very unstable. Therefore, in
practice it is desirable to have a data-driven adaptive choice of N which does not perform more
de-biasing than is actually needed. Developing such a method can be based on the difference
Ĉn(u, θ, j)n

T − Ĉ(ζu, ζ, j)n
T and its asymptotic distribution when jρ0 ≤ 1 which given our previ-

ous results is asymptotically mixed-normal. In an adaptive method for de-biasing, one will proceed
debiasing until the difference Ĉn(u, θ, j)n

T − Ĉ(ζu, ζ, j)n
T becomes smaller than some high quantile

of its limit distribution. If j is too small, then the bias term will dominate the limiting behavior
of Ĉn(u, θ, j)n

T − Ĉ(ζu, ζ, j)n
T and hence will eventually exceed the above-mentioned high quantile of

the limit distribution. We leave the formal analysis of such adaptive method for future work.

Remark 5 The estimators Ĉ(un, ζ,N)n
T are rate-efficient, but not variance-efficient, since their

asymptotic variance is twice the (supposedly) optimal one 2
∫ T

0
c2
s ds, see subsection 2.2. This comes

of course from the fact that in (3.1) we take the differences of two successive increments. So, we really
use about [T/2∆n] variables (the afore-mentioned differences) instead of all the [T/∆n] increments.

As explained in [7], it is possible to use

L(u)n
j =

1
kn

kn−1∑

l=0

cos(u∆n
jkn+1+lX/

√
∆n ) (4.3)

instead of (3.1), and accordingly modify the de-biasing terms and the normalization in (3.3), in the
case the jumps are “essentially symmetric” about 0: this means that we have the same expansion, with
the same processes am

t /2, for the left and right tails F−t (x) = Ft((−∞,−x)) and F+
t (x) = Ft((x,∞)).

This would result in getting estimators achieving the optimal asymptotic variance.
On the other hand, if we use (4.3) instead of (3.1) when this symmetry assumption fails, we

still have Theorem 2, but with a centering term in (3.5) having a much more complicated structure.
When there is a single index (M = 1) it is possible to do an iteration procedure resulting in a theorem
analogous to the previous one, but now with the optimal conditional variance. Otherwise, since the
normalizing factors uβm−2

n ∆1−βm/2
n in (3.5) and those occurring in the new additional centering

terms are not commensurable, a simple iteration procedure as the one described above is not going
to work.
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5 Proofs

A standard localization procedure shows that it is enough to prove all results of this paper when (A)
is substituted with

Assumptions (SA): We have (A) with τ1 ≡ ∞, we write J = J1 and J ′ = J ′1, and moreover we
have |δ′(., z)|r ≤ ΓJ(z) and |δσ(.z)|2 ≤ ΓJ(z) for some constant Γ (implying in particular that δ′

and δσ are bounded).

Below, this strengthened assumption is in force. Up to modifying bσ without altering its bound-
edness, one may incorporate the last integral in (2.2) into the previous compensated sum of jumps
term, and also use Itô’s formula, to get for suitable processes and function bc,Hc,H ′c, δc:

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s +

∫ t

0

∫
E

δσ(s, z) (p= − q= )(ds, dz)
ct = c0 +

∫ t

0
bc
s ds +

∫ t

0
Hc

s dWs +
∫ t

0
H ′c

s dW ′
s +

∫ t

0

∫
E

δc(s, z) (p= − q= )(ds, dz).
(5.1)

Then (SA) implies, for some constant Γ ≥ 1,

|bt|, |σt|, |ct|, |bσ
t |, |bc

t |, |Hσ
t |, |H ′σ

t |, |Hc
t |, |H ′c

t |, at ≤ Γ
|δ(t, z)|r′ ≤ J(z), |δ′(t, z)|r, |δσ(t, z)|2, |δc(t, z)|2 ≤ ΓJ ′(z)
Vt = b̃t, Hσ

t , Hc
t , δ(t,z)

J(z) ⇒ E(|Vs+t − Vs|2 | Fs) ≤ Γt

Vt = σt, ct ⇒ |E(Vs+t − Vs | Fs)| ≤ Γt, E(|Vs+t − Vs|2 | Fs) ≤ Γt

F t(x) ≤ K
xβ1

,
∣∣F t(x)−∑M

m=1
am

t

xβm

∣∣ ≤ Γ
xr

E
(|am

s+t − am
s |2/(βm∧1) | Fs

) ≤ Γt

(5.2)

(for the last line we use that, if x, y ∈ [−α, α], we have
∣∣|x|β − |y|β

∣∣ ≤ |x − y|β when 0 < β ≤ 1,
whereas

∣∣|x|β − |y|β
∣∣ ≤ β αβ−1|x− y| when β > 1).

Below, y, y′ implicitly are in the fixed finite subset Y of (0,∞), which is supposed to contain 1. We
denote a generic constant, changing from line to line, as K, and it possibly depends on r,M, βm, Γ,
and sometimes on some extra parameter q such as a power or on the set Y, but never on n and the
various indices i, j, . . . or variables u, y, . . . which may occur. Analogously, φn stands for a generic
sequence decreasing to 0.

We will also use the following trick: if β1 ≤ 1, we add a fictitious index β0 ∈ (1, 2), with the
associated process a0

t vanishing identically. The conditions about F t in (5.2) are satisfied as well if
we replace β1 by β0 for the first one, and the sum

∑M
m=1 by

∑M
m=0 for the second one, whereas the

processes A0(u) in (3.5) also vanish identically, so that the sum
∑M

m=M0
Am(u)t is the same with

M0 = 1 and M0 = 0. Note also that β0 can be chosen arbitrarily in (1, 2). Hence, we can and will
assume, without restriction, that

3
2

< β1 < 2. (5.3)

5.1 Estimates

The two sequences kn, un, satisfying (3.6), are fixed. As in [7] the following processes play a key role:

U(u)t = e−u2ct , U(m; u)n
t = e−2∆1−βm/2

n χ(βm)uβm am
t

U(u)n
t = U(u)t

∏M
m=1 U(m; u)n

t .
(5.4)

Since 0 ≤ ct ≤ Γ and 0 ≤ am
t ≤ Γ we see that, upon increasing Γ if necessary, we have for all

u ∈ (0, 1]:
1
Γ
≤ U(u)t ≤ 1,

1
Γ
≤ U(m; u)n

t ≤ 1,
1
Γ
≤ U(u)n

t ≤ 1. (5.5)
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According to (6.12) and (6.13) of [7], plus a trivial change due to the fact that our assumptions on
am

t yield that |E(am
t+s− as | Fs)| is smaller than Kt(βm∧1)/2 instead of Ktβm/2, we have for all q ≥ 2

and u ∈ (0, 1]:

|E(U(u)t+s − U(u)t | Ft)| ≤ Ku2s, E(|U(u)t+s − U(κ, u)t|q | Ft) ≤ Ku2qs

|E(Um(u)n
t+s − Um(u)n

t | Ft)| ≤ K∆1−βm/2
n uβms(βm∧1)/2

E(|Um(u)n
t+s − Um(u)n

t |q | Ft) ≤ K∆q(1−βm/2)
n uqβms(qβm/2)∧1

(5.6)

and thus

|E(U(u)n
t+s − U(u)n

t | Ft)| ≤ K
(
u2s +

M∑
m=1

∆1−βm/2
n uβmsβm/2

)

E(|U(u)n
t+s − U(u)n

t |q | Ft) ≤ K
(
u2qs +

M∑
m=1

∆q(1−βm/2)
n uqβms1∧(qβm/2)

)

E(|U(u)n
t+s − U(u)n

t − (U(u)t+s − U(u)t)
∏M

m=1 U(m; u)n
t |q | Ft)

≤ K
M∑

m=1
s1∧(qβm/2) ∆q(1−βm/2)

n uqβm .

(5.7)

Next, with the notation ψn,i
t = 1(i∆n,(i+1)∆n](t)− 1((i+1)∆n,(i+2)∆n](t), we set

ρ′ni = un√
∆n

σi∆n(∆n
i+1W −∆n

i+2W ) = un√
∆n

∫
R+×E

σi∆nψn,i
t dWt

ρ′′ni = un√
∆n

∫
R+×E

δ(i∆n, z)ψn,i
t (p= − q= )(dt, dz)

ρn
i = ρ′ni + ρ′′ni , ρn

i = 1
un

(∆n
i+1X −∆n

i+2X),

and also

ξ(y)w,n
j =





1
kn

∑kn−1
l=0

(
cos(yρn

1+2jkn+2l)− U(yun)n
2(jkn+l)∆n

)
if w = 1

1
kn

∑kn−1
l=0

(
cos(yρn

1+2jkn+2l)− cos(yρn
1+2jkn+2l)

)
if w = 2

1
kn

∑kn−1
l=0 (U(yun)n

κ(jkn+l)∆n
− U(yun)n

jvn
) if w = 3.

ξ(y)n
j = 1

U(yun)n
jvn

∑3
w=1 ξ(y)w,n

j

Ω(y)n,t =
⋂

0≤j<[t/vn]{|ξ(y)| ≤ 1
2}, Ωn,t =

⋂
y∈Y Ω(y)n,t.

(5.8)

Lemma 6 For all q ≥ 2 and y ∈ Y we have
∣∣E(cos(yρn

i )− cos(yρn
i ) | Fi∆n)

∣∣ ≤ u4
n

√
∆n φn

E(| cos(yρn
i )− cos(yρn

i )|q | Fi∆n) ≤ u4
n

√
∆n φn.

(5.9)

Proof. This is basically Lemma 11 of [7], with a few changes which we explain below. We have
yρn

i =
∑5

k=1 θ(k)n
i , where

θ(1)n
i = yρn

i , θ(2)n
i = yun√

∆n

∫
R+

(σs − σn,i
s )ψn,i

s dWs, θ(3)n
i = yun√

∆n

∫
R+

(bs − bi∆n)ψn,i
s ds

θ(4)n
i = yun√

∆n

∫
R+×E

(δ(s, z)− δ(i∆n, z))ψn,i
s (p= − q= )(ds, dz)

θ(5)n
i = yun√

∆n

∫
R+×E

δ′(s, z)ψn,i
s p= (ds, dz).

The only difference with [7] is in the definition of the term θ(4)n
i , so the proof goes through, provided

we have the following estimate:

E(|θ(4)n
i | ∧ 1 | Fi∆n) ≤ u4

n

√
∆n φn. (5.10)

Let v ∈ (0, 1], and recall |δ(s, z)| ≤ J(z) ≤ 1. We have θ(4)n
i = M(v)n + N(v)n −B(v)n, where

M(v)n = yun√
∆n

∫
R+×{z:J(z)≤v}(δ(s, z)− δ(i∆n, z))ψn,i

s (p= − q= )(ds, dz)
B(v)n = yun√

∆n

∫
R+×{z:J(z)>v}(δ(s, z)− δ(i∆n, z))ψn,i

s q= (ds, dz)
N(v)n = yun√

∆n

∫
R+×{z:J(z)>v}(δ(s, z)− δ(i∆n, z))ψn,i

s p= (ds, dz),
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First, upon using (5.2) and
∫

E
J(z)2−ε λ(dz) < ∞ for some ε > 0, we get

E
(
(M(v)n)2 | Fi∆n

)
= y2u2

n

∆n
E

( ∫ (i+2)∆n

i∆n
ds

∫
{z:J(z)≤v}

|δ(s,z)−δ(i∆n,z)|2
J(z)2 J(z)2 λ(dz) | Fi∆n

)

≤ Ku2
n∆nvε

∫
E

J(z)2−ε λ(dz) ≤ Ku2
n∆nvε.

Second, we have

E(|B(v)n| | Fi∆n
) ≤ yun√

∆n
E

( ∫ (i+2)∆n

i∆n
ds

∫
{z:J(z)>v}

|δ(s,z)−δ(i∆n,z)|
J(z) J(z) λ(dz) | Fi∆n

)

≤ K un∆n

v1−ε

∫
E

J(z)2−ε λ(dz) ≤ K un∆n

v1−ε .

Third, the process p= ([0, t]×{z : J(z) > v}) is a Poisson process with parameter λ({z : J(z) > v}) ≤
K/v2−ε, hence

P(N(v)n 6= 0 | Fi∆n) ≤ K
∆n

v2−ε
.

Therefore, the left hand side of (5.10) is not bigger than

E(|M(v)n| | Fi∆n) + E(|B(v)n| | Fi∆n) + P(N(v)n 6= 0 | Fi∆n) ≤ K
(
vε/2

√
∆n + vε−2∆n

)

by the previous estimates and the Cauchy-Schwarz inequality. Upon taking v = vn = ∆2/(4−ε)
n and

using the consequence of (3.6) which is ∆η
n ≤ Kun for any η > 0, we deduce (5.10). 2

Lemma 7 For all q ≥ 2 we have
∣∣E(cos(yunρn

i ) | Fi∆n)− U(yun)n
i∆n

∣∣ ≤ u4
n

√
∆n φn (5.11)

∣∣∣E(cos(yunρn
i ) cos(y′unρn

i ) | Fi∆n)− U((y+y′)un)n
i∆n

+U(|y−y′|un)n
i∆n

)

2

∣∣∣ ≤ u4
n

√
∆n φn (5.12)

E(| cos(yunρn
i )− U(yun)n

i∆n
|q | Fi∆n) ≤ Ku4

n. (5.13)

Proof. In view of the definition of ρn
i and of the property that Ft is the image of λ by the map

z 7→ δ(t, z), we see that, with the notation G(w)t =
∫

(1− cos(wx)) Ft(dx), we have

E(cos(yunρn
i ) | Fi∆n) = U(yun)i∆n e−2∆nG(yun/

√
∆n )i∆n . (5.14)

The analysis of the asymptotic behavior of G(w)t as w →∞ is similar with what is done in the
proof of Lemma 12 of [7]. Letting ζ ∈ (0, 1] and using (5.2) we first observe that

0 ≤
∫

{x: |x|>ζ}
(1− cos(wx))Ft(dx) ≤ 2F t(ζ) ≤ K

ζβ1
.

Next, Fubini’s theorem yields

∫

{x: |x|≤ζ}
(1− cos(wx)) Ft(dx) =

∫ ζw

0

F t

( z

w

)
sin(z) dz −

∫ ζw

0

F t(ζ) sin(z) dz,

and the absolute value of the last term above is again smaller than K/ζβ1 because
∣∣ ∫ x

0
sin z dz

∣∣ ≤ 2
for all x. To evaluate the first term we use (5.2) again to get

∣∣∣
∫ ζ

0

F t

( z

w

)
sin(z) dz −

M∑
m=1

wβm χ(βm)am
t

∣∣∣ ≤
M∑

m=1

∣∣∣wβm

∫ ∞

ζw

sin z

zβm
dz

∣∣∣ + K

∫ ζw

0

wr

zr
dz.
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We have
∫∞

x
sin z
zβm

dz = cos x
xβm

−βm

∫∞
x

cos z
z1+βm

dz by integration by parts, yielding
∣∣ ∫∞

x
sin z
zβm

dz
∣∣ ≤ 2/xβm ,

whereas
∫ ζw

0
wr

zr dz = 1
1−r wζ1−r

n (recall r < 1). Putting all these together yields

∣∣∣ G(w)t −
M∑

m=1

wβm χ(βm)am
t

∣∣∣ ≤ K
(

ζ−β1 +
M∑

m=1

ζ−βm + w ζ1−r
)
≤ K(ζ−β1 + wζ1−r)

because βm ≤ β1. We apply this with w = yun/
√

∆n and ζ = ∆1/2(1−r+β1)
n to get

∣∣2∆nG(yun/
√

∆n )t −
M∑

m=1

∆1−βm/2
n (yun)βmχ(βm) am

t

∣∣ ≤ K∆
2−2r+β1
2−2r+2β1
n ≤ Ku4

n

√
∆n,

because again ∆η
n ≤ Kun for any η > 0, whereas 2−2r+β1

2−2r+2β1
> 1

2 . Since |ex − ey| ≤ |x− y| if x, y ≤ 0,
and recalling (5.4) and (5.14), we deduce (5.11).

At this stage, (5.12) and (5.13) follow from (5.11) exactly as in Lemma 12 of [7]. 2

Below, we use the simplifying notation

V (y, y′)n
t = U((y + y′)un)n

t + U(|y − y′|un)n
t − 2U(yun)n

t U(y′un)n
t . (5.15)

Lemma 13 of [7] is unchanged, except for (6.38) which becomes here for any q ≥ 2:

|E(ξ(yun)3,n
j | Fjvn)| ≤ Ku4

n

√
∆n φn

E(|ξ(yun)3,n
j |q | Fjvn) ≤ K

(
u2q

n vn +
∑M

m=1 ∆q(1−βm/2)
n uqβm

n v
1∧(qβm/2)
n

)
.

(5.16)

However, when we assume (5.3), that is β1 > 3
2 , it is clear that ∆q(1−βm/2)

n uqβm
n v

1∧(qβm/2)
n ≤

K∆q(1−β1/2)
n uqβ1

n vn for all m ≥ 1. So, we indeed have (6.38) of [7], without change at all, and
the following key lemma follows:

Lemma 8 For all q ≥ 2 we have for j < [t/vn]:

|E(ξ(yun)n
j | Fjvn)| ≤ Ku4

n

√
∆n φn∣∣E(ξ(yun)n

j ξ(y′un)n
j | Fjvn)− 1

2kn

V (y,y′)n
jvn

U(yun)n
jvn

U(y′un)n
jvn

∣∣ ≤ Ku4
n

√
∆n φn

E(|ξ(yun)n
j |q | Fjvn) ≤ K

( u4
n

k
q/2
n

+ u2q
n vn + ∆q(1−β1/2)

n uqβ1
n vn

)
.

(5.17)

5.2 Proof of Theorem 2

The proof is once more the same as in [7], with a single change: namely, in (6.19) and (6.20), and
in the subsequent definitions such as for the processes V κ,n,θ (notation of that paper), we replace
hκ,θun(at, a

′
t) by the following (recall that here we are in the situation where κ = 2):

2
M∑

m=1

uβm−2
n yβm−2χ(βm)am

t .

All the rest is unchanged, and thus Theorem 2 is proved. Moreover, Theorem 3 is deduced from
Theorem 2 as in [7] again.

5.3 Proofs for the rate-efficient estimators

Theorem 3 could be deduced from Theorem 2 as in [7] again. However, we need a sharper result
for the iteration procedure of Theorem 4 to work. This method could be applied to other similar
situations, but we explain it in our setting. A consequence will be Theorem 4.
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We fix the time horizon T > 0. We are given a number ρ ∈ (0, 1], and M is the biggest integer
such that Mρ ≤ 1. We suppose that for each u > 0 we have a sequence of estimators C̃n(u), with
a specific asymptotic behavior described by the following, where un > 0 is a sequence with un → 0
and un/∆ε

n →∞ for all ε > 0, as in (3.6), and where Y is some finite subset of (0,∞):

Property (P): There is a family Φ = (Φm : 1 ≤ m ≤ M) of variables on (Ω,F ,P) and two variables
Z̃ and U on an extension of this space, such that if we set

Z̃n(u) =
1√
∆n

(
C̃n(u)− CT −

M∑
m=1

u−mρ∆mρ/2
n Φm

)
(5.18)

for all u > 0, we have the stable convergence in law
(
Z̃n(un),

( 1
u2

n

(Z̃n(yun)− Z̃n(un))
)

y∈Y

) L−s−→ (
Z̃, ((y2 − 1)U)y∈Y

)
. (5.19)

To emphasize the ingredients in (P) we sometimes write it as P (Φ, Z̃, U,Y). We associate with
Φ the sets

Ω(Φ)m =





Ω if m = 0
{Φ1 6= 0} if m = 1
{Φ1 = · · · = Φm−1 = 0 6= Φm} if 2 ≤ m ≤ M
{Φ1 = · · · = ΦM = 0} if m = M + 1

Ω′(Φ)m = Ω(Φ)m ∩ {Φm+1 = · · · = ΦM = 0}.
For any ζ > 1 and ξ ∈ R we set

Gn(u, ζ) = C̃n(ζu)− C̃n(u), G′n(u, ζ) = C̃n(ζ2u)− 2C̃n(ζu) + C̃n(u)
C̃ ′n(u, ζ, ξ) = C̃n(u)− Gn(u,ζ)2

G′n(u,ζ) + u2
√

∆n ξ.
(5.20)

We then have the following result:

Proposition 9 Let ζ and ξ and the finite set Y be given, and set Y ′ = {yζj : y ∈ Y, j = 0, 1, 2}. If
the estimators C̃n(u) satisfy P (Φ, Z̃, U,Y ′), with U 6= 0 a.s. on the set Ω(Φ)M+1, then the estimators
C̃ ′n(u, ζ, ξ) satisfy P (Φ′, Z̃, U ′,Y), where U ′ is a variable defined on an extension of the space and
Φ′ = (Φ′m)1≤m≤M is a random vector on Ω, such that the following holds for all m = 1, · · · ,M and
k = 1, · · · , M + 1:

Ω(Φ)m−1 ⊂ Ω(Φ′)m, Ω′(Φ)m ⊂ Ω(Φ′)M+1

U ′ = ξ + hjU on Ω(Φ)k, where hk =

{ (
ζ2+kρ−1
ζkρ−1

)2 if k ≤ M

0 if k = M + 1.

(5.21)

Here, the variable U ′ explicitly depends on the numbers ζ and ξ, but the variables Φ′m will be
seen to also depend on ζ.

On the set Ω(Φ)M+1 we have 1√
∆n

(C̃n(un) − CT ) L−s−→ Z̃, and the same holds for C̃ ′n(un, ζ, ξ),
but of course in this case there is no reason to use these new estimators. However, although one
might loose some kind of stability for finite samples, asymptotically it does not hurt us to use the
new estimators. This is quite an important property, because in practice the variables Φm are not
observable, so neither is the set Ω(Φ)M+1.

Proof. 1) We assume P (Φ, Z̃, U) with U 6= 0 a.s. We simplify our notation by setting

Zn = Z̃n(un), Ẑy
n = 1

u2
n

(Z̃n(yun)− Z̃n(un))
Y y

n = 1
u2

n
(Z̃n(ζyun)− Z̃n(yun)) = Ẑζy

n − Ẑy
n

Y ′y
n = 1

u2
n

(Z̃n(ζ2yun)− 2Z̃n(ζyun) + Z̃n(yun)) = Ẑζ2y
n − 2Ẑζy

n + Ẑy
n.
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Then (P) implies
(
Zn, (Ẑy

n)y∈Y′ , (Y y
n )y∈Y , (Y ′y

n )y∈Y
) L−s−→(

Z̃, ((y2 − 1)U)y∈Y , (y2(ζ2 − 1)U)y∈Y , (y2(ζ2 − 1)2U)y∈Y
)
.

(5.22)

We also write

ψm = ζ−mρ − 1, wn,y =
√

∆n

yun
,

and we can rephrase the claim as follows: find Φ′m and U ′ satisfying (5.21) and such that, if

Z̃ ′n(yun) :=
1√
∆n

(
C̃ ′n(yun, ζ)− CT −

M∑
m=1

wmρ
n,y Φ′m

)
,

we have the following stable convergence in law:
(
Z̃ ′n(un), (Z ′yn )y∈Y

) L−s−→ (
Z̃, ((y2 − 1)U ′)y∈Y

)
. (5.23)

2) In view of (5.18) and (5.20), we have

C̃n(yun) = CT +
M∑

m=1
wmρ

n,y Φm +
√

∆n Zn + u2
n

√
∆n Ẑy

n

Gn(yun, ζ) =
M∑

m=1
ψmwmρ

n,y Φm + u2
n

√
∆n Y y

n

G′n(yun, ζ) =
M∑

m=1
ψ2

mwmρ
n,y Φm + u2

n

√
∆n Y ′y

n .

We will in fact argue on each set Ω(Φ)m for m = 1, · · · , M + 1 separately, since those sets form
a partition of Ω. On the set ΩM+1 we simply have

C̃ ′n(yun, ζ) = CT +
√

∆n Zn + u2
n

√
∆n

(
Ẑy

n −
(Y y

n )2

Y ′y
n

+ y2ξ
)

as soon as Y ′y
n 6= 0. (5.22) and U 6= 0 a.s. imply P(Y ′y

n 6= 0) → 1, so a simple calculation using (5.22)
again shows that (5.23) holds in restriction to ΩM+1, with

Φ′1 = · · · = Φ′M = 0, U ′ = ξ = ξ + hN+1U on ΩM+1. (5.24)

3) Now, we suppose that we are on the set Ωm for some m = 1, · · · , M . One easily checks that
(with an empty sum set to 0, and since Φm 6= 0):

C̃ ′n(yun, ζ) = CT +
M∑

j=m

wjρ
n,y Φj +

√
∆n Zn + u2

n

√
∆n (Ẑy

n + y2ξ)− θ−mρ
l wmρ

n,y Φm
Nn(y)2

Dn(y) ,

Nn(y) = 1 +
M∑

j=m+1

w
(j−m)ρ
n,y

ψjΦj

ψmΦm
+ u2

n

√
∆n w−mρ

n,y
Y l

n

ψmΦm

Dn(y) = 1 +
M∑

j=m+1

w
(j−m)ρ
n,y

ψ2
j Φj

ψ2
mΦm

+ u2
n

√
∆n w−mρ

n,y
Y ′yn

ψ2
mΦm

.

We make an expansion of the ratio Nn(y)2/Dn(y), in such a way that we keep all “significant” terms
which are of order as big as u2

n

√
∆n, once multiplied by wmρ

n,y. For this, we observe that wn,y → 0
and wjρ

n,y = o(u2
n

√
∆n ) if and only if j > M . Then, after some (tedious) computation, we end up

with

C̃ ′n(yun, ζ) = CT +
5∑

k=1

Hy
n(k) +

√
∆n Zn + u2

n

√
∆n

(
Ẑy

n −
2Y y

n

ψm
+

Y ′y
n

ψ2
m

+ y2ξ
)
,
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where, with Jm
r (k) denoting the set of all r-uples {ji} of integers with ji ≥ m + 1 and

∑r
i=1 ji = k,

Hy
n(1) =

M∑
j=m+1

wjρ
n,y

(
1− 2ψj

ψm

)
Φj

Hy
n(2) = −

M∑
j=m+2

wjρ
n,y

∑
(s,k)∈Jm

2 (j)

ψsψk

ψ2
m

ΦsΦk

Φm

Hy
n(3) =

M∑
j=m+1

wjρ
n,y

j−m∑
r=1

(−1)r+1
∑

{ji}∈Jm
r (j+rm−m)

∏r
i=1(ψ

2
ji

Φji
)

ψr
mΦr−1

m

Hy
n(4) = 2

M∑
j=m+2

wjρ
n,y

j−m−1∑
r=1

(−1)r+1
j−r∑

k=m+1

∑
{ji}∈Jm

r (j+rm−k)

ψkΦk

∏
i(ψ

2
ji

Φji
)

ψr+1
m Φr

m

Hy
n(5) =

M∑
j=m+3

wjρ
n,y

j−m−2∑
r=1

(−1)r+1
j+m−r∑
l=2m+2

∑
(s,k)∈Jm

2 (l)

∑
{ji}∈Jm

r (j+rm+m−z)

ψsΦsψkΦk

∏
(ψ2

ji
Φji

)

ψr+2
m Φr+1

m
.

It is then easy, although somehow tedious, to deduce (5.23) in restriction to Ωm from (5.22),
upon taking

j = 0, · · ·m ⇒ Φ′j = 0

j = m + 1, · · · ,M ⇒ Φ′j =
(
1− 2ψj

ψm

)
Φj +

∑
(s,k)∈Jm

2 (j)

ψsψk

ψ2
m

ΦsΦk

Φm

+
∑

(s,k)∈Jm
2 (j)

ψsψk

ψ2
m

ΦsΦk

Φm
+ 2

j−m−1∑
r=1

(−1)r+1
j−r∑

k=m+1

∑
{ji}∈Jm

r (j+rm−k)

ψkΦk

∏
i(ψ

2
ji

Φji
)

ψr+1
m Φr

m

+
j−m−2∑

r=1
(−1)r+1

j+m−r∑
l=2m+2

∑
(s,k)∈Jm

2 (l)

∑
{ji}∈Jm

r (j+rm+m−z)

ψsΦsψkΦk

∏
(ψ2

ji
Φji

)

ψr+2
m Φr+1

m

U ′ = ξ +
(
1− 2(ζ2−1)

ψm
+ (ζ2−1)2

ψ2
m

)
U = ξ + hmU.

(5.25)

At this stage, if we define Ψ′m on Ω and U ′ on the extended space by (5.24) in restriction to
ΩM+1 and by (5.25) in restriction to Ωm for any m = 1, · · · , M , and upon using standard properties
of the stable convergence in law, we deduce (5.23), whereas (5.21) is obvious. This ends the proof.2

Proof of Theorem 3. We define C̃n(u) to be Ĉ(u)n
T , so Ĉ(u, ζ)n

T is exactly C̃ ′n(u, ζ, 0), as given by
(5.21) with ξ = 0. We also set ρ = 2−β1, so Theorem 2 implies that P (Φ, Z̃, U) holds with Φ1 = A1

T

and Φ2 = · · · = ΦM = 0 and with Ẑ = ZT and U = ZT . Note that U 6= 0 a.s. because CT > 0 a.s.
by assumption. Theorem 2 and the previous proposition yield that the estimators C̃ ′n(u, ζ, 0) satisfy
P (0, Z̃, U ′, {1}), and (5.19) gives us the result. 2

Proof of Theorem 4. 1) We assume (B) here, with ρ > ρ0 and ρ0 ∈ [0, 1), so we have βm = 2−νmρ
for integers 1 ≤ ν1 < · · · < νM ≤ 1/ρ.

We start with some simple changes in the setting. First, in the de-biasing sum in (3.5) one
can drop out all terms such that βm < 1, because those terms multiplied by 1/

√
∆n and even by

1/u2
n

√
∆n, go to 0, hence can be removed without altering Theorem 2. In other words, we may

assume βm ≥ 1 for all m. Observe that, now, all νm defined above are at most equal to biggest
integer M ′ such that M ′ρ0 ≤ 1, because ρ ≥ ρ0.

Second, we add “fictitious” indices, so that the indices fill in the whole set {2 − mρ : m =
1, . . . , M ′}, and we set the associated process am to be identically 0 for all those fictitious indices.
This does not affect the de-biasing term in (3.5), so Theorem 2 stays valid with these new indices.
Therefore, without loss of generality we may and will assume that we have βm = 2 − mρ for all
m ≤ M (observe that now we may again have βm < 1 for some values of m, but we will no longer
suppress those).

2) We will prove by induction on j the following, where Ym is the set {ζj : j = 0, 1, . . . , 2m + 2}:
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Claim: The estimators Ĉ(u, ζ, j)n
T satisfy P (Φj , Z̃, U j ,YM−jj); we have Φj

1 = · · · = Φj
j∧M = 0; fur-

thermore U j is F-conditionally Gaussian non-degenerate if j = 0 or in restriction to the complement
of the set Ω(Φj−1)M+1 if j ≥ 1, and U j = 1 otherwise.

When j = 0, this claim is simply Theorem 2 with Y = Y2M , upon taking

Φ0
m = Am

T , Z̃ = ZT , U0 = ZT , (5.26)

and U0 is F-conditionally Gaussian non-degenerate because CT > 0 a.s.
Suppose now the claim holds for some j ≥ 0. We will apply Proposition 9 to C̃n(u, ζ, j) =

Ĉ(u, ζ, j)n
T . Indeed, the associated estimators in (5.20) are exactly Ĉ(u, ζ, j + 1)n

T , provided we take
ξ ≡ 1. Note also that U j 6= 0 a.s. on Ω because our claim holds for j. Then this proposition tells us
that the claim for j + 1 holds (use (5.21) to obtain that Φj+1

1 = · · · = Φj+1
(j+1)∧M = 0, and also that

U j+1 = ξ = 1 on the set Ω(Φj−1)M+1 and that U j+1 is F-conditionally Gaussian non-degenerate on
the complement Ω(Φj−1)c

M+1, because the numbers hk are positive for all k ≤ M).

3) What precedes shows that the claim holds for all j, up to M + 1. Now, M is the number
N of iterations made in the theorem, that is, C̃n(u, ζ, M + 1) = Ĉ(u, ζ, N)n

T . On the other hand,
if j = M + 1 all components of Φj vanish identically. Hence the estimators Ĉ(u, ζ,N)n

T satisfy
P (0, Z̃, UN , {1}), and we recall that Z̃ is given in (5.26). This gives us the result. 2
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