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We derive limit theorems for functionals of local empirical char-
acteristic functions constructed from high-frequency observations of
It6 semimartingales contaminated with noise. In a first step, we av-
erage locally the data to mitigate the effect of the noise and then in a
second step we form local empirical characteristic functions from the
pre-averaged data. The final statistics are formed by summing the lo-
cal empirical characteristic exponents over the observation interval.
The limit behavior of the statistics is governed by the observation
noise, the diffusion coefficient of the It6 semimartingale and the be-
havior of its jump compensator around zero. Different choices for
the block sizes for pre-averaging and formation of the local empirical
characteristic function as well as for the argument of the character-
istic function make the asymptotic role of the diffusion, the jumps
and the noise differ. The derived limit results can be used in a wide
range of applications and in particular for doing the following in a
noisy setting: (1) efficient estimation of the time-integrated diffusion
coefficient in presence of jumps of arbitrary activity, and (2) efficient
estimation of the jump activity (Blumenthal-Getoor) index.

1. Introduction. In this paper we study the limit behavior of statistics based on empirical char-
acteristic functions formed from discrete irregularly-sampled observations of an It6 semimartingale
contaminated with observation noise. The asymptotic setting of the paper is one of fixed time span
and mesh of the observation grid going to zero. The limit results derived here are rather general
and can be applied for making inference regarding various quantities associated with the diffusion
coefficient of the semimartingale and its jump component.

The statistics of interest are constructed as follows. We first average locally the data in order to
mitigate the effect of the observation noise. This is done using the so-called pre-averaging technique
of [10] and [19]. We then construct the real part of the empirical characteristic function (ecf) of the
first-difference of the pre-averaged increments on local windows of asymptotically shrinking length. In
a final step, we aggregate the local characteristic exponents over the observation interval.

By constructing the ecf over blocks of increments with sufficiently fast shrinking time span, the
time variation of the characteristics of the semimartingale and that of the variance of the noise has an
asymptotically negligible effect on our statistics. Therefore, the analysis of the real part of the ecf over
the blocks can be performed as if the observed process is Lévy (i.e., one with constant characteristics)
plus i.i.d. noise. Using the Lévy-Khintchine formula, the ecf of the increments of a Lévy process

*Todorov’s work was partially supported by NSF grant SES-1530748.

AMS 2000 subject classifications: Primary 60F05, 60F17; secondary 60G51, 60G07.

Keywords and phrases: Blumenthal-Getoor Index, Central Limit Theorem, Empirical Characteristic Function, In-
tegrated Volatility, Irregular Sampling, [t6 Semimartingale, Jumps, Jump Activity, Microstructure Noise, Quadratic
Variation, Stable Process.


http://www.imstat.org/aap/

2 JEAN JACOD AND VIKTOR TODOROV

observed with i.i.d. noise over a shrinking time interval is determined by the diffusion coefficient, the
behavior of the Lévy measure of the jumps around zero as well as the variance of the noise.

By deriving the limit in probability of our statistics for different values of the argument of the
characteristic function used in their construction, we can separately identify the diffusive and the
jump part of the semimartingale as well as the variance of the observation noise. In particular, we
can consistently estimate the diffusion coefficient and quantities pertaining to the jump compensator.
We further derive associated Central Limit Theorem (CLT) results. By varying the asymptotic order
of the argument of the characteristic function as well as that of the two local windows, used for pre-
averaging and calculation of the ecf, we get a wide range of limit results depending on whether the
diffusion, the jumps and/or noise dominate the asymptotic variance of the limit. In addition, we derive
higher-order CLT when analyzing the limit behavior of differences of the statistics for different values
of the argument of the characteristic function used in their construction.

Our results have a wide range of applications. First, using the proposed statistics we can construct
efficient estimates of the integrated diffusion coefficient in the simultaneous presence of jumps of
arbitrary activity (but of locally mixture-of-stable type), observation noise and irregular sampling. The
problem of estimating the diffusion coefficient from high-frequency data has received a lot of attention.
[3], [1] and [18] propose jump-robust estimators in a setting of no noise. The rate of convergence of these
estimators, however, drops when the jumps are of infinite variation. [12, 13] propose an alternative
estimator, again in the no-noise setting, which allows for efficient estimation even when jumps are of
infinite variation (provided they are of locally mixture-of-stable type). Another strand of the literature
has developed noise-robust estimators of the diffusion coefficient. Examples include [5], [6], [10], [17],
[19] and [24]. These papers either do not allow for jumps in the underlying process or restrict its
activity. The proposed estimator in this paper can work in the simultaneous presence of noise and
jumps of arbitrary activity and it remains rate-efficient even when the latter are of infinite variation.
To the best of our knowledge this has not been done in prior work.

Second, using the limit results of the current paper, we can develop estimates of the jump activity
(Blumenthal-Getoor) index of the semimartingale in a noisy setting, both when the diffusive part
of the semimartingale is present or not. Estimation of the jump activity index has been studied
extensively in earlier work, with different methods of estimation and different setups affecting the
rates of convergence of the estimation. In the no-noise setting and when the diffusion coefficient is
present, [1], [7] and [15] use truncation based estimators. In the no-noise and no-diffusion setting, [21]
and [23] use power variations and [20] uses local empirical characteristic functions. Finally, [14] adopt
some of the above-mentioned no-noise estimators to noisy setting by doing initial pre-averaging of the
raw data. The estimators that we propose here are more efficient than the ones based on truncated
power variations considered in [I4] and unlike [I1] we derive the rate of convergence and a CLT for
our estimators when the underlying process contains a diffusion.

The paper is organized as follows. In Section 2 we present our setting regarding the underlying
process, the observation scheme and the noise. In Section 3 we construct our statistics from the high
frequency data. Section 4 contains our limit results. All proofs are given in Section 5.

The setting. Our setting contains three basic ingredients:

an underlying one-dimensional process X;

at each stage n, a strictly increasing sequence of observation times 0 = T'(n,0) < T'(n,1) < ---;
at each stage n, a sequence of variables (x : @ > 0) which represents the observation noise; that
is, at time T'(n,7) one does not observe directly X7, ;), but instead X, ;) + xj', to account for
the so-called microstructure noise in financial data.

wNo =N
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All these objects are defined on a probability space (€2, F,P), and we now describe the assumptions
for each of the three ingredients.

2.1. The underlying process. We start with the underlying process. The process X is a one-
dimensional It6 semimartingale, relative to some cadlag filtration (F;)i>0, and it takes the form

t t
(21) Xt:Xo—I-/bsds—l—/ades—i—é*(p—g)t—i—é'*pt,
0 0

where W is a Brownian motion, p is a Poisson measure on R} x E with deterministic compensator
g (dt,dz) = dt ® n(dz). Here E is a Polish space and 7 is a o-finite measure on E. For a function ¢ on
QO xR; x E and a random measure v on Ry x E, the notation ¢ * 14 stands for the double (ordinary or
stochastic) integral fot i) 5 ¢(s,2) v(ds,dz). The process b is optional, the process o is cadlag adapted,
the functions 0 and §’ on  x R x E are predictable and such that the integrals in (2.1) make sense
(this will be implied by our assumptions below).

We also assume that the volatility process o is itself an [td6 semimartingale, which can thus be
written as

t t t
(2.2) O'tZO'()—I—/ bgds—l—/ HgdW5+/ HdW! + 6% (p —q )¢ + 67 %y,
0 0 0

with b7, H?, H'? optional and ¢7, ¢’ predictable. Choosing the same Poisson measure p to drive both
X and o is not a restriction, and we use W and W’ in (2.2) to allow for general dependence between
the diffusion components of X and o.

The It6 semimartingale assumption for o is satisfied in many applications, e.g., when ¢ is modeled as
Lévy-driven SDE. Such an assumption, however, rules out models in which ¢ is driven by a fractional
Brownian motion, see e.g., [¢] and [9]. We conjecture that our results can be extended to such settings
(with possibly different - worse or better depending on the Hurst parameter - rates of convergence)
but we leave such an extension for future work.

For the assumptions, we need to introduce two properties relative to a generic (F;)-optional process
V', with some ¢,q > 0 and where K is a constant depending on V:

(2.3) E( sup |V, — Vrl?) < KE((S—-1)9) for any two finite stopping times 7' < S,
s€[T,S]

(2.4) |E(Vs — Vp)| < KE((S-T)7) for any two finite stopping times 7' < S.

We will denote the first property above as (2.3),,, and the second one as (2.4),. If V' is a bounded
It6 semimartingale with bounded characteristics, then it satisfies (2.3)2; and (2.4);. If in addition V'
is of finite variation (2.3);,; holds as well.

We also recall that the process X = & * (p — ¢ ) has a jump measure u whose (F;)-predictable
compensator v factorizes as v(dt, dz) = dt ® Fy(dz), where F} = Fy,, called the “spot Lévy measure”,
is the restriction to R\{0} of the image of the measure A by the map z — d(w,t, 2).

For an arbitrary positive measure F on R we consider the “tail function” defined for x > 0 by F(z) =
F((—o0, —x))+ F((x,0)). Further, F' denotes the measure defined by F(A) = 3 (F(A)+F(—A)) and
where —A = {z: —x € A}. When F' is a signed measure, we denote by |F| its “absolute value” (the
smallest positive measure such that |F| — F is also a positive measure), and by |F| the tail function
of |F.

With this notation, we next state our assumption for X.
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Assumption (H). We have (2.1) and (2.2), an integer M > 1, numbers r,7’,B1,..., By such that
0<7r <Py << B < Bi <2 and nonnegative adapted cadlag processes a',...,aM, with
the following properties: for each r' € (f1,2) we have a sequence T, of stopping times increasing to
infinity, a sequence Jy, of [0,1]-valued Borel functions on E with [J,(z)n(dz) < co and a sequence T,
of numbers such that, with the notation

Bma

(25) Ft/(dCC Ft dl’ Z |Qj|1+ﬁm 1{0<|$|<1} dl‘

we have
[bel, [oe], 1671, [HT |, [Hi?], af" < T,

(2.6) t<mn = < [6(t,2)]", [67(t, )% 1{6"7(tz Y20 Lo (t,2)201 < In(2),
r>0 = |F]| r) <L o

Moreover,

(i) the processes bipr,, Hf,, and §(t A Tny 2)/ Jn(2)"" for all 2 satisfy (2.3)21 with K =T,
(i) the processes (a’g}\m)l/ﬁm form=1,..., M satisfy (2.3)21 and (2.4); with K =T,.

We note that if (H) holds with some r it also holds for any 7 € (r,Bar). Since we allow the
processes a}’ to be identically 0, we can always add another index § in (r,2) with the associated
process a; identically 0: this is of course immaterial and it looks a priori strange. However, we use the
above formulation for a unified representation, which nests also the case where M = 1 and a}(w) = 0
identically. In this case (2.5) reduces to F} = Fy, and the last condition in (2.6) becomes Fy(z) < I' /2"

Assumption (H) restricts the behavior of the Lévy measure of X, but only around zero (and only
when at least one of @} is not identically zero). We note in that respect that the measures F/ in (2.5)
are a priori signed measures. The restriction of the Lévy measure around zero is to be like that of a
sum of time-changed stable processes. The parameter r controls the degree of deviation of F; from that
of the mixture of time-changed stable processes. In many parametric jump specifications, (H) will be
satisfied with M = 1 and r < $1/2. In the Lévy case, for example, this will hold when Fi(dx) = f(x)dx
and f(z)/2~17P" converges to a positive constant as 2 — 0 and has a bounded first derivative in a
neighborhood of zero. This is the case for many parametric jump models, e.g., the tempered stable
and the generalized hyperbolic.

Assumption (H) is satisfied for the class of time-changed Lévy processes with absolute continuous
time change (the drift, diffusion and jumps can have separate time changes), provided the jump part
of the Lévy process behaves around zero like that of a sum of stable processes. Although less obvious,
(H) is also satisfied for the class of Lévy-driven stochastic differential equations (provided (H’) below
holds), i.e., when X takes the form

t t M t
(2.7) X =Xo+ / bsds + / os dWs + Z / [ VAL 8 %y,
0 0 10

with b, o, 8’ and W, p as above, and where the processes 7} are cadlag adapted and the processes Z™
are independent Lévy processes with no drift and no Gaussian part, and also independent of W and
p. We denote by F™ the Lévy measure of Z™, so the “no drift and no Gaussian part” means that the
characteristic function of Z" is

(2.8) E(éuzt’”) — exp (75/R (€™ — 1 — jua (<1} Fm(dx)).
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Accordingly, we replace (2.2) by

t t t M 1
(2.9) Ut200+/ bgds—f—/ HgdWs—i—/ Hé"dWé—N—Z/ HI™AZ" +67 % (p —q )¢ + 07 %y,
0 0 0 m=1 0

where each H%™ is cadlag adapted. The next assumption implies in particular that the Blumenthal-
Getoor index of each Z™ is By,.

Assumption (H’). We have (2.7) and (2.9), and also numbers 2 > 1 > --- > [y > 1 > 0, and
be, o0, b7, HY  H[7, 8 (t, 2),07(t, 2), 8" (t, ) satisfy the same conditions as in (H). Moreover, we have a
sequence T, of stopping times increasing to infinity and a sequence I'y, of numbers such that, for all
m=1,...,M:

(i) if t < 7, then |[6)"| < Ty, and |H™| < Ty;

(ii) the processes |aix, | satisfy (2.3)21 and (2.4)1 with K =T'y,;

(iii) for some constant am,, o, > 0 the signed measures F'™(dz) = F™(dx) — Ix\?ﬁ Lo<|a|<1} d

(where F™(A) = S (F™(A) + F™(=A)), as in (2.5)) satisfy |Fl,|(z) < ol /2" for all z > 0.

As proved below, see Lemma 8, any process satisfying (H’) also satisfies (H). Therefore, henceforth,
we always use the more general formulation (2.1).

2.2. The observation scheme. We next describe how observations take place. At stage n, that is, for
a given frequency of observations, the successive observations occur at times 0 = T'(n,0) < T'(n,1) <
.-+ for a sequence T'(n, i) of (possibly random) finite times. We will assume a rather special form for
the sampling scheme, which involves a positive process A\; and a double sequence (®} : i,n > 1) of
positive random variables, and at each stage n, the sampling times 7'(n, i) are defined recursively in
i, starting with 7'(n,0) = 0 and using the formulae

(2.10) A(nyi+1) = Adpa®hy,  T(nyi+1) = T(n,i) + A(n,i+1).

Here, A,, — 0 is a non-random sequence which plays the role of an “average mesh size” of the
observation grid at stage n. Note, however, that the sampling times T'(n,7) and the inter-observation
lags A(n,i) are observed up to the time horizon ¢, whereas A, is a non-observable mathematical
abstraction, which should not enter the various statistics constructed by the statistician.

We assume the following for the process A\; and the sequence ®7'.

Assumption (O). There are a sequence (Ty,) of (Fi)-stopping times increasing to oo and constants
Ty, T'(p) such that

(i) the process A\ is cadlag adapted with 1/, < Ay < Ty, for all t < 7y

(i1) the stopped processes Aipr,, satisfy (2.3)11 with K =T,;

(iii) for each m the variables (P} : i = 0,1,...) are mutually independent and independent of Fu
and, for allp > 0:

(2.11) E(@7 ) =1,  E(®%41)") <T(p).

The number of observations up to time ¢ is N;* + 1, where

(2.12) NP = Lrm<ty
i>1
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and we prove in Section 5 that the process 1/)\; is like the “density” of observations, in the sense that
b1
(2.13) AN =2 Ay = / — ds.
0 As

Part (ii) of (O) is somewhat restrictive. It is possible to assume only that each V' = A\a-,, satisfies
(2.3)g,1 for some ¢ € (1,2). This is at the expense of more complicated proofs and slower rates of
convergence in some of the cases below, and the case ¢ = 2 is unfortunately excluded.

A regular scheme A(n,i) = A,, obviously satisfies (O) with A, = 1. A Poisson scheme, for which
the counting process N is Poisson with parameter 1/A,, and independent of X, also satisfies (O)
with A\; = 1. This happens when we take ®} to be exponential with parameter 1. More generally,
assumption (O) allows the Fp(, ;)-conditional law of A(n,i+ 1) to vary over time.

2.3. The observation noise. At stage n we do not observe Xp(,; for i = 0,1,..., but rather
Y™ = Xrpms) + xi'» where xi' is “noise”. The typical situation considered in the literature is when,
for each n, the (x}')i>0 are i.i.d. centered and independent of X and of the sampling times. Here
we want to relax this assumption significantly, while keeping the property that the variables x!' are
centered and mutually independent as i varies, conditionally on the o-field HY = Foo VK2 with
Ki = o(®@} : 0 <j <i). We also denote by (H;') the smallest filtration containing (7;) and with
respect to which T'(n, ) is a stopping time for all 7 > 0.

It is obviously no restriction to “standardize” the noise by singling out a possible modulation via
an (F;)-adapted process, times a new noise which has H -conditional variance of 1. Therefore, we
assume that, for a suitable (F;)-adapted process v;, the i-th observation at stage n is

(2.14) V" = Xt + X7 = Xr(na) + Vrmisi -
We will use two different assumptions for the noise, which we state next.

Assumption (N-1). We have (2.14), a sequence 1., of (Ft)-stopping times increasing to oo, and for
each integer p > 1 a cadlag (F;)-adapted process 'yt(p) and constants T'(p)m such that:

(i) The stopped processes Vi, —and 'yt(ﬁ) satisfy (2.3)2,1 with K =T,.

(i) We have ’yt(l) =0 and 7152) =1.

(i1i) For all n the variables €} are independent as i varies, conditionally on H
integers p > 1 and all Borel subset B of R:

Tm

n
o0’

and satisfy for all

(2.15) E((&) | HL) =y P} € BIHL) =P(} € B| Hg, 1)

Assumption (N-0). We have (2.14), a sequence T, of (Fi)-stopping times increasing to oo, and
constants I'(p) and T'y,, such that:

(i) The stopped processes Vi, ~satisfy (2.3)21 and (2.4)1 with K =T',.

(i1) For each n the sequence (€]')i>o is independent of the o-field HY and i.i.d. as i varies and
satisfies for all p > 0:

(2.16) E(e}') =0, E((e?)?) =1, E(le}'|P) < oo.
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Henceforth, we will use the notation v; = (v;)? for the (H -conditional) variance process of the
noise. We note that the last part of (2.15) is equivalent to saying that e} = f/*(w,2}'), where f] is an
Hip (5 @ R-measurable function on £ x R and &} is a variable which is independent of #7.

Assumption (N-0) implies (N-1) with ’y}p ) identically equal to a constant for all p € N. (N-0) is
satisfied in the case of a white noise independent of X. (N-0) also holds in the case of a “modulated”
white noise, i.e., when the H72 -conditional moments of the noise are time-varying. In particular, this
allows for dependence between the observation noise and the unobservable X.

For financial applications where X is an asset price, there is typically a rounding effect, i.e., the
observed price is integer-valued (prices can move only by multiples of ticks), and this effect is non-
negligible if one is sampling the price very finely. The presence of rounding is basically incompatible
with an It0 semimartingale plus a white noise (even a modulated one), i.e., assumption (N-0).

This is why we introduce the weaker assumption (N-1), which accommodates some kind of “additive
noise plus rounding”. Many versions are possible, the simplest one being as follows. For any z € R
we denote by [z] = max(n € N : n < x) its integer part and by {z} = =z — [z] its fractional
part. At each stage n we have an i.i.d. sequence ((}* : ¢ > 0), independent of H , with the density

o)

S11,00+ 5 12 + (1 —a)lg for some a € [0,1). The observation at time T'(n, i) is

With the notation Z; = {X;}(1 — {X;}) and Z(p); = (1 — {X:})P — (—{X:})?, a computation shows
us that (2.14) and (2.15) are satisfied with, for each integer p > 1,

’Yt =V + Zt7
[((p—1)/2] )

W = g (@ 1oy + ZeZ(p— 1) +a Py @z 120 —2j =

in turn implies that (again up to a localization) Z; and Z(p): satisfy (2.3)21 as well. Then, as soon
as a > 0, one obtains that (i) of (N-1) holds. So, we have (N-1). However, although X also satisfies
(2.4)1 (up to a localization once more), the process Z; does not satisfy (2.4)1, so (i) of (N-0) cannot
be true and this example cannot satisfy (N-0), even if we were to appropriately weaken (ii) of (N-O).

3. Construction of the statistics. In what follows it is convenient to single out some special
cases, and towards this aim we introduce the following additional notation:

_J 0 ifoy=0 | B ifor=0 ~J 0 under (N-0)
(3.1) i _{ 1 otherwise ’ B _{ 2 otherwise ’ "2 _{ 1 under (N-1)

Our ecf-based statistics are constructed in two steps. We first “de-noise” the observations, and then
we compute local empirical characteristic functions. The first step needs a window of size h,, while
the second step needs another window of size k, and a sequence u,, > 0 of reals (both h,, and k,, are
positive integers). We will specify later the conditions on these tuning parameters, but in any case
they should always satisfy the following, for some € > 0:

kNS, hpAS, unAS kK2h2A, — oo,
F2hoAn, BEAZ 5 wfhAn, 62 (haDg)PALE — 0.

n—mn?

(3.2)
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3.1. Pre-averaging. The first step in the construction of our statistics is to effectively “de-noise”
the data which we do via pre-averaging ([10], [19]). The pre-averaging method amounts to average the
data over a window of h,, successive increments, with the help of a weight (or, kernel) function g on
R, which satisfies

g is continuous, piecewise C'! with a piecewise Lipschitz derivative ¢/,
s¢(0,1) = g(s)=0, fo s)%2ds > 0.

With ¢ and the sequence hy, and € [1,2) we associate the numbers (indexed by n > 1 and i, j € Z)

gi = 9(i/hn), 9 = 91— 90 N
On = 1= ez (9 O =P > icn (@), o) = n ez 9717,

which satisfy as n — oo:

(3.3) @L»wz/hwfmh %NWZ/JWVW% %ﬂa$w%=/mwwww

Recall that we observe Y/, as given by (2.14). More generally, for any process V' we write V* =
VI, and also APV = V™ — V", eg., A’ X is the i-th increment and AY =Y;" — Y/, is the i-th
observed (noisy) increment. If V" is any array of variables, we set

hn—1 hn—1

Z gJ H‘J Z Vﬁr]

We note that the variable XN/Z" implicitly depends on h, and g. When h, = 2, we simply have
171-” = g(1/2)A}, V. The effect of the pre-averaging on the noise is to reduce its asymptotic order
of magnitude by a factor of v/h,, while at the same time the order of magnitude of the pre-averaged
[t6 semimartingale remains unchanged. Thus, the asymptotic size of the noise relative to the Ito
semimartingale after pre-averaging shrinks.

3.2. Local empirical characteristic functions. Below, we use the pre-averaged variables )7;”, and we
set wy, = 2hpky,. For any y € R\{0} we denote

k., —
1 n

(3.4) v)i =& Z (uny( z+2lh i1(2z+1)hn))’
1=0

which is the real part of the empirical characteristic function from a block of pre-averaged increments.
In the no-noise setting, integrals over time of this statistic have been used by [22] for recovering the
Laplace transform of the volatility process. Here, we will work with the characteristic exponent, i.e.,

we transform L(y)? as follows:
Y n n 1
o)y = —1tog (L) - )-

For bias correction we will need further an estimate for the (locally integrated) variance of the noise,
and for this we set

~ 1
(3.5) Y = . Z(Aﬁzyn)Q’
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and, with f(z,y) = % (e2*7¥ + €2 — 2), we denote:

[N{* /wn]—1
A o\ 1 NS n N L = 9 95n
(36) C(y)t - J;O (c(y)jwn 2kn f(c(y)jwna c(2y)jwn) 2hn ¢ny Uy, ijum)

The last two terms on the right-hand side of (3.6) are bias corrections which are needed because of
the nonlinear transformation of the local ecf and the presence of observation noise.

The above statistic can be viewed as the noise-robust analogue of the statistic proposed by [12, 13]
for efficient volatility estimation ([16] use also the latter statistic for the purposes of testing for presence
of diffusion in a no-noise setting). As we show later, C (y)f can be used not only for efficient estimation
of the diffusion coefficient but also for estimating quantities associated with the jumps of X.

We conclude this section with introducing some additional notation. For v € (0,2) we set

* siny
x(7) = / dy,
) o Y
which is a convergent integral for all v > 0, but absolutely convergent when v > 1 only. We also set
et = (01)?, C,= f cs ds, AP = fot alds,
(3.7) B ¥s(y,y) 2yl + 2P — ly+ 1P — - PP,
sy, y') = sy y') + vy ds(1,1) — y*s(Ly) — v sy, 1).

Our key theorems in the next section describe the behavior of the centered processes

~ y2ui¢n 2 al B B 1B
(3.8) 2t =CW) = =5 Co = = D [yl & x(Bm) A7
n n m:1

The centering terms in Z(y)y are scaled versions of Cy and {A}"},,>1, with the asymptotic magnitude
of the scales depending on the order of magnitude of u, and k,. Since u,, — oo, the centering term
involving C; is asymptotically the largest, followed by the term involving A}, etc. We note that in the
centering of C (y)f above there is no term due to the noise. This is because we have already performed
bias correction for the noise in the construction of C(y)? (the last summand in (3.6)).

4. Limit behavior of the statistics.

4.1. Convergence in probability. We start first with establishing convergence in probability of
vnZ(y)} towards 0 for an appropriate normalizing sequence v,. The next theorem states the gen-
eral result.

THEOREM 1. Assume (H), (O), and (N-0) or (N-1). For anyt > 0 and y # 0 we have v, Z(y)} N

0 if the tuning parameters hy, kn,u, and the sequence v, of positive numbers satisfy (3.2) and, for

some € >0 (as small as wanted) and allm =1,..., M,

2
1) %%(k2+u2r+uﬁl+€+h3A +k3h%A2+uhA +h2+ w2 (i AP ) = 0,
. 2 2

k=1 = & (uphnln +M)—>O, ﬁ2—1:>kvth — 0.

This is a general “abstract” type of consistency result. It will allow us to estimate in a consistent
way the integrated volatility Cy, the biggest index 3 and the associated A}. We will illustrate this in
Section 4.3. In addition, it should be also possible to use the above result to estimate the next indices
B2, B3, ... (and the associated A%, A3,...), but for simplicity we will not discuss this in this paper.
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4.2. Central Limit Theorems. We continue with a CLT associated with the convergence in prob-
ability result in Theorem 1. By this we mean a result stating that, for a suitable sequence v, the
variables v, Z(y)} do not go to 0 but converge in law to a non-trivial limit. Depending on the choice
of the tuning parameters and whether the underlying process X contains a diffusion, the CLT can be
determined by the diffusion component of X, the jumps, the noise, or any combination of them. In
addition, in some of the cases, the CLT for the difference Z(y)? —4?Z(1)? becomes degenerate and we
derive a higher-order CLT (joint with the CLT for Z(y)}). We summarize these limit results in two
different theorems, corresponding to the cases k1 = 0 and x; = 1.

Before stating them, let us recall that a sequence U, of R?-valued variables on (Q,F,P) converges
Foo-stably in law to a limit U if the variable U is defined on an extension (Q, F, IP’) of (2, F,P) (that
is, Q=0xQ and F = F ® F' for some extra measurable space (', F’), and IE is a probability
measure on (£, F) such that P(A x Q') = P(A) for all A € F), and if E(f(U,)Y) — E(f(U)Y) for any
bounded continuous function f on R? and any bounded JF,.-measurable Y.

Concerning the tuning parameters, we need a set of conditions in the spirit of (4.1), which has the
following form, for a sequence v,, as described in the theorems below, and for some ¢ > 0 (arbitrarily

small), some integer P (arbitrarily large) and all m =1,..., M:
U 2B —e (A+B1+e) V5
%(kQJrUQTJrU(hA) e M %)—m
2 8 8
(4.2) i (A, + madaz 2 (R )P+ p+1A ) =0,
Rl = 1 = ﬁ( S(h A ) + n(h]:gAnP + Uhin + (2+/81+E)V3h A + 12A2) N 07
v2u4 "

ko=1 = kh3A — 0.

Finally, ) below is a fixed finite subset of (0,00) with cardinal q. We start with a CLT for the case
when X does not contain a diffusion.

THEOREM 2. Assume (H) with k1 =0, (O) and (N-0) or (N-1), and also (3.2),

B1 h3A
(4.3) N ]
un h3 Ay, + ud

and (4.2) with U, = v, given by

h3 A,
(44) UTL = ]{jn —nﬁ .
ud +up'h3 A,

Then for any t > 0 the q-dimensional variables (vn (y)7 ))yey converge Foo-stably in law to a vari-
able (Z(y)t)yey defined on an extension (Q, F,P) of (0, F,P), which conditionally on F is centered
Gaussian with variance-covariance given by (recall (3.7) for Ya(y,y')):

(45) BZuZ)| F) = /0 (5, ()P X (Bl s+ (L= )2y 0%2) 1

S

When 1 = 0 the above CLT is driven by the noise, when n = 1 the CLT is determined by the jump
component of X, and when 7 € (0,1) both the jumps and the noise drive the limit.
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The above theorem gives a CLT for the differences Z(y)} — y?Z(1)7, with a non-degenerate limit
as soon as 1 > 0 in (4.3). On the other hand, if n = 0 the limit for this differences is degenerate and

the proper rate should be v,, = k, %. However, in this case (4.2) cannot be fulfilled. Therefore,

n

it is not clear whether in this case a genuine CLT for the differences Z(y)? — y?Z(1)? does exist.
We next state a CLT for the case when X can contain a diffusion. To state the result, we introduce
the two rates:

h3 A, kn
(46) Un = kn TL ﬁ ] v':'z, = 727
ud (14 h2A,)2 +upth3 A, w2/
Clearly v, /vl, < K, so (4.2) with ©,, = v}, implies (4.2) with 7,, = vy,.
THEOREM 3. Assume (H) with k1 =1, (O) and (N-0) or (N-1), and also (3.2) and

Ul 3 A, h2A, ,

AT Sy, —mon
0 W A b (14 WA T+ RA,

a) Under (4.2) with U, = vy, for any t > 0 the g-dimensional variables (v, Z(y)})yecy converge
Foo-stably in law to a variable (Z(y)i)yey defined on an extension (2, F,P), which conditionally on
F is centered Gaussian with variance-covariance given by

E(Z(y) Z(y)e | F) = [y (s, (v, y") 0P x(B1)als

48 Py
(4.8) (1= )y (W' deshs + (1 —0)ds)”) & ds.

b) Under (4.2) with v, = v], plus

(4.9) us=h

for any t > 0 the q+1-dimensional variables (v, Z(1)}, (v}, (Z(y)7 —yQZ(l)?))yey) converge Foo-stably

in law to (Z(1)i, (Z(y)})yey), where Z(1); and (Z'(y)i)yey are defined on an extension (Q, F,P) and
are, conditionally on F, two independent centered Gaussian variables with variances given by (4.8)
for Z(1)y and by

(4.10) E(Z'(y): Z'(y )i | F) = b, (.4 )P x(B1) Af.

Part (a) of the theorem shows that the CLT for (an(y)?)yey)
component of X, the jumps and the observation noise (their role in the asymptotic variance is con-
trolled by 1 and 7). In part (b) of Theorem 3 we present a joint limit result for (v,Z (1)}, (v},(Z(y)} —

v:Z (1)?))y ey)' For this result we need the condition in (4.9) which guarantees that the jump compo-

can be determined by the diffusion

nent of X is the leading term for the difference (v,(Z(y)? — y*Z(1)})), i.e., the diffusion component
of X and the noise play only an asymptotically negligible role. When this is not the case, similar to
Theorem 2, there is no choice of the tuning parameters satisfying (4.2) with 7,, = v}, and a sequence
v}, ensuring a nontrivial limit in part (b) of Theorem 3.

Finally, as for the convergence in probability result in Theorem 1, we have a wide range of choices
for our tuning parameter that satisfy Theorems 2 and 3. The choice of the tuning parameters can be

optimized according to the specific application in mind as we will show in the next section.
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4.3. Applications. We now illustrate some applications of the developed limit theory. We will focus
attention on the estimation of the integrated volatility C}; and the leading jump activity index 1. These
problems have received a lot of attention in recent work. Our theory will allow estimation of C; and
/1 in more general settings than previously considered and in many of the cases we will be also able
to achieve faster rates of convergence than those of existing estimators and even rate efficiency.

We will develop the estimators, derive their rate of convergence, and provide a CLT for them.
To make the inference feasible, one will need consistent estimates of the asymptotic variances of the
estimators. Such estimates are relatively easy to derive using Theorem 1 (and consistent estimators for
the variance of the noise), and for brevity we will not provide explicit expressions for them. In addition,
the optimal choice for the tuning parameters uy,, by, k, in many cases will depend on the unknown
jump activity index S1. Therefore, for a feasible estimation, one will need a preliminary estimator of
(1 based on an initial part of the sample of shrinking time span. Again, for brevity we will not further
discuss this here, leaving instead the details pertaining to these issues for future applied work based
on the theoretical results of the current paper.

4.3.1. Estimation of B1. We start with the estimation of ;. For the general case when X can
contain a diffusion, we first set for y > 0:

M
~ ~ ~ 2 ~
411)  C'(y)y =Cy)t —y*C)F = Z(y)} —y*Z(1)} + . > W0 =y unm g x(Bm) A7
" m=1
Then, observing that the function f(x) = 422__146 is C° on the interval (0,2), with a C'* reciprocal
function f~!, a natural estimator for 3; is, for example,
N C'(4)r
(4.12) =Y ACH ).
c'2)f

An easy computation shows the consistency EZL 1 E, 1 in restriction to the set {A} > 0} on which
the “component” with index (31 is present, as soon as we have (4.1) with the sequence v, = k, /ug1
Therefore, we obtain consistent estimators for 31 on the set { A} > 0} as soon as the tuning parameters
By by uy satisfy (3.2) and

4-28, 8—28; 8—28;
kn Up, [ Uy 2—-281
(4.13) s sy sy T e =0
: _ 8—201 A, )2 4-2p1
k=1 = up PPTh,A,, + Y nln)” (?" n)” 0, ke=1 = 7]‘:"}2‘3%71 =0

There is a wide range of tuning parameters achieving the above condition, provided we know that 3
is strictly bigger than some known number « € (0, 1]. For example, one may choose the integers h,, in
such a way that h'A3 — 0 and inf,, h2A,, > 0, and then u, = (h3A,)"/8 and k, = [u2]. With this
choice we have consistency, and a single tuning parameter, regardless of whether x; and k2 equal 0 or
1.

If we further know that k1 = 0, i.e., that X does not contain a diffusion, we do not need to use the
differences C’ (y)f but rather we can use directly C (y)7. In particular, in this case, another sequence
of estimators, which are consistent on the set {A} > 0}, is naturally given by

- 1 C@2)r
4.14 = log ( =—1).
( ) ¢ log 2 g(c’(l)?)
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We note that given the above estimates of (1, we readily get an estimate of A} using C (y)p or
C (y)?. Hence the analysis of the estimation of A} is similar to that of the estimation of 8; and for
brevity is not discussed further.

We turn next to the rate of convergence of the estimation of 81 and an associated CLT that can
allow quantifying estimation uncertainty. For simplicity, we restrict attention to the typical case of
M =1 and r < 1/2 (or, equivalently for what follows, M > 2 and fs < (1/2).

Concerning the estimator in (4.14), which works only when x; = 0, the joint convergence of v, Z (y)}
for y = 1,2 to a non-degenerate limit is enough: we can apply Theorem 2 and the rate of convergence
is ugl/ 2 (this explains the restrictions r < £1/2 or 2 < 1/2), so we need to “maximize” w,, of course
within the constraints (3.2), (4.3) and (4.2). Actually, we cannot really achieve “best” rate, but only
the best one up to some arbitrarily small € > 0, as exhibited in the next result, which readily follows
from Theorem 2 upon using the Delta method, and in which (4.3) gives us n = 1. Below, a,, < b,
means that both sequence a,,/b,, and b, /a, are bounded.

THEOREM 4. Assume (0) and (H) with k1 = 0 and either M =1 and r < $1/2 or M > 2 and
B2 < B1/2. Let t > 0 and also € € (0,1/5) be arbitrarily small. Assume also either one of the following
two hypotheses:

(i) we have (N-0) (so k2 = 0) and the tuning parameters satisfy

) _1-¢ B
3 - 248 - 248 - 6+38
B >3 S hy = AT = AL = AT
1528 _2(1-e) 28
(4.15) 3<B<E o hy=AL B wp=AL T ka<AL T
_ 3-8 __1-e B
3 - 5—28 - 5—28 - 15—68
B <3 o = ATy = AR T k= A, O

(i) we have (N-1) (so ko = 1) and the tuning parameters satisfy

_ 12451 _ 6(1—¢) _ 281
3 - 12478 - 12578 - 12478
B12§ = hn’\An 15 un/\An 15 kn’\An 17
416 _15-p _6(1—¢) _ 2B
) 3 3 A28 - 2118 _ A 2198
(4.16) <P = b <A < AT < AT
_18-58 _ 6(1—¢) 2B
3 - 30—118 - 30—118 - 30—118
B <3 S Ry = AR A TR ARSI
2,7m,1 . . ..
Then the sequence ugl/ (B — B1) converges stably in law, in restriction to the set {A} > 0}, to a

variable which is defined on an extension of the probability space and which, conditionally on F, is
centered Gaussian with variance
16 +28 -2%1 + 16 - 3% — 1745
(4.17) + sl .
4(log 2)2 ¢(A1) x(B1) A}

We turn next to the case when X can contain a diffusion, so we use the estimator (4.12) and Theorem
3, and the rate is again ugl/ 2, Exactly as before we cannot fully achieve the best possible rate. Using
again the Delta method, we arrive at the following result (in case (i) below we have ' € (0,1) and

n = 0, and we use part (b) of Theorem 3; in case (ii) we have ¥ = n = 1, and therefore we use part
(a) of Theorem 3).

THEOREM 5. Assume (O) and (H) with k1 = 1 and either M =1 and r < $1/2 or M > 2 and
Po < 1/2. Let t > 0. Assume also either one of the following two hypotheses:
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i) we have (N-0) (s0 kg = 0) and for somee € (0,1 —B1A(2—P1))) the tuning parameters satisfy
8

_ 3(1—¢) _3B81(1-2¢)
16 1 1626, 3247,
L2174 = =X 7= unxA4A, kn =< Ay
— /A’ﬂ’ Y Y
(4.18) _2(1-¢) _B1(1=2¢)
1 - 1 - 1658 - 16—58
i<t = haxX ey un <A k< Ay T
(i) we have (N-1) (so ko = 1) and for some € € (0,1/5) the tuning parameters satisfy
_ 24—5p8, _ 6(1—¢) _ 281
18118 18—118 18—118
(4.19) hy < Ay, t T A L k, < A, L

Then the sequence uglﬂ(Af’l — B1) converges stably in law, in restriction to the set {A} > 0}, to a

variable which is defined on an extension of the probability space and which, conditionally on F, is
centered Gaussian with variance

1 ( Eﬁl (4a 4) + @,31 (27 2) 2@51 (274) >

(16— 47)2 " (4— 201 )2 (16— 471)(4 — 27)

(4.20) -
41401 (log 2) 1) x (1) A

These two theorems are not directly applicable for three reasons. One is that we need consistent
estimators for the conditional variances, and this could easily be taken care of. The second reason
is somewhat more important: the choice of the tuning parameters in the various sets of conditions
above depends on A,, which is not observable, so we will need to replace A,, by 1/N;* (making use of
(2.13)). The third reason is that those conditions also depend on the unknown value 5; and hence a
preliminary estimate for it is needed. As mentioned before, we leave these practical considerations for
a follow-up work.

We finish this section with a brief discussion of the achievable rates of convergence for estimating
B1. We start with the case of no diffusion (k1 = 0, so Theorem 4 applies) and the stronger assumption
(N-0) for the noise. As a benchmark, we note that in a parametric model where X is a ;-symmetric

stable process and the noise is i.i.d. Gaussian, using empirical characteristic function, we can estimate
_B1(1—¢)

[1 at the rate A, 21 Our estimator can achieve this parametric rate when 8; > 3/2. For lower
values of 31, the achievable rate in our nonparametric setting drops. This is due to the effect from the
presence of the drift term in X, the variation of the characteristics of X as well as the generality of
our sampling scheme. Comparing the cases ko = 1 and k2 = 0, when there is no diffusion, we notice
that the weaker assumption for the noise slows down the rate of convergence. This effect is pretty
small for high levels of 51 (less than 10% loss in rate of convergence for f; > 3/2) and more significant
for low values of 1. Finally, we can compare the rate of convergence of our estimator of 51 in the no

diffusion setting with the one based on power variations in [141]. The rate of convergence for the latter
B1(1—¢)

is derived for 8y >A\/§ and the best possible is A,, ®”1*®  This is much slower than the one achievable
for our estimator ;"'

Turning to the case when X can contain a diffusion, we can see that, as expected, the rate of
convergence of the estimator drops. Focusing on the case of k9 = 0, we note that the loss of rate
efficiency compared to the no diffusion case is relatively small for high levels of f5;: it is 19% for
f1 = 3/2 and it approaches 0% for /31 approaching 2. To the best of our knowledge, the rate of
convergence of estimators of #; in the simultaneous presence of diffusion and noise have not been
analyzed thus far.
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4.3.2. Estimation of Cy. We continue with the estimation of C; and of course we assume x; = 1.
Consistent estimators of C; are easy to construct. We take for example y = 1, and rewrite (3.8) as

Cp'=Cy+ R+ 80, where
~ ~ _ ~Bm
ng _ 2kn C(l)t, ;z — Zn]\le ugm 2 4¢n ¢X(5m) A;”, S;z _ 2k (1)?

(4.21)

. P P C A .
Since u, — 0o we have R}’ — 0, hence as soon as S{' — 0 the statistics C]* above are consistent
estimators for C;. In view of Theorem 1, this holds as soon as the sequence v, = k;, /u2 satisfies (4.1).
Therefore, we have consistency as soon as the tuning parameters hy,, ky, u, satisfy (3.2) and

(4.22) L S B L
. — , K9 = .
w2 R3A, | k3hGA2 2 h3 A,

There is a wide range of tuning parameters achieving this. For example, we may choose the integers
h, in such a way that h3A2 — 0 and h) A2 — oo, and then u, = hi/* and k, = [un]. This way we
have consistency while using a single tuning parameter.

Concerning rates of convergence and an associated CLT, things are different. Let us first mention
that, when X is continuous and the noise is an additive Gaussian white noise and sampling is regular,
we know that the optimal rate for estimating C; is 1/ A%L/ 4. 5o this rate is a natural benchmark.

This optimal rate is achieved by the estimator 5,? only when 81 < 1 (which implies that the bias
term R} in (4.21) is negligible at this rate) and k2 = 0. In the case when 51 < 1 but k2 = 1, ie.,
when the weaker assumption for the noise holds only, the rate of convergence of @" drops slightly.
This result is a trivial application of Theorem 3-(a), with n = 0 and ' = 1/2 in case (a) and n = 0
and ' =1 in case (b) and is given in the following theorem.

THEOREM 6. Assume (O) and (H) with k1 =1 and 1 < 1.
a) If (N-0) holds (so ke = 0) and if the tuning parameters satisfy for some ¢ € (0,1/12] and all
e >0:
1 u;?, . ! N —%—8 —3te
(4.23) hp <X ——= Up, = with w, — 0, u, A ¢ — 00, Ay <k, <AR* T,

VA, e

NI

the sequence A;1/4(6't’1 — C}) converges stably in law to a variable which is defined on an extension of
the probability space and which, conditionally on F, is centered Gaussian with variance

t 6 9 1
(4.24) 4/(%&+%)d&
0 ¢ )\s
b) If (N-1) holds (so k2 = 1) and if the tuning parameters satisfy for some e € (0,2(81 A (1 — 51))
_12-581+4€ 3 _ _2B1te
(4.25) hy =< A, 2700 Uy = Ay 2 kn = A, 200
12—681 —¢

the sequence A, ™ 2% (Cr — C)) converges stably in law, in restriction to the set {Al > 0}, to a
variable which is defined on an extension of the probability space and which, conditionally on F, is
centered Gaussian with variance

40 [t 5 1
4.2 — —ds.
(4.26) 5 /0 2 ds
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3/13 —1/4
/ /e,

In part (b) above, the rate is always faster than A,,” ", and approaches the optimal rate A, S
B1 becomes close to 0. Therefore, the loss of efficiency due to the weaker assumption for the noise is at
most 8% in terms of rate of convergence. We can also observe that we have exactly the rate A, 3/ 13,

irrespective of the value of 8 in (0, 1), if instead of (4.25) we take
_z 3 _2
(4.27) hp < Ay '3, up = Ap 12, kn =< A, 13,

Now we turn to the case §; > 1. In this situation the bias term R} in (4.21) is no longer negligible
and we need to de-bias our estimators. We will restrict our attention to the case M = 1 and, similar
to [12], we can use

(€ —aCwp

N % [~
(4.28) O = 2 (B - A N
C(4)%Z — 80(2)? + 160(1)?

Uz dn
Then we need to use part (b) of Theorem 3, with ' = 1/2 in case (a) and ' = 0 in case (b) below,
and always n = 0.

THEOREM 7. Assume (O) and (H) with k1 =1 and r < $1/2 and either M =1 or B2 < 1/2.

a) Under the assumption (i) of Theorem 5, the sequence A;1/4(6,§” — C4) converges stably in law
to a variable which is defined on an extension of the probability space and which, conditionally on F,

is centered Gaussian with variance given by (4.24).
_ 2468
b) Under the assumption (ii) of Theorem 5, the sequence Ay *°**"* (CF — C}) converges stably in
law to a variable which is defined on an extension of the probability space and which, conditionally on

F, is centered Gaussian with variance given by (4.26).

The results of the above theorem hold irrespective of whether (1 is smaller or bigger than 1, and the
rate in case (b) of Theorem 7 is faster than the rate for C{* in part (b) of Theorem 6 when 5 < 1, but
of course we need the additional assumptions r < 1/2 and either M =1 or 83 < (31/2 for Theorem 7.
Note also that under (N-1) and upon making the choice (4.27) for the tuning parameter, we also have

the convergence of A,, 3/ 13(6{” — C}) to exactly the same limit as above.
5. Proofs. We begin with the following lemma:
LEMMA 8. If X satisfies (H’), it also satisfies (H).

Proof. We assume (H’). Observe that (H'-iii) implies that 3, is the Blumenthal-Getoor index of F',
and [(|z]” A1) F™(dz) < oo for any 7/ > By,

Let p™ be the jump measure of the Lévy process Z™. This is a Poisson random measure with
compensator ¢ " (dt,dx) = dt ® F™(dx), and by hypothesis the p™ are independent when m varies,
and also independent of W and p. We aggregate the measures p and the p™’s as follows: we replace
the space E by the union E of E and M copies E, ..., Ey of R\{0} (another Polish space), and set
P(A) =p(ANE)+>"_ p™(AN Ey,) for any Borel subset A of E. This is a new Poisson random
measure, with compensator g (dt, dz) = dt®7(dz), where 7(A) = n(A) when A C E and j(A) = F,,,(A)
when A C E,, for some m.

We consider the functions f,,, and f/, on E defined by

0 iftzé¢ E,
ml{mgl} ifz=x€ B,

0 ifz¢ E,
x1{|x‘>1} ifz=x¢€ E,

@) ={ e =
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By virtue of (2.8), each Z™ has the representation

Z{" = (x 1<) * @ —¢™)e + (@ Lggis1y) *28 = fn ¥ @ — @)t + fr, ¥ Dy

Therefore, the processes X and o of (2.7) and (2.9) can also be written as

X, = X0+f0b ds+f008dW +6x([D—q)t+0 *p,,

5.1

(5.1) Ut200+f0 ds—l—fOH"dW—|—f0H"’dW’—|—5”*(p—g)t+5 * Dy,

where
=, [0 ifz=z€e¢FE <10 = |t 2) ifz=z¢e¢FE
5(t’z)_{aﬁfm(z) itze By, 5(t’z)_{a;zf;n(z) itze B,
o = [ 07(t,2) ifz=z€F tors = | 07(t, 2) ifz=z€F
0 (t’z)_{ HO™ f(3) ifze By 0 O (t’z)_{ HI™ ! (%) ifZ € En,

_ Letting J;,, be an 7-integrable bounded function such that (2.6) holds for &',07,8"7, it is clear that
5,0',69,6'7 satisfy the same for the 7-integrable function J,, defined by

= | Jn(z) ifz=z2z¢FE,
In(z) = { Gullzl” A1) ifZ =1 € En.

for a constant @, depending on the bounds on 7", H;""™ when ¢ < 7, (recall that here 7’ is arbitrary
in (1,2), implying f(\a:|’"l A1) F™(dx) < oo for all m). It is also obvious that J satisfies (H-i).

It remains to prove the existence of a decomposition (2.5), such that F/ and a™ satisfy (2.6) and
(H-ii). The spot Lévy measure F; of § * (p — @) is given by, for any Borel subset A of R\{0}:

Fi(A) = Z/ (@"x) F™(dz),

|2|<1}

hence the symmetrized measures F; and F}, satisfy the same relationship. Then (2.5) holds with

e W”Va’”,
M
—m m Bmay®
Fi(dr) = mzzl <f1A("t ) F™(d2) + [t cpol<1 /oy y fapiesm 92 f{1/|am\<|x\<1} Eiia d’““)

Our hypothesis on 7" implies that each a}” is cadlag adapted satisfying (2.6) and (H-ii). Moreover,
when t < 7, we have |a}"| <T',, and |F'™|(z) < T',/|z|" for x > 0, hence after a simple calculation

M

Fi@) <> (n

m=1

o]"

’1

1 /
+2(1+15717) (Lipeny g 1{az>1})> jf,

for a suitable constant I}, depending on r, I';,, M only. So, we have the last part of (2.6). This completes
the proof. O
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5.1. Strengthening the assumptions. Below we take 7 = 1 when 3 < 1, and 7 = 7’ otherwise, so
in all cases 7 can be used in place of 7/ in (H), and can be chosen arbitrarily close to 31 when 57 > 1.
The finite set ) is fixed throughout, and y and 3’ are always in ). It is also not a restriction to assume
that A,, < % for all n.

We introduce the following strengthened assumption (recall ko as defined in (3.1))):

Assumption (SHON). There is a constant I' such that

(i) We have (H), (O) and (N-k3) with 71 = oo, we write J = Jy, and moreover we have |§'(.,z)| <
LJ(z) and |67(.,2)|> <TJ(2) (so &',6° are bounded) and §'° = 0.

(i) We have for all t:

(5.2) AN < 1+Tt.

LEMMA 9. If Theorems 1 or 2 or 3 hold under (SHON), they also hold under (H), (O) and (N-r2).

Proof. 1) According to the classical localization procedure, based on stopping (F;)-adapted processes
such as X, 0, \,v at or strictly before (F;)-stopping times, it is enough to prove Theorems 1 or 2 or
3 under the Assumption (i) of (SHON). So below we assume (SHON)-(i), which in particular implies
v > 1/T for a constant I'.

2) In this step we construct another sequence @, with the associated sampling scheme (7"(n, 1))
and counting processes N/ by (2.10) and (2.12), in such a way that we have:

(5.3) (i)  this scheme satisfies (O) and (5.2),
' (i) P(Bj*) — 1, for all t, where B} = {T'(n,i) = T(n,q) for all i with T'(n,7) < t}.

The construction of ®" is as follows:

Pl = {‘I’? i< Ghere Gu=inf(j>1: ST <jA, 1), S'=A Z]:qw
CTL i > 4, " J= 2P =S A
Observing that £, is a stopping time for the discrete-time filtration (KI");>o, it is clear that ®" satisfies
(2.11), with the same constants I'(p), relative to K7, hence a fortiori relative to K" = a(@}” 2§ <i).
Recall that Ay > 1/T". Then T'(n,i) = T"(n,i) > (1A, —1)/T for i < £, hence T'(n, {,) = T(n, l,) >
(6, — 1)A,, — 1)/T', whereas T'(n, ¢y, + j) — T'(n,4,) > jA,/T. We then deduce that T"(n,j) >
((j—1)A, —1)/T for all j > 0. Since T"(n, k+1) > ¢ implies N/™ < k, we deduce that indeed N;™ < k
as soon as kA, > I't + 1: so indeed (5.3)-(i) holds.
We now turn to (5.3)-(ii). Since T"(n,i) = T'(n,i) when i < ¢,,, whereas T'(n,i) > SI/T', this is
implied by the property

(5.4) t>0 = P(Sp >t)—1.

Observe that S%, =t = Ay /2 (@0 — 1) + (An[t/An] = 1). (2.11) implies B(®? — 1] K2,) =0
and E((®7 —1)? | K ;) < K for some constant K, whereas ®? is K'-measurable, hence a classical
argument yields

[t/A0]
E((S%/a, — D)?) < 24, + AiE( 3 (@r - 1)2) < 2A2 4 KtA,,.

i=1
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n P n u.c.R- 3 . m
We deduce that S[t/An} — t, hence S[t/An] =L ¢ as well, and thus 6,, = inf (t : S[t/An} <t- 1)
satisfies P(6,, < t) — 0 for any t > 0. Clearly, 0,, = ¢,,A,,, whereas Sp > 8p 1 >0 —1=Ap >0, 2.

Then P(S; <t) <P(6, <t+2)— 0. We thus have (5.4), and (5.3) is proved.

3) In the previous setting we also construct a new noise process as follows. Let (p;)i>1 be a sequence
of i.i.d. N(0,1) variables, independent of all T'(n, ), T"(n,4), eI and of Fs. Then we set £ = el if
T'(n,i) = T(n,i) and €] = p; otherwise, and also Y™ = Xy, ;) + 'y’T,(m)egn. We have Y/ = Y
if T'(n,i) = T'(n,i), and otherwise Y™ is a fictitious observation. However, the family (Y;") satisfies
(SHON)-(i) and (5.3), hence also (SHON). Thus, by our hypothesis the variables Z'(y)" constructed
in the same way as Z(y)y, on the basis of the sequence Y;™ and the sampling scheme T"(n, ), satisfy
the claims of Theorems 1 or 2 or 3 for any given t.

Since obviously Z(y)} = Z'(y)? for all y € Y, in restriction to the set By*, whereas P(B}') — 1, we

readily deduce that indeed the variables Z(y)} also satisfy these claims: this completes the proof. [

Below, (SHON) is in force. Recalling v; = ~;2, this implies for some constants I' > 1 (big enough to
have (5.2)) and I'(p) and all p we have (recall that if a process V' satisfies (2.3),4 or (2.4)4 then 1/V
satisfies the same, as soon as both V and 1/V are bounded):

‘bt‘7 ’O-t|7/ a?% ’bﬂ, ’Hﬂ, ‘Ht/(f’v Yt 727 72/7 )\t7 1/)‘t S Pv ‘/Yt(p)‘ S F(p)v
‘5(t7z)|r < J(z), lég(tvz)P < J(Z)7 ’5/(t72)| < FJ(Z)a 1{5’(t,z)7$0} < F'](Z)a
Xt, 0, My 1/, (@)V/P% ) and vy, ) if kg = 0, satisfy (2.4),,

5.5 .

( ) Xt, bta 0t, Htga J((;gf/)wa VYt 727 715(3)7 Ata 1/)‘15? (a;n)l/ﬂm Samey (2'3>2,17
Ar and 1/ satisfy (2.3), 5,
Fi(2) < o7, [F(2) < 45

Below, K is a generic constant, changing from line to line, and possibly depending on r,r’, M, 3,,, T,
and sometimes on some extra parameter ¢ such as a power or on the set ), but never on n and the

various indices 4,7, ... or variables w,y, ... which may occur. Analogously, if U, = U,(i,vy,...) and
U (i,y,...) are two sequences of variables possibly depending on y € )} and on indices i, . . ., we write
U, = O(U)}), resp. = o(U)}), if U}, = 0 implies U, = 0 and U, /U], (with the convention 0/0 = 0) is
bounded uniformly in n,%,y, ..., resp. goes to 0 uniformly in ¢,y,... as n — oo.

We end this subsection with a general consequence of the properties (2.3) and (2.4) relative to an
arbitrary filtration (L¢):

LEMMA 10. Suppose that a (L¢)-adapted cadlag process V satisfies (2.3)q,4, resp. (2.4)q, with some
constant K for all finite (Ly)-stopping times T < S. Then we also have (5.6)4,4, resp. (5.7)q, below,
with the same constant K, for any pair S,T as above:

5.6 E( sup |Vs—Vel? | £r) < KE((S—T)7| £1).
s€[T,S)]
(5.7 E(Vs— Vi | £)] < KE((S —T)7 | £7).

Proof. We prove that (2.3), , implies (5.6)44 only, the other case being analogous. We fix two (L£;)-
stopping times 7' < S and let Y = E(sup,cipg) [Vs — V|7 | L7) and U = E((S —T)¢ | Lr). We
need to prove that the two Lr-measurable sets By = {Y > KU} and B_ = {-Y > KU} have a
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vanishing probability. Define another stopping time 7% < S by setting 7", =T on By and T, = S on
the complement BS. Observe that E(supe[ﬂ?s} Vg — VTH‘]/ | L1) vanishes on B{ and equals Y on
By, hence as soon as P(B1) > 0 we have

E( s[ups} Vs — VTL\‘I') =E(Y1p,) >KE(Ulp,)=KE((S—-T)"1p,) = KE((S - T})9),
s€ Ti,

which contradicts (2.3)y 4. Therefore P(B,) = 0, and P(B_) = 0 is proved analogously. O
5.2. Properties of the sampling scheme. We first prove (2.13):
LEMMA 11. We have the convergence (2.13).

Proof. We use the variables S of the proof of Lemma 9, in which St o= S[’; Al =2 ¢ was proved,

and we set
[t/An]

Al =A,NP,  HP=T(n,[t/An]) = An Z AL D7,

By the subsequence pr1n01ple it is enough to prove that any 1nﬁn1te sequence nyj contains a sub-

sequence nj such that A i — A; for all ¢, for all w outside a null set. Note also that, from any
subsequence one can extract a further subsequence such that the convergence S? — t holds, outside
a null set again, locally uniformly in time. In other words, it is enough to show that if g?(w) =t
locally uniformly in ¢ for some given w, then we have A} (w) — A (w) for all ¢ (then the convergence
is automatically locally uniform).

Therefore, below we assume S7'(w) — t locally uniformly, and omit to mention w in S™ and also
in A\ and H™. The definitions of H" and S™ imply H = fot Aprn dS?. (5.5) yields HP, . — H}'
K (S}, —S?), hence by Ascoli’s theorem, from any subsequence we can extract a further subsequence
n' such that H™ converges locally uniformly to a continuous nondecreasing limit H. Picking any
g > 0, we denote by t1 < to < --- the times at which ¢t — \; has a jump of size bigger than e, and set
Ay = [0,8]\(Ui>1 (ti — &,t; + €]). The modulus of continuity wy(p) of A5 = s — D is1 A 1<y on
[0, ¢] satisfies limsup,_,q wi(p) < €, whereas H, 7" Hy locally uniformly, so lim sup,,, sup,e A, A '
Am,| < e. Thus, — fot Am, dS7'| < 257 + K [, dS" , which in turn goes to
2¢t+ K [,, ds < Ke. Since ¢ is arbitrarily small, we get HY — fg Mg, dS™ — 0. Another application
of S* — s for all s yields f(f A, dS? — fot Ap, ds. Thus H; = fg Am, ds, so H is continuous strictly
increasing and its inverse H ! is A, as defined by (2.13). Therefore H is uniquely determined and the
original sequence H™ converges to H = AL

Now, the definitions of A} and H;* imply that they are right-continuous inverses one from the other,
hence A} — H, 1 — A, and the proof is complete. O

We already introduced (H}'), the smallest filtration containing (F;) and with respect to which 7T'(n, 1)
is a stopping time for all ¢ > 0, and the o-field K2 generated by the variables (® : i > 1). We will
also need the filtration (H?) which is the smallest one containing (F;) and such that K% C H? (below
we prove the intuitively obvious fact that H} is bigger than H}).

Unless it vanishes identically, the noise is not measurable with respect to the previous filtration. To
accommodate the noise, we define the following o-fields:

(5. 8)

G =My o) G <i),  Gr=Hp,y\oEhj<i), Gr=HL\o}:j<i),
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with the conventions G = Fy and gr = ﬁg and ég = ﬂgo. Note that the pre-averaged variable }71"
is g{jrhn—measurable.

LEMMA 12. a) We have HP C H} and H? = HL .

b) Any cadlag (F;)-adapted process satisfying (2.3)q.q, or (2.4)q for all finite (F;)-stopping times
T < S satisfies the same for all finite (H})-stopping times T < S.

c) Any (F;)-martingale is a (H})-martingale, hence a (H})-martingale as well.

d) Any integrable H -measurable variable Y satisfies

(5.9) E(Y | G7) = E(Y | H)-

Proof. First, (c) is a well known result because (H}) is the initial enlargement of (F;) by the inde-
pendent o-field K2, and it is also a trivial consequence of (b).

For (a) we first prove by induction on i that each T'(n,i) is a (H?)-stopping time. This is obvious
when i = 0, and we have (recalling oy > 1/T)

{T(n,i+1) <t} ={T(n,i) <t}NA, with A= {7, <(t—T(n,i)/(Anrrmi))}-

If T'(n,i) is a (H})-stopping time, and since ®7,, is H{-measurable, we have A € ﬁ%(n ;) and thus
{T(n,i+1) <t} € HP. This, being true for all ¢, implies that T'(n,i+ 1) is also a (H})-stopping time.
Therefore H C H? for all ¢, including ¢ = co. On the other hand, @O = Foo V KX is obvious, and
@7 is Hy,,, ;-measurable by (2.10), so K, C HZ,. This yields Hl, = HZ, and (a) is proved.

Before showing (b) we give a description of the (H})-stopping times S. We consider ®" = (&%),
as an E-valued random variable, with the Polish space E' = Rl}l* and its Borel o-field £. Since HP =
FiV Ky, we have {S >t} = {(w, " (w)) € B} for some F; @ E-measurable subset By of {2 x E. Setting
S (w,¢) = inf(s € QT : (w, ) & Bs), so {w: S'(w,¢) >t} = NseQn(o,t) {w: (w, ) € Bs} belongs to
Fy for all ¢, and we readily deduce that

S’ is F ® E-measurable on Q x E,

(5:10)  S(w) = 5w, @"(w)),  where { (ii) S'(.,¢) is an (F;)-stopping time for each ¢ € E.

At this stage, we can prove (b), say in the case of (2.3), 4, the other case being analogous. Let T < S
be two finite (H})-stopping times, with which we associate S’ and T as in (5.10). Upon replacing
T' by T' A S, we can assume T" < S’ identically. Let u be the law of ®" (a probability measure on
(E,€&)). By the independence in Assumption (O), we have

E(supseirs) Vs = Vrl")) = [E(swoir 3).503) 1V~ Vi
K [E(S'(..¢) = T'(, 9)|7) u(d)

IN
|| @\

1) n(
KE (|S T|),

where the inequality above follows from (2.3),,, applied with the (F;)-stopping times S’(.,¢) and
T'(., ¢). This proves the claim.

For (d), let Y" and Y be the left and right hand sides of (5.9). It is enough to prove that E(Y'ZZ') =
E(Y"ZZ') for any bounded M. T(n-measurable Z and o(e} : j < i)-measurable Z'. When Z' =

H;fll () for bounded Borel functlons fj, we have E(Z' | HZ)) = Hl VE(f(e?) | HY) by (N), and
each E(fj( )| HY) is H (- measurable (use the last part of (2.10)) hence IE(Z’ | H) as well. By
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a density argument it follows that E(Z' | HL,) is H7. T (i)~ Measurable for any o (e} : j < i)-measurable
Z'. Therefore

E(Y'ZZ')=E(YZZ)=E(YZE(Z'| Fx)) =E(Y'ZE(Z' | HL,)) =E(Y'ZZ"),
and the claim follows. O

This lemma will be used very often, typically without special mention. Its claim (c), for example,
implies that X and o are semimartingales satisfying (2.1) and (2.2), relative to the filtration (H7),
with W, W’ being (H2)-Brownian motion and ¢ still being the (#})-compensator of p, and the same
if H7 is substituted with H'. Another application is the following estimate, easily deduced from (2.11)
if we condition with respect to H%(nﬂ.), hence true as well if we condition with respect to G;': for all
integers j > 1 and all p > 0 we have

(5.11) E((T(n,i+j) = T(n,i))" | GI') < Kp(jAn)P.

In particular, in combination with Lemma 10, this yields that, for any cadlag (F;)-adapted process V,
we have for all j =1,...,2k,h, (so jA, < K) and p > ¢

E(SUDser(ni),r(miti) Vs = VemalP 1 G7) < K(jAR)? if V satisfies (2.3), ,,

5.12 .
(5.12) | E(Vir(ni)45) AT(msits) — V1(niy | G| < K(jAR)1 if V satisfies (2.4),.

This and (5.5) imply the following estimate, uniform in z € E:

(5.13) E( sup 10(2,8) — 8(2,T(n,1)))? | G") < KJ ()" jA,.
s€[T(n,i),T (n,i+7)]

Moreover, when 2,y > 0, we have 257 —yfm = B, 4=z —13)+O(|Jx—y|?™) if B, > 1 and zPm —yPm =
O(|lz — y| + | — y|®) if B, < 1. Therefore, using (5.5) again, we deduce for p > 2:

E(SUPse(rini) Tnits) 105 = 07 " | GF) < K (jA) PP /DM

| B (i s synr(mitg) — V| G| < K (GAR)P2.

(5.14)

5.3. Estimates - 1. The estimates (5.12) will not be enough for our purposes, and we proceed to
complement them. The setting is somewhat complicated (because of our future needs), and to obtain
notation and statements as simple as possible we fix n and 4, but it is important to keep in mind that
the (varying) constants K or K, below do not depend on n,i.

We have a bounded sequence 9;‘ of numbers, with which we associate the process

2hy—1
O = Z ‘9? LT (it j—1))T(nyi+3)) ()-
=1

We denote by A? the set of all cadlag (H}')-adapted processes V satistying V; = 0 for ¢t < T'(n, ). If
V e A? and U is a (H}')-local martingale we define the processes (all in A7):

t t
(5.15) L(V)t—/ 0.V, ds, L/(V,U)t—/ OVidU,,  L'(V) / /@ Vydv)
0 0
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and also (for 0 < j < /) the variables

Vie= V% = sup Vs = Vit |-
SE€[T(nyi+7),T (n,i+5+)]
Suppose that we are given nonnegative H. T(

)—measurable variables ¥ and ¥ and HT ) -measurable

n,i T(n,i+j

variables U, for j = 1,2,.... We let P(V), P(T), P(U ;) be the sets of all V' € A? such that, for all
0 < j < 2h, and all reals z > 0 and constants K, with K1 = 1, we have:

3

for P(0) = [E(Vipnirs) = Vo) | Hipa)| ST, G =1,...,2hy,
(5.16) for P(U): E((Voon,)” | Hiy) <0,
for P(V;): E(A(n,i+j+1)*|Vj > | HE

)

(mﬂ.)) <K.UAZ, j=1,...,2h,.

These classes should indeed be indexed by 7 and n, as well as the process defined just below, but as
already written we omit these indices.
There is of course a connection between ¥ and the ¥;’s, expressed in the following lemma:

LeEMMA 13. IfV € A? we have for all p > 2:

(5.17)
_ K, b2 22.176_1 E(|Vjj+1P | Hiay) WV is a (Hi)-local martingale,
E((Vo2n,)” | Hrgm) < ’ !

i 5 BV gl | M, ) otherwise.
Hence if V € P(¥;), we have V € P(T) with

~ B
o V= ZJQ 0 IE(‘I’J' | H?’(n,i))’
g

5.18
(5.18) = KZ?Z’(L) 'E(; | Hiniy) oV is a (Hi)-local martingale.

Proof. The second part of (5.17) follows from Vgap, < Z%" 'y Vjj+1 and Hoélder’s inequality.
When V is a (H}')-martingale, the Burkholder-Gundy mequahty for the discrete-time local martingale
(V(n,i+j))j>0 and Hélder’s inequality imply

2hy,—1
E( su Vrmiein|P | Hopen: §E<< Vi ) Hi )
(ng§2£n_1 | T(n,z+])| | T(n,z)) ]go ( J7J+1) | T(n,i)
2hy—1
S KBNS T BVl | M),
5=0
whereas Vo on, < supg<j<on, -1 (|Vrm,its)| + Vjjr1), hence
2k, —1
(Voon, )P <2071 sup  [VpgipplP + 2071 Z g+1)”
0<j<2hn—1
and the first part of (5.17) follows. The last claim is obvious (take p = 2 above). O

Next, we give some criteria for a process V € A? to belong to these classes.



24 JEAN JACOD AND VIKTOR TODOROV

LEMMA 14. a) If V' is cadlag (F)-adapted and satisfies (2.3)g 4, then Vi = V/ = V/ ..
to P(U) NP(V;), with ¥ = K (hyAp)? and ¥; = K(A,)4.

b) If V' is cadlag (F)-adapted and satisfies (2.4)4, then V; = V/ — Vt’AT(M
U = K (h,Ap)1.

c) Forw=1,2let YV € A? be a square-integrable martingale for the filtration (”H%(n 0 \ Fi), with
predictable brackets (YV,YV), = fg § ds with o’ bounded. Then if M;" = f(f OV dYY, where ©f = 6O
and ©? = O}, the product V = ]\41M2 belongs to P(V) N P(V;) with

(n,3) belongs

) belongs to P(¥), with

(5.19) U = K(hnAp)?, U = KA, (IMg,° + MG ° + An).

Proof. (b) and the claim V € P(¥) in (a) readily follow from (5.12) for V’. In view of (2.10),
Aln,i+j5+1)is HT(n i+;)-measurable, so by Lemmas 10 and 12 (5.12) for V' implies IEZ(V”_H |

ﬁ’%(n i+j)) < KA(n,i+ j+ 1)7 in the case of (a). It follows that V € P(¥;) with ¥; = K(A,)4.

Now we start the proof of (c). Observe that, under a regular version of the ’H%(n’i)—conditional
probability, the new sampling scheme T"(n,i) = T'(n,i + j) for j > 0 satisfies (O) for the filtration
F| = H%(n,i) V Frn,i)+¢- Thus Lemma 12 implies that YT(n D+t is a square-integrable martingale for
(M (n.iy1¢) and for (Hip, o). Since ¥ = 0 when t < T'(n, ), it follows that Y, hence M" as well,

are square-integrable martingales for (H}) and for (H}). By Itd’s formula,
t

Vi=V(@0):+V(2)+V(QB):, V()= / M}dM?Z, V(2), = / MZdM{, V(3),= (M M?),
0

and it suffices to prove the result for each V(k). This is obvious for V(3), because this process is
absolutely continuous with a bounded density, so V'(3); , < K(T(n,i+k)—T(n,i+j)) for j < k and
because of (5.11).

Next, Doob’s inequality and the boundedness of o}’ and ©} and (5.11) imply first that E((Mﬁf |

H%(nﬂ.ﬂ)) < K(k—j)A, for any j < k, and also that IE((M;"JJrl)2 | HT(n l+])) < KA(n,i+j+1).

The same arguments also yield

n,i+j+1) un
40[+1E(IT nZ-‘ri) M ) st | Hy nl'gj))
KA(n,i+j+ 1)((M07]) + E((M j]+1) | HT(n H—])))

KA(n,i+j+1)(Mg,)* + KA(n,i+j+1)%

E(V(D);,

i | 7

nz+j))

VANVANRVAN

Then, by conditioning on H7.,, ;. ), we see that V(1) € P(¥;) with ¥; given by (5.19) and, since V(1)

is an (H7)-martingale, it also belongs to P(¥) with ¥ = K (h,A,)? by the second part of (5.18). The
same obviously holds for V(2), and the proof is complete. O

LEMMA 15. Let V € A? and U be a square-integrable martingale for the filtration (7—[’%(” ) V Fi)

with predictable bracket (U,U); = fot as ds with as bounded (note that U = W satisfies this).
a) If Ve P(¥;)N P(T) we have L(V) € P(¥) N P(V'), where

2hn—1
~ 1

G20) W= K Vo P)AL W= KA (B4 Y B )
7=0
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~

b) IfV € P(,

) NP(W) the process L'(V,U) is a local martingale relative to (H?) and (H}), and
L'(V,U) € P(¥)) NPV,

where
2hn—1
(5.21) V=K (T + (Vo)) An, U =KhyA, (\Tf + hln > E(Y | H?‘(n,i)))‘
=0
If further V' is bounded and U = W, we also have for all p > 2:
2hy—1
(6522 E(LV W)l | M) < Kyl (%450 D B | Mg )).

¢) If Ve P(L)) mf(@) N 73(@) we have
|E(L(V)7(nit2h) | H?’(n,i)”
- _ 2hp—1
< K (hnla® + (a2 T+ A S BT | W) ).
=0 7
|E(L" (V) (nit2h) | H%(n,i))‘
B _ 2h—1
< KhnBn (hadn® + ((haBn)?? + B) VO + 80 3 E(/T; | Hi,))-
j=0 ’

(5.23)

Proof. a) The process V' = L(V) is continuous and belongs to A'. We have, uniformly in ¢ €
[T(nyi+7), T(n,i 4+ 1),
t

Vi = Viniss) = O /T(n i+j) Vsds = O(Vor1 An,i+j + 1)),

hence V;’jﬂ < K(Voj+ Vjj41)A(n,i + j + 1). Thus, since Vo is Hp (i j) measurable, we have
V' e P(¥)) with W) given by (5.20). Then (5.18) applied to V' yields V! € P(¥") with V" =
hin, E%”_l E(W | HT(n Y ), which is smaller than ¥’ as given by (5.20), and the proof is complete.

b) Exactly as in (b) of the previous proof, U is a square-integrable martingale for the two filtrations
(H?) and (HZ), so the process V' = L'(V,U) is a local martingale for these two filtrations as well,
and it vanishes for ¢ < T'(n,4). The same argument as in (b) of the previous lemma again yields for
all p> 2 if U = W and for p = 2 otherwise, and upon using the Burkholder-Gundy inequality:

n T(n, 1 2
E((Vije)" | Himiry) < Kp0iaB((Jr ((mjjﬁ) (V) ds)"” [ Hinit)
< KpAWitj+ PP (Vo) + E((Vige)? | Higini)-

Using this with p = 2 gives us V' € P(V}) for ¥’ as stated. The proof that V' € P(V') with U’ as
stated is the same as in Step (a), upon using now the second part of (5.18) for V’. o
Assume further V bounded and U = W. Then obviously (V;;+1)? < K, (V;;j11)* and (Vo ;)P <

n 2
Ky (V)% hence E((V7 ;)P | HT(W.)) < K, AP (E (E(Y; | Hi i) T ) Applying the first part of
(5.17) to the (H})-martingale V', we readily get (5.22).

¢) (2.10) yields the decomposition

LOV)Tman) = Yoo 00 (M ¢+ ¢, where ¢ = ApA (i Vignir) @110
n n n T n,i+j+1
CJ/ = AnVT(n,H—J)(>‘T(n,z+J) /\T(nyi)>¢i+j+1’ CJ// - f ((n 1+J] ) (V- VT(n’i—H)) ds.
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(0)-(ii) yields E(¢}' | Hip mﬂ)) = AnVr(nit5)AT(n,i) and a similar property for ¢;*. Then, [E((} |
Hin l))| < KA, ¥, and (5.5) applied to \; and the Cauchy-Schwarz inequality yield IE(C" | Hin l))| <
Khi*AY?31/2 whereas [E(G™ | Hip m))| < KALE((9;)Y2 | 7—[%7171,)) is obvious. The first part of
(5.23) follows.

In the same way, we have L" (V) 25,) = Z?h n=lgn [ Sy ¢;"", where

1 2h,—1
Cjn ) - AQ Zgh ]+11 92+1)\ T(n, z)VT(n z—l—j)(I)zT'L—&-j—i-l(I)?—i-k-l—l’

n,a __ -
S 5 X Zgh Jt+1 O (AT T(ni+j) )‘2T(n,i))VT(”v"ﬂ)@?ﬂ“@ak“’
G = A0 3 O (e, z+k’) M (i) Vit A i+ 5+ 1Dy,
Cjn,4 ]+1VTTL1+] fT"Z'”H T(n,i+j+1)—s)ds,
Cn

T'(n,i+j)
n,t 1 . .
=00 fTQZ ij)* Ve = Vi, )L 7 41) = ) ds
+>% 2 O 1 An,i+k+1) fT mﬂj) (Vs = Vr(n,its)) ds.

Khp A2, and also that | E(¢™ | Hop (i) )! is smaller than KhY/2AY*T1/2 if o = 2,3, than KA2T1/2
if w =4, and than Kh A2E(( DY Hi iy ) if w = 5. Since h,A,, — 0, All these estimates give us
the second part of (5.23). O

By successive conditioning and the same arguments as above, we see that |E(C}7’1 | ’H:Tﬁ(n Z))| <

After these general technical results we introduce some processes more specifically related to our
problem. For any y > 0 we set

Uly)y = e‘T(y)?, T(y)7 = c(y)ih + a(y)fh + y(y)f  with
(5.24) ()i = y*uphnAnon ct, v(y)t = y*uphy,t dn s
a(y)f =430 [P un™ i A 07 X () il
and also
VA y)i = U+ o)y +Ully =y i =20 U},
V(v = sopidi, V(y)i =V(y, D} —y*V(L,1)7,
Vi, v )7 =V(y,y)¢ +v*y*V(L1DE —y*V(y, DF = y*V (Y, 1)}

Upon increasing I' if necessary, we have

(5.25) <Uy)p < 1.

M=

In view of (5.5), (5.12) and (5.14), for U™ = U(y)" hence for U" = V#(y,3/)", U" = V(y,y')" and
U™ =V (y,y)" as well (upon using (5.25)), we have for j = 1,...,w, = 2h,k, and p > 2:
‘ (UYT’L(n i+7) n T(n,i) | gln)l < KX”J? E(‘U(y)%(n,zﬁrj) - U(y)?“(nﬂﬂp ‘ gll) < KX(p)n,j>

M
ooy X = U b GO A (A + 2w (A1),
. m=1

M
X(P)ni = U P Ap + (hpAn)P (k1ulj A, + S U™ (G A,)NPPr/2))
J

m=1
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Moreover, an expansion of the exponential function gives us

VEy,y)p = O(ulhnA, +Z—§+mu4(h AL)?),
Vo) = 2u) haDntis, (. y) o5 x(Ba P+ 20720 (o S e+ L G e)”
+3 yryul (b An¢n A+ 7 ¢n ’)’t)
+o(un1h JAVEE h4 —I-/-flu (h A n) )
)¢ = O(un hA—i—h—Irmu(hA))
(yvy/)? = 2h Anunlw& (Z/ y)‘bn v (/Bl)at t B .
+§y2y’2(y 1)(8y’2 1)ub (hnAndn cidi + 7= dn )
( nlhnAn + Z—Z + mui(hnAn)‘l).

(5.27)

5.4. Estimates - 2. In this subsection we prove various estimates for a number of arrays of vari-
ables, which we presently define. Since we take differences of two successive pre-averaged values, it is
convenient to introduce the following:

(5.28) ' =-g},  9'=-7, 1<y hn =1,
' 9 =9 by 9 = Tj—n if o < J < 20 — 1,

so that Vﬁrh — 17;” = Z?E’i_l g AL V. Recalling 7' = 7,5 and o7 = o7, ;) and writing 07 (2) =
0(T(n,1),z), we set

. 2hn—1 |
1/}?77’ = ;1 g‘;n 1(T(n7i+j—1)),T(n,i+‘j)] (t), p:ql — Uno'? fooo ’l/]?’l dW57
n,2 n,i n,3 n 2hp,—1 o o
P =up fy [5 07 ()95 (0 — ¢ )(dt, dz), P = up] Z gren .
oh= ol el p?’ : Py = un (V" Yﬁm)
and e
Fn k" 1 (co (yPth(jkn+l)) U(y)%(n,th(jknJrl))) ifw =1,
v 1 n ' B
g(y);u n_ ? k 1 ( (prhn(jkn+l)) COS(ypghn(jan))) ifw=2,
B 2izo (UG T(n2hn (jkn+1)) U(y)%(n,]’wn)) if w=3,

f(y)? m St £
QY)ns = N o<jcive fug {EWTH < 53, Qe = Nyey (AWni N Q2Y)ne)-

We also introduce a (long) list of numerical sequences, which all go to 0 by (3.2), and where P is



28 JEAN JACOD AND VIKTOR TODOROV

an arbitrarily large integer:

al = oA + U (h D) V2T 02T 2N 4 uPH R PPAY? 1 2 b 2 ANY,
+m( 2 A W)Y+l A, —|—u6hn/ AZ +ub (hy D)2 + udh2 A7),
2 — B Ay 4 U2 (AP + ! (hpAy) /2,
3 =l hpAy, + Koud h_3/2A1/2 uph3,
afl—unhA + Koud hn 3/2A1/2+uh + krut (hnln)?,
a8 = ulk, Ay + roulky*hy '/ 1/2+Zm LU Mk:ﬂm/?(hnAn)Hﬂm/?+mu3kn(hnAn)2,
a(p)n = (03P + ke,
a(p)n = (L) + a2kn?’? + uZkpyhh P A, + 5102 ke (i Ay )P
+ Zm:1 gﬁm krll/\(Pﬁm/Q) (hnAn)p+1/\(me/2).

LEMMA 16. Forallp > 2 and y € YV, we have

(5.29) |[E(cos(ypy) — cos(yp}) | G'| < Kay,,  E(| cos(ypy') — cos(ypl)|” | GI'| < Kai,.
Proof. 1) Since [ ;" dt = 0, we have yp} = 0(6)7, where O(k)! = Z?Zl 0(5)7 and
(V)7 = ypy, - 0@)F = yun Jo~ (o5 = oyt dw,
9(4)? =yun [y fE 07 (2))vs™ (0 — g )(ds, dz),
0(5)1 = yun [y~ (b b”)w? " ds,
0(6)]" = yun [y fE §'(s, 2) p(ds, dz).
2) This step is devoted to proving the following estimates, for any a > 7" and p > 2:
E(|pf"' [P | GF') < Kpryuh (hnfn)??, E(|6}"*|" | G7") < KeugthnAn,
(530) B9 6F) < Kprrud(hada) P2, E(6@) | G) < Kl (ha D)1 +7/2,
E(0(5)7 1 | 61" < Kup(hnAn)?, P(O(6)7 # 0 G") < KhnlA,.

By virtue of Lemma 12-(d) we can always condition on H%(n )

follows from Burkholder-Gundy inequality and |07y | < K, plus (5.11). A trivial reformulation of
Lemma 2.1.5 of [11] entails that, for any predictable function on Q x Ry x E with |8 (¢, 2)|" < KJ(z)
and any two (H}')-stopping times T' < S we have for a > 7 and Z =0" % (p — ¢ ):

instead of GI. The claim for p?’l

E(|Zs — Zr|* | Hp) < KIE(/

(av2)/2
e dend) + ([ (8 de() | Hy).
(ST E (ST E

since J is bounded and 7-integrable, J% is also n-integrable. This with §"(t,z) = 0M2)Yy " and
(5.11) yield (5.30) for pi2. If 8" (t, z) = (6(t, z) — 67(2))¢" and V& = 6(t, 2)/J(2)/" it also implies
with a =7 and T = T(n,4) and S = T(n,i + 2h,) and 7/ is the finite measure 1/ (dz).J ()%™ n(dz):

T ~
B(1Zs - Zil7 | #3) < K [ B( /S Vi = VEI™ deof(dz)| 13 ) o (d2).
E
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Then (5.30) for §(4)} readily follows from (5.11) and (5.12) (and the sentence which follows it) applied
with each V#, plus Holder inequality. Next, (5.5) and [J(z)n(dz) < oo yield

POO) 20107 < B [ JE)Wp(ds dz) | 67) < KE(T(n,i + 2h) ~ T(mi) | G7)

Ry xE
and hence (5.30) for §(6)7 by (5.11).
Next, we apply (a) of Lemma 14 with V' = b, hence V; = b; — byap(n,5), and (5.20) to obtain the
claim for 6(5)7 which is equal to yu, L(V)ap, (with the notation (5.15) and 67 = g*).
Analogously, Lemma 14-(a) with V' = o, hence V; = 01 — 04p1(n,i), and (5.22) yields the claim for
6(2)%, which is equal to yu, L' (V,W)ap,, .

3) We turn to estimates for ,0?’3 and 6(3)?. First, we have for all p > 2:

(5.31) E(|pf° P | G7) < KpubhP?, B(0G)FP | GF) < Kypubhy PPA,.
The first part above follows from Burkholder-Gundy inequality and [g}'| < K/h;, because the (£} :
j > 1) are independent and centered with bounded moments, conditionally on H . Analogously,

w2zl

n ~n n|p/2
E(03)7'" 1 G") < K 1+p/2 Z RATERAL L

Then the second part of (5.31) follows from the last part of (5.12) applied with V =~/

However, (5.31) is not quite enough for us, and we need some further estimates, here and later on.
For any integer w > 1 we denote by J,, the family of all w-uplet j = (j1,...,ju) of integer between 1
and 2h,, — 1. Within J,, we single out the subset J, of those j’s for which at least one j, is different
from all others, and J;| = J,,\J,,. When j € J,, the integers j,, for m =1,...,w take £ = £(j) distinct
values 7j1,...,j¢ and for each m there are s, > 1 integers j, equal to j,,, and further s,, > 2 and
| <w/2 when j € J);, whereas s,, =1 for at least one m when j € J),.

With this notation, we set

(2 3

(5.32) ——— !

DY =B ((yp* )Y | ML), DY =E(0(3)2 (o) | ML),

D = yrug () 3 T1 (g5 ) m ()
jeJyym=1 "
Recalling the properties of the noise, and in particular Vt(o) = 0, we see that
l
D =yt 3 11 (55, ) )G,
(5.33) e l
, b b m m
DI =y g ) S (0 =) TL@E )60, ).
J€T 4 m=1

Recall |g’"| < K/hy, whereas #J" < Kyhyn (wHD/2] We have yt( ) =1 and, for ¢ > 3, the process V(q)
equals a constant when ko = 0 and satisfies the last part of (5.12) and is bounded when k9 = 1, and
~; satisfies the same in all cases, plus the first part of (5.12) when k9 = 0. Then a simple calculation
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shows us that, for p = 2, 4,

DY) 4 |ﬁ?’w’y\ < Ky Liy>o) W’
E(ID]"Y =Dy PP | GF) < Kuma Lz 58

(5.34) el D /2T
. /
B! 1G] < Kot AR + KoK iéi%ﬁ’?l -,
; 22,0,
E(ID"YP 1 G}') < Ku “ww-

4) Since |cos(u + v) — cos(u)| < K(1 A |v|) and | cos(u + v) — cos(u) — vsin(u)| < Kv?, we deduce
from (3.2) and (5.30) and 1/77 < 1 that

E(| cos(ypy) — cos(yp)|* | GF) < Ka, )
E( cos(ypl) — cos(6(3)7) | gr) < K(h A + up (hnA )1/2+1/7"/)
E(cos(6(3)7) — cos(6(2)7) — 6(3)1 sin(A(2)7) | G) < Ku2A,, < KhyAy,

(5.35) (
E(cos(0(2)1) — cos(yp?) — 0(2)7 sin(yp}) | GF) < KriuZ(hnAp)? < Khpl,.

The first estimate above yields the second part of (5. 29) for p = 2, hence for all p > 2 as well.

Next, we evaluate E(6(3)? sm( (2)1) | G"). Set 0” = 0(2)r — yp"3 A Taylor expansion of the
function f(x) = sinx around 01” and the fact that the derivatives f(*) of f are all bounded by 1 yield,
for any even integer P > 2,

P-1
n . (D(9\N 1 w) (n 7,3\ w
0(3);" sin(0(2);) = Zaf( Y07 (o) 03)F + O(lyp; | 716(3)71).
w=0
Since E(0(3)7 | HL) = 0 we have E(0(3)7 sin(0(2)7) | 67) = SF_, Ly, where (with a, =
(—1)l/3)
ay B(D™Y cos(yb) | GIY) = O(B(D™™Y 4 | D™ Y|(612 A1) | G1) if w < P is odd,
17 =< ay, B(DY sin(y87) | G1) = O(E(|D""Yo7| | G)) if w < P is even,
O(E(ID{™"™| | 61)) if w= P

We have é;” =0(2)! + yp?’1 + yp?’Q, hence if we combine (5.30) and (5.34) plus the Cauchy-Schwarz
inequality and u2 < Kh,, and (5.31) for the last estimate below, we see that

< K hy, A if w < P is even,
Kul+1h, P2 A2 if w = P.

Then we end up with

~ P+1 1/2 2 1/2
(5.36) ’E(Q( " sin(6(2)1) | g”)\ < K(hnAn —}—ui” 12N, + nluih}/2Ai/2 + Un PA" + Ko UnAn )
KL/ hi/?

5) Now we estimate E(G( " Sln(ypl) | GI'), assuming x; = 1, otherwise this vanishes identically.
First, |sin(ypl') — sin(ypZ +yp;” B2 < K\p"z\" and (5.30) and (5.31) yield

(5.37) |E(0(2)7 (sin(yp}) — sin(yp”" +yp”®)) | GF)| < K2 (ha )2,
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Next, expand f(z) = sin(z) around y,o?’l and use (5.30) and (5.31) to get

3
E(6(2)} sin(yp;” Ty y,o?’g) | gr) = Zowi 0" + O(ulAn/hy), where
w=
o { (92 ypl RUSE if w =0,
' E(0(2)7 1) (ypi™") (o] *)" | G7) = B(O2)F ) (yp"") DIV | GF) if w > 1.
Then (5.30) and (5.34) yield
vt =0, w=23 = | < KuphRHE@G@)F £ (0] | G)]-

Thus |’U?’3| < KulA,/hp < KhpA, by (5.30), whereas f(2) = —f yields \v;m] < K]v?’0|, hence
TL)‘

-n,1l | -n3
=v," +v;”"” + v}, where

5
up A

n

|E(0Q2)F sin(yp)™ +ypi”) | GF)| < K|oj*| + K (hn A, +

Another expansion of the function f, around 0 this time, yields vin’o

K 3

—n,w yw n T, w n —n n T, n
v = S E(0Q) (o DGR, R <E(0@7 o | GF) < Kup(hadg) /2,

(use (5.30) again), so we deduce
)

[E02)7 sin(yoy +yol®) | G)| < K (0] + 107 + b + uf (haldn)/? + 2220 4 uSpl/2A2)).

n

6) It remains to evaluate 5?’"’ for w =1, 3. Omitting the indices n,¢ we write

S =T(n,i), T=T(ni+2h,), M =[P dWs, |
Yy = HZ(Wy — Wins) + [ g HZ dW! + [| ¢ [207(s,2) (0 — g )(ds,dz), M| = [} ¢0&'Y,dW,.

Observe that

n,1

P =My, = J o (Jode) dWe (@ = J5 ol (J3(HT ~ HY) W) dW,.

Then

(5.39) A <Kuw“Z|vwk| where vy, = E(u(k) (Mr)" | G').
k=1

Since | [5b7 dt| < K(s — S), Doob’s inequality and (5.11) yield E((u(2)7)? | G) < K(hnAn)?.
For the case k = 3 we first apply Lemma 14 to V/ = H?, then (5.22) with V, which gives estimates
for the process V" = L'(V,W) (with 67 = 1), and finally (5.22) again to the process V" (with
07 = g;"). Upon observing that u(3)} = L'(V")r, and after some calculations, we end up with
E((u(3)™)? | G) < K(hnAy)3. Using the first estimate in (5.30) and u2h,A,, — 0 (since 1 = 1 here),
we thus get

(5.40) k=23 = |[u Mok < KhyA,.
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Since Y, M, M" are martingales for (}}) with integrable powers of any order and moreover (M,Y); =
HE fg s ds (recall that W and W' are orthogonal), we have by a repeated use of 1t6’s formula:

E(G 1G], a1 =BG |G,  where
= [q (W)Y, ds, G = (3+12H3) [ W22 J5ur MiYe awr) s,
G =3 [ 2 ( [3 v naf awy) ds, Cu= 6HG [ (w32 ( [ ME avi) ds,
G = (34 6HY) [ w2 ( f5 (wp)?Yedt) ds, G =12HZ [§ (i) ( [3(07)2 My dt) ds.

First, Lemma 14-(a) implies Y € P(¥;) N P(T) with ¢, = KA, and U = KhyA,. With the
notation (5.15) we have ¢; = L(Y) (with 8 = (¢g/*)2, hence (5.23) yields

(5.41) o] < Kul((hnlAn)? + haAY?) < K (hp Ay + ulhy AY?).
Next, Lemma 14-(c) implies MY € P(¥;) N P(T) with Vv; = K(AZ + A(Mo;)? + A(Yo;)?) and
U = K(hy,Ay)?; then (5.21) with 07 = gi* yields that V' = L'(MY, W) belong to P(¥;) N P(¥) with

(
U = K(hy,A,)? and W = KAn(Afl + A MG+ A MG + Mg ;Mg ), whereas o = L(V)r (with
_ 2 < : — 9.
07 = (g;")%), hence (5.23) yields for k = 2:
(5.42) E(Ck | G| < K (hnln)®.

Note that U = Y satisfies the assumptions of Lemma 15 and M’ (resp. M?) belongs to MY €
P(U;)NP(T) with ¥ = K (h,A,)? and with 1 = K(A2 4+ A(Yo)?) (resp. ¢; = K (A2 + A(Mo;)?))
(for the case of M’ we first use (5.21) and the fact that M’ = L(Y,W) with 07 = ¢7"). Then the
same argument shows that (5.42) holds for k = 3,4. Furthermore, (5 = L"(Y) and (s = L"(M)
with 07 = (gg»")Q, so upon using (5.23) we get |E(Cx | G)| < K (hnAn)?(hnAy + VA,) for k = 5,6.
Summarizing, we deduce

lubvs 1] < K (hnQp +ubh2A5?).
and upon using (5.37), (5.38), (5.39), (5.40) and (5.41), we end up with

|E(6(2)7 sin(ypl) | G7)| < K1 (hnlp + u2h, AL
udh2 AN+ uShy P A2 4 uS (hy A2+ uSh A+ unT P (B )32,

In turn, this combined with (5.35) and (5.36) gives us the first part of (5.29). O

We can in fact cut the p;”* for w = 1, 2 into pieces corresponding to sub-intervals [T'(n, i+j), T'(n, i+
j+ 0] of [T(n,i),T(n,i+ 2h,)] when 0 < j <[ < 2h,, as follows:

+l K 2 +1
(5.43) p”l — Un% fT :Zﬂ s dWs, plnjl nfT((:zzﬂ) Je o7 ()05 (0 —  )(ds, dz),
) n,1
pz,jl_ngl—’_pzjlv

1 2 . . . .
SO /A’ZO,%R = p;”" 4 p;"". In all the sequel, since 7 is an index, we write t = v/—1.

LEMMA 17.  There are G['-measurable real-valued variables B(y)i, and B’(y)”q satisfying

?,

M

Blu)iy = 30 i Bnct =2 30 Iyl un™ Mgy X (Bn) a | < KA,
m=

B'y)i,| < Kui'dn  1<q<hy = B, =-B()

(5.44)

1,q+hn?
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for 0 < g < 2hy,, and such that, if B(y)? ri= Zf}:jJrl B(y)}, and B'(y)} ril= Zg:jH B'(y)},, we have
for all 0 < j <1< 2hy:

(5.45) E(e woy ;. | glﬂ) — M BW B W) 4 Ol (1 — j)A2).

Proof. 1) Set Uy, 4 = yungy" (50 [Unq| < Kup) and V™ = (07 1(7(n,i),00)) * @ — ¢ ). We have

7

YPT = Z i g = Tag (0P AL W+ AL V).
q=j-+1

We also consider the two functions of v € R:
GI0) = [ (1= cos(ua)) Friny(da),  H ) = [ (ur = sin(va)) Frip(da),
R R

which satisfy GT(v) + |H (v)| < K(v? A [v]%1) because Fy(1) = 0 and Fy(z) < K/z1. Observe that,
conditionally on GI', |4, the process o7 (Wr(y ivq—1)+t — Wr(nitq-1)) + Vitmitq—1)+t — VI itq—1) fOT
t > 0 is a Lévy process with Lévy measure Fr(, ;) and variance ¢ for the Gaussian part, independent

of the variable @7, ;. Then,

Cg = }E(eLﬂg | inJrq 1) —]E(e - 1<I>z+q q ‘ngrq 1)’

(5.46) ,
where O = A, (575 (¢ + G (Unyg) + tH]' (Tnyg)).

Note that ]@Z’| <K ugA and @” is G/'-measurable. The moment properties of ®}' g imply ‘ E(ezqh?ﬂ
tg—1) — ez‘ < K|z|?, umformly in z € C with Re(z) <0, yielding

(5.47) | ¢ — e M9 < K(O1)? < KuZPA2.

The variables ©7" = Efn:q oy, satisfy |07 < Kuﬁ(l —q+ 1A, forg=1,...,1, so (5.12) yields

(5.48) (| VO — e Nian®i | |1, ) < KIORE(Ny — Mgl | Glgr) < Kuf A2,
Now, with the notation I'j = exp (L Zin:q u”m), we will prove that

(5.49) | BT | GFy (1) — e Mea194 | <20u8(1 — g + 1) A2,

forq=1,...,l, by downward induction on ¢, and where C is a constant ay least as big as the constants

K showing in (5.47) and (5.48). When ¢ = [ this readily follows from (5.46) and (5.47). Now, applying

successively (5.49) for ¢ + 1, (5.48) and (5.47), and using also the G -measurability of uy and the
GP ,—1-measurability of AP, 07", we get with ay, .. = O1(by,...) meaning |ay,..| < [by,...[:

E(F;‘ | gzn+q—1) = E(Fqul et | gzn—irq 1)
= E(eti e b | G ) +2C 01((1— qJun})
=E(e ‘“3 e >‘z+q 19441 |Gl 1) +2C01((1—q+ %)uﬁA%)
= (e M % 42004 (1 - g + 3)unA})
= e Ma-197 £ 2004((1 — ¢+ DubA2).
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Then (5.49) is proved and, applied with ¢ = j + 1, it yields
E(ePat | Glyy) = e O 4 O(ul(l — )AT).

This is (5.45), upon taking

)

1 = n n (=
(5-50) BW)ig = An(5 000 + GiOna)),  B'W)iy = H}' (ng)-

2) It remains to prove (5.43). The function H is odd with |H?(u)| < KuPt, whereas Ty, j = —0p p, +j
when 0 < j < hy, hence the second part of the claim. For the first part we first observe that, recalling
that F} is the symmetrized version of the measure F; and since the cosine function is even, we have

Gr{u) = [ (1 = cos(u)) Fr ().

Then, recalling (2.5), for simplicity, we write M = ]F’ Z.)], with its tail function M, and also T =
T(n,i). The last part of (5.5) yields G7(v) = SM_ | A, ( )+ O(A'(v)), where

m 1 — cos(vx
Ap(v) = / Bm ar Wﬁ(’”) dx, Al(v) = / (1 — cos(vz)) M (dx).
{l=z|<1} {lz|<1}

First, by symmetry, change of variable and integration by parts, and for v > 1,

m [*1—cosx m [°1—cosz
A (v) = 28 0P aT/o e QT/O et i+ O(1) = 20705 X (B) + O(1),

Second, 1 — cos(vz) < |vz|? A 2 and Fubini’s theorem yield

L 1/jv 1/v
A’(v):2M(1/U)+112/ .%M(x)deK(UT—I—UQ/ xl_rda:> < Kv".
0 0

Therefore we get G7'(v) = 2 Z%zl a?vﬁmx(ﬁmﬂ— O(v") as v — o0, hence by substituting v with vy, ;
and using (5.50), we have the first part of (5.43). O

LEMMA 18.  We have, for any p > 2:

| E(cos(yp}') — Uy, | 91| < Kaj,
(5.51) E((cos(yp}') — U(Y)if ) (cos(y'p}!) — U( )T(m 1 G1) = 5 VF(y: 4 )1y + O(a}y),
E(| cos(yp}) = UW)hn” | GF) < Ky,

Proof. 1) In a first step, we compute the variable E(eLy”?’g | Q\Z”), and for this we set for v € R:

T (v) = E(e | G1).
The properties (2.15) or (2.16) yield [¥7(v) — 1 + v?/2 + LU3(’}/(3))?/6‘ < Kwv%, hence also, with the
notation Wy, ; = yung;"%" (so [Wp ;] < Kup/hy),

2hn—1 2hn—1 2

wn ; . n
( wpy® ‘ gn H \I’ (i+5)An — = An + O(Ui/hi), Ap = H (1 N 27] B éwi’j(/}/(g))wrj)‘
j=0
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We can go further, and compare A, with the variable

2hn—1 —2 —3 hn—1 —2 —6
r_ Wni  tWnj o 3)yn) _ Wniv2 | Wng o/ (3)yny2
A= 1 (- =2 = =2 6) = T (- =27+ 52 (@n?).
Jj=0 7=0
where the last equality comes from wy, j1p, = —wy; for 0 < j < hy,. Since each factor in the

definition Of A, has an absolute value smaller than 1 for all n large enough, we have |A, — A/ | <
Ky 3 2 i (O — ()7 Since E(|(v)7,; — (V)21 | GF) < Kra/jA, by (5.5), we deduce

E(|An — Al | G7) < Krgup /2 /1),

Moreover, }A;l — exp ( - Z?"OI*Q )‘ < Kut/h} and E?”al w2 . = ulpy,/hn, hence

(5.52) E(|E(ewp?’3 |G1) — e Wi | gn) < K(@uih;?’/%}ﬂ +uphy®).

2) We complement (5.24) with (for some fixed y):

Uln = e=cWire—a)i A Um = e Wkt

I 9

so U(y)} = U"U;™. Observe that
(e | GP) = E(ebyp?’lﬂypi E(e wp}? |G |G,
o (5.52) gives us
B — U | G0)] < B0 — U |G|+ K (202 + ).
(5.44) yields |§(y)20,2hn - c(y)é}(n,i) - a(y)%(nviﬂ < Kuj h, A, and E’(y)%?ghn =0, so (5.45) implies
| E(ePlom — U o 1 GF)| < K (uhhnAp + ufhy AZ) < Kulhy Ay,

Taking the real part above, we deduce the first part of (5.51). Upon using cos(z) cos(z’) = 3 (cos(z +

') 4 cos(x — '), the second part of (5.51) is a trivial consequence of the first part, plus the definition
of V#(y,y')?. For the last part, since the mtegrand is bounded, it suffices to show it when p = 2, in
which case it follows from the second part with ' = y and (5.27). O

LEMMA 19. For all p > 2 we have

E((y);" | Gf,,) = O(ad), i
(5.53) EEW);" €05 1 Ghu) = 202 VEW Y Vb juny + O + 52),
E(¢(y }”!p!g?wn): O@(p)n),

(5.54) E(E(y);" | Gu,) = Olan), E(IE);"1 | Gi,) = O(@(p)n),

(5.55) E(E(y)]" | Gu,) = Oap), E(|¢(y);"

wa) = O(@(P)n)-
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Proof We have &(y ) = kl f"o_l (y)i’, where ((y);" is the [-th summand in the definition of
§(y);™". When w = 1, 2 we also set C(y); = E((()}" | Gonn (jka+1)) a0d ()™ = C(y)}" — C(y)["-

1) (5.51) yields |¢(y)}}] < Ka3, and the first part of (5.53) follows. Next, §(y)]1n §(y)1-n is the
sum of the k2 terms a;p = ((y)1¢(y)}/k2. For the off-diagonal terms, say when [ < I’, we have
E(ayp | gghn(jknJrl’)) = ((y)llg(y’)g,l/k%, whereas [((y)]| < K: hence the G7.,~conditional expectation of
the total contribution of those off-diagonal terms is O(a3). (5.51) again gives us E(ay | G jkn+l)) =
ﬁ V#(y’y/)%(nzhn(jkn-kl))_" O(a2 /k2). In view of (5.26) for V#(y,y')", we deduce E(ay; | Grw,) =
ﬁ (V#(y, y’)”(n )T O(a 4 a})), and the second part of (5.53) follows.

Finally, 5( )1” A"+ A" where A" = Zk”_l ((y)} and A" = L Zk”_l ¢(y)*. We have seen
|A’| < Ka3 and, by the Burkholder—Gundy and Holder’s inequalities, we have for all p > 2:

kn—1 kn—1

AP | G < Ko g B(( X €)™ 160,) < Ko 3 B G,

which is smaller than Ko/ Ko/ by (5.26). The third estimate in (5.53) follows.

2) For (5.54) we argue in exactly the same way, except that we now use (5.29) (the proof is in fact
quite simpler). For (5.55) the first estimate directly follows from (5.26), and the second one from the
same and Holder’s inequality. O

LEMMA 20. For allp > 2 and j < [t/wy], we have

E()} | G1,) = Olag, + a5 + o), i
(5.56) E(W)7 W07 | Gu,) = 7 V(y y)?wn +0(05, + 32 +a(2)n + Va(2)na(2)n ),
(If(y) 17| ]wn) =O(a(p (P)n)-

Proof. In view of (5.25) and of the previous lemma, the first and last parts of (5.56) are obvious. For
the second part, in view of (5.53) it is enough to prove that

5
o ~ =
[EE)T" W) | G, < K(oh + 2 +8(2)n + Va(2)ad(2)n),
n
for all z,w =1,2,3 but 2z = w = 1. These properties follow from the Cauchy-Schwarz inequality and
(5.55) with ¢ = 2. O
We also need some estimates on the variables }A/j” of (3.5):

LEMMA 21.  For all p > 2 and all integers j < [t/wy] and k > 2, we have

(Yn | ]wn) 27T(n,jwn) + O(knhnAn + K2V knhnAp )7
(5.57) E(V)E ] G2 ) = vrgogon)) + O Uknfinn + av/FufinBim + ).
E(((}/}n) (27T(n,jwn))k)2 ‘ g}j&w") = O(knhnAn + KovVkphn Ay + ﬁ)

Proof. The properties of the noise and (5.12) with V' = X and V =+ imply for all p > 0:

E((AFY™)? | G7) = E((AZX)2 4+ 77 + 304, | GF) = 297 + O(A + k2v/Ay),
E(AMY| | GF) < K.
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Then (5.12) with V' =~ again yields the first part of (5.57).
Next, let i < j1 < -+ < jgx < i+ wy, < [t/w,] with j; > j;_1 + 1. The properties of the noise and
successive conditioning allow us to write
E(ITL(A5Y™2 16 = B(2yp TS (A3Y™)2 | G7) + O(An + hov/An)
= E 2’YM 1+2 Hk 1(Anyn)2 | g?) + O(knhnAp + K2V knhnAy,)
= E(2v7 TN Any™)? | ggz) + O(knhnAn + kovFnhnBm +v/Bn),
and we deduce by induction that
k

E(TJAZY™)? | G) = (42" + Olkulin A + 52y onlin Aoy + /B ).

=1

In the expansion of (171")]‘3 as a sum of w” terms of the form Hle(A?lY")Q, the number of terms
for which |j; — j| < 1 for at least one pair (I,7) is less than Kwr~! so the second part of (5.57)

follows (notice that A, < knphnA, + 1/kyh, always). This, upon expanding the square ((an)k —
(27T(n,jwn))k)2, yields the third part. O

5.5. Reducing the problem. Below, we basically reproduce Subsection 6.2 of [12], with a few changes.
Observe that

FCW)i, T(2y)E) = Vv y)t',s
and the two arguments of f above go to 0 as n — oo, uniformly in y € Y and ¢t > 0. We have
logU(y); = —Y(y){ and, by construction, L(y)} = U(y )T(n ) ( +&(y)}). Moreover, U(y)y > 1/T
by (5.25) and there is a non random integer ng such that h,, > 2I" for n > ng, implying L(y)} > 1/hy
whenever 1+ £(y)} > 3. Hence we deduce that, if j < [N]'/w,],
n=ng, w€ Qg = Y)j=TW7wjuw,) —logl+£(H)]),

and in particular [c(y)}| < K. Again on the set ,,; and for n > ng, we can expand log(1 + x) around
0 and f around the pair (T(y)Z}(n jwn),T(Qy)%(n jwn)) to obtain (since [§(y)7| < 1/2, and with p(y)”
being suitable G7,, -measurable variables with [p(y)?| < K

) = T — EG+ L EGE +O(IW)I),

F@w)T,e2y)T) = V(4 02wy T PWFEW)T +5(29)7€(29)7 + O(E(W)F 12 + [£(2y)7 7).
In turn, this yields on the set €2, ; and for n > ng again:

cly)t - T(y)%(njwn) s fEw),e2y)7)
(5.58) = W)} — o (P ( JFEW); +p(2y)iE);) 2
1E@W)7 2 +1€C2y)7 | n
+EWT = o V5 0y + OS2 4 Je()nf?).

Recall wy, = 2k,h, and set N/™ = [N/ /w,]. Observe that Z(y)? = VY + SV "1 where
S gn — e P s E2Y) ) = 5 V2 Bt2 0 )

‘/l'ﬁnnyvl — C(
Vn7y72 _Ntn T ()™ 1 =7 .2 2Y'rL y2uZ én C 2 M B 5,B8m T Bm Am
t = % (y)T(n,jwn) ~ o, Ony“us, jwn ) T 2k Ut T R Zl iCU| un™ On" X(Bm) AT,
7= m=

V= 5 (@) = YO — ot TEW) ).
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The reason for summing up to N/", instead of N;™—1, is that the j-th summands above are measurable

with respect to gg. 1w and, in order to apply classical results for triangular arrays we need that, for

any n, the sum over j is taken up to a stopping time for the discrete-time filtration (96 1)un )j>0: this
is true of N/, but not of N/ — 1 in general.
We also introduce the following processes:
n,y,3 i 1 n|2 1 n n,y,4 e 1 (= n n - n n
Vi = 2:0 (5 ‘f(y)]’ ~ 2%, V(y, y)T(n,jwn))a Vi == 230 2k (P(y)jg(y)j + p(2y)j‘£(2y)j)7
j= j=
W R (et ey ?
V== L) Ry = 3 (PR ),
j= Jj=

By virtue of (3.8) and (5.58) we then obtain
4
Z(y)e = Ver =SV S KRPY on Qg forall s <t
=1

Therefore, for Theorems 1-3 it is enough to prove (i) below, and either (ii) or (iii) or (iv), for
appropriate rates vy, 0, with v, /7, — 0 in (iv), depending on the case:

(i) P(Que) =1, 5,V 50 forl1=1,2,3,4,  w,R" 50,
(5.59) () V0,

(iii) (0, V,"Y)yey converges Foo-stably in law,

(iv) (v V!, (0, VY )yey) converges Foo-stably in law.

We prove (i) in the forthcoming subsection, and (ii)—(iv) in the next one.
5.6. Technical lemmas.

LEMMA 22.  We have P(Qy,+) — 1, as soon as

1

(5.60) A,

(a(p)n + a(p)n) — 0 for p large enough.

Proof. Since N/” < K;/w,A,, by (5.2), the claim is implied by the following consequence of (5.56):

Ng [Ke/wn Al a(p)n + a(p)
PO <P WEF) <2 Y BISwP) < Kip TR

O

LEMMA 23. Let G be a cadlag bounded (Fi)-adapted satisfying (2.3)2,4 and (2.4)g with g < 1. As
_ g
soon as U;L((knhnAn)q/\ 54 AZ) — 0, we have

m
Nt

G =, (wnAn > (GN 1 gun) — / e ds> P
j=0 0
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Proof. Recalling (2.10), we have G} = 2?21 G?’l, where
Gt =, J;T(”’“’"(Nf"“” G ds,

G?’Z _ fT(n (g+1 wn) (Gs — Grimjuwy)) ds,

(n ]wn

G?B - = Z U;LAH GT(n,jwn) Z_ )‘T(n,jwn—i-m—l) ((I)?an—i-m - 1)7
N/’VL
G - Z Up, A GT(n Jwn) Z (>‘T(n Jjwn+m—1) — AT(n,jwn)))

and we will show G?’l e 0forl= 1,2,3,4.

The first part of (5.12) with p = ¢ = 1 for V; = A plus NJ* < (1 4+ T't)/A, by (5.2), hence
N{" < Ki/knhnAp, yield IE(|G?’4 ) < Kyl knhn Ay, which goes to 0 by hypothesis (recall § < 1).

For the case | = 1 we need a preliminary result. By (3.2), there is some ¢ > 0 such that k,h, A5 — oo.
Set B, = {A(n,i) < AL~ :i=1,...,N/'}. (2.10) and M\ < T imply A(n,i) < T'A,®". Then, upon
using (2.11) with p = 2/e and again N;* < (14 T't)/A,, we get

[(14+T1)/An] [(14T8)/An]

BB < Y. PIOPAL>1)<(TA)P Y. E(@)) < KA,
i=1 1=1

Since T'(n, w,(N™ + 1)) < T(n, N]' + wy,) and |G| < K, we see that for all ¢’ > 0 we have
K]

P(Gy!

" <P(BE) + —* E(Al *+ (T(n, N + w,) — T'(n, N{* +1)).
Hence, since the set {T'(n,i —1) <t < T(n,z’)} belongs to G, (5.11) yields

PGP >¢) < K

K (ake+ 2 E((T(n,i + wa) = T(n, ) Lrni-n<i<rmniy) )
< Kbt B (AL 4w, S P(T(ni—1) <t < T(n,1)))

1=0
< Kt,s’ (An + U;—LA}qig + U;@hnknAn) < Kt,s/ (An + U;hnknAn)a

where the last inequality comes from our choice of €. The claim for [ = 1 follows.
For the cases [ = 2,3, we use a martingale-type argument. We denote by (7' the j-th summand in

G?’l, and use the property that for each n the sequence (C]" : j > 0) is adapted to the discrete-time

filtration (g?jﬂ)wn

e NIm P Nim P
¢t =E(¢} | G7,,), the claim is implied by the convergences ), |(j"| — 0 and Zj:tl(C;?)Q — 0.
In view of (5.2), so N/ < K;/w,A,, it is thus enough to show that

)j>—1, whereas N{" is a stopping time for this filtration, Then, with the notation

(5.61) 0y, := sup }E(\CJI”\) = o(knhnAy), 0, = sup IE(CJ")Q) = o(knhnAy).
J j
Note that the results of Subsection 5.3 apply for any sequence h,, of integers with h,A, < K, and
below we use them with k;h, instead of h,, and also with 67 = 1, hence ©; = 1, in (5.15), and with
i = jw,. When [ = 2 we have (7' = v}, L(V)1(n,(j4 1)w,) With the process Vi = Gy\ 7(njw,) = GT(n,juwn)>
which belongs to P(¥,;)NP(¥)NP(V) with ¥; = KAL and U = K (kphyAy)? and U = K (kphnA,))2.
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(5.20) and (5.23) yield 6,, < Kv;lknhnAn((k:nhnA )4 N —|—Aq/ ) and ¢!, < Kv'?(k,h,A,)?T9, hence
(5.61) holds for | = 2.

When | = 3 we use (2.10) and E(®, | G") = 1 and E((®},)? | GI") < K to get #, = 0 and
0! < Kv'?kn,hn, A2, hence (5.61). O

LEMMA 24. We have Ethn’y’l 0 forl=1,2,3,4 as soon as

_ 5 1
Un = 0, Eﬁﬂ@”ﬁL%W)+%+ a(2)na(2)n) — 0,
2 a2)n+a(2)n
(5.62) o (2@ 4 G (g i+ < ) >
=2 8
e (”1“"(5;2 Wty k2h4 + = ( An)? ) —0.

Proof. 1) If [ = 1, on the set €,; we have |/c\(y)?| < K and thus f(c(y)},c(2y)}) < K for all
j < N/™+ 1, whereas (5.57) implies E(| Nm|) < K because N;" is a stopping time for the filtration
(Gl )i=0, SO E(JV™ 2|) < K and the claim follows from @, — 0.

2) If | = 2, and in view of (5.24) plus the convergences ¢,, — ¢ and ¢, — ¢ and 55 — 55, it suffices
to prove the following properties:

N/’ﬂ

u ”” (2k: hnAy, Z(c/\ T(njwn) — Ct> 0 when k1 =1,
N/’VL

S 2k A z(a Ny = AP) =30 form =1,..., M,

N/TL

255 ~
= Un Z (27T (n,jwn) — ﬁun)
=
The first two properties follow from the previous lemma applied with G = ¢\ (so ¢ =g =1 by (5.5))
and G = a™\ (50 § = /2 and ¢ = 1 A By, by (5.14)), because k2h2A,, — oo and respectively v, — 0
and u2h,8, — 0 when x; = 1, and Enugm(knhnAn)ﬁmﬂ/kzn — 0 under (5.62). The last property
follows from the same martingale argument as in the proof of Lemma 23, upon using Lemma 21 and
(3.2) and 7, — 0.

3) In the cases | = 3,4 we again use a martingale argument, with 6,, and 6/, as in the proof of Lemma
23, relative to v, V;"¥" instead of GI"'. When | = 3, by (5.56) and |V (y,9)?| < K(kiul(hnAy)?
uphy 2 + un'hyAy) we get

On < Koy (0 + 32 +8(2)n + v/a(2)0@(2)n ),
~ 4 8 261 p2 A2
), < K@?L (a(4)n +a(4), + n1u7;€2nAn + k;fz% 4 Un kf%nAn>

When [ = 4 (5.56) gives us 6, < Kv,(al + o + a))/k, and 0/, < Kv2(a(2), + a(2),)/k2. In both
cases, (5.62) implies (5.61), and the proof is complete. O
LEMMA 25.  We have 5, R -2 0 if

Un (20 + (2)n

(5.63) +a@(3), + a(3)n) — 0.
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Proof. The claim readily follows from N/ < K;/w,A, and (5.56). O
We need another auxiliary result:

LEMMA 26. Under (5.62) and vpal/knhnl, — 0, for any continuous square-integrable (F)-
martingale M we have

N
_ nion P
(5.64) Un ZE((MT(n,(j+1)wn) - MT(n,jwn))f(y)j ‘ gjwn) — 0.
Jj=0

Proof. In the whole proof ¢ is fixed, and the (varying) constant K may depend on t. Recalling (5.2),
we have N/ < m,,, where m,, = 1+ [(1 + I't)/w,A,], and we have m,, < K/k,h,A,. By a classical
result, it suffices to prove the claim when the continuous martingale M is either orthogonal to W and
bounded, or is W itself.

1) We begin with some preliminaries. First, we use the following notation:

M;" = Mp(n, i+ 1)wn) = M7 (n,juwn)s M"™ = Mrp(niton,) — My

Using Doob’s inequality and the properties of the approximate quadratic variation, plus the fact that
M is a (H})-martingale by Lemma 12, we see that

(Mmn+1)wn—2hn

o ) =" ) 5" E )

5=0 i=0 i=1
= E(Mrp(n,(mn+1)w,) — Mo)?) < K.
(the last inequality is obvious when M is bounded; when M = W it comes from E(7'(n, (m,+1)w;)) <
K(my, + Dw,A, < K.)
With any arrays (n;", 2i") or (n};, 2{") of variables, with |2]'| < K, we associate the variables

N/TL
S{nis 2" = ZZ"E( M| G,
, B Nm kn—1 —
S'({ni's 2 Hn = %Z Zo ZX% waﬁzlhn E(U;Lwn—&-thnMj?un—i-thn | gjnwn%
1= =
, N{™ ey —1 2hyp
S ({77?,[72?})n ZO IZ ]wn+2lhn+m Z ]E(njwnJerhn, A;‘LwnJrZIthrm | jwn)
J =
and consider the properties
As: E((nP)? | Grw,) < an, and U2ay,/(knhnAy,) — 0,
Al |E(mp M" | GM)| < an, and Upap/(knhnAy) — 0,
AL E((nP)? | Gr) < ap, and ©2an/(k2hnAy) — 0,
Al ‘IEl(nZ A'M | G 1)‘ < an, and Tpap/(k,Ap) — 0,
AY: E((P)? ] G1y) < an, and Tpan/(k;Ag) — 0

The last part of this step is devoted to proving the following;:

(5.66) A or Ay = S’({n, : f}) —> 0,
Al or Ay = S"({nl, 2] ",
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The claims under A} and AY are obvious because N;" < m,, and |2}| < K. Assuming A; for example,
(5.65) and the Cauchy-Schwarz inequality yields

, 9 72 My kp—1 2
B8 (s A DnP) < K E((L 5 180G, 4o, Mo, 4o, | Ghu)l))

7=0 I=
< Kv m"E e kn_lE 2 gn Mln 2 gn
< EOlZ (M t21m)” | G ) ECMET, o, )7 | Gl
J
< KU mnan]E My ka1 M/n 2 < Kiimnan < K T2 7an
< > Z( Gomtalh,) ) S K g TZhaAn

7=0 I=

implying S’ ({n/", 2"} )n %5 0. The proof of (5.66) under Ay or Af is analogous, hence the claim.
2) By the definition of £(y)?, the left side of (5.64) is 325 _| S({&(y)", 27} ), where 27 = 1/U (y)

Lemma 19 yields that the arrays (£(y);"") satisfy Ay with a,, = @(2),, when w = 2,3, hence (5.62) and
(5.66) yield S({&(y);"", 2"} )n 5 0 in these cases. Now, S({g(y)?l,zf})n = S'({cos(ypl"), 2" })n +

? ’L

S'{U(y T iy 2" n if 2" = 2} when jw, < i < (j + 1)wp, and since M is a martingale the array

(U(y)Z}( )) satisfies A} with a,, = 0 Thus we are left to show that S’ ({cos(ypl"), z]" })n 0.

) %4
Toward this aim we set pl" = p.” Ty o Expandlng the cosine function around p}, for any integer
P > 2 we have

P+1 (—1)2/2(yp*) cos(ypr) if wiseven and 0 < w < P,
cos(yp;) = Z ol ot = (=)@ D2y ph e sin(ypt) if w is odd and 1 < w < P,
w=0 O(|pf?1P+1) if w=P+1.

Note that E((/"T)2 | g7 < Ku2P+2/hP+! by (5.31), so the array (1" PH) satisfies A, for P

large enough because U, /knhy A, — 0 is assumed, so S’ ({n;" P2, 24 0. Observe also that

pad?

if 9" = En" | HL), we have S'({nj"", 2"}, = S’({nmw,zl )n because M and 2" are H-
measurable, whereas with the notation (5.32) we have for 1 < w < P:

weven = 7" = (=1)¥/2DM"Y cos(ypl), wodd = 7" = (=1)WHD/2DMY gin(ypt).

(5.34) yields that 7]7/;"’1 = 0 and, when w > 3 is odd and upon combining with (5.30) and u2 < Kh,,
the array (n;"") satisfies A} with a,, = Kh,A,. Thus for all w odd we have S'({n"", 2/"}), 0.

—_— 77

Now, suppose that w is even. Since |D;"*"Y| < K by (5.32), we see that with the new array z/" =
zz{"D?’w’y which is bounded again and G-measurable, we have

S P = (C1P2 S ([, )+ S e ] < (DR~ D)

tlad 2 7

(5.34) again yields that n; ™" satisfies A} with a,, = Kh,A,, hence S"({n;"", 2"}, 0.

[ad
Summarizing the previous partial results, we deduce that we are left to prove that, for any variables

z;* uniformly bounded and G'-measurable, we have
(5.67) S'({cos(ypl), =1 — 0

3) For simplicity of notation we argue with complex valued variables below, and with the notation
2h
n An

(5.43) we have p} = p}( 5, - We have ]\/ZZ’" = "

M, so by successive conditioning (recall (5.9)

T (niwn)"
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and the (H})-martingale property of M) we get

S'({cos(yp?), 2 )n = Re(S" ({0, 22 )n)s - my = E(e¥Pho2m | GR).

With the notation of Lemma 17, if B; = B(y)}; + ¢B'(y)}; and By = B(y)} 95, + tB'(y)}1p,» (5:45)
yields 0", = Zizl 7", where

nl by =AY, B —wypl, n,2 _ _wypt -\, B; -\, . B n,3 2
npp = eMPioin Tl le WLl gt = ethiol (6 i1 Bl TN )’ |77i,l |§KughnAn

The array (n;;") satisfies Ay with a, = u2Ph2 A% = O(A2) in the case w = 3, and with a, =
u2Ph2 A3 = O(A,) in the case w = 2 (use |B;| < Kubh,A, and the third part of (o 12) with V' = &),
so S"({m;;", 2 )n — 0 in these cases, and it remains to prove S”({n” 20 0.

4) We first assume that M is orthogonal to W. Let W/ = Wrm,iti—1)+t — Wrn,ivi—1) and p’ be the
restriction of p to [T'(n,i+1—1),00) x E, shifted in time by —T'(n,i+1—1): so W/ and p’ are still a
Brownian motion and a Poisson measure with compensator ¢ , relative to the smallest filtration (£}')
to which they are adapted and with £f = K%, \/ G ,_,. Moreover, by Lemma 12 they have the same
properties for the filtration (£; ) which is the smallest one containing (£}) and such that K% C Ly,
and the process M{ = My, j1-1)4+t — M7 (n,ii—1) is a continuous bounded (L;)-martingale orthogonal
to W.

Now, A(n,i+1) is Lj-measurable and p,_, , is £Z( -measurable. By the representation property

n,i+1)
for (L})-martingales, the bounded variable e “/?ii-11 is the sum of an Lf-measurable variable, plus
two stochastic integral with respect to W’ and p’ — g on the time interval [0, A(n,i + )], thus
E(eﬂyﬁzlflvl Mam,ivry | £§) = 0. We deduce S”({n” 2 )n = 0.

When £; = 0 we drop W’ from the definition of (£}). Then the variable e WPli-11 s the sum of an
L{-measurable variable plus a single stochastic integral With respect to p’ — ¢, so the orthogonality
argument above applies also when M = W, and S”({nll , 2"} )n = 0 again in this case.

5) Finally, suppose M = W and k1 = 1. Analogous with (5.46), we have

YY1 T nY oA @ An (G (T k) H (T 1) [ (o807 9 WA / n
E(e i,1—1,1 WA(nz‘—H) | EO) = e “i+Hl-17i+l E(e (n,i+1) WA(n,z‘—i—l) | ﬁo),

and since W A(nyi+) is N'(0, A1 A ), conditionally on L, we deduce that, with A7 = = yol g™
E(ebyﬁzl_l’l Wity | £6) = tALun Ap N1 Py e M1 B
which in turn gives us
E(”Zil AW L) = tALun An ALy 1Dy e
Exactly as for (5.47), we then deduce (since here g = 2)
E(n ALy W | Gl) = LA un Ap ATy, ePhomi N Bt 4 O(uf A3),
Then, using the second part of (5.12) for V = X plus |L;_1| < K, we get

(B AL | Gla) = AL un AN} e Poims NP | G < K (uh A3 + uhnA2),
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and thus (5.45) yields, because ud A3 + ud h, A3 < u,h, A2,
E (" AT W | GP) = tATun A AT € NP0+ O(uphy A2).
Now, recalling (5.45), the real part of the above is
E(Re(n' ATy W) | GF) = APpun AN} sin(A!B' ()7 ap,) + O(unhnA%) = O(uy ™ h, A2).

In other words, the array (Re(nlnjl)) satisfies A7 with a, = Kuy™h, A2, Since @nal/k: hnAy — 0,
we have in particular Tpun'" /2(h A Y2 [k, —> 0 if 51 = 1, which implies T,ub *h nAn/kn — 0 by
(3.2) and 7 > fy: therefore S”({n"", 2" )n 2,0, and the proof is complete. O

zl7z

5.7. Proof of the main results. At this stage, and under (5.60), (5.62) and (5.63), we are left to
proving (ii)—(iv) of (5.59), according to the case. Toward this aim, we introduce a series of conditions:

Nl’n

(5.68) o Z |E(E(W)7 | GL)| — 0,
N/TL
(5.69) ol ZE )P | GRy.) — 0,
N/TL
(5.70) o2 ZE )71 GE, ) — Ty, y)e,

where T'(y, y') will be defined later, depending on the case at hand. Let us mention the following facts,

K(1
based on (5.56) plus the consequence N{™ < ¢ (;Z) of (5.2):

1. We have (5.68) as soon as

(5.71) (ap + a2 +ad) — 0.

2. We have (5.69) as soon as 7~ k 2 (@(3)n + @(3)n) — 0, hence under (5.63) and v, — 0.
3. Under (5.62), (5.70) amounts to having

(5.72) —ZV RS NORTON

A (very) tedious but elementary calculation shows us that, under (3.2), the set of conditions (5.60),
(5.62), (5.63), (5.71) is indeed equivalent to (4.2), and thus by the previous lemmas

(5.73) (4.2) = (5.59)-(i,ii), (5.64), (5.68), (5.69).
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In connection with (4.3), we also set

- up 3 A, = h2A,
Y B3 A + ut (14 k1h2A,)2 "1+ hRA,

Proof of Theorem 1. We fix t > 0 and we need to prove (5.59)-(ii) with 7,, = v, satisfying (4.1).
By a classical convergence result for sums of triangular arrays, since N/ is a stopping time for the

discrete-time filtration (G7,, );j>o0 and each {(y)} is > +1)w -measurable, the three conditions (5.68),

(5.69) and (5.70) for y' = y and I'(y, y): = 0 imply v, V,;"Y — 0. By (5.27) and N;" < ngLlJZ) again,
the third condition is implied by

72 u
. B
Cn = k2(1+h3A —l—muhA)—>0.
The above plus (5.73) are indeed equivalent to (4.1) under (3.2), hence the result. O

Proof of Theorem 2. We have r; = 0 here and v2/k2 = h3A,/(ud + ub'h3A,) = nu/un™. If
Up, = Up, a simple consequence of the estimate (5.27) is

2
k" V(y, ¥)F = wa A (15, (4,5 X (B1) af M + (1 — 02) 52y >0 42 + o(wnAy).

n

Lemma 23 applied with 2/, = 1 and with G equal to a' or ¥2/X or 1/ (which all satisfy the assumptions
of that lemma) plus (3.3) and 7, — n by (4.3) and (5.56) yield (5.72) with I'(y,y’); given by the right-
hand side of (4.5), for all ¢.

Now, by another classical result for the F.-stable convergence in law of triangular arrays, the
property (iii) of (5.59) with the limit (Z(y):)yey holds as soon as, for all ¢ > 0, we have (5.68), (5.69),
(5.70), and also (5.64) for any continuous square integrable martingale M. Then the claim follows
from (5.73). O

Proof of Theorem 3. We have k1 = 1 here and v, and v}, are given by (4.6).
a) Note that v2/k2 = nn/ugl, so if (5.27) yields

(5.74) 5V (y,y)F = wn B (10, (0, 0)O X (B1) af
+(1 —Tn ) 2 /2 (nn¢nct>‘t + (1 - 77n)¢n’7t) ) + O(UJnAn).

Then the results follows exactly as for the previous theorem, upon using v,, = v,.

b) We have v/2/k2 = 1/ul' and we now set o, = v/,. The property (iv) of (5.59) with the limit
(Z(1)4,(Z'(y)t)yey) holds as soon as we have (5.64), (5.68) and (5.69) for all ¢ and all M, plus the
following (again for all ¢) instead of (5.70):

0% S0 B(EW3)? | Gf,) = T, 1, )

(5.75) o2 5 E(EW)} — w6 EW); — v | G,) = Tl v/
vty 00 E((6W)] — € WNEW)] | G, ) = 0.
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where T'(y,/'); and T'(y,y’); are the right-hand sides in (4.8) and (4.10). Now, we have (5.74), and
(5.27) also yields

,U/2 JE— — o~
B2V ()7 = walntis, (9,508 X (B1) af + o(wnd),
vz:n V(y)i = o(wnly),

At this stage, again the same argument as previously gives us the result. O
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