
EFFICIENT ESTIMATION OF INTEGRATED VOLATILITY IN
PRESENCE OF INFINITE VARIATION JUMPS

By Jean Jacod and Viktor Todorov∗
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We propose new nonparametric estimators of the integrated volatil-
ity of an Itô semimartingale observed at discrete times on a fixed
time interval with mesh of the observation grid shrinking to zero.
The proposed estimators achieve the optimal rate and variance of
estimating integrated volatility even in the presence of infinite vari-
ation jumps when the latter are stochastic integrals with respect to
locally “stable” Lévy processes, i.e., processes whose Lévy measure
around zero behaves like that of a stable process. On a first step we
estimate locally volatility from the empirical characteristic function
of the increments of the process over blocks of shrinking length and
then we sum these estimates to form initial estimators of the inte-
grated volatility. The estimators contain bias when jumps of infinite
variation are present and on a second step we estimate and remove
this bias by using integrated volatility estimators formed from the
empirical characteristic function of the high-frequency increments for
different values of its argument. The second step debiased estimators
achieve efficiency and we derive a feasible central limit theorem for
them.

1. Introduction. In this paper we consider the problem of estimating the continuous
part of the quadratic variation (henceforth referred to as integrated volatility) of a discretely-
observed one-dimensional Itô semimartingale over a finite interval with mesh of the observation
grid going to zero in the case when the observed process can contain jumps of infinite variation.
Separating jumps from diffusive volatility is of central interest in finance due to the distinct
role played by diffusive volatility and jumps in financial decision making, which is also reflected
in the distinct risk premium demanded by investors for each of them, see e.g., [6]. Until now
this problem has been well studied when jumps are of finite variation, see e.g., [2], [3], [11, 12],
[8]. However, empirical results in [1] suggest that for some financial data sets jumps can be of
infinite variation. This is the case we study in this paper.

In particular, we consider a one-dimensional Itô semimartingale X which is defined on some
probability space (Ω,F , (Ft)t≥0,P) and can always be represented as

(1.1)
Xt = X0 +

∫ t
0 bs ds +

∫ t
0 σs dWs +

∫ t
0

∫
R δ(s, z) 1{|δ(s,z)|≤1} (p= − q= )(ds, dz)

+
∫ t
0

∫
R δ(s, z) 1{|δ(s,z)|>1} p= (ds, dz),

where W is a standard Brownian motion and p= a Poisson random measure on R+ × R with
compensator (intensity measure) q= (dt, dz) = dt ⊗ dz. This is the Grigelionis representation,
and the specific choice of the Poisson measure p= is in no way a restriction (see e.g., Theorem
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2.1.2 in [8]). Here, b and c are progressively measurable processes and δ is a predictable
function on Ω× R+ × R, with appropriate integrability assumptions.

The process X is observed at regularly spaced times i∆n for i = 0, 1, · · · , within a finite
time interval [0, T ], and without microstructure noise. Our goal is to estimate, on the basis of
these observations, the so-called integrated volatility, that is

(1.2) Ct =
∫ t

0
cs ds, where cs = σ2

s ,

for t = T or more generally for all t ∈ (0, T ], with the rate 1/
√

∆n, when X contains jumps
of infinite variation.

When jumps are absent, that is when δ ≡ 0 (so the last two terms in (1.1) disappear), the
best estimator of Ct is the realized volatility, or approximate quadratic variation:

(1.3) Ĉn
t =

[t/∆n]∑

i=1

(∆n
i X)2, where ∆n

i X = Xi∆n −X(i−1)∆n
.

Under very weak assumptions on b and c (namely when
∫ t
0 b2

s ds and
∫ t
0 c2

s ds are finite for
all t), we have a Central Limit Theorem (CLT) with rate 1√

∆n
: the processes 1√

∆n
(Ĉn

t − Ct)
converge in the sense of stable convergence in law for processes, to a limit Z which is defined
on an extension of the space, and which conditionally on F is a centered Gaussian martingale
whose conditional law is characterized by its (conditional) variance

(1.4) Vt := E((Zt)2 | F) = 2
∫ t

0
c2
s ds,

or equivalently, we have Zt =
√

2
∫ t
0 cs dW

(1)
s , where W (1) is a Brownian motion independent

of F . Furthermore when cs(ω) = c is a constant, or more generally when ct(ω) = c(t,Xt(ω))
for a smooth enough function c on R+ ×R, the estimators Ĉn

t are efficient for any fixed time
t, because in this case we have the LAN or LAMN property and Vt above is the inverse of
the F-conditional Fisher information, normalized by ∆n. Therefore, in the general case (1.1)
with δ ≡ 0 we qualify the estimator Ĉn

t as being efficient.
When jumps are present, so far there are essentially two types of results, hinging on a

specification of the so-called degree of jump activity. To keep things simple in this introduction,
and although substantial extensions can be made, we will suppose that for some r ∈ [0, 2],

(1.5) |δ(ω, t, z)|r ∧ 1 ≤ J(z), where J is a Lebesgue-integrable function on R.

The smaller r above is, the stronger the assumption is, and it is (slightly) stronger than
assuming

∑
s≤t |∆Xs|r < ∞ for all t, where ∆Xs = Xs −Xs− is the size of the jump at time

s. When (1.5) holds with r = 0 the jumps have finite activity; when (1.5) holds with r = 1
the jumps are (locally) summable. In the latter case we can rewrite (1.1) (up to modifying bt)
as

(1.6) Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0

∫

R
δ(s, z) p= (ds, dz).

The supremum of all r for which (1.5) holds is the degree of jump activity, or Blumenthal-
Getoor index. Then we have two cases:
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1. When r < 1. In this case we have two major types of volatility estimators that enjoy a
feasible CLT. The first is the truncated realized volatility (cf. [11, 12], [8])

(1.7) TC(vn)n
t =

[t/∆n]∑

i=1

(∆n
i X)2 1{|∆n

i X|≤vn}, vn ³ ∆$
n ,

(the last statement means that 1
A ≤ vn/∆$

n ≤ A for some A ∈ (1,∞)). TC(vn)n
t has

exactly the same limiting properties as Ĉn does in the continuous case provided (1.5)
holds with some r ∈ [0, 1) and $ ∈ [

1
2(2−r) ,

1
2

)
.

The second type of jump-robust volatility estimators are the multipower variations (cf.
[2], [3], [8]), which we do not explicitly recall here. These estimators also satisfy a CLT
with rate 1√

∆n
, but with a conditional variance bigger than in (1.4) (so they are rate-

efficient but not variance-efficient).
2. When r ≥ 1. In this case the above two types of estimators are still consistent, but when

centered around Ct and appropriately scaled, they are only bounded in probability with
no CLT in general and rate of convergence that is much slower than 1/

√
∆n. For example,

when r ≥ 1 the sequence 1

∆
$(2−r)
n

(TC(vn)n
t −Ct) is bounded in probability (when r = 1

the multipower variations enjoy a CLT with a bias term, see [19]).
On a more general level, we have the following general result from [9]: If we have estima-
tors Ĉ ′n

t such that, for some sequence wn →∞ of numbers, the variables wn (Ĉ ′n
t −Ct)

are bounded in probability in n and also when X ranges through all semimartingales
of type (1.1) satisfying (1.5) with a fixed function J and also |bt| + ct ≤ A for some
constant A (so wn is a kind of “minimax” rate), we necessarily have for some constant
K:

(1.8) wn ≤
{

K/
√

∆n if 0 ≤ r ≤ 1

K
( log(1/∆n)

∆n

) 2−r
2 if 1 < r < 2.

In this paper we exhibit new estimators for Ct which converge with rate 1√
∆n

, and which

are even variance-efficient in the sense that they satisfy the same CLT as Ĉn
t does in the

continuous case, when r defined in (1.5) above, i.e., the jump activity, is bigger than 1. Of
course, given the result in [9], discussed in point (2) above, this is only possible under some
additional assumption, namely that the “small” jumps behave like those of a stable process,
or of the integral with respect to a stable-like process, with some index β ∈ (1, 2) (recall
that in this case (1.5) holds for all r > β, but not for r ≤ β). Hence here we are working
in a kind of semi-parametric setting, with the (unknown) parameter β. We should point out
that this “semi-parametric” setting is still quite general and covers many jump models used
in empirical applications, particularly those in finance. Similar assumptions about the jumps
have been also made when estimating the Blumenthal-Getoor index of jump activity in [1]
and [16] among others.

The estimation method proposed in the current paper is based on estimating locally the
volatility (diffusion coefficient) from the empirical characteristic function of the increments
of the process over blocks of decreasing length but containing an increasing number of ob-
servations, and then summing the local volatility estimates. The separation of volatility from
jumps in our method is due to the dominant role of the diffusion component of X in (the real
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part of) the characteristic function of the high frequency increments of the process for values
of the argument that are going to infinity at the rate 1/

√
∆n, or at a slightly slower rate.

When infinite variation jumps are present, the proposed volatility estimators contain a bias
which determines their rate of convergence. The bias scales differently for different values
of the argument of the empirical characteristic function, used in forming our nonparametric
volatility estimators, and we use this property to debias our initial volatility estimators. The
debiased volatility estimators achieve the efficient rate of convergence and some of them reach
the same (efficient) asymptotic variance as in (1.4).

The empirical characteristic function of high-frequency increments has been previously used
in nonparametric estimation of the empirical Laplace transform of volatility in [17] as well
as in [18] for estimation of the empirical Laplace transform of the stochastic scale for pure-
jump semimartingales. There are two major differences between these papers and our study.
First, we are interested in estimating the integrated volatility while the above cited papers
consider estimation of the empirical Laplace transform of the stochastic volatility. Second,
and more importantly, [17] consider jump-diffusion setting with jumps of finite variation only
and [18] consider pure-jump semimartingales (i.e., processes with no diffusion). Our main
contribution is rate and variance efficient estimators of integrated volatility in jump-diffusion
setting with jumps of infinite variation. Finally, the empirical characteristic function in low
frequency setting has been used in [13], [10] and [14] for estimating the diffusion coefficient
of a Lévy process, in [7] for nonparametric estimation for a Lévy process which is a sum of
a drift, a symmetric stable process and a compound Poisson process, as well as in [4] and [5]
for estimation of Lévy density and jump activity in affine models.

The paper is organized as follows. In Section 2 we present the setting and state our assump-
tions. In Section 3 we propose our initial estimators of integrated volatility and derive a CLT
for them when a bias due to the infinite variation jumps is removed from the estimators. In
Section 4 we propose a way to estimate this bias and derive a feasible CLT for our debiased
estimators. Section 5 contains a Monte Carlo study. Proofs are given in Section 6.

2. The setting. As mentioned before, the underlying process X is a one-dimensional
Itô semimartingale on the space (Ω,F , (Ft)t≥0,P), and observed without noise at the times
i∆n : i = 0, 1, .... We restrict the general form (1.1) by assuming that the jumps are a mixture
of (essentially unspecified) jumps with finite variation, plus the jumps of a stochastic integral
with respect to a Lévy process whose small jumps are “stable like”.

We have two versions, the simplest one being as follows:

(2.1) Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0
γs− dYs +

∫ t

0

∫

R
δ(s, z) p= (ds, dz),

with Y a symmetric pure jump Lévy process with Blumenthal-Getoor index β ∈ [0, 2) and
the last integral being with finite variation (the precise assumptions are given below). In this
version, the jumps due to Y are “symmetric” in the sense that

∫ t
0 γs− dYs and − ∫ t

0 γs− dYs

have the same law, as processes. To deal with the non-symmetric case one could use a process
Y which is non-symmetric. However, it is more convenient and also more general to use the
following version:

(2.2) Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0
(γ+

s− dY +
s + γ−s− dY −

s ) +
∫ t

0

∫

R
δ(s, z) p= (ds, dz),
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with Y + and Y − two independent Lévy processes with the same index β and positive jumps.
We will also require the volatility σt to be an Itô semimartingale, and it can thus be

represented as
(2.3)

σt = σ0 +
∫ t
0 bσ

s ds +
∫ t
0 Hσ

s dWs +
∫ t
0 H ′σ

s dW ′
s +

∫ t
0

∫
R δσ(s, z) 1{|δσ(s,z)|≤1} (p= − q= )(ds, dz)

+
∫ t
0

∫
R δσ(s, z) 1{|δσ(s,z)|>1} p= (ds, dz).

Most volatility models used in empirical applications satisfy (2.3), in particular models in the
popular affine class.

As well known, the jumps of σt can, without restriction, be driven by the same Poisson
measure p= as X, but we need a second Brownian motion W ′: in the case of “pure leverage”
we would have H ′σ ≡ 0 and W ′ is not needed; in the case of “no leverage” we rather have
Hσ ≡ 0, and in the mixed case we need both W and W ′.

Note that (2.1) is a special case of (2.2): indeed, if Y is a pure jump symmetric Lévy
process, it can always be written as Y = Y + − Y − with Y + and Y − being independent
identically distributed and with positive jumps, so (2.2) with γ+ = γ and γ− = −γ is the
same as (2.1) with γ. Therefore we only give the assumptions for (2.2). The first assumption is
a structural assumption describing the driving terms W,W ′, p= , Y ±, the second one being a set
of conditions on the coefficients implying in particular the existence of the various stochastic
integrals involved above. Both assumptions involve a number r in [0, 1) (the same in both)
and, the smaller r is, the stronger the two assumptions are.

Assumption (A): The processes W and W ′ are two independent Brownian motions, inde-
pendent of (p= , Y +, Y −); the measure p= is a Poisson random measure on R+×R with intensity
q= (dt, dz) = dt⊗dz; the processes Y ± are two independent Lévy processes with characteristics
(0, 0, F±) and positive jumps (that is, each F± is supported by (0,∞)). Moreover, there is a
number β ∈ [1, 2) such that the tail functions F±(x) = F±((x,∞)) satisfy

(2.4) x ∈ (0, 1] ⇒
∣∣∣F±(x)− 1

xβ

∣∣∣ ≤ g(x),

where g is a decreasing function such that
∫ 1
0 xr−1 g(x) dx < ∞.

Assumption (B): We have a sequence τn of stopping times increasing to infinity, a sequence
an of numbers, and a nonnegative Lebesgue-integrable function J on R, such that the processes
b,Hσ, γ± are càdlàg adapted, the coefficients δ, δσ are predictable, the processes bσ,H ′σ are
progressively measurable, and
(2.5)

t < τn ⇒ |δ(t, z)|r ∧ 1 ≤ anJ(z), |δσ(t, z)|2 ∧ 1 ≤ anJ(z),
t < τn, V = b, bσ,Hσ,H ′σ, γ+, γ− ⇒ |Vt| ≤ an,
V = b,Hσ, γ+, γ− ⇒ |E(V(t+s)∧τn

− Vt∧τn | Ft)|+ E(|V(t+s)∧τn
− Vt∧τn |2 | Ft) ≤ ans.

Note that we do not require the processes Y ± to be independent from the measure p= ,
thus allowing any kind of dependence between the jumps of X and those of σ. Intuitively,
the number r in Assumptions (A) and (B) control the activity of the finite jump variation
component of X as well as the degree of deviation from the stable process of Y ± which drive
the infinite jump variation component of X. Our condition in (2.4) is similar to condition



6 JEAN JACOD AND VIKTOR TODOROV

AN1 on the Lévy measure around zero in [5]. Assumptions (A) and (B) are satisfied by many
parametric models for the jump component used in applications as illustrated by the following
example.

Example. Suppose the jump component of X is given by a time-changed Lévy process with
absolute continuous time-change, i.e., LTt where Lv is a pure-jump Lévy process with Lévy
measure F satisfying (2.4) and time-change Tt =

∫ t
0 asds for at being strictly positive Itô

semimartingale. A popular parametric example for F is that of a tempered stable process
with corresponding Lévy density of the form

A+e−λ+x

|x|1+β
1{x>0} +

A−e−λ−|x|

|x|1+β
1{x<0}, A± ≥ 0, λ± > 0, β ∈ (0, 2).

In this case, it is not hard to show (using Theorem 2.1.2 of [8] which links integrals of ran-
dom functions with respect to Poisson measure and random integer-valued measures) that
Assumptions (A) and (B) (regarding the jump part of X) hold with β in Assumption (A)
being the corresponding parameter in the above parametric model when β ∈ [1, 2) and further

r = β − 1 + ι for ι > 0 arbitrary small and γ+
t =

(
A+at

β

)1/β
and γ−t = −

(
A−at

β

)1/β
(and

non-zero δ in (2.2) which depends on Y ±). When β ∈ (0, 1) in the above parametric model,
Assumptions (A) and (B) hold trivially with γ±t = 0. 2

We end this section with a few comments:

1. In (2.4) there is an implicit standardization of the processes Y ±. One could replace it
by

(2.6) x ∈ (0, 1] ⇒
∣∣∣F±(x)− a±

xβ

∣∣∣ ≤ g(x)

for positive constants a±. However, in this case the processes Y ′± = Y ±/a
1/β
± satisfy

(2.4) as stated, and (2.2) holds with Y ′± and γ′± = a
1/β
± γ± as well. It is more convenient

in the sequel, and not a restriction, to use the standardized form (2.4).
2. By Assumption (B) and the fact that r < 1, the last integral in (2.2) defines a process

with finite variation which is the sum of its jumps. On the other hand,
∫ t
0(γ+

s− dY +
s +

γ−s− dY −
s ) has a Blumenthal-Getoor (BG) index β ≥ 1 and is of infinite variation (even

when β = 1, and unless γ+ and γ− identically vanish, of course), although still a
(compensated) “pure jump” process.

3. Concerning the regularity assumptions in (B), the last part of (2.5) could be somewhat
weakened (for instance we could drop it in the case of V = Hσ), but at the expense
of a non trivial complication of the proofs. Since these are satisfied in virtually all
models used in practice we decided to impose these assumptions here. Note also that
this last part of (2.5) is satisfied as soon as the processes b,Hσ, γ+, γ− are themselves
Itô semimartingales with locally bounded characteristics.

3. First estimators of Ct. In this section we construct our initial estimators of Ct. These
estimators are not efficient in general, but they will be used to construct efficient estimators
later on.
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We use the real part of the “local” (in time) empirical characteristic functions of increments,
taken at point un/

√
∆n for some sequence un > 0 going to 0 slowly enough. Here, “local”

means that the empirical characteristic function is constructed on windows of time length vn

or 2vn, where vn = kn∆n and kn ≥ 1 is a suitable sequence of integers going to infinity, to be
specified later. We will in fact use two different versions:
(3.1)

Symmetrized version: L(u)n
j = 1

kn

kn−1∑
l=0

cos(u(∆n
2jkn+1+2lX −∆n

2jkn+2+2lX)/
√

∆n ),

Non-symmetrized version: L′(u)n
j = 1

kn

kn−1∑
l=0

cos(u∆n
1+jkn+lX/

√
∆n ),

for j ≥ 1 some integer, u > 0 some real and recall ∆n
i X = Xi∆n −X(i−1)∆n

. L(u)n
j and L′(u)n

j

are not bigger than 1, and the variables

(3.2)
ĉ(u)n

j = − 1
u2 log

(
L(u)n

j

∨ 1√
kn

)
,

ĉ′(u)n
j = − 2

u2 log
(
L′(u)n

j

∨ 1√
kn

)
,

satisfy 0 ≤ ĉ(u)n
j ≤ log kn

2u2 and 0 ≤ ĉ′(u)n
j ≤ log kn

u2 , and serve as local estimators of the volatility
(of the average of ct over the interval (2jvn, 2(j +1)vn] or (jvn, (j +1)vn], to be more precise).
The associated estimators for integrated volatility are thus (recall vn = kn∆n):

(3.3)
Ĉ(u)n

t = 2vn

[t/2vn]−1∑
j=0

(
ĉ(u)n

j − 1
u2kn

(
sinh(u2ĉ(u)n

j )
)2

)
,

Ĉ ′(u)n
t = vn

[t/vn]−1∑
j=0

(
ĉ′(u)n

j − 2
u2kn

(
sinh(u2ĉ′(u)n

j /2)
)2

)
,

where recall sinh(x) = ex−e−x

2 . On an intuitive level, Ĉ(u)n
t and Ĉ ′(u)n

t separate volatility (of
the diffusive part of X) from jumps in X by utilizing the fact that the diffusive component
of X dominates the behavior of the real part of the empirical characteristic function at high-
frequencies for values of the argument that are “sufficiently” away from zero. Indeed, in the
simple case when Xt = X0 + bt + σWt + γYt for Yt a symmetric β-stable process with unit
scale, we have log<(E(eiu∆n

i X/
√

∆n)) = log(cos(ub∆1/2
n ))− u2σ2

2 − |γ|βuβ∆1−β/2
n .

The terms 1
u2kn

(
sinh(u2ĉ(u)n

j )
)2 and 2

u2kn

(
sinh(u2ĉ′(u)n

j /2)
)2 remove biases of higher asymp-

totic order in ĉ(u)n
j and ĉ′(u)n

j , respectively, which arise due to the nonlinear transformation
of L(u)n

j and L′(u)n
j in forming ĉ(u)n

j and ĉ′(u)n
j .

We note that for any fixed n, limu↓0 Ĉ ′(u)n
t =

∑[t/∆n]
i=1 (∆n

i X)2 is the realized volatility
(which in presence of jumps does not estimate the integrated volatility). The robustness of our
estimator Ĉ ′(u)n

t with respect to jumps in X will result from using u = un that is “sufficiently”
far from zero, and the variance-efficiency of the corrected second-step estimators will come
from the fact that un → 0 (we make this formal in the theorems below).

For stating the asymptotic behavior of the estimators in (3.3), we need some additional
notation. First, for β ∈ (0, 2) we set

(3.4) β > 1 7→ χ′(β) =
∫ ∞

0

1− cos y

yβ
dy, β > 0 7→ χ(β) = −βχ′(β + 1) =

∫ ∞

0

sin y

yβ
dy
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(the last integral is convergent for all β > 0, but absolutely convergent when β > 1 only).
Next, with the notation {x}β = |x|β sign(x) for any x ∈ R, we associate with the processes
γ± the following (when χ′(β) appears below we implicitly suppose β > 1):

(3.5)

at = χ(β)(|γ+
t |β + |γ−t |β), a′t = χ′(β)({γ+

t }β + {γ−t }β),
A(u)n

t = 2uβ−2∆1−β/2
n

∫ t
0 as ds,

A′(u)n
t = 2

u2

∫ t
0

(
∆1−β/2

n uβas − log
(
cos(∆1−β/2

n uβa′s)
))

ds.

Under appropriate assumptions on the sequence un we will see that Ĉ(un)T and Ĉ ′(un)T

converge to CT , and there is an associated Central Limit Theorem with the convergence
rate 1/

√
∆n. However, in the CLT there is typically a non-negligible bias due to the infinite

variation jumps in X, and to account for this bias we consider the following normalized error
processes

(3.6)
Z(u)n

t = 1√
∆n

(
Ĉ(u)n

t − Ct −A(u)n
t

)
,

Z ′(u)n
t = 1√

∆n

(
Ĉ ′(u)n

t − Ct −A′(u)n
t

)
.

A(u)n
t and A′(u)n

t are easiest to understand in the Lévy case, i.e., when γ±t are constants.
In this case A′(u)n

1 is − 2
u2 times the logarithm of the real part of the characteristic function of

∆n
i L/

√
∆n, where L = γ+L+ + γ−L− and L+ and L− are two independent one-sided stable

processes with Lévy density β
xβ+1 1{x>0}, and A(u)n

1 = A′(u)n
1 when γ− = −γ+. In this case

of constant γ±t , taking the difference ∆n
i+1X −∆n

i X makes the contribution of the stochastic
integrals w.r.t. Y ± globally symmetric: the characteristic function of ∆n

i+1L − ∆n
i L above

becomes real, and this is why we put A(u)n
t instead of A′(u)n

t in the first case of (3.6). Now,
A(u)n

t has a much simpler form than A′(u)n
t , regarding its dependence upon u, which makes

its estimation from the data, as conducted in the next section, rather easy. On the other
hand, differencing increments results in a loss of information, since in the definition of Ĉ(u)n

t

we have twice less summands than in the definition of Ĉ ′(u)n
t . (Note that the form (2.1) for

X corresponds to having γ− = −γ+, hence in this case A′(u)n
t = A(u)n

t .)
In order to give a simple version of the limits below, we consider an extension (Ω̃, F̃ , (F̃t)t≥0, P̃)

of the original space (Ω,F , (Ft)t≥0,P), which supports two independent Brownian motions
W (1) and W (2), independent of the σ-field F , and on this extension we introduce the two
processes

(3.7) Zt =
√

2
∫ t

0
cs dW (1)

s , Zt =
1√
6

∫ t

0
c2
s dW (2)

s .

An equivalent characterization of the pair (Z, Z) is as follows: they are defined on an extension
(Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P) and, conditionally on F , they are centered continuous
Gaussian martingales characterized by their (conditional) variances-covariances, as given by

(3.8) Ẽ((Zt)2 | F) = 2
∫ t

0
c2
s ds, Ẽ(Z2

t | F) =
1
6

∫ t

0
c4
s ds, Ẽ(Zt Zt | F) = 0.

In view of the de-biasing procedure later on we need a multidimensional version of the CLT,
namely the convergence for all θun, where θ runs through a finite subset Θ of (0,∞). We are
now ready to state the main results of this section:
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Theorem 1. Assume (A) and (B) with r < 1, and choose kn and un in such a way that

(3.9) kn

√
∆n → 0, kn∆1/2−ε

n →∞ ∀ε > 0, un → 0, sup
n

kn

√
∆n

u4
n

< ∞.

a) We have the (functional) stable convergence in law

(3.10)
(
Z(un)n,

( 1
u2

n

(
Z(θun)n − Z(un)n

)
θ∈Θ

) L−s=⇒ (√
2Z, (2

√
2 (θ2 − 1)Z)θ∈Θ

)
.

b) If further β > 1, we also have

(3.11)
(
Z ′(un)n,

( 1
u2

n

(
Z ′(θun)n − Z ′(un)n

)
θ∈Θ

) L−s=⇒ (
Z, ((θ2 − 1)Z)θ∈Θ

)
.

This exhibits a kind of degeneracy. Indeed, (3.10) and (3.11) imply the following convergence
(u.c.p.=⇒ means convergence in probability, uniformly on each compact time interval):

(3.12) Z(θun)n − Z(un) u.c.p.=⇒ 0, Z ′(θun)n − Z ′(un) u.c.p.=⇒ 0.

Remark 2. A possible choice for kn and un is kn ³ 1/
√

∆n (log(1/∆n))x and un ³
1/(log(1/∆n))x′ , which satisfies (3.9) as soon as the reals x, x′ are such that 0 < x′ ≤ x

4 .

4. Efficient Estimators of Ct. In general, the bias terms A(u)n
t or A′(u)n

t in (3.6)
determine the second order behavior of the estimators Ĉ(u)n

t and Ĉ ′(u)n
t , thus preventing rate

efficiency. In one important case, though, Theorem 1 implies that Ĉ ′(u)n
t will be both rate

and variance efficient and Ĉ(u)n
t will be rate efficient but with asymptotic variance somewhat

larger. This is the case when the jumps in X are of finite variation, i.e., when γ+ and γ− are
identically 0. Then (3.6) reduces to

Z(u)n
t =

√
∆n (Ĉ(u)n

t − Ct), Z ′(u)n
t =

√
∆n (Ĉ ′(u)n

t − Ct),

and Theorem 1 implies:

Theorem 3. Assume (A) and (B) with γ± ≡ 0 and r < 1, and choose kn and un satis-
fying (3.9). Then the processes Z(un)n and Z ′(un)n converge stably in law to

√
2Z and Z,

respecyively.

This means, in particular, that the estimators Ĉ ′(un)t are asymptotically equivalent to the
truncated realized volatility TC(vn)t of (1.7) with vn ³ ∆$

n and $ ∈ (
1

2(2−r)
1
2

)
, and hence are

rate and variance efficient. Thus, we provide an alternative to the truncated realized volatility
which is important in applications due to the presence of tuning parameters in the construction
of both jump-robust volatility estimators (ours and the truncated realized volatility).

Remark 4. Whereas the above is a special case of Theorem 1, it is possible (although
far from trivial when one allows the process σ to jump, as in (2.3)) to show that when again
γ± ≡ 0 and when r = 1, and if we fix u > 0, then the sequence Z ′(u)n stably converges in
law to a process Z(u) which has the same description as Z above, except that the conditional
variance is now

(4.1) Ẽ(Z(u)2t | F) = 8
∫ t

0

(sinh(u2cs/2)
u2

)2
ds.
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(when un → 0 we do not know the behavior of Z ′(un)n). Hence the estimators Ĉ ′(u)n
t are still

rate efficient, but no longer variance efficient. However, the right side of (4.1) goes to 2
∫ t
0 c2

s ds
as u → 0: so, upon choosing u small enough, one can approach variance efficiency as close as
one wants to.

Note that, even without variance efficiency, the rate efficiency above plus the fact that the
limit is conditionally unbiased seems to be a new result when r = 1.

When the term
∫ t
0(γ+

s− dY +
s + γ−s− dY −

s ) in (2.2) is present, the estimators Ĉ(un)n
t and

Ĉ ′(un)n
t converge to Ct at a rate arbitrarily close to 1/∆(2−β)/2

n , which up to a logarithmic
term is in accordance with the minimax rate given in (1.8) (see [9]). However, this does not
give us a feasible limit theorem. In this situation one can find a way of eliminating the bias
term and come up with estimators with rate 1/

√
∆n and which are even variance efficient (of

course this is possible under Assumptions (A) and (B) only).
To do this, we fix the time horizon T > 0 and we set

(4.2)
Ĉ(u, ζ)n

T = Ĉ(u)n
T − (Ĉ(ζu)n

T−Ĉ(u)n
T )2

Ĉ(ζ2u)n
T−2Ĉ(ζu)n

T +Ĉ(u)n
T

,

Ĉ ′(u, ζ)n
T = Ĉ ′(u)n

T − (Ĉ′(ζu)n
T−Ĉ′(u)n

T )2

Ĉ′(ζ2u)n
T−2Ĉ′(ζu)n

T +Ĉ′(u)n
T

.

The new estimators above are biased-corrected analogues of Ĉ(u)n
T and Ĉ ′(u)n

T . Our esti-
mation of the bias is very intuitive. It utilizes the fact that the only difference (asymptotically)
in Ĉ(u)n

T and Ĉ ′(u)n
T for different values of u stems from the presence of A(u)n

t and A′(u)n
t .

This suggests an easy way to estimate these biases from the differences of Ĉ(u)n
T and Ĉ ′(u)n

T

over different values of u. The next theorem derives the asymptotic behavior of Ĉ(u, ζ)n
T and

Ĉ ′(u, ζ)n
T .

Theorem 5. Assume (A) and (B) with r < 1 and CT > 0 a.s. Choose kn and un satisfying
(3.9) and any ζ > 1.

a) The variables 1√
∆n

(Ĉ(un, ζ)n
T −CT ) converge stably in law to the variable

√
2ZT , which

conditionally on F is centered Gaussian with (conditional) variance 4
∫ T
0 c2

s ds.
b) Assume further that either 1 < β < 3

2 , or that β ≥ 3
2 and γ+ = −γ− identically. The

variables 1√
∆n

(Ĉ ′(un, ζ)n
T −CT ) converge stably in law to the variable ZT , which conditionally

on F is centered Gaussian with (conditional) variance 2
∫ T
0 c2

s ds.
In particular, this applies when (2.2) reduces to (2.1), under the only condition 1 < β < 2.

The estimator Ĉ(un, ζ)n
T applies in all cases of Assumptions (A) and (B) and is rate efficient

but not variance efficient. Ĉ ′(un, ζ)n
T is both variance and rate efficient and no prior knowledge

of β is needed (except that β = 1 is excluded) whenever γ+ = −γ− which is the case in many
models. When γ+ 6= −γ−, then we can use Ĉ ′(un, ζ)n

T only when β < 3/2.
Alternatively we could iterate the de-biasing procedure and achieve rate and variance ef-

ficiency even in the asymmetric case γ+ 6= −γ−. Such an iteration also permits to replace
the fourth term on the right side of (2.2) by a sum of M terms

∫ t
0(γm+

s− dY m+
s + γm−

s− dY m−
s ),

with Y m± having Blumenthal-Getoor indices βm with 1 ≤ βM < · · · < β1 < 2, and under
appropriate conditions. We leave such extensions for future work.

Remark 6. When P(CT > 0) < 1 the result as stated may fail. However, a classical
argument shows that it still holds in restriction to the set {CT > 0}.
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5. Monte Carlo study. We test the performance of our new method of estimating
integrated volatility and compare it with that of the truncated realized volatility on simulated
data from the following stochastic volatility model

(5.1) Xt = X0+
∫ t

0

√
cs dWs+ηYt, ct = c0+

∫ t

0
0.03(1.0−cs) ds+0.15

∫ t

0

√
cs dW ′

s, η ≥ 0,

where Wt and W ′
t are two independent Brownian motions and Yt is a symmetric β-stable

process independent from Wt and W ′
t . The volatility ct is a square-root diffusion process,

which is widely used to model stochastic volatility in financial applications. The parameters
of the volatility specification are set so that the mean and persistence of volatility is similar
to that in actual financial data. In particular, its mean is 1 in the stationary case. Since the
key advantage of our estimation procedure is its ability to recover integrated volatility in
presence of infinite variation jumps, in the Monte Carlo we experiment with values of the
stability parameter of Yt of β = 1.25, β = 1.50 and 1.75. We further vary the constant η (in
the interval [0, 2]) which controls the relative contribution of Yt in the total variation of Xt.

In the Monte Carlo we fix the time span to 1 day (our unit of time is a day) and we
consider 1/∆n = 2, 400 and 1/∆n = 4, 800, which corresponds to sampling at 10 and 5
seconds, respectively, in a 6.5-hour trading day. We set kn = 240 for 1/∆n = 2, 400 and we
increase it to kn = 320 when 1/∆n = 4, 800, which correspond to 10 and 15, respectively,
blocks per unit of time. Experiments with more blocks per day led to very similar results.

We test in the Monte Carlo the performance of the bias-corrected estimator Ĉ ′(u, ζ)n defined
in (4.2), whose implementation we now discuss. The choice of the tuning parameter un = u
in Ĉ ′(u, ζ)n plays a nontrivial role. From the asymptotic variance in (4.1), it is clear that a
big or small value of u is always with respect to the level of volatility cs. For this reason, for
each time interval [t, t + 1] we set u for that day to un

t = 1
(log(1/∆n))1/30

1√
BV[t−1,t]

, where

(5.2) BV[t−1,t] =
π

2

[t/∆n]∑

i=[(t−1)/∆n]+2

|∆n
i−1X||∆n

i X|,

is the Bipower Variation on the unit interval [t−1, t) which is a consistent estimator of
∫ t
t−1 csds

that does not require any choice of tuning parameters. Our time-varying un
t is analogous to

the selection of a time-varying threshold for the truncated realized volatility that is typically
done (and we implement as well here). The scale factor 1

(log(1/∆n))1/30 is chosen so that un
t

converges to zero very slowly as ∆n → 0.
The bias correction term in Ĉ ′(u, ζ)n

T can be split into the product of two terms, as

(Ĉ ′(ζu)n
T − Ĉ ′(u)n

T ) × (Ĉ′(ζu)n
T−Ĉ′(u)n

T )

Ĉ′(ζ2u)n
T−2Ĉ′(ζu)n

T +Ĉ′(u)n
T

. The first term is an estimator for A′(u)n
T ,

which is time-varying and the second is an estimator of 1
ζβ−2−1

which depends only on the
parameter β. To reduce the noise in our estimate of the bias, therefore, we use a horizon
of 132 days (6 months) to estimate the second term, similar to earlier studies on estimation
of the Blumenthal-Getoor index ([1] and [16]), and daily data to estimate the first term (as
the limit of this term is time-varying). Also for the calculation of the second term we use a
smaller value of u as this allows to capture the slope of Ĉ ′(u, ζ)n

T better. Overall, for a period
of T = 132 days, our daily estimator is
(5.3)

Ĉ ′(un
t , ζ)n

[t,t+1] = Ĉ ′(un
t )n

[t,t+1] − Sn
T

(
(Ĉ ′(ζun

t )n
[t,t+1] − Ĉ ′(un

t )n
[t,t+1]) ∧ 0

)
, t = 1, ..., T − 1,
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(5.4) Sn
T =

∑T
t=1(Ĉ

′(0.3ζun
t )n

[t,t+1] − Ĉ ′(0.3un
t )n

[t,t+1])∑T
t=1(Ĉ ′(0.3ζ2un

t )n
[t,t+1] − 2Ĉ ′(0.3ζun

t )n
[t,t+1] + Ĉ ′(0.3un

t )n
[t,t+1])

∧
0.

The restrictions on the sign above are finite sample restrictions with no asymptotic effect. In
the calculation of the bias correction term we set ζ = 1.5. Finally, if Ĉ ′(un

t , ζ)n
[t−1,t] is negative

we repeat the calculation in (5.3) with 2un
t /3 (this again has no asymptotic effect).

For the truncation realized volatility estimator TC(vn)n, which we compare below to our
estimator, we set vn = 4

√
BV[t−1,t]∆0.49

n , as typically done in existing work.
The results from the Monte Carlo are summarized in Figures 1 and 2. Not surprisingly, the

activity of the jump component (controlled by β) and its relative share in total return vari-
ation (controlled by η) have clear impact on the ability to separate integrated variance from
the jumps in X. Our volatility estimator Ĉ ′(un

t , ζ)n
[t−1,t] performs significantly better than

the truncated variance in presence of infinite variation jumps (recall that both estimators are
consistent regardless of the activity of the jumps). The superior performance of Ĉ ′(un

t , ζ)n
[t−1,t]

is largely due to the removal of the bias in the volatility estimation that is due to the infinite
variation jumps. As a result Ĉ ′(un

t , ζ)n
[t−1,t], unlike TC(vn)n, is essentially unbiased in all con-

sidered cases. Increasing the sampling frequency improves the performance of both estimators
in all cases. We note however that the reduction of bias and MAD for TC(vn)n for the higher
jump activity case (β = 1.75) is significantly slower and this is unlike our estimator. This is
consistent with the slow rate of convergence of TC(vn)n in the case of infinite variation jumps
discussed in the introduction. Overall, we conclude that our estimator provides a nontrivial
improvement over existing methods for the nonparametric estimation of integrated volatility
in presence of infinite variation jumps.
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Fig 1. Median bias and Median Absolute Deviation (MAD) around the true value,
∫ t+1

t
csds, for sampling

frequency 1/∆n = 2, 400. + corresponds to Ĉ′(u, ζ)n and ∗ to TC(vn)n.

6. Proofs.
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Fig 2. Median bias and Median Absolute Deviation (MAD) around the true value,
∫ t+1

t
csds, for sampling

frequency 1/∆n = 4, 800. + corresponds to Ĉ′(u, ζ)n and ∗ to TC(vn)n.

6.1. Preliminaries. By a standard localization procedure, we may and will assume that in
(B) we have τ1 ≡ ∞ and J is bounded, and also that X and σ are themselves bounded, as
well as the jumps of Y ±. Up to modifying bσ, we can thus rewrite (2.3) as

(6.1) σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s +

∫ t

0

∫

R
δσ(s, z) (p= − q= )(ds, dz).

Itô’s formula gives us

(6.2)
ct = c0 +

∫ t
0 bc

s ds +
∫ t
0 Hc

s dWs +
∫ t
0 H ′c

s dW ′
s +

∫ t
0

∫
R δc(s, z) (p= − q= )(ds, dz)

where

{
bc
t = 2σtb

σ
t + (Hσ

t )2 + (H ′σ
t )2 +

∫
R δσ(t, z)2 dz

Hc
t = 2σt Hσ

t , H ′c
t = 2σt H ′σ

t , δc(t, z) = 2σt−δσ(t, z) + δc(t, z)2

and we can thus strengthen and complement (2.5) as follows:

(6.3)
|δ(t, z)|r ≤ J(z), |δσ(t, z)|2 ≤ J(z), |δc(t, z)|2 ≤ J(z)
|Xt|+ |σt|+ ct + |bt|+ |bσ

t |+ |Hσ
t |+ |H ′σ

t |+ |bc
t |+ |Hc

t |+ |H ′c
t |+ |γ±t |+ |∆Y ±

t | ≤ K
V = X, c, σ, b, γ+, γ−,Hσ,Hc ⇒ |E(Vt+s − Vt | Ft)|+ E(|Vt+s − Vt|2 | Ft) ≤ Ks.

Here K is a constant, and below K and φn will denote a constant and a sequence of (non
random) numbers going to 0 as n →∞, all these changing from line to line. They may depend
on the characteristics of X and on the powers for which the forthcoming estimates are stated.
Moreover in the theorem to be proven the arguments u in Ĉ(u)n

t or Ĉ ′(u)n
t are u = θun → 0,

where θ varies in a fixed set Θ ⊂ (0,∞): hence in the sequel we implicitly assume u ∈ (0, 1].
Upon replacing g(x) by g(1) + 1 when x > 1 we get (2.4) for all x ∈ (0,∞). We loose the

fact that g is decreasing, but it is still decreasing on (0, 1], hence xr−1g(x) as well because
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r ≤ 1, and the property
∫ 1
0 xr−1g(x) dx < ∞ implies xrg(x) → 0 as x → 0. Summarizing and

recalling β ≥ 1, we have

(6.4) x > 0 ⇒ ∣∣F±(x)− 1
xβ

∣∣ ≤ g(x), F±(x) ≤ K

xβ
, and lim

x→0
xrg(x) = 0.

Below we unify the proofs of the claims (a) and (b). This is at the expense of somewhat
cumbersome notation, but it saves a lot of space because the proofs are totally similar. To this
end we introduce a number κ which takes the value 1 if we deal with the non-symmetrized
version and the value 2 when we consider the symmetrized version. We set

(6.5)
L(1, u)n

j = L′(u)n
j , L(2, u)n

j = L(u)n
j , ĉ(1, u)n

j = ĉ′(u)n
j , ĉ(2, u)n

j = ĉ(u)n
j

Ĉ(κ, u)n
t = κvn

[t/κvn]−1∑
j=0

(
ĉ(κ, u)n

j − 2
κu2kn

(sinh(κu2ĉ(κ, u)n
j /2))2

)

(so Ĉ(1, u)n
t = Ĉ ′(u)n

t and Ĉ(2, u)n
t = Ĉ(u)n

t ), and also (recall that when κ = 1 we suppose
β > 1, so the quantities below are well defined)

(6.6)
A(1, u)n

t = A′(u)n
t , A(2, u)n

t = A(u)n
t

Z(κ, u)n
t = 1√

∆n

(
Ĉ(κ, u)n

t − Ct −A(κ, u)n
t

)
.

Next, recalling the notation (3.5), we set

(6.7)
U(κ, u)t = e−κu2ct/2, U(κ, u)n

t = e−κ∆
1−β/2
n uβ at

Û(1, u)n
t = cos(∆1−β/2

n uβa′t), Û(2, u)n
t = 1

U(κ, u)n
t = U(κ, u)t U(κ, u)n

t Û(κ, u)n
t ).

Since 0 ≤ ct ≤ K and 0 ≤ at ≤ K and |a′t| ≤ K, and assuming n large enough to have
∆1−β

n uβ|a′t| ≤ 1
2 for all t and u ∈ (0, 1], we see that, for some χ ∈ (0, 1),

(6.8) χ ≤ U(κ, u)t ≤ 1, χ ≤ U(κ, u)n
t ≤ 1, χ ≤ Û(κ, u)n

t ≤ 1, χ ≤ U(κ, u)n
t ≤ 1.

Moreover, Itô’s formula yields

(6.9)

U(κ, u)t = U(κ, u)0 +
∫ t
0 b

U(κ,u)
s ds +

∫ t
0 H

U(κ,u)
s dWs +

∫ t
0 H

′U(κ,u)
s dW ′

s

+
∫ t
0

∫
R δU(κ,u)(s, z) (p= − q= )(ds, dz)

where





b
U(κ,u)
t = −κu2

2 U(κ, u)t bc
t + κ2u4

8 U(κ, u)t
(
(Hc

t )
2 + (H ′c

t )2
)

+U(κ, u)t
∫
R

(
e−κu2δc(t,z)/2 − 1 + κu2

2 δc(t, z)
)
dz

H
U(κ,u)
t = −κu2

2 U(κ, u)t Hc
t , H

′U(κ,u)
t = −κu2

2 U(κ, u)t H ′c
t

δU(κ,u)(t, z) = U(κ, u)t−
(
e−κu2δc(t,z)/2 − 1

)
.

Therefore we have for all u ∈ (0, 1]:

(6.10) |bU(κ,u)
t |+ |HU(κ,u)

t |+ |H ′U(κ,u)
t | ≤ Ku2, |δU(κ,u)(t, z)|2 ≤ Ku2J(z).

Since
∣∣|x|β−|y|β−β {y}β−1(x−y)

∣∣ ≤ K|x−y|β for x, y ∈ R when 1 ≤ β < 2, and a similar
estimate for {x}β − {y}β, and since |γ±t | ≤ K, the last part of (6.3) implies for s ∈ [0, 1] and
q ≥ 2:

(6.11)
|E(at+s − at | Ft)|+ |E(a′t+s − a′t | Ft)| ≤ Ksβ/2

E(|at+s − at|q + |a′t+s − a′t|q | Ft) ≤ Ks1∧(qβ/2).
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Using |ex−ey−ey(x−y)| ≤ (x−y)2 for x, y ≤ 0 and a similar estimate for the cosine function
when κ = 1, we deduce for all u > 0 and q ≥ 2:
(6.12)
|E(U(κ, u)t+s − U(κ, u)t | Ft)| ≤ Ku2s, E(|U(κ, u)t+s − U(κ, u)t|q | Ft)| ≤ Ku2qs

|E(U(κ, u)n
t+s − U(κ, u)n

t | Ft)|+ |E(Û(κ, u)n
t+s − Û(κ, u)n

t | Ft)| ≤ K∆1−β/2
n uβsβ/2

E(|U(κ, u)n
t+s − U(κ, u)n

t |q + |Û(κ, u)n
t+s − Û(κ, u)n

t |q | Ft) ≤ K∆q(1−β/2)
n uqβs.

In turn, since xy − zw = (x− z)(y − w) + z(y − w) + w(x− z), this yields
(6.13)
|E(U(κ, u)n

t+s − U(κ, u)n
t | Ft)| ≤ K

(
u2s + ∆1−β/2

n uβsβ/2
)

E(|U(κ, u)n
t+s − U(κ, u)n

t |q | Ft) ≤ K s
(
u2q + ∆q(1−β/2)

n uqβ
)

E(|U(κ, u)n
t+s − U(κ, u)n

t − (U(κ, u)t+s − U(κ, u)t)U(κ, u)n
t Û(κ, u)n

t |q | Ft) ≤ K s∆q(1−β/2)
n uqβ.

We end this preliminary subsection with another set of notation, with again κ = 1, 2.

ρ′(1)n
i = 1√

∆n
σ(i−1)∆n

∆n
i W, ρ′(2)n

i = 1√
∆n

σ(i−1)∆n
(∆n

i W −∆n
i+1W )

ρ′′(1)n
i = 1√

∆n
(γ+

(i−1)∆n
∆n

i Y + + γ−(i−1)∆n
∆n

i Y −)
ρ′′(2)n

i = 1√
∆n

(γ+
(i−1)∆n

(∆n
i Y + −∆n

i+1Y
+) + γ−(i−1)∆n

(∆n
i Y − −∆n

i+1Y
−))

ρ(κ)n
i = ρ′(κ)n

i + ρ′′(κ)n
i , ρ(1)n

i = 1√
∆n

∆n
i X, ρ(2)n

i = 1√
∆n

(∆n
i X −∆n

i+1X).

(6.14)
ξ(κ, u)w,n

j =





1
kn

∑kn−1
l=0

(
cos(uρ(κ)n

1+κjkn+κl)− U(κ, u)n
κ(jkn+l)∆n

)
if w = 1

1
kn

∑kn−1
l=0

(
cos(uρ(κ)n

1+κjkn+κl)− cos(uρ(κ)n
1+κjkn+κl)

)
if w = 2

1
kn

∑kn−1
l=0 (U(κ, u)n

κ(jkn+l)∆n
− U(κ, u)n

κjvn
) if w = 3.

ξ(κ, u)n
j = 1

U(κ,u)n
κjvn

∑3
w=1 ξ(κ, u)w,n

j

Ω(κ, u)n,t =
{

supj=0,··· ,[t/κvn]−1 |ξ(κ, u)n
j | ≤ 1

2

}
.

Note that, by virtue of (6.8),

(6.15) |ξ(κ, u)w,n
j | ≤ K, |ξ(κ, u)n

j | ≤ K.

Finally, let us mention that below we assume (3.9). This implies the following properties,
which will be used many times below for various values of the reals wj below:

(6.16)
kw1

n vw2
n ∆w3

n

uw4
n

→ 0 if

{
either w3 > w1−w2

2
or w4 < 4(w1 + w2), w3 ≥ w1−w2

2 .

6.2. The scheme of the proof. We have the sequence un and β ∈ [1, 2) with further β > 1
when we deal with (b) of Theorem 1, hence when κ = 1. Below, θ always belongs to a finite
set Θ ⊂ (0,∞) which, without loss of generality, contains 1. We set

Ω(κ)n,t = ∩θ∈Θ Ω(κ, θun)n,t, an
t = ∆1−β/2

n at, a′nt =

{
∆1−β/2

n a′t if β > 1
0 if β = 1

fκ,u(x) =
(
sinh(κu2x/2)

)2
, h1,u(x, x′) = 2

u2

(
uβx− log

(
cos(uβx′)

))
, h2,u(x, x′) = 2uβ−2x.
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Because ct, at, a
′
t are bounded, we have the estimates (with f ′ and f ′′ the first two derivatives

of f):

(6.17)
fκ,u(ct) + |f ′κ,u(ct)|+ |f ′′κ,u(ct)| ≤ Ku4

|u2x| ≤ K ⇒ |u2f ′κ,u(x)|+ |f ′′κ,u(x)| ≤ Ku4

∆n ≤ Ku2 ⇒ |hκ,u(an
t , a′nt )| ≤ Kuβ−2∆1−β/2

n ≤ K.

and also

(6.18) − 2
κu2

logU(κ, u)n
t = ct + hκ,u(an

t , a′nt ), A(κ, u)n
t =

∫ t

0
hκ,u(an

s , a′ns ) ds.

1) The key step of the proof is as follows. By construction we have L(κ, u)n
j = U(κ, u)n

jvn
(1+

ξ(κ, u)n
j ). Moreover, we have U(κ, θun)n

t ≥ χ > 0 by (6.8) and there is a non random integer
n0 such that kn ≥ 4/χ2 for n ≥ n0, implying L(κ, θun)n

j ≥ 1/
√

kn for all j ≤ [t/vn] − 1 such
that 1 + ξ(κ, θun)n

j ≥ 1
2 . Hence we deduce from (6.18) that

(6.19)
n ≥ n0, ω ∈ Ω(κ)n,t ⇒

ĉ(κ, θun)n
j = cκjvn + hκ,θun(an

κjvn
, a′nκjvn

)− 2
κ(θun)2

log(1 + ξ(κ, θun)n
j ).

Another key point is as such: on the set Ωn,t and again for n ≥ n0, we can expand log(1+x)
around 0 and fκ,u around cκj∆n to obtain

∣∣ĉ(κ, θun)n
j − cκjvn − hκ,θun(an

κjvn
, a′nκjvn

) + 2
κ(θun)2

ξ(κ, θun)n
j − 1

κ(θun)2
|ξ(κ, θun)n

j |2
∣∣

≤ K
u2

n
|ξ(κ, θun)n

j |3∣∣fκ,θun(ĉ(κ, θun)n
j )− fθun(cκjvn) + 2

κ(θun)2
f ′κ,θun

(cκjvn)ξ(κ, θun)n
j

∣∣
≤ K(uβ

n∆1−β/2
n + |ξ(κ, θun)n

j |2),
where for the last estimate we have used (6.17) and the fact that |ĉ(κ, θun)n

j | ≤ K/u2
n (by the

first estimate, plus again (6.17) and (6.15)), hence |u2
nf ′κ,θun

(x)|+ |f ′′κ,θun
(x)| ≤ Ku4

n for all x
between ĉ(κ, θun)n

j and cκjvn . In turn, this and (6.16) yield on the set Ω(κ)n,t and for n ≥ n0

again:

(6.20)

∣∣∣
(
ĉ(κ, θun)n

j − cκjvn − hκ,θun(an
κjvn

, a′nκjvn
)− 2

κkn (θun)2
fκ,θun(ĉ(κ, θun)n

j )
)

− 2
κ(θun)2

(
2

κkn(θun)2
f ′κ,θun

(cκjvn)− 1
)
ξ(κ, θun)n

j

− 1
κ(θun)2

(|ξ(κ, θun)n
j |2 − 2

kn
fκ,θun(cκjvn)

)∣∣∣
≤ K

( |ξ(κ,θun)n
j |2

knu2
n

+
|ξ(κ,θun)n

j |3
u2

n
+ ∆

1−β/2
n

knu2−β
n

)
.

2) Recalling (6.6) and (6.18), we can write

(6.21) Z(κ, θun)n = V κ,n,θ + V ′κ,n,θ + V ′′κ,n,θ, where

V κ,n,θ
t = − 1√

∆n

∫ t
κvn([t/κvn]−1)

(
cs + hκ,θun(an

s , a′ns )
)
ds

V ′κ,n,θ
t = −

[t/κvn]−1∑
j=0

1√
∆n

∫ κ(j+1)vn

κjvn

(
cs − cκjvn +

(
hκ,θun(an

s , a′ns )− hκ,θun(an
κjvn

, a′nκ,jvn
)
))

ds

V ′′κ,n,θ
t =

[t/κvn]−1∑
j=0

κvn√
∆n

(
ĉ(κ, θun)n

j − cκjvnhκ,θun(an
κjvn

, a′nκjvn
)− 2

κkn(θun)2
fκ,θun(ĉ(κ, θun)n

j )
)
.
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Let us also introduce the following processes:

V κ,n,θ
t =

[t/κvn]−1∑
j=0

2vn

(θun)2
√

∆n

(
2

κkn(θun)2
f ′κ,θun

(cκjvn)− 1
)
ξ(κ, θun)n

j

V ′κ,n,θ
t =

[t/κvn]−1∑
j=0

vn

(θun)2
√

∆n

(|ξ(κ, θun)n
j |2 − 2

kn
fκ,θun(cκjvn)

)

Rκ,n,θ
t =

[t/κvn]−1∑
j=0

vn√
∆n

( |ξ(κ,θun)n
j |2

knu2
n

+
|ξ(κ,θun)n

j |3
u2

n
+ ∆

1−β/2
n

knu2−β
n

)
.

By virtue of (6.20) we then obtain

∣∣ Z(κ, θun)n,l
s − V κ,n,θ

s − V ′κ,n,θ
s − V κ,n,θ

s − V ′κ,n,θ
s

∣∣ ≤ KRκ,n,θ
t on Ω(κ)n,t, for all s ≤ t.

Therefore, Theorem 1 follows from the next four lemmas, where Z and Z are as in (3.7):

Lemma 7. We have P((Ω(κ)n,t)c) → 0.

Lemma 8. We have 1
u2

n
V κ,n,θ u.c.p.=⇒ 0 and 1

u2
n

V ′κ,n,θ u.c.p.=⇒ 0.

Lemma 9. We have 1
u2

n
Rκ,n,θ

t
u.c.p.=⇒ 0 and 1

u2
n

V ′κ,n,θ u.c.p.=⇒ 0.

Lemma 10. The processes
(
V κ,n,1, ( 1

u2
n

(V κ,n,θ −V κ,n,1))θ∈Θ

)
converge stably in law to the

limit
(
κ1/2Z, (κ3/2(θ2 − 1)Z)θ∈Θ

)
, provided β > 1 when κ = 1.

6.3. Proofs of Lemmas 7–10. We begin with Lemma 8, which is simple to prove:

Proof of Lemma 8. By the boundedness of ct and the property ∆n ≤ Ku2
n, we deduce

from (6.17) that |V κ,n,θ
t | ≤ K vn√

∆n
, which is o(u2

n) by (3.9), hence the first claim. Next, we

have h2,θun(an
s , a′ns )− h2,θun(aw, a′w) = 2∆

1−β/2
n

(θun)2−β (as − aw) and also, as soon as (θun)β|a′nw | ≤ 1
2

(hence for all n large enough),
∣∣∣h1,θun(an

s , a′ns )− h1,θun(aw, a′w)

− 2∆
1−β/2
n

(θun)2−β

(
as − aw − (a′s − a′w) tan(∆1−β/2

n (θlun)βa′w)
)∣∣∣ ≤ K∆2−β

n u2β−2
n |a′s − a′w|2.

Hence (6.3) for V = c and (6.11) imply that the jth summand ζn
j in the definition of V ′κ,n,θ

t

satisfies in all cases

|E(ζn
j | Fκjvn)| ≤ K√

∆n

(
v2
n + v

1+β/2
n ∆1−β/2

n uβ−2
n

)
= o(vn u2

n)

E((ζn
j )2 | Fκjvn) ≤ Kv3

n
∆n

(
1 + ∆2−β

n u2β−4
n

)
= o(vnu4

n),

where the last two estimates follow from (6.16). Then a classical argument yields the second
claim.

The other lemmas need quite many preliminary results. Below, to ease notation we simply
write un instead of θun.
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Lemma 11. Recalling (6.14), we have for all q ≥ 2:

(6.22)
∣∣E(cos(unρ(κ)n

i )− cos(unρ(κ)n
i ) | F(i−1)∆n

)
∣∣ ≤ u4

n

√
∆n φn

E(| cos(unρ(κ)n
i )− cos(unρ(κ)n

i )|q | F(i−1)∆n
) ≤ u4

n

√
∆n φn.

Proof. 1) We begin the proof with the case κ = 1. Letting Xt =
∫ t
0

∫
R δ(s, z) p= (ds, dz), we

have unρ(1)n
i =

∑4
k=1 θ(k)n

i , where

θ(1)n
i = unρ(1)n

i , θ(2)n
i = un√

∆n

∫ i∆n

(i−1)∆n
(σs − σ(i−1)∆n

) dWs + un

√
∆n b(i−1)∆n

θ(3)n
i = un√

∆n

∫ i∆n

(i−1)∆n
(bs − b(i−1)∆n

) ds

θ(4)n
i = un√

∆n

(
∆n

i X +
∫ i∆n

(i−1)∆n
(γ+

s − γ+
(i−1)∆n

) dY +
s +

∫ i∆n

(i−1)∆n
(γ−s − γ−(i−1)∆n

) dY −
s

)
.

We also write θ(k)n
i =

∑k
m=1 θ(m)n

i , so

(6.23) cos(unρ(1)n
i ) = cos(θ(1)n

i ), cos(unρ(1)n
i ) = cos(θ(4)n

i ).

2) In this step we prove the following estimates, for any w ≥ 2 and ε > 0:

(6.24)
E(|θ(k)n

i |w | F(i−1)∆n
) ≤





Kuw
n ∆1−w/2

n if k = 1
Kuw

n ∆n if k = 2
Kuw

n ∆1+w/2
n if k = 3,

E(|θ(4)n
i | ∧ 1 | F(i−1)∆n

) ≤ u4
n

√
∆n φn

E
(
(|unρ′′(κ)n

i | ∧ 1)2 | F(i−1)∆n

) ≤ K∆1−ε−β/2
n .

We classically have E(|∆n
i W |w | F(i−1)∆n

) ≤ K∆w/2
n , whereas E(|∆n

i Y ±|w | F(i−1)∆n
) ≤ K∆n

by Lemma 2.1.5 of [8] (because Y ± has bounded jumps), yielding Case k = 1. Cases k = 2, 3
follow from (6.3).

For Case k = 4 it is enough to prove the result for each of the three summands in the
definition of θ(4)n

i . For the first summand ∆n
i X, we observe that |un∆n

i X/
√

∆n | ∧ 1 ≤
K(|∆n

i X/
√

∆n| ∧ 1). Then we apply Corollary 2.1.9-(c) of [8] with q = 1
2 and s = ∆n and r

as in (A) and (B) and p = 1, to obtain

(6.25) E
( |un∆n

i X|√
∆n

∧
1 | F(i−1)∆n

)
≤ ∆1−r/2

n φn.

The other two summands are treated analogously, and we consider only one of them, say
αn

i =
∫ i∆n

(i−1)∆n
(γ+

s − γ+
(i−1)∆n

) dY +
s . We observe that the jump measure of Y +, say p=

′, is
Poisson with compensator q=

′(dt, dz) = dt ⊗ F+(dz), and αn
i = ∆n

i (δ ∗ (p= ′ − q=
′)) if we take

δ(t, z) = (γ+
t− − γ+

(i−1)∆n
)z 1{t>(i−1)∆n}. The notation (2.1.35) of [8] for δ ∗ (p= ′ − q=

′) becomes

δ̂(p, a)(i−1)∆n,i∆n
= 1

∆n

∫ i∆n

(i−1)∆n
|γ+

s − γ+
(i−1)∆n

|p ds
∫ a/|γ+

s −γ+
(i−1)∆n

|
0 zp F+(dz)

δ̂′(p)(i−1)∆n,i∆n
= δ̂(p, 1)(i−1)∆n,j∆n

+ 1
∆n

∫ i∆n

(i−1)∆n
|γ+

s − γ+
(i−1)∆n

| ds
∫∞
1/|γ+

s −γ+
(i−1)∆n

| z F+(dz)

δ̂′′(p)(i−1)∆n,i∆n
= δ̂(p, 1)(i−1)∆n,j∆n

+ 1
∆n

∫ i∆n

(i−1)∆n
F+(1/|γ+

s − γ+
(i−1)∆n

|) ds,
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and we observe that, since γ+ is bounded and F+ is supported by [0, A] for some finite A,
necessarily δ̂′(p)(i−1)∆n,i∆n

≤ Kδ̂′′(p)(i−1)∆n,i∆n
. (6.4) yields

∫ x
0 zp F+(dz) ≤ Kxp−β when

p > β, hence

(6.26)
δ̂(p, a)(i−1)∆n,i∆n

≤ Kap−β 1
∆n

∫ i∆n

(i−1)∆n
|γ+

s − γ+
(i−1)∆n

|β ds

δ̂′(p)(i−1)∆n,i∆n
≤ Kδ̂′′(p)(i−1)∆n,i∆n

≤ K
∆n

∫ i∆n

(i−1)∆n
|γ+

s − γ+
(i−1)∆n

|β ds.

Since 1 ≤ β < 2 we then use Lemma 2.1.6 of [8] with q = 1
2 and r = p ∈ (β, 2] and s = ∆n.

Since E(|γ+
(i−1)∆n+s − γ+

(i−1)∆n
|β | F(i−1)∆n

) ≤ Ksβ/2 by (6.3), we obtain for p > β:

(6.27) E
(( |un∆n

i (δ ∗ (p= ′ − q=
′))|√

∆n

∧
1
)p
| F(i−1)∆n

)
≤ K∆1−(p−β)/4

n .

We then apply Hölder’s inequality to get

E
( |unαn

i |√
∆n

∧
1 | F(i−1)∆n

)
≤ K∆1/p−1/4+β/4p

n .

Under (6.16), both this and (6.25) are smaller than u4
n

√
∆n φn, upon choosing p close enough

to β above. Hence (6.24) holds for k = 4.
Finally the last estimate in (6.24) is obtained exactly as above, upon taking γ+

(i−1)∆n
instead

of γ+
t− − γ+

(i−1)∆n
, so the bounds in (6.26) become Kap−β and K, and the one in (6.27) is

K∆1−(p+β)/4
n . We then apply the latter with p close enough to β, and the result follows.

3) Since | cos(x+y)−cos(x)| ≤ 1∧|y|∧(|xy|+y2) and | cos(x+y)−cos(x)−y sin(x)| ≤ Ky2,
we deduce from (6.24) and Cauchy-Schwarz inequality that

w ≥ 1 ⇒ E
(| cos(θ(4)n

i )− cos(θ(3)n
i )|w | F(i−1)∆n

) ≤ u4
n

√
∆n φn

E
(| cos(θ(3)n

i )− cos(θ(2)n
i )|2 | F(i−1)∆n

)
+ E

(| cos(θ(2)n
i )− cos(θ(1)n

i )|2 | F(i−1)∆n

) ≤ Ku2
n∆n

E
(| cos(θ(3)n

i )− cos(θ(2)n
i )| | F(i−1)∆n

) ≤ Ku2
n∆n

E
(| cos(θ(2)n

i )− cos(θ(1)n
i )− θ(2)n

i sin(θ(1)n
i )| | F(i−1)∆n

) ≤ Ku2
n∆n.

This with w = 2 and (6.23) and
√

∆n = o(u2
n) yield the second estimate (6.22) for q = 2, hence

for all q ≥ 2 because | cosx| ≤ 1, and also (with w = 1 above) that, for the first estimate, it
only remains to prove that

∣∣E(
θ(2)n

i sin(θ(1)n
i ) | F(i−1)∆n

)∣∣ ≤ u4
n

√
∆n φn.

Now, we have | sin(θ(1)n
i )− sin(unρ′(1)n

i )| ≤ K(|unρ′′(1)n
i | ∧ 1) and thus

E
(∣∣ θ(2)n

i (sin(θ(1)n
i )− sin

(
unρ′(1)n

i

)∣∣ | F(i−1)∆n

) ≤ Kun∆1−ε/2−β/4
n = u4

n

√
∆n φn

by Cauchy-Schwarz inequality and (6.24), and where the last equality comes from (6.16), upon
choosing ε < 2−β

4 . Hence, it remains to prove that
∣∣E(

θ(2)n
i sin

(
unρ′(1)n

i

) | F(i−1)∆n

)∣∣ ≤ u4
n

√
∆n φn.

4) Recalling (6.2), we set

Vt =
∫ t

0
H ′σ

s dW ′
s +

∫ t

0

∫

E
δσ(s, z) (p= − q= )(ds, dz).
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We have the decomposition θ(2)n
i = −∑5

j=1 µ(j)n
i , where

µ(1)n
i = un

√
∆n b(i−1)∆n

µ(2)n
i = un√

∆n

∫ i∆n

(i−1)∆n

( ∫ s
(i−1)∆n

bσ
t dt

)
dWs

µ(3)n
i = un√

∆n
Hσ

(i−1)∆n

∫ i∆n

(i−1)∆n
(Ws −W(i−1)∆n

) dWs

µ(4)n
i = un√

∆n

∫ i∆n

(i−1)∆n

( ∫ s
(i−1)∆n

(Hσ
t −Hσ

(i−1)∆n
) dWt

)
dWs

µ(5)n
i = un√

∆n

∫ i∆n

(i−1)∆n
(Vs − V(i−1)∆n

) dWs,

and it thus suffices to prove that, for j = 1, 2, 3, 4, 5:

(6.28)
∣∣E(

µ(j)n
i sin

(
unρ′(1)n

i

) | Fi−1∆n

)∣∣ ≤ Ku4
n

√
∆n φn.

First, E
(
µ(j)n

i sin
(
unρ′(1)n

i

) | F(i−1)∆n

)
= 0 for j = 1, 3 follows from the fact that in these

cases the variable whose conditional expectation is taken is a function of (ω, (W(i−1)∆n+t −
W(i−1)∆n

)t≥0) which is F(i−1)∆n
-measurable in ω and odd in the second argument. Second,

we have E((µ(j)n
i )2 | F(i−1)∆n

) ≤ Ku2
n∆2

n for j = 2, 4 (use (6.3)), implying (6.28) for j = 2, 4
by Cauchy-Schwarz inequality and (6.16).

For analyzing the case j = 5 we use the representation theorem for martingales of the
Brownian filtration. This implies that the variable sin(unρ′(1)n

i ), whose F(i−1)∆n
-conditional

expectation vanishes, has the form
∫ (i+1)∆n

i∆n
Ln

s dWs for some process Ln, adapted to the
filtration (FW

t )t≥0 generated by the process W , hence

E
(
µ(5)n

i sin(unρ′(1)n
i ) | F(i−1)∆n

)
=

un√
∆n

∫ i∆n

(i−1)∆n

E((Vs − V(i−1)∆n
) Ln

s | F(i−1)∆n
) ds.

Since further the martingale V is orthogonal to W , and by using once more the repre-
sentation theorem (so Ln

s = E(Ln
s | Fn

i−1) +
∫ s
(i−1)∆n

L′nt dWt for s ≥ i∆n), we deduce
E((Vs − V(i−1)∆n

)Ln
s | F(i−1)∆n

) = 0, hence E
(
µ(5)n

i sin(unρ′ni ) | F(i−1)∆n

)
= 0 and (6.28)

holds for j = 5. This ends the proof for the case κ = 1.

5) When κ = 2, we do as above, with a few changes: First unρ(2)n
i =

∑4
k=1 θ(k)n

i , where

θ(1)n
i = unρ(2)n

i

θ(2)n
i = un√

∆n

( ∫ i∆n

(i−1)∆n
(σs − σ(i−1)∆n

) dWs −
∫ (i+1)∆n

i∆n
(σs − σ(i−1)∆n

) dWs

)

θ(3)n
i = un√

∆n

( ∫ i∆n

(i−1)∆n
(bs − bs+∆n) ds− ∫ (i+1)∆n

i∆n
(bs − bs+∆n) ds

)

θ(4)n
i = un√

∆n

(
∆n

i X −∆n
i+1X +

∫ i∆n

(i−1)∆n
(γ+

s − γ+
(i−1)∆n

) dY +
s − ∫ (i+1)∆n

i∆n
(γ+

s − γ+
(i−1)∆n

) dY +
s

+
∫ i∆n

(i−1)∆n
(γ−s − γ−(i−1)∆n

) dY −
s − ∫ (i+1)∆n

i∆n
(γ−s − γ−(i−1)∆n

) dY −
s

)
.

The estimates (6.24) remain trivially valid, as well as Step 3. In Step 4 we use the decompo-
sition θ(2)n

i = −∑5
j=2 µ(j)n

i , where

µ(2)n
i = un√

∆n

( ∫ i∆n

(i−1)∆n

( ∫ s
(i−1)∆n

bσ
t dt

)
dWs −

∫ (i+1)∆n

i∆n

( ∫ s
(i−1)∆n

bσ
t dt

)
dWs

)

µ(3)n
i = un√

∆n
Hσ

(i−1)∆n

( ∫ i∆n

(i−1)∆n
(Ws −W(i−1)∆n

) dWs −
∫ (i+1)∆n

i∆n
(Ws −W(i−1)∆n

) dWs

)

µ(4)n
i = un√

∆n

( ∫ i∆n

(i−1)∆n

( ∫ s
(i−1)∆n

(Hσ
t −Hσ

(i−1)∆n
) dWt

)
dWs

− ∫ (i+1)∆n

(i∆n

( ∫ s
(i−1)∆n

(Hσ
t −Hσ

(i−1)∆n
) dWt

)
dWs

)

µ(5)n
i = un√

∆n

( ∫ i∆n

(i−1)∆n
(Vs − V(i−1)∆n

) dWs −
∫ (i+1)∆n

i∆n
(Vs − V(i−1)∆n

) dWs

)
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(the term µ(1)n
i no longer shows up). The rest of proof carries over without modification.

Lemma 12. We have for all q ≥ 2, and if u′n ³ un:

(6.29)
∣∣E(cos(unρ(κ)n

i ) | F(i−1)∆n
)− U(κ, un)n

(i−1)∆n

∣∣ ≤ φn u4
n

√
∆n.

(6.30)

∣∣∣E(cos(unρ(κ)n
i ) cos(u′nρ(κ)n

i ) | F(i−1)∆n
))

−1
2 (U(κ, un + u′n)n

(i−1)∆n
+ U(κ, |un − u′n|)n

(i−1)∆n
)
∣∣∣ ≤ φnu4

n

√
∆n

(6.31) E(| cos(unρ(κ)n
i )− U(κ, un)n

(i−1)∆n
|q | F(i−1)∆n

)) ≤ Ku4
n.

Proof. 1) The variables ∆n
i W/

√
∆n, ∆n

i Y +/
√

∆n and ∆n
i Y −/

√
∆n are independent one

from another and from F(i−1)∆n
, with characteristic functions exp(−u2/2) and exp(−G±

n (u)−
iH±

n (u)), where

G±
n (y) = ∆n

∫ 1

0

(
1− cos

xy√
∆n

)
F±(dx), H±

n (y) = ∆n

∫ 1

0

( xy√
∆n

− sin
xy√
∆n

)
F±(dx).

Analogously, the characteristic functions of (∆n
i W−∆n

i+1W )/
√

∆n and (∆n
i Y ±−∆n

i+1Y
±)/

√
∆n

are exp(−u2) and exp(−2G±
n (u)). Therefore by the definition of ρ(κ)n

i , and since σ(i−1)∆n
and

γ±(i−1)∆n
are F(i−1)∆n

-measurable, we have

(6.32)
E(cos(unρ(1)n

i ) | F(i−1)∆n
)) = U(1, un)(i−1)∆n

e
−G+

n (unγ+
i−1)∆n

)−G−n (unγ−
i−1)∆n

)

× cos
(
H+

n (unγ+
i−1)∆n

) + H−
n (unγ−i−1)∆n

)
)

E(cos(unρ(2)n
i ) | F(i−1)∆n

)) = U(2, un)(i−1)∆n
e
−2G+

n (unγ+
i−1)∆n

)−2G−n (unγ−
i−1)∆n

)
.

2) In this step we analyze the behavior of G±
n (y) when y ∈ (0, A] for some A > 0. Let

ζn = ∆η
n for some η ∈ (0, 1

2), to be chosen later, so that ζn → 0 and ζ ′n = ζny/
√

∆n → ∞.
Using (6.4), we first see that

0 ≤
∫ 1

ζn

(
1− cos

xy√
∆n

)
F±(dx) ≤ 2F±(ζn) ≤ K

ζβ
n

.

Next, Fubini’s theorem and a change of variable yield

∫ ζn

0

(
1− cos

xy√
∆n

)
F±(dx) =

∫ ζ′n

0
F±

(z
√

∆n

y

)
sin(z) dz −

∫ ζ′n

0
F±(ζn) sin(z) dz,

and the absolute value of the last term above is again smaller than K/ζβ
n because

∣∣ ∫ x
0 sin z dz

∣∣ ≤
2 for all x. To evaluate the first term we use (6.4) again to get

∣∣∣
∫ ζ′n

0
F±

(z
√

∆n

y

)
sin(z) dz − yβ

∆β/2
n

χ(β)
∣∣∣ ≤

∣∣∣ yβ

∆β/2
n

∫ ∞

ζ′n

sin z

zβ
dz

∣∣∣ +
∫ ζ′n

0
g
(z
√

∆n

y

)
dz.
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We have
∫∞
x

sin z
zβ dz = cos x

xβ − β
∫∞
x

cos z
z1+β dz by integration by parts, yielding

∣∣ ∫∞
x

sin z
zβ dz

∣∣ ≤
2/xβ. We also have

∫ ζ′n

0
g
(z
√

∆n

y

)
dz =

y√
∆n

∫ ζn

0
g(z) dz ≤ y√

∆n
ζ1−r
n

∫ ζn

0

g(z)
z1−r

dz =
y√
∆n

ζ1−r
n φn

because ζn → 0. Putting all these together yields

∣∣ G±
n (y)−∆1−β/2

n yβχ(β)
∣∣ ≤ K∆n

ζβ
n

+
√

∆n y ζ1−r
n φn ≤ K∆1−ηβ

n + y∆1/2+η(1−r)
n φn

for all y > 0, and also (trivially) when y = 0. Now, we take η = 1
2(1−r+β) and use (6.16) to

deduce
∣∣G+

n (unγ+
(i−1)∆n

) + G−
n (unγ−(i−1)∆n

)−∆1−β/2
n uβ

n a(i−1)∆n

∣∣ ≤ u4
n

√
∆n φn.

Using once more |ex− ey| ≤ |x− y| ∧ 1 if x, y ≤ 0, and recalling the definition of U(u)n
t , we

deduce

(6.33)
∣∣ e−κ(G+

n (unγ+
i−1)∆n

)+G−n (unγ−
i−1)∆n

)) − U(κ, un)n
(i−1)∆n

∣∣ ≤ u4
n

√
∆n φn.

3) Next we analyze H±
n (y): this is for the case when κ = 1, hence β > 1. The following

estimates are easy consequences of (6.4):

0 < z ≤ 1 ⇒
∫ z

0
x3 F±(dx) ≤ Kz3−β,

∫ 1

z
xF±(dx) ≤ Kz1−β.

With ζn and ζ ′n as in the previous step, and we have

0 ≤
∫ 1

ζn

( xy√
∆n

− sin
xy√
∆n

)
F±(dx) ≤ y√

∆n
F±(ζn) ≤ Ky√

∆n ζβ
n

,

∫ ζn

0

( xy√
∆n

− sin
xy√
∆n

)
F±(dx) =

∫ ζ′n

0
F±

(z
√

∆n

y

)
(1− cos z) dz−

∫ ζ′n

0
F±(ζn) (1− cos z) dz,

and the absolute value of the last term above is smaller than Kyζ ′n/ζβ
n . We also have

∣∣∣
∫ ζ′n

0
F±

(z
√

∆n

y

)
(1− cos z) dz − yβ

∆β/2
n

χ′(β)
∣∣∣ ≤ yβ

∆β/2
n

∫ ∞

ζ′n

1− cos z

zβ
dz +

∫ ζ′n

0
g
(z
√

∆n

y

)
dz.

As seen before, the last term above is less than y√
∆n

ζ1−r
n φn, whereas

∫∞
x

1−cos z
zβ dz ≤ K/xβ−1.

Putting all these together, plus ζ ′n = yζn/
√

∆n, yields for y > 0:

∣∣H±
n (y)−∆1−β/2

n yβχ′(β)
∣∣ ≤ Ky

√
∆n

ζβ
n

≤ Ky∆1/2−βη
n .

The same holds with −|y|β and |y| instead of yβ and y when y < 0, and it trivially holds for
y = 0. Since | cosx− cos y| ≤ 2|x− y|(|x− y|+ |y|) for all x, y, we obtain
∣∣∣ cos

(
H+

n (unγ+
i−1)∆n

)+H−
n (unγ−i−1)∆n

)
)−Û(1, un)n

(i−1)∆n

∣∣∣ ≤ K
(
u2

n∆1−2βη
n +u1+β

n ∆3/2−β/2−βη
n

)
.
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In view of (6.16), and upon choosing η > 0 small enough, we deduce that

(6.34)
∣∣∣ cos

(
H+

n (unγ+
i−1)∆n

) + H−
n (unγ−i−1)∆n

)
)− Û(1, un)n

i−1)∆n

∣∣∣ ≤ u4
n

√
∆n φn.

4) At this stage, (6.29) is an easy consequence of (6.7), (6.32), (6.33) and (6.34). Since

cos(unρ(κ)n
i ) cos(u′nρ(κ)n

i ) =
1
2

(
cos((un + u′n)ρ(κ)n

i ) + cos(|un − u′n|ρ(κ)n
i )

)
,

(6.30) follows from (6.29).
Finally, since | cosx| ≤ 1 and |U(κ, u)n

t | ≤ 1, it is enough to prove (6.31) for q = 2. Since
(cosx)2 = 1

2 (1+cos(2x)), an application of (6.29) and (6.30) shows that the left side of (6.31)
is, up to a remainder term of size smaller than φnu4

n

√
∆n, equal to

1
2

(U(κ, 2un)n
(i−1)∆n

− 2(U(κ, un)n
(i−1)∆n

)2 + 1
)
.

An expansion near 0 of the function u 7→ U(κ, u)n in (6.7) yields that the above is smaller
than K(u4

n + ∆1−β/2
n uβ

n), which in turn is smaller than Ku4
n by (6.16). This yields (6.31).

Below, we use the simplifying notation

(6.35) V (κ, u, u′)n
t = U(κ, u + u′)n

t + U(κ, |u− u′|)n
t − 2U(κ, u)n

t U(κ, u′)n
t .

Lemma 13. For all q ≥ 2, and if u′n ³ un, we have

(6.36)

∣∣E(ξ(κ, un)1,n
j | Fκjvn)

∣∣ ≤ u4
n

√
∆n φn∣∣E(ξ(κ, un)1,n

j ξ(κ, u′n)1,n
j | Fκjvn)− 1

2kn
V (κ, un, u′n)n

κjvn

∣∣ ≤ φnu4
n

√
∆n

E(|ξ(κ, un)1,n
j |q | Fκjvn) ≤ Ku4

n/k
q/2
n

(6.37)
|E(ξ(κ, un)2,n

j | Fκjvn)| ≤ u4
n

√
∆n φn

E(|ξ(κ, un)2,n
j |q | Fκjvn) ≤ u4

n

√
∆n φn /k

q/2
n

(6.38)
|E(ξ(κ, un)3,n

j | Fκjvn)| ≤ u4
n

√
∆n φn

E(|ξ(κ, un)3,n
j |q | Fκjvn) ≤ Kvn

(
u2q

n + ∆q(1−β/2)
n uqβ

n

)
.

Proof. In the proof, and for simplicity, we denote by ζ(l, w)n the lth summand in the
definition of ξ(κ, un)w,n

j , for w = 1, 2, 3.
Upon expanding the product ξ(κ, un)1,n

j ξ(κ, u′n)1,n
j , (6.29) and (6.30) and successive condi-

tioning yield

∣∣∣E(ξ(κ, un)1,n
j ξ(κ, u′n)1,n

j | Fκjvn)− 1
2k2

n

kn−1∑

l=0

E(V (κ, un, u′n)n
κ(jkn+l)∆n

| Fκjvn)
∣∣∣ ≤ φn u4

n

√
∆n.

The first part of (6.16) and (6.13) also yield for l ≤ kn:

|E(V (κ, un, u′n)n
κ(jkn+l)∆n

−V (κ, un, u′n)n
κjvn

| Fκjvn)| ≤ K
(
u2

nvn+uβ
n∆1−β/2

n vβ/2
n

) ≤ φnu4
n

√
∆n,
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the last estimate coming from (6.16). We deduce the second part of (6.36). Next, (6.29) and
(6.31) yields |E(ζ(l, 1)n | Fn

jkn+l)| ≤ φnu4
n

√
∆n and E(|ζ(l, 1)n|q | Fn

jkn+l) ≤ Ku4
n, so we

have the first part of (6.36), and also the last part by the Burkholder-Gundy and Hölder
inequalities.

(6.37) is a simple consequence of (6.22), plus Burkholder-Gundy inequality again. Finally
(6.13) yields ∣∣E(ζ(l, 3)n | Fκjvn)

∣∣∣ ≤ K
(
u2

nvn + ∆1−β/2
n uβ

nv
β/2
n

)

E(|ζ(l, 3)n|q | Fκjvn) ≤ Kvn
(
u2q

n + ∆q(1−β/2)
n uqβ

n

)
.

Then (6.16) yields (6.38).

Lemma 14. For all q ≥ 2, and if u′n ³ un, we have

(6.39)

|E(ξ(κ, un)n
j | Fκjvn)| ≤ u4

n

√
∆n φn∣∣E(ξ(κ, un)n

j ξ(κ, u′n)n
j | Fκjvn)− 1

2kn

V (κ,un,u′n)n
κjvn

U(κ,un)n
κjvn

U(κ,u′n)n
κjvn

∣∣ ≤ u4
n

√
∆n φn

E(|ξ(κ, un)n
j |q | Fκjvn) ≤ K

( u4
n

k
q/2
n

+ u2q
n vn + ∆q(1−β/2)

n uqβ
n vn

)
.

Proof. In view of (6.8) and of the previous lemma, the first and last parts of (6.39) are
obvious. For the second part, by virtue of the second estimate in (6.36), it is enough to prove
that

|E(ξ(κ, un)z,n
j ξ(κ, u′n)w,n

j | Fκjvn)| ≤ u4
n

√
∆n φn.

for all z, w = 1, 2, 3 but z = w = 1. This property follows from Cauchy-Schwarz inequality
and all estimates in the previous lemma with q = 2, except when z = 1 and w = 3 or z = 3
and w = 1.

We will examine the case z = 1 and w = 3, the other one being analogous. We have

ξ(κ, u′n)3,n
j =

1
kn

kn−2∑

l=0

(kn − l − 1)
(U(κ, u′n)n

κ(jkn+1+l)∆n
− U(κ, u′n)n

κ(jkn+l)∆n

)
,

yielding

ξ(κ, un)1,n
j ξ(κ, u′n)3,n

j = 1
k2

n

∑kn−1
l=0

∑kn−2
l′=0 (kn − l′ − 1)αn

l,l′ , where
αn

l,l′ =
(
cos(unρ(κ)n

1+κjkn+κl)− U(κ, un)n
(κ(jkn+l′)∆n

)(U(κ, u′n)n
κ(jkn+1+l′)∆n

− U(κ, u′n)n
κ(jkn+l′)∆n

)

and it is thus enough to prove that an
l,l′ = E(αn

l,l′ | Fκjvn) satisfies

(6.40) |an
l,l′ | ≤

{
u4

n

√
∆n
kn

φn if l 6= l′

u4
n

√
∆n φn if l = l′.

If l < l′, and since |U(κ, un)n
t | ≤ 1, (6.13) with s = ∆n and the first part of (6.16) give us

|E(αn
l,l′ | Fκ(jkn+l′)∆n

)| ≤ K∆nuβ
n

∣∣ cos(unρ(κ)n
1+jkn+l)− U(κ, un)n

κ(jkn+l)∆n

∣∣.

Then (6.31) and the Cauchy-Schwarz inequality yield |an
l,l′ | ≤ K∆nu2+β

n , so (6.16) again
implies (6.40). If l > l′ (6.29) yields

|E(αn
l,l′ | Fκ(jkn+l)∆n

)| ≤ φnu4
n

√
∆n

∣∣U(κ, u′n)n
κ(jkn+1+l′)∆n

− U(κ, u′n)n
κ(jkn+l′)∆n

∣∣,
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and (6.13) with s = κ∆n and Cauchy-Schwarz inequality yield |an
l,l′ | ≤ u4

n∆nφn, hence (6.40).
For l = l′, upon using (6.8) and the last part of (6.13), plus (6.31) and the Cauchy-Schwarz

inequality and (6.16), we see that it is enough to prove (6.40) with αn
l,l replaced by

α′nl,l =
(
cos(unρ(κ)n

1+κjkn+κl)− U(κ, un)n
(κ(jkn+l)∆n

)
ζn
κ(jkn+l)

where ζn
i = U(κ, u′n)n

(i+κ)∆n
− U(κ, u′n)n

i∆n
.

The same type of argument, now based on the first part of (6.12) and (6.24), plus the property
| cos(unρ(κ)n

i )− cos(unρ′(κ)n
i )| ≤ |unρ′′(κ)n

i | ∧ 1, shows that we can even replace α′nl,l by

α′′nl,l = ψn
κ(jkn+l)ζ

n
κ(jkn+l), where ψn

i = cos(unρ′(κ)n
1+i)− U(κ, un)n

i∆n
.

Observe that ζn
i =

∑4
w=1 β(w)n

i , where

β(1)n
i =

∫ (i+κ)∆n

i∆n
b
U(κ,u′n)
s ds, β(2)n

i = H
U((κ,u′n)
i∆n

(W(i+κ)∆n
−Wi∆n)

β(3)n
i =

∫ (i+κ)∆n

i∆n
(HU(κ,u′n)

s −H
U(κ,u′n)
i∆n

) dWs

β(4)n
i =

∫ (i+κ)∆n

i∆n
H
′U(κ,u′n)
s dW ′

s +
∫ (i+κ)∆n

i∆n

∫
R δU(κ,u′n)(s, z) (p= − q= )(ds, dz).

By (6.10) we have |β(1)n
i | ≤ K∆nu′2n . Combining (6.3), (6.9) and (6.12), we easily check that

E(|β(3)n
i | | F(i−1)∆n

) ≤ Ku′2n ∆n, hence

w = 1, 3, 0 ≤ l ≤ kn − 1 ⇒ E(|ψn
i β(w)n

i | | Fn
i ) ≤ Ku4

n

√
∆n φn.

A parity argument (as in Step 4 of the proof of Lemma 11) shows that E(ψn
i β(2)n

i | | F(i−1)∆n
) =

0 for all i. Finally, with GW = σ(Ws : s ≥ 0), the independence between W and (W ′, p= )
implies that E(β(4)n

i | F(i−1)∆n
∨ GW ) = 0, whereas ψn

i is F(i−1)∆n
∨ GW -measurable,

hence E(ψn
i β(4)n

i | F(i−1)∆n
) = 0. All these partial results give us the needed estimate for

|E(αn
l,l | Fκ(jkn+l)∆n

)|, and the proof is complete.

Lemma 15. For any square-integrable martingale M and any random variables ζn
j such

that |ζn
j | ≤ K and each ζn

j is Fκjvn-measurable, and for all t > 0, we have

(6.41)
vn

u4
n

√
∆n

[t/κvn]−1∑

j=0

E
(
(Mκ(j+1)vn

−Mκjvn) ζn
j ξ(κ, un)n

j | Fκjvn

) P−→ 0.

Proof. It suffices to prove the result if we replace ξ(κ, un)n
j above by ξ(κ, un)w,n

j , for
w = 1, 2, 3, and in this case we denote by Rw,n

t the normalized sum in (6.41).
When w = 2, 3 we use the following argument: the properties of ζn

j and Cauchy-Schwarz
inequality yield

(6.42) E(|Rw,n
t |) ≤ Kvn

u4
n

√
∆n

( [t/κvn]−1∑

j=0

E(|ξ(κ, un)w,n
j |2)

[t/κvn]∑

j=0

E((Mκ(j+1)vn
−Mκjvn)2)

)1/2
,

and the last sum is equal to E((Mκvn([t/κvn]−1) −M0)2), which is bounded. Then it is enough

to show that v2
n

u8
n∆n

∑[t/κvn]−1
j=0 E(|ξ(κ, un)w,n

j |2) → 0, which follows from Lemma 13 and (6.16).
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When w = 1, we write ξ(κ, un)1,n
j = ψ′nj + ψ′′nj , where ψ′nj = 1

kn

∑kn−1
l=0 ηn

1+κ(jkn+l) and
ηn

i = cos(unρ(κ)n
i ) − E(cos(unρ(κ)n

i ) | F(i−1)∆n
), and we are left to prove that (6.41) holds

with ξ(κ, un)n
j replaced by ψ′nj and by ψ′′nj . In both cases we denote by R′1,n

t and R′′1,n
t the

corresponding normalized sums. For proving R′′1,n
t

P−→ 0 we proceed as above, that is, we
have (6.42) with ψ′′nj instead of ξ(κ, un)w,n

j , whereas |ψ′′nj | ≤ φnu4
n

√
∆n by (6.29), hence the

result holds.
For R′1,n

t , we observe that, by successive conditioning,

R′1,n
t = vn

u4
nkn

√
∆n

[t/κvn]−1∑
j=0

ζn
j

kn−1∑
l=0

E
(
ηn

1+κ(kn+l) | Fκjvn)

where ηn
i = Mn

i cos(unρ(κ)n
i ), Mn

i = M(i−1+κ)∆n
−M(i−1)∆n

.

As above,
∑[t/∆n]

i=1 E((Mn
i )2) ≤ K and | cos(unρ(κ)n

i ) − cos(unρ′(κ)n
i )| ≤ K(|unρ′′(κ)n

i | ∧ 1).
Hence if

R′1,n
t =

vn

u4
nkn

√
∆n

[t/κvn]−1∑

j=0

ζn
j

kn−1∑

l=0

E
(
η′n1+κ(kn+l) | Fκjvn), where η′ni = Mn

i cos(unρ′(κ)n
i ),

by (6.24) and Cauchy-Schwarz inequality and |ζn
j | ≤ K, we have for all ε > 0 arbitrarily small:

E(|R′1,n
t −R′1,n

t |) ≤ K
√

t vn∆−ε/2−β/4
n

u4
nkn

√
∆n

( [t/∆n]∑

i=1

E((Mn
i )2)

)1/2
≤ K

√
t∆1/2−ε/2−β/4

n

u4
n

→ 0

(use (6.16) again). Now, by classical arguments, it suffices to show that R′1,n
t

P−→ 0 when M is
orthogonal to W , or is equal to W itself. In the second case, we clearly have E(η′ni | Fn

i−1) = 0.
In the first case, we have the same by an application of Itô’s formula. So R′1,n

t = 0 in all cases,
and the proof is complete.

At this stage, we can prove Lemmas 7, 9 and 10.

Proof of Lemma 7. Using (6.39) with q > 2 and un → 0 and (6.16) and Markov in-
equality yields

P((Ω(κ, θun)n,t)c) ≤
[t/κvn]−1∑

j=0

P
(|ξ(κ, θun)n

j | >
1
2

) ≤ 2−q
[t/κvn]∑

j=0

E(|ξ(κ, θun)n
j |q) ≤ Ktφn,

hence the claim because Ω(κ)n,t is a finite union of sets Ω(κ, θun)n,t.

Proof of Lemma 9. The claim 1
u2

n
Rκ,n,θ

t
P−→ 0 readily follows from (6.16) and from the

last part of (6.39) with q = 2 and q = 3.
For the second claim, we set

ζn
j =

vn

u4
n

√
∆n

(
(ξ(κ, θun)n

j )2 − 2
kn

fκ,θun(cκjvn)
)
, ζ ′nj = E(ζn

j | Fκjvn).
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By a standard martingale argument, and since ζn
j is Fκ(j+1)vn

-measurable, it is enough to
show that

(6.43)
[t/κvn]−1∑

j=0

ζ ′nj
u.c.p.=⇒ 0,

[t/κvn]−1∑

j=0

E(|ζn
j |2) P−→ 0.

Recall that fκ,θu(x) ≤ Ku4 when |x| ≤ K, hence (6.39) yields

E(|ζn
j |2) ≤

Kv2
n

∆n

( 1
k2

nu4
n

+ vn + vn∆4−2β
n u4β−8

n

)
.

The right side above is easily seen to be o(vn) by (6.16), hence the second part of (6.43). For
the first part we use (6.39) again and also (6.35) and U(κ, 0)n

t = 1 to observe that it suffices
to prove that

(6.44)
vn

u4
nkn

√
∆n

[t/κvn]−1∑

i=0

(U(κ, 2θun)n
κjvn

+ 1− 2(U(κ, θun)n
κjvn

)2

2(U(κ, θun)n
κjvn

)2
− 2fκ,θun(cκjvn)

)
u.c.p.=⇒ 0.

Now we recall that |U(κ, θun)n
t − U(κ, θun)t| ≤ Kuβ

n∆1−β/2
n and 1/U(κ, θun)n

t ≤ K: since we
have ∆1−β/2

n uβ−4
n /kn

√
∆n → 0 by (6.16), we can thus substitute U(κ, θun)n in (6.44) with

U(κ, θun). But in this case, and by definition of fκ,u, each summand is identically 0, hence
(6.44) is proved.

Proof of Lemma 10. Set Θ′ = Θ\{1} and

ακ,n,θ
j =

2vn

(θun)2
√

∆n

( 2
κkn(θun)2

f ′κ,θun
(cκjvn)− 1

)

and

Ŷ κ,n,θ
t =

[t/κvn]−1∑

j=0

ζκ,n,θ
j , ζκ,n,θ

j =

{
ακ,n,1

j ξ(κ, un)n
j if θ = 1

1
u2

n

(
ακ,n,θ

j ξ(κ, θun)n
j − ακ,n,1

j ξ(κ, un)n
j

)
if θ ∈ Θ′

The claim of the lemma is then equivalent to saying that (Ŷ κ,n,θ)θ∈Θ converges stably in law
to

(
κ1/2Z, (κ1/3(θ2 − 1)Z)θ∈Θ′

)
.

We observe that the variable ζκ,n,θ
j is Fκ(j+1)vn

-measurable, whereas (6.39) and (6.16) and
Lemma 15 imply, for all t > 0 and all square-integrable martingale M :

[t/κvn]−1∑
j=0

E(ζκ,n,θ
j | Fκjvn) P−→ 0,

[t/κvn]−1∑
j=0

E((ζκ,n,θ
j )4 | Fjvn) P−→ 0

[t/κvn]−1∑
j=0

E(ζκ,n,θ
j (Mκ(j+1)vn

−Mκjvn) | Fκjvn) P−→ 0.

Hence Theorem 2.2.15 of [8] shows that it remains to prove the following convergences:
(6.45)

[t/κvn]−1∑

j=0

E(ζκ,n,θ
j ζκ,n,θ′

j | Fκjvn) P−→ Γκ,θ,θ′
t =





2κ
∫ t
0 c2

s ds if θ = θ′ = 1
0 if θ = 1 6= θ′
κ3

6 (θ2 − 1)(θ′2 − 1)
∫ t
0 c4

s ds if θ, θ′ ∈ Θ′.
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Recalling |f ′κ,θun
(ct)| ≤ Ku4

n, it is enough to show that Γκ,n,θ,θ′
t

P−→ Γκ,θ,θ′
t , where

Γκ,n,θ,θ′
t =





4v2
n

u4
n∆n

[t/κvn]−1∑
j=0

E((ξ(κ, un)j)2 | Fκjvn) if θ = θ′ = 1

4v2
n

u6
n∆n

[t/κvn]−1∑
j=0

E
(
ξ(κ, un)n

j

( ξ(κ,θ′un)n
j

θ′2 − ξ(κ, un)n
j

) | Fκjvn

)
if θ = 1 6= θ′

4v2
n

u8
n∆n

[t/κvn]−1∑
j=0

E
(( ξ(κ,θun)n

j

θ2 − ξ(κ, un)n
j

)

×( ξ(κ,θ′un)n
j

θ′2 − ξ(κ, un)n
j

) | Fκjvn

)
if θ, θ′ ∈ Θ′.

We then apply (6.39) again, plus vn = kn∆n and the fact that vn/u4
n

√
∆n → 0 by (3.9), and

conclude that it is enough to show Γ′κ,n,θ,θ′
t

P−→ Γκ,θ,θ′
t , where

Γ′κ,n,θ,θ′
t =





2vn
u4

n

[t/κvn]−1∑
j=0

V (κ,un,un)n
κjvn

(U(κ,un)n
κjvn

)2
if θ = θ′ = 1

2vn
u6

n

[t/κvn]−1∑
j=0

(
V (κ,un,θ′un)n

κjvn

θ′2 U(κ,un)n
κjvn

U(κ,θ′un)n
κjvn

− V (κ,un,un)n
κjvn

(U(κ,un)n
κjvn

)2

)
if θ = 1 6= θ′

2vn
u8

n

[t/κvn]−1∑
j=0

(
V (κ,θun,θ′un)n

κjvn

θ2θ′2 U(κ,un)n
κjvn

U(κ,θ′un)n
κjvn

+
V (κ,un,un)n

κjvn

(U(κ,un)n
κjvn

)2

− V (κ,un,θun)n
κjvn

θ2 U(κ,un)n
κjvn

U(κ,θ′un)n
κjvn

− V (κ,un,θ′un)n
κjvn

θ′2 U(κ,un)n
κjvn

U(κ,θ′un)n
κjvn

)
if θ, θ′ ∈ Θ′.

If we denote Γ′′κ,n,θ,θ′
t the same as above, with U(κ, u)n and V (κ, u, u′)n substituted with

U(κ, u) and U(κ, u+u′)+U(κ, |u−u′|)−2U(κ, u)U(κ, u′), and upon using (6.8) and |U(κ, u)n
t −

U(κ, u)t| ≤ Kuβ∆1−β/2
n and the same argument as in the proof of the previous lemma, we

see that it remains to prove Γ′′κ,n,θ,θ′
t

P−→ Γκ,θ,θ′
t . The form (6.7) of U(κ, u) allows us to check

that indeed

Γ′′κ,n,θ,θ′
t =





8vn
u4

n

[t/κvn]−1∑
j=0

fκ,un(cκjvn) if θ = θ′ = 1

8vn
u6

n

[t/κvn]−1∑
j=0

(f
κ,un

√
θ′ (cκjvn )

θ′2 − fκ,un(cκjvn)
)

if θ = 1 6= θ′

8vn
u8

n

[t/κvn]−1∑
j=0

(f
κ,un

√
θθ′ (cκjvn )

θ2θ′2 + fκ,un(cκjvn)

−f
κ,un

√
θ
(cκjvn )

θ2 − f
κ,un

√
θ′ (cκjvn)

θ′2

)
if θ, θ′ ∈ Θ′.

Observing that
∣∣fκ,y(x)− κ2

4 y4x2− κ4

48 y8x4
∣∣ ≤ Ky12 for all x, y within an arbitrary compact

set, we readily obtain Γ′′κ,n,θ,θ′
t

P−→ Γκ,θ,θ′
t from a Riemann sum approximation and un → 0.

This completes the proof.

6.4. Proof of Theorem 5. At this stage, Theorem 5 is the only result left to be proven.
In view of (3.5) and by expanding x 7→ log(cosx) near 0 and using the boundedness of the
process a′t, we get the following bound, uniform in u ∈ (0, 1]:

|A′(u)n
t −A(u)n

t | ≤ Ktu2β−2 ∆2−β
n ,



EFFICIENT ESTIMATION OF INTEGRATED VOLATILITY 29

implying
1

u2
n

√
∆n

(A′(θun)n −A(θun)n) u.c.p.=⇒ 0

if β < 3
2 because of (6.16). Recall also that A′(u)n = A(u)n when γ+ + γ− = 0 identically.

Henceforth, if we put

Z̃(κ, u)n
t =

1√
∆n

(
Ĉ(κ, u)n

t − Ct −A(u)n
t

)
,

we have the following consequence of Theorem 1: Under the assumptions of this theorem, then

(6.46)
(
Z̃(κ, un)n,

( 1
u2

n

(Z̃(κ, θun)− Z̃(κ, un)n)
)
θ∈Θ

) L−s=⇒ (
κ1/2Z, (κ3/2(θ2 − 1)Z)θ∈Θ

)

for κ = 2, and also for κ = 1 when either 1 < β < 3
2 or β ≥ 3

2 and γ+ + γ− = 0 identically,
that is, under the conditions of Theorem 5.

We choose a number ζ > 1, and observe that Ĉ(u, ζ)n
T = Ĉ(2, u, ζ)n

T and Ĉ ′(u, ζ)n
T =

Ĉ(1, u, ζ)n
T , where

Ĉ(κ, u, ζ)n
T = Ĉ(κ, u)n

T −
(Ĉ(κ, ζu)n

T − Ĉ(κ, u)n
T )2

Ĉ(κ, ζ2u)n
T − 2Ĉ(κ, ζu)n

T + Ĉ(κ, u)n
T

.

By the definition of A(u)n we have A(ζu)n
t = ζβ−2A(u)n

t . Hence, with η = ζβ−2 − 1, we get

(6.47) Ĉ(κ, un, ζ)n
T = CT + A(un)n

T +
√

∆n Z̃(κ, un)n
T −

(
ηA(un)n

T +u2
n

√
∆n Φn

)2

η2A(un)n
T +u2

n

√
∆n Φ′n

, where

Φn = 1
u2

n
(Z̃(κ, ζu)n

T − Z̃(κ, u)n
T ), Φ′n = 1

u2
n

(Z̃(κ, ζ2u)n
T − 2Z̃(κ, ζu)n

T + Z̃(κ, u)n
T ).

Now, (6.46) applied with Θ = {1, ζ, ζ2} yields

(6.48)
(
Z̃(κ, un)n

T ,Φn, Φ′n) L−s−→ (
κ1/2ZT , κ3/2(ζ2 − 1)ZT , κ3/2(ζ2 − 1)2ZT

)
.

Recall also that A(u)n
t = uβ−2∆1−β/2

n At, where At = 2
∫ t
0 as ds. We then single out two cases:

First, on the set {AT = 0}, we have

1√
∆n

(Ĉ(κ, un, ζ)n
T − CT ) = Z̃(κ, un)n

T + u2
n

Φ2
n

Φ′n

and (6.48) shows that the ratio Φ2
n/Φ′n converges in law to κ3/2ZT (F-conditionally Gaus-

sian with positive variance, hence non-vanishing almost surely). Since un → 0, another
application of (6.48) readily yields that, in restriction to the set {AT = 0}, the variables

1√
∆n

(Ĉ(κ, un, ζ)n
T − CT ) converge stably in law to κ1/2ZT .

Second, we look at what happens on the set {AT > 0}, on which we have by a simple
calculation:

1√
∆n

(Ĉ(κ, un, ζ)n
T − CT ) = Z̃(κ, un)n

T +
u2

n(Φ′n − 2ηΦn)AT + u6−β
n ∆(β−1)/2

n Φ2
n

η2AT + u4−β
n ∆(β−1)/2

n Φ′n
.

Then (6.48) again yields that, in restriction to the set {AT > 0}, the variables 1√
∆n

(Ĉ(κ, un, ζ)n
T−

CT ) converge stably in law to κ1/2ZT .
So indeed 1√

∆n
(Ĉ(κ, un, ζ)n

T − CT ) L−s−→ κ1/2ZT on Ω, which ends the proof of Theorem 5.
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