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Abstract

We introduce power variation constructed from powers of the second-order differences of a dis-
cretely observed pure-jump semimartingale processes. We derive the asymptotic behavior of
the statistic in the setting of high-frequency observations of the underlying process with a fixed
time span. Unlike the standard power variation (formed from the first-order differences of the
process), the limit of our proposed statistic is determined solely by the jump component of the
process regardless of the activity of the latter. We further show that an associated Central Limit
Theorem holds for a wider range of activity of the jump process than for the standard power
variation. We apply these results to estimation of the jump activity as well as the integrated
stochastic scale.
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1 Introduction

Many stochastic processes of interest, e.g., asset prices in finance, are modeled using stochastic
differential equations of the form

dXt = αtdt+ σt−dLt + dYt, (1)

where Lt is a Lévy process, which is a martingale, if of infinite variation, and is a sum of jumps, in
the finite variation case; αt and σt are some processes with càdlàg paths, and Yt is some “residual”
jump component whose behavior over small time scales is dominated by the second term in (1). The
leading example is the diffusion case in which Lt is a Brownian motion, but in some applications,
particularly in finance, it is important to allow for more general driving Lévy processes that include
jumps (in addition to the Brownian motion) or are even of pure-jump type, i.e., without Brownian
motion. σt in (1) is typically referred to as stochastic volatility when Lt is a Brownian motion or
more generally as stochastic scale when Lt is “locally” a stable process, i.e., when the small scale
behavior of Lt is like that of a stable process (we will be precise about the “locally” stable processes
in the next section).

When the process X is observed on a fine grid, X0, X 1
n
, ..., Xn

n
, with mesh decreasing to zero,

the realized power variation defined as

Vn(p,X) =
n∑

i=1

|∆n
i X|p, ∆n

i X = X i
n
−X i−1

n
, (2)

can be used to study the realized path of the latent stochastic scale, σt, as well as the small scale
properties of the driving Lévy process Lt. In particular, if αt = 0 on the time interval [0, 1], then
with β denoting the stability parameter of the “locally” stable process Lt (β ∈ (0, 2], and β = 2
means that the leading component of Lt over small scales is a Brownian motion), we have under
certain regularity conditions, see e.g., Todorov and Tauchen (2011) and Woerner (2003, 2007),

∆1−p/β
n Vn(p,X)

P−→ µp(β)

∫ 1

0
|σs|pds, p < β, (3)

and their is an associated Central Limit theorem (CLT) (under some further restrictions on the
“residual” components), see again Todorov and Tauchen (2011) and Woerner (2003, 2007),

∆−1/2
n

(
∆1−p/β

n Vn(p,X)− µp(β)

∫ 1

0
|σs|pds

)
L−s−→

√
µ2p(β)− µ2p(β)

√∫ 1

0
|σs|2pdsZ, p < β/2,

(4)
where Z is standard normal variable defined on an extension of the original probability space and
L − s denotes stable convergence in law; µp(β) and µ2p(β) are respectively the p-th and 2p-th
absolute moments of the leading stable component of Lt with further details provided later on.
The result in (4) can be made also feasible by constructing estimators of the asymptotic variance
and making use of the properties of the stable convergence.

Since the index β participates in the scaling of the realized power variation in (3), the latter
computed over different scales can be used to construct (nearly) rate efficient nonparametric esti-
mators of the activity index β of the driving Lévy process. Further efficiency gains can be made
by picking adaptively the optimal power to estimate β from.
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The limit results in (3) and (4) depend strongly on the assumption of zero drift, i.e., αt = 0.
However, if αt is not identically zero on the time interval [0, 1], the limit result in (3) continues to
hold but only when β > 1. On the other hand, if β < 1 (and recall in this case Lt and Yt are sums
of jumps without a drift), we have, see e.g., Jacod (2008),

∆1−p
n Vn(p,X)

P−→
∫ 1

0
|αs|pds, p < β, (5)

that is the limit behavior of the realized power variation is governed by the drift term and not the
driving pure-jump Lévy process Lt. Moreover, even when β > 1, the CLT result in (4) is unaffected
by the presence of the drift term but only when β >

√
2. When β ∈ (0,

√
2), the presence of the

drift term slows down the rate of convergence and invalidates feasible inference based on (4).
In this paper, we propose an extension of the original realized power variation that allows to

make efficient nonparametric inference about the stochastic scale and the activity index β even
in the case when a drift is present in Xt and the driving Lévy process Lt is of finite variation,
i.e., when β < 1. The extension is based on replacing the first-order difference ∆n

i X with the
second-order difference ∆n

i X − ∆n
i−1X in the construction of the realized power variation in (2).

The effect of this is easiest to see in the simplest case when Xt is a Lévy process, i.e., when αt and
σt are constant. In this case ∆n

i X − ∆n
i−1X, unlike ∆n

i X, does not contain the drift. Moreover,
the leading component of ∆n

i L−∆n
i−1L (under the “local” stability assumption for Lt) over small

scales is a difference of (scaled) independent and identically distributed stable random variables
which continues to be a stable random variable (but with a different scale). Intuitively, our modified
realized power variation makes use of the difference in the pathwise behavior of the drift term and
the driving Lévy process in (1) over small scales.

A law of large numbers (LLN) for the realized power variation based on second-order differences
(with a limit that differs from the one in (3) only by a constant) continues to hold, but now the
LLN holds without any restrictions regarding the presence of the drift term in (1), unlike the one
for the original realized power variation in (2). Moreover, we have a CLT for our statistic for any
value of the activity index β and regardless of the presence of a drift term when Xt is a Lévy process
and for the relatively wide range β > 2

3 in the general case when αt and σt can be random.
The rate of the convergence of the realized power variation based on second-order differences of

X is the square root of the high-frequency observations within the fixed time interval and is nearly
the optimal one (the difference is ln(n)) in the special case of estimating the scale and activity
of a stable process from high-frequency observations, see e.g., Ait-Sahalia and Jacod (2008). The
robustness of our realized power variation, based on ∆n

i X −∆n
i−1X, to the presence of a drift term

in X results in some loss of information when compared with the original power variation Vn(p,X)
in the case when X does not contain a drift term. This is reflected in a somewhat larger asymptotic
variance for estimating the integrated power variation of the stochastic scale, as well as the loss of
the information in the data regarding the potential asymmetry of the Lévy measure of Lt around
the origin.

Finally, we note that in this paper we are only interested in the behavior of the power variation
(and the modification proposed here) for powers below the activity β. It is well-known, see e.g.,
Lepingle (1976), that for p > β∨1, the power variation (without any scaling) converges in probability
to the sum of the p-th absolute moments of the jumps on the time interval (see also Diop et al.
(2013) for an associated CLT for the special case p = 2). It is easy to see that this limit result will
continue to hold for our realized power variation based on the second-order differences of X.
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The rest of the paper is organized as follows. Section 2 introduces the setup and the assumptions.
In Section 3 we present the limit results for the realized power variation formed from second-order
differences of the process both in the Lévy case and the more general case when the drift and the
stochastic scale can be random. Section 4 applies the developed limit theory to propose (nearly) rate
efficient and robust estimator of activity as well as the integrated power variation of the stochastic
scale. Section 5 contains all the proofs.

2 Setting and Assumptions

We start with introducing the setting and stating the assumptions that we need for the results
in the paper. We first recall that a Lévy process Lt with characteristic triplet (b, c, ν), with re-
spect to truncation function κ (Definition II.2.3 in Jacod and Shiryaev (2003)), is a process with
characteristic function given by

E
(
eiuLt

)
= exp

[
itub− tcu2/2 + t

∫
R

(
eiux − 1− iuκ(x)

)
ν(dx)

]
. (6)

In what follows we will always assume for simplicity that κ(−x) = −κ(x). Our assumption for the
driving Lévy process in (1) as well as the “residual” jump component Yt is given in assumption A.
Assumption A. Lt in (1) is a Lévy process with characteristic triplet (0, 0, ν) for ν Lévy measure
with density given by

ν(x) =
A−

|x|1+β
1{x<0} +

A+

|x|1+β
1{x>0} + ν ′(x), A± ≥ 0 with max{A−, A+} > 0, (7)

where ν ′(x) is such that there exists x0 > 0 with |ν ′(x)| ≤ C/|x|1+β′
for |x| ≤ x0 and some β′ < β.

Yt is Itô semimartingale with characterstic triplet (Jacod and Shiryaev (2003), Definition II.2.6)(∫ t
0

∫
R κ(x)ν

Y
s (dx)ds, 0, dt⊗ νYt (dx)

)
when β′ < 1 and

(
0, 0, dt⊗ νYt (dx)

)
otherwise, with

∫
R(|x|

β′+ι∧
1)νYt (dx) being locally bounded predictable for some arbitrary small ι > 0.

Assumption A implies that the Lévy measure of Lt around zero is dominated by that of a stable
process. This, in particular means that the behavior of Lt over small scales is like that of a stable

process. That is, for β ∈ (1, 2) we have h−1/βLht
L−→ St as h→ 0, for St being a Lévy process with

characteristic triplet
(
−
∫
R κ

′(x)
(

A−
|x|1+β 1{x<0} +

A+

|x|1+β 1{x>0}

)
dx, 0,

(
A−

|x|1+β 1{x<0} +
A+

|x|1+β 1{x>0}

)
dx
)

(and the convergence being in the space of càdlàg functions equipped with the Skorokhod topology
and further κ′(x) = x−κ(x)). For β ∈ (0, 1) we have the above convergence when κ(x) = 0 (no trun-

cation) and St being a Lévy process with characteristic triplet
(
0, 0,

(
A−

|x|1+β 1{x<0} +
A+

|x|1+β 1{x>0}

)
dx
)
.

Finally for β = 1 we have h−1/βLht
L−→ St as h→ 0, for St being a Lévy process with characteristic

triplet
(
0, 0,

(
A−

|x|1+β 1{x<0} +
A+

|x|1+β 1{x>0}

)
dx
)
provided A− = A+.

Assumption A is critical for what follows as it allows scaling of the increments of the process Xt

in forming the power variation. It is satisfied by many parametric specifications of the Lévy process
like the stable, the tempered stable and the generalized inverse Gaussian. Similar assumption has
been made in related contexts in Ait-Sahalia and Jacod (2009), Jacod (2004), Todorov and Tauchen
(2011, 2012), Woerner (2003, 2007).

Note further that h−1/βYht
L−→ 0 as h → 0, and this is why Yt is dominated over small time

scales by Lt (and stochastic integrals with respect to it).
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Remark. The presence of Yt in (1) allows to include in our setup also time-changed Lévy models
when the time-change is absolute continuous and these types of models have been used in various
financial applications, see e.g., Barndorff-Nielsen and Shiryaev (2010) and the many references
therein. To see this, suppose that L̂v is pure-jump Lévy process with Lévy measure ν(x)dx (for
ν(x) given in (7)) and Tt =

∫ t
0 asds is the time-change, for at being some predictable process.

Then, the time-changed Lévy process L̂Tt is FTt-adapted pure-jump process with jump compensator
atdt ⊗ ν(x)dx. This follows from Theorem 10.27 in Jacod (1979). Then, assuming for simplicity
that ν ′(x) ≥ 0 (for the more general case one can use the jump decomposition in Section 5.1.2),

we can write L̂Tt = X0 + X
(1)
t + X

(2)
t where X

(1)
t is pure-jump process with compensator atdt ⊗(

A−
|x|1+β 1{x<0} +

A+

|x|1+β 1{x>0}

)
dx and X

(2)
t is pure-jump process with compensator atdt ⊗ ν ′(x)dx.

The “residual” X
(2)
t does not matter for our asymptotics (and corresponds to Yt in (1)). On the

other hand, X
(1)
t can be represented in the form

∫ t
0

∫
R+
κ(a

1/β
s x)µ̃(ds, dx)+

∫ t
0

∫
R+
κ′(a

1/β
s x)µ(ds, dx),

where µ is homogenous Poisson measure with compensator dt ⊗
(

A−
|x|1+β 1{x<0} +

A+

|x|1+β 1{x>0}

)
dx.

This follows from a “representation theorem” for integer-valued random measures, see for example
Theorem 2.1.2 and the discussion in Section 2.1.4 of the book of Jacod and Protter (2012). Thus

the time-changed Lévy process L̂Tt has a representation of the form (1) with σt replaced by a
1/β
t .

We next make an assumption regarding the variability in the processes αt and σt.
Assumption B. The processes αt and σt are Itô semimartingales of the form

αt = α0 +

∫ t

0
bαs ds+

∫ t

0

∫
E
κ(δα(s, x))µ̃(ds, dx) +

∫
E
κ′(δα(s, x))µ(ds, dx),

σt = σ0 +

∫ t

0
bσs ds+

∫ t

0

∫
E
κ(δσ(s, x))µ̃(ds, dx) +

∫
E
κ′(δσ(s, x))µ(ds, dx),

(8)

where κ′(x) = x− κ(x), and

(a) |σt|−1 and |σt−|−1 are strictly positive;

(b) µ is Poisson measure on R+ ×E, having arbitrary dependence with the jump measure of Lt,
with compensator dt⊗ λ(dx);

(c) δα(t, x) and δσ(t, x) are predictable, left-continuous with right limits in t with |δα(t, x)| +
|δσ(t, x)| ≤ γk(x) for all t ≤ Tk, where γk(x) is a deterministic function on R with

∫
R(|γk(x)|

β+ι∧
1)dx < ∞ for arbitrary small ι > 0 and β being the constant in (7), and Tk is a sequence of
stopping times increasing to +∞;

(d) bαt and bσt are Itô semimartingales having dynamics as in (8) with coefficients satisfying the
analogues of conditions (b) and (c) above.

We note that the jump measure µ does not need to coincide with the jump measure of Lt but
it can have arbitrary dependence with it. Assumption B is satisfied in models where the triple
(Xt, αt, σt) is modeled via a Lévy-driven multivariate SDE with each of the elements of the driving
Lévy process satisfying assumption A. Importantly assumption B allows for dependence between the
innovations in αt, σt and the driving Lévy process Lt which is of significant importance for financial
applications. For example, assumption B is satisfied by the COGARCH model of Klüppelberg
et al. (2004) in which the jumps in σt are proportional to the squared jumps in Xt or non-Gaussian
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Ornstein-Uhlenbeck models for the stochastic scale in which the jumps in σt are proportional to
the jumps in Xt as in Barndorff-Nielsen and Shephard (2001) or proportional to the squared price
jumps as in Todorov (2011).

3 Limit Theory

We proceed with our limit results. Our asymptotics is for fixed time span and increasing sampling
frequency of observations. In particular, we assume that the process X is observed on the equidis-
tant grid 0, 1n ,

2
n ,....,1 with n → ∞. We leave the extension to the case of random sampling times

for future work.
Our power variation statistics constructed from the second-order differences of the process X

is defined formally as

Ṽ 1
n (p,X) =

n∑
i=2

|∆n
i X −∆n

i−1X|p, p > 0. (9)

Since, we are going to apply the limit results for estimation of the activity index β, we also define
here realized power variation formed from temporal aggregation of the second-order differences of
the process X

Ṽ 2
n (p,X) =

n∑
i=4

|∆n
i X −∆n

i−1X +∆n
i−2X −∆n

i−3X|p, p > 0. (10)

The important thing about Ṽ 2
n (p,X) is that the temporal aggregation of the second-order differences

results in its asymptotic limit being proportional to that of Ṽ 1
n (p,X) by a constant that depends

solely on p and β. This allows for the inference of β from the ratio of Ṽ 1
n (p,X) and Ṽ 2

n (p,X). We
should point out that there are other alternative ways of constructing Ṽ 2

n (p,X) that achieve the
same goal. One such example is

∑n
i=2 |∆n

i X+∆n
i+1X−2∆n

i−1X|p. The construction here is similar
to the use of realized power variation in (2) on a coarser scale in Todorov and Tauchen (2011), but
unlike that paper we make more efficient use of the data as intuitively we employ all temporally
aggregated increments and not just the non-overlapping ones.

We proceed with introducing some more notation that we will use in stating the asymptotic
results. We denote with Si, for i = 1, 2, .... a sequence of β-stable random variables that are
independent of each other and whose distribution corresponds to the law at time 1 of a Lévy

process with characteristic triplet
(
0, 0, ( A−

|x|1+β 1{x<0} +
A+

|x|1+β 1{x>0})dx
)
. We note that S1 − S2

has distribution that is equal to the law at time 1 of the Lévy process with characteristic triplet(
0, 0, A−+A+

|x|1+β dx
)
which is a symmetric stable process.

We denote µ̃p(β) = E|S1 − S2|p. Note here that µ̃p(β) is the p-th absolute moment of S1 − S2
and not of S1. This is done for convenience of exposition as the asymptotic limits of Ṽ 1

n (p,X) and
Ṽ 2
n (p,X) depend on the moments of the second-order differences ∆n

i L − ∆n
i−1L and not on the

moments of the first order differences ∆n
i L. We further set

Zi =

(
|Si − Si+1|p − µ̃p(β)

|Si − Si+1 + Si+2 − Si+3|p − 2p/βµ̃p(β)

)
,

and then denote Σj(p, β) = E(Z1Z
′
1+j) for j = 1, 2, .... We note that Σj(p, β) depends on whether

A− = A+ or not (but of course it does not depend on the particular choice of κ with respect to
which characteristics are defined).
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With this additional notation we are ready to state our results for the pair (Ṽ 1
n (p,X), Ṽ 2

n (p,X)).
We first present the results for the basic case when Xt is a Lévy process and then extend them to
the general case when αt and σt can vary over time.

3.1 The Lévy case

Theorem 1 Assume that Xt satisfies assumption A with αt and σt constant.

(a) For p ∈ (0, β) and provided β′ < β, we have

Ṽ 1
n (p,X)

P−→ µ̃p(β)|σ|p, Ṽ 2
n (p,X)

P−→ 2p/βµ̃p(β)|σ|p. (11)

(b) For p ∈
(

ββ′

2(β−β′) ,
β
2

)
and provided β′ < β/2, we have

√
n

(
Ṽ 1
n (p,X)− µ̃p(β)|σ|p

Ṽ 2
n (p,X)− 2p/βµ̃p(β)|σ|p

)
L−s−→ |σ|pΞ1/2Z, (12)

where Z is two-dimensional standard normal random variable defined on an extension of the
original probability space and independent from F and

Ξ = Σ0(p, β) +

3∑
i=1

(Σi(p, β) +Σ′
i(p, β)). (13)

Part (a) of Theorem 1 shows that our statistic Ṽ 1
n (p,X) estimates the integrated power variation

of the scale (which in the Lévy case is a constant) regardless of the activity level β unlike the original
realized power variation statistic Vn(p,X) which does so only provided β > 1. We note that the
first limit in (11) differs from that in (3) by a constant that equals the ratio of the p-th absolute
moments of S1 − S2 and S1. In the case when A− = A+, this ratio is simply 2p/β.

Part (b) presents the CLT for our statistics. As for the law of large numbers, the CLT result
holds for any value of β and this is significant improvement over the corresponding result for the
power variation derived in Todorov and Tauchen (2011), and stated here in equation (4) in the
introduction, that holds only for β >

√
2. The presence of the Σi(p, β) terms, for i ≥ 1, in Ξ is due

to the third-order autocorrelation in the summands of (Ṽ 1
n (p,X), Ṽ 2

n (p,X)).
Unlike the original power variation, the asymptotic limit of the power variation based on second-

order differences depends only on the moments of a symmetric β-stable process regardless of whether
A− = A+ or not. The reason is pretty straightforward: Ṽ 1

n (p,X) and Ṽ 2
n (p,X) depend only on

∆n
i L−∆n

i−1L which “symmetrizes” the potentially asymmetric Lévy process L. On the other hand,

the asymptotic variance of Ṽ 1
n (p,X) and Ṽ 2

n (p,X) will depend on the potential asymmetry of the
Lévy density of L around zero because the dependence between consecutive summands in Ṽ 1

n (p,X)
and Ṽ 2

n (p,X) depends on the latter. Consistent estimators of the limiting variance, however, should
be easy to form. This of course carries over to the activity estimation based on the limit theory
developed here that we conduct in the next section. To make the limiting variance independent of
the potential Lévy density asymmetry of L at the origin, we can keep every second summand in
Ṽ 1
n (p,X) and every forth in Ṽ 2

n (p,X). We note also that, similar to the case of the realized power
variation Vn(p,X), there is a CLT for Ṽ 1

n (p,X) in the case when p ∈ (β/2, β) with a limit that is
stable and with a rate of convergence that is slower than the

√
n rate in the case p ∈ (0, β/2).
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Finally, the differencing of ∆n
i X leads naturally to some loss of efficiency in estimating |σ|p

(or more generally the integrated power variation of the scale in the general case when σt varies)
when β is known. On Figure 1 we plot the ratio of the asymptotic errors in estimating |σ|p using
Ṽ 1
n (p,X) and Vn(p,X) for different values of β in the case when A− = A+. As we can see from

the figure, there is efficiency loss of up to around 40% in estimating the scale parameter from using
second-order differences of X. The differences decrease for higher values of β. This loss of efficiency
is the price to pay for robustifying the inference with respect to the presence of a drift term in the
evolution of X.
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Figure 1: Ratio of the asymptotic standard deviations in estimating |σ|p using Ṽ 1
n (p,X) and

Vn(p,X) as a function of p, when Xt is a Lévy process (with no drift) and A− = A+. The

ratio is given by

√
1 + 2

µ2p(β)−µ2
p(β)

E
{(

|S1−S2|p
2p/β

− µp(β)
)(

|S2−S3|p
2p/β

− µp(β)
)}

. The limiting case

β = 2 corresponds to the case when Lt is a Brownian motion and the asymptotic distribution of
|σ|2 in this case continues to be given by the first limit in (12).

3.2 The general case

We present next the analogue of Theorem 1 for the case when αt and σt can be time varying.

Theorem 2 Assume that Xt satisfies assumptions A and B.
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(a) For p ∈ (0, β) and provided β′ < β, we have

∆1−p/β
n Ṽ 1

n (p,X)
P−→ µ̃p(β)

∫ 1

0
|σs|pds, ∆1−p/β

n Ṽ 2
n (p,X)

P−→ 2p/βµ̃p(β)

∫ 1

0
|σs|pds. (14)

(b) For p ∈
(

|β−1|
2(β∧1)

∨ ββ′

2(β−β′) ,
β
2

)
and provided β′ < β/2 as well as β > 2

3 , we have

√
n

(
∆

1−p/β
n Ṽ 1

n (p,X)− µ̃p(β)
∫ 1
0 |σs|pds

∆
1−p/β
n Ṽ 2

n (p,X)− 2p/βµ̃p(β)
∫ 1
0 |σs|pds

)
L−s−→

√∫ 1

0
|σs|2pdsΞ1/2Z, (15)

where Z is two-dimensional standard normal random variable defined on an extension of the
original probability space and independent from F and Ξ is defined in (13).

There are few observations to be made. First, the law of large numbers result for Ṽ 1
p (p,X)

and Ṽ 2
p (p,X) continues to hold without any further restrictions on the activity β or on the power

p. The CLT result in (15), however, holds under the additional restriction of β > 2
3 (and some

additional restrictions on the power p). This additional restriction arises from bounding the effect
due to the time variation in αt and σt on the asymptotic behavior of Ṽ 1

p (p,X) and Ṽ 2
p (p,X). Its

absence from Theorem 1 suggests that some additional structure on αt and σt can allow to weaken
it further. Nevertheless, Theorem 2 is still very general, generalizes significantly the corresponding
result for Vn(p,X) in Todorov and Tauchen (2011), and in particular allows for efficient inference
for all infinite variation cases, i.e., when X satisfies assumption A with β ∈ (1, 2).

4 Application to Activity and Stochastic Scale Estimation

We proceed next with applying the limit theory of the previous section to estimation of the activity
index β as well as the integrated power variation of the stochastic scale when the activity β is
unknown. We start with the estimation of the activity. Similar to Todorov and Tauchen (2011),
we define the activity estimator from the ratio of Ṽ 2

n (p,X) and Ṽ 1
n (p,X) as

β̂ =
p log(2)

log
[
Ṽ 2
n (p,X)/Ṽ 1

n (p,X)
]1{Ṽ 1

n (p,X )̸=Ṽ 2
n (p,X)}. (16)

In the next Corollary we state the asymptotic behavior of β̂ in the Lévy case.

Corollary 1 Assume that Xt satisfies assumption A with αt and σt constant. For p ∈ (0, β) we

have β̂
P−→ β. If in addition p ∈

(
ββ′

2(β−β′) ,
β
2

)
, and provided β′ < β/2, we have

√
n
(
β̂ − β

)
L−s−→ β2

µ̃p(β)p log(2)

√
Ξ̃ Z, (17)

where Ξ̃ = Ξ(1,1) − 21−p/βΞ(1,2) + 2−2p/βΞ(2,2) and Z is univariate standard normal defined on an
extension of the original probability space and independent of the σ-algebra F .
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On Figure 2 we plot the asymptotic standard deviation of the activity estimator β̂ defined in
(16) as a function of the power p for different values of the activity index β. Comparing with the
corresponding asymptotic standard errors for the activity estimator based on Vn(p,X) computed
over different scales proposed in Todorov and Tauchen (2011), we see that the standard errors
are quite comparable. Of course, the proposed estimator here has the additional advantage of
robustness against the presence of a drift term in the dynamics of X. We also note that the
efficiency of the estimator depends critically on the power p and the true value of β. Therefore, an
adaptive estimation strategy similar to Todorov and Tauchen (2011), based on Corollary 1, can be
further developed.
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Figure 2: Asymptotic standard deviation of β̂, given in (16), as a function of p when Xt is Lévy
process and A− = A+. The limiting case β = 2 corresponds to the case when Lt is a Brownian
motion and the asymptotic distribution of β̂ in this case continues to be given by the right-hand
side of (17).

The estimator of the activity β proposed here, as well as the original one based on the realized
power variation Vn(p,X), make use of the self-similarity of the (strictly) stable process and is based
on the p-th absolute power of the stable distribution. One can of course consider other activity
estimators based on different moments of the stable distribution. Examples include the logarithmic
moments or the tail moments of the stable distribution (which are actually known in closed form).
In analogy with the very different asymptotic standard deviation of our estimator β̂ based on
different powers, evident from Figure 2, we expect these alternative estimators to differ in terms of
efficiency and robustness towards presence of additional terms in the price process Xt (in addition
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to the leading stable component of Lt) like the drift, residual jump components (controlled here by
the parameter β′) or even a presence of a diffusion component. In any case, however, the approach
proposed here of using second-order differences of Xt can be readily adopted to those alternative
estimators as well and should help of removing a bias due to the presence of the drift term, which
as we saw earlier can in certain cases slows down the rate of convergence of the estimator (or even
lead to a limit that is determined by the drift as is the case for the estimator based on the power
variation Vn(p,X) when β < 1).

We next state the asymptotic behavior of the activity estimator β̂ in the more general case
when αt and σt can vary.

Corollary 2 Assume that Xt satisfies assumptions A and B. For p ∈ (0, β) we have β̂
P−→ β. If

in addition p ∈
(

|β−1|
2(β∧1)

∨ ββ′

2(β−β′) ,
β
2

)
, and provided β′ < β/2 as well as β > 2

3 , we have

√
n
(
β̂ − β

)
L−s−→

√∫ 1
0 |σs|2pds∫ 1
0 |σs|pds

β2

µ̃p(β)p log(2)

√
Ξ̃ Z, (18)

where Z is univariate standard normal defined on an extension of the original probability space and
independent of the σ-algebra F and Ξ̃ is defined in Corollary 1.

Corollary 2 can be made feasible by using consistent estimators of
∫ 1
0 |σs|pds and

∫ 1
0 |σs|2pds.

We conclude this section by proposing a feasible estimator of the integrated power variation of the
scale in the realistic case when β is not known and has to be inferred from the data first. The
result is given in the following theorem.

Theorem 3 Assume that Xt satisfies assumptions A and B.

(a) For p ∈ (0, β) we have

∆1−p/β̂
n Ṽ 1

n (p,X)
P−→ µ̃p(β)

∫ 1

0
|σs|pds. (19)

(b) For p ∈
(

|β−1|
2(β∧1)

∨ ββ′

2(β−β′) ,
β
2

)
, and provided β′ < β/2 as well as β > 2

3 , we have

( √
n
(
∆

1−p/β̂
n Ṽ 1

n (p,X)− µ̃p(β)
∫ 1
0 |σs|pds

)
− p

β2 µ̃p(β)
∫ 1
0 |σs|pds log(∆n)

√
n(β̂ − β)

√
n(β̂ − β)

)

L−s−→


∫ 1
0 |σs|2pdsΞ(1,1)

∫ 1
0 |σs|2pds∫ 1
0 |σs|pds

β2

µ̃p(β)p log(2)
(Ξ(1,1) − 2−p/βΞ(1,2))∫ 1

0 |σs|2pds∫ 1
0 |σs|pds

β2

µ̃p(β)p log(2)
(Ξ(1,1) − 2−p/βΞ(1,2))

∫ 1
0 |σs|2pds

(
∫ 1
0 |σs|pds)2

(
β2

µ̃p(β)p log(2)

)2
Ξ̃


1/2

Z,

(20)

where Z is two-dimensional standard normal random variable defined on an extension of the
original probability space and independent from F and Ξ̃ is defined in Corollary 1.

Comparing Theorem 3 and Theorem 2, we can see that the estimation of β has a first-order
effect on the inference for the integrated power variation of the stochastic scale. That is the rate
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of convergence of ∆
1−p/β̂
n Ṽ 1

n (p,X) is driven by that of β̂. The above theorem gives higher-order

asymptotic expansion which contains also the faster converging component due to ∆
1−p/β
n Ṽ 1

n (p,X).
The difference between that component and the slower converging piece due to the estimation of β
is only log(∆n), so in a practical application it is advisable to incorporate the asymptotic effect of
the former as well.

To this end, from part (b) of the above theorem, we easily get

√
n
(
∆

1−p/β̂
n Ṽ 1

n (p,X)− µ̃p(β)
∫ 1
0 |σs|pds

)
√(

1 + log(∆n)
log(2)

)2
Ξ(1,1) + log2(∆n)

log2(2)4p/β
Ξ(2,2) −

(
1 + log(∆n)

log(2)

)
21−p/β log(∆n)

log(2) Ξ(1,2)

√∫ 1
0 |σs|2pds

L−s−→ Z,

(21)
where Z is standard normal variable defined on an extension of the original probability space. Also,
it is straightforward to replace

∫ 1
0 |σs|2pds in the above with a consistent estimate using part(a)

of Theorem 3, which allows for feasible inference regarding the integrated power variation of the
stochastic scale.

5 Proofs

In the proofs we use the shorthand notation En
i (·) ≡ E(·|Fi∆n) and Pn

i (·) ≡ P(·|Fi∆n). We also
denote with K a positive constant that does not depend on n and might change from line to line in
the inequalities that follow. We start with establishing some preliminary results and then proceed
with the proofs of the theorems and corollaries in the paper.

5.1 Preliminary results

5.1.1 Localization

Throughout we prove results under the stronger assumption:
Assumption SB. We have assumption B and in addition

(a) the processes |σt| and |σt|−1 are uniformly bounded;

(b) the processes bαt and bσt are uniformly bounded;

(c) |δα(t, x)| + |δσ(t, x)| ≤ γ(x) for all t, where γ(x) is a deterministic bounded function on R
with

∫
R |γ(x)|β+ιdx <∞ for ι ∈ (β, 2) and β being the constant in (7);

(d) the coefficients in the Itô semimartingale representation of bαt and bσt satisfy the analogues of
conditions (b) and (c) above;

(e) the process
∫
R(|x|

β′+ι ∧ 1)νYt (dx) is bounded and the jumps of L and Y are bounded.

Once we establish the results of the paper under the stronger assumption SB, extending them to
the case of the weaker assumption B follows by a standard localization argument, see e.g., Section
4.4.1 of Jacod and Protter (2012).
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5.1.2 Jump Representation

In what follows it is convenient to extend appropriately the probability space and then decompose
the driving Lévy process Lt as follows

Lt + Ŝt = St + S̃t, (22)

where St, Ŝt and S̃t are pure-jump Lévy processes with first two characteristics zero (with respect
to the truncation function κ(·)) and Lévy densities A−

|x|1+β 1{x<0} +
A+

|x|1+β 1{x>0}, 2|ν ′(x)|1{ν′(x)<0},

and |ν ′(x)| respectively. We denote the associated counting jump measures with µ, µ1 and µ2 (note
that there can be dependence between µ, µ1 and µ2).

St is β-stable process and Ŝt and S̃t are “residual” components whose effect on our statistic, as
will be shown, is negligible (under suitable conditions). The proof of the decomposition in (22) as
well as the explicit construction of St, Ŝt and S̃t can be found in Section 1 of the supplementary
appendix of Todorov and Tauchen (2012).

5.2 Proof of Theorems 1 and 2

We first decompose(
∆

1−p/β
n Ṽ 1

n (p,X)− µ̃p(β)
∫ 1

0
|σs|pds

∆
1−p/β
n Ṽ 2

n (p,X)− 2p/βµ̃p(β)
∫ 1

0
|σs|pds

)
= A1 +A2 +A3 + Ã, (23)

A1 = ∆n

n∑
i=4

|σ(i−4)∆n−|
p

(
∆

−p/β
n |∆n

i S −∆n
i−1S|p − µ̃p(β)

∆
−p/β
n |∆n

i S −∆n
i−1S +∆n

i−2S −∆n
i−3S|p − 2p/βµ̃p(β)

)
,

A2 =
n∑

i=4

(
∆n|σ(i−4)∆n−|

p −
∫ i∆n

(i−1)∆n

|σs|pds

)
⊗
(

µ̃p(β)
2p/βµ̃p(β)

)
,

A3 = ∆1−p/β
n

n∑
i=4

(
|∆n

i X −∆n
i−1X|p − |σ(i−4)∆n−|p|∆n

i S −∆n
i−1S|p

|∆n
i X −∆n

i−1X +∆n
i−2X −∆n

i−3X|p − |σ(i−4)∆n−|p|∆n
i S −∆n

i−1S +∆n
i−2S −∆n

i−3S|p
)
.

Ã = ∆1−p/β
n

3∑
i=2

(
|∆n

i X −∆n
i−1X|p

0

)
.

We analyze each of the terms on the right-hand side of (23) separately. We note that the term A2

is different from zero only under the general case of Theorem 2. The case Ã is easiest. We have
E|Ã| ≤ K∆1−ι

n for ι > 0 sufficiently small by an application of Hölder and Burkholder-Davis-Gundy
inequalities.

5.2.1 The term A1

We will prove

√
nA1

L−s−→

√∫ 1

0
|σs|2pdsΞ1/2Z. (24)

First, we set

χn
i = ∆−p/β

n

(
|∆n

i S −∆n
i−1S|p

|∆n
i S −∆n

i−1S +∆n
i−2S −∆n

i−3S|p
)
,
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and with this notation we then denote

ηni = |σ(i−4)∆n−|
p
(
χn
i − En

i−1χ
n
i

)
+ |σ(i−3)∆n−|

p
(
En
i χ

n
i+1 − En

i−1χ
n
i+1

)
+ |σ(i−2)∆n−|

p
(
En
i χ

n
i+2 − En

i−1χ
n
i+2

)
+ |σ(i−1)∆n−|

p
(
En
i χ

n
i+3 − En

i−1χ
n
i+3

)
.

We easily have

A1 −∆n

n∑
i=4

ηni = −∆n

{
|σ0−|p(En

0χ
n
4 − En

3χ
n
4 ) + |σ∆n−|p(En

1χ
n
5 − En

3χ
n
5 ) + |σ2∆n−|p(En

2χ
n
6 − En

3χ
n
6 )

− |σ(n−3)∆n−|
p(En

n−3χ
n
n+1 − En

nχ
n
n+1)− |σ(n−2)∆n−|

p(En
n−2χ

n
n+2 − En

nχ
n
n+2)

− |σ(n−1)∆n−|
p(En

n−1χ
n
n+3 − En

nχ
n
n+3)

}
.

Using the boundedness of σt, as well as the self-similarity of the strictly stable process (and the
fact that the p-th absolute moment of a stable random variable exists when p < β), we easily get

E

∣∣∣∣∣
∣∣∣∣∣A1 −∆n

n∑
i=4

ηni

∣∣∣∣∣
∣∣∣∣∣ ≤ K∆n =⇒ A1 −∆n

n∑
i=4

ηni = op
(
1/

√
n
)
. (25)

Therefore, to prove (24), it suffices to look at 1√
n

∑n
i=4 η

n
i . Using Theorem IX.7.28 of Jacod and

Shiryaev (2003), we will be done if we can show

1√
n

∑n
i=4 En

i−1η
n
i

P−→ 0,

1
n

∑n
i=4 En

i−1

[(
ηni − En

i−1η
n
i

) (
ηni − En

i−1η
n
i

)′] P−→ Ξ
∫ 1
0 |σs|2pds,

1
n1+ι/2

∑n
i=4 En

i−1||ηni ||2+ι P−→ 0, ι ∈ (0, β/p− 2),
1
n

∑n
i=4 En

i−1 (η
n
i ∆

n
i N)

P−→ 0,

(26)

where N is any bounded martingale defined on the original probability space.
The first convergence result in (26) follows, since using the law of iterated expectations, we

trivially have
En
i−1 (η

n
i ) = 0.

We next show the third convergence result in (26). Using Jensen’s inequality, the self-similarity
property of the strictly stable process, and the fact that p < β/2 under parts (b) of Theorems 1
and 2, we have

E||ηni ||2+ι ≤ K, 0 < ι < β/p− 2.

From here the third limit result in (26) trivially follows.
We continue with the second convergence result in (26). We denote

η̃ni = |σ(i−4)∆n−|
p ×

[ (
χn
i − En

i−1χ
n
i

)
+
(
En
i χ

n
i+1 − En

i−1χ
n
i+1

)
+
(
En
i χ

n
i+2 − En

i−1χ
n
i+2

)
+
(
En
i χ

n
i+3 − En

i−1χ
n
i+3

) ]
.
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With this notation, it is clear that the second convergence result in (26) will be proved if we can
establish the following three results

1
n

∑n
i=4 En

i−1 (η
n
i (η

n
i )

′ − η̃ni (η̃
n
i )

′)
P−→ 0,

1
n

∑n
i=4

(
En
i−1(η̃

n
i (η̃

n
i )

′)− |σ(i−4)∆n−|2pΞ
) P−→ 0,

1
n

∑n
i=4 |σ(i−4)∆n−|2p

P−→
∫ 1
0 |σs|2pds.

(27)

The first convergence result in (27) follows by application of the algebraic inequality ||a+ b|p −
|a|p| ≤ |b|p for a, b ∈ R and p ∈ (0, 1), as well as the following result

E|σt − σs|p ≤ K|t− s|
p
β
∧1−ι1{p≤β} , s, t > 0, ∀ι > 0. (28)

The above follows by an application of Hölder inequality, an application of the Burkholder-Davis-
Gundy inequality, the restriction on the jumps in σt in assumption SB, as well as the algebraic
inequality |

∑
i ai|p ≤

∑
i |ai|p for p ∈ (0, 1).

The second result in (27) follows trivially from the definition of Ξ and the boundedness of σt.
The third result in (27) follows by Riemann integrability. This proves (27) and hence the second
result in (26).

Finally, the last result in (26) can be proved exactly as Lemma 6.1 of Todorov and Tauchen
(2011). Combining (25) and (26), we have (24).

5.2.2 The term A2

We first use the decomposition

|σs|p − |σ(i−4)∆n
|p = |σs|p −

∣∣∣∣∣σ(i−4)∆n
+

∫ s

(i−4)∆n

bσudu+

∫ s

(i−4)∆n

∫
R
κ(δσ(u, x))µ̃(du, dx)

∣∣∣∣∣
p

+

∣∣∣∣∣σ(i−4)∆n
+

∫ s

(i−4)∆n

bσudu+

∫ s

(i−4)∆n

∫
R
κ(δσ(u, x))µ̃(du, dx)

∣∣∣∣∣
p

− |σ(i−4)∆n
|p,

for s ∈ [(i− 1)∆n, i∆n].
Then, an application of the algebraic inequality ||a+b|p−|a|p| ≤ |b|p for a, b ∈ R and p ∈ (0, 1),

the algebraic inequality |
∑

i ai|p ≤
∑

i |ai|p for p ∈ (0, 1), together with the fact that the function
κ′ is zero around zero, we get

E

∣∣∣∣∣|σs|p −
∣∣∣∣∣σ(i−4)∆n

+

∫ s

(i−4)∆n

bσudu+

∫ s

(i−4)∆n

∫
R
κ(δσ(u, x))µ̃(du, dx)

∣∣∣∣∣
p∣∣∣∣∣

≤ E

∣∣∣∣∣
∫ s

(i−4)∆n

∫
R
κ′(δσ(u, x))µ(du, dx)

∣∣∣∣∣
p

≤ K∆n, s ∈ [(i− 1)∆n, i∆n].

(29)

To proceed further, we make use of the following algebraic inequality

||a+ b|p − |a|p| ≤ |b|p1{|b|>0.5|a|} +K|a|p−1|b|, a, b ∈ R, p ∈ (0, 1).
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Applying the above inequality with a = σ(i−4)∆n
and b =

∫ s
(i−4)∆n

bσudu+
∫ s
(i−4)∆n

∫
R κ(δ

σ(u, x))µ̃(du, dx),

together with the fact that |σ(i−4)∆n
| is bounded both from below and above by a positive constant,

we get

E

∣∣∣∣∣
∣∣∣∣∣σ(i−4)∆n

+

∫ s

(i−4)∆n

bσudu+

∫ s

(i−4)∆n

∫
R
κ(δσ(u, x))µ̃(du, dx)

∣∣∣∣∣
p

− |σ(i−4)∆n
|p
∣∣∣∣∣

≤ KE

∣∣∣∣∣
∫ s

(i−4)∆n

bσudu+

∫ s

(i−4)∆n

∫
R
κ(δσ(u, x))µ̃(du, dx)

∣∣∣∣∣ ≤ K∆1/(β+ι)
∧

1
n , ι ∈ (0, 2− β),

(30)

for s ∈ [(i − 1)∆n, i∆n] and where for the last inequality we made use of the Burkholder-Davis-
Gundy inequality (when β ≥ 1).

Combining (29) and (30), together with the fact that the probability of σt jumping at fixed
times is zero, we get altogether,

E||A2|| ≤ K∆1/(β+ι)
∧

1
n , ι ∈ (0, 2− β). (31)

5.2.3 The term A3

Here we derive a bound for the first absolute moment of the first element of the vector A3, the
analogous moment for the second element being done in exactly the same way. First, we split

St = S
(1)
t + S

(2)
t , S

(1)
t =

∫ t

0

∫
R
κ(x)µ̃(ds, dx) and S

(2)
t =

∫ t

0

∫
R
κ′(x)µ(ds, dx),

S
(1,a)
t =

{ ∫ t
0

∫
R κ(x)µ̃(ds, dx), if β ≥ 1∫ t

0

∫
R κ(x)µ(ds, dx), if β < 1

, S
(1,b)
t = S

(1)
t − S

(1,a)
t .

Similarly

Ŝ
(a)
t =

{ ∫ t
0

∫
R xµ̃1(ds, dx), if β′ ≥ 1∫ t

0

∫
R xµ1(ds, dx), if β′ < 1

, Ŝ
(b)
t = Ŝt − Ŝ

(a)
t ,

and we similarly decompose S̃t = S̃
(a)
t + S̃

(b)
t . Note that

∫
R

|κ(x)|
|x|1+β dx <∞ when β < 1 and therefore

S
(1,a)
t and S

(1,b)
t are well defined when β < 1. Similar argument applies for Ŝ

(a)
t and S̃

(a)
t . Note also

that Ŝ
(a)
t and S̃

(a)
t are well defined because the jumps of L are bounded (assumption SB(e)). We

further set

b̃ιt = bιt − 1{β<1}

∫ t

0

∫
E
κ(δι(s, x))dsλ(dx), ι = α, σ,

αn
u = αu−α(i−4)∆n

−b̃α(i−4)∆n
(u−(i−4)∆n), σ

n
u = σu−σ(i−4)∆n

−b̃σ(i−4)∆n
(u−(i−4)∆n), u ≥ (i−4)∆n,

ψ = −1{β<1}

(∫
x<0

A−κ(x)

|x|1+β
dx+

∫
x>0

A+κ(x)

|x|1+β
dx

)
−1{β′<1}

∫
R
κ(x)ν ′(x)dx+1{β′≥1}

∫
R
κ′(x)ν ′(x)dx.

Si =
{
ω : |σ(i−4)∆n−(∆

n
i S −∆n

i−1S)| ≤ 2∆2
n

∣∣∣̃bα(i−4)∆n− + b̃σ(i−4)∆n−ψ
∣∣∣} .
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With this additional notation, we decompose ∆n
i X −∆n

i−1X =
∑4

j=1 ξ
(j)
i where

ξ
(1)
i = σ(i−4)∆n−(∆

n
i S −∆n

i−1S), ξ
(2)
i = ∆2

n

(
b̃α(i−4)∆n− + b̃σ(i−4)∆n−ψ

)
,

ξ
(3)
i =

∫ i∆n

(i−1)∆n

(σu− − σ(i−4)∆n−)dS
(1,a)
u −

∫ (i−1)∆n

(i−2)∆n

(σu− − σ(i−4)∆n−)dS
(1,a)
u

+

∫ i∆n

(i−1)∆n

σnudS
(1,b)
u −

∫ (i−1)∆n

(i−2)∆n

σnudS
(1,b)
u +

∫ i∆n

(i−1)∆n

(αn
u − αn

u−∆n
)du

+

∫ i∆n

(i−1)∆n

σnudS̃
(b)
u −

∫ (i−1)∆n

(i−2)∆n

σnudS̃
(b)
u −

∫ i∆n

(i−1)∆n

σnudŜ
(b)
u +

∫ (i−1)∆n

(i−2)∆n

σnudŜ
(b)
u ,

ξ
(4)
i =

∫ i∆n

(i−1)∆n

σu−dS̃
(a)
u −

∫ (i−1)∆n

(i−2)∆n

σu−dS̃
(a)
u −

∫ i∆n

(i−1)∆n

σu−dŜ
(a)
u +

∫ (i−1)∆n

(i−2)∆n

σu−dŜ
(a)
u

+

∫ i∆n

(i−1)∆n

(σu− − σ(i−4)∆n−)dS
(2)
u −

∫ (i−1)∆n

(i−2)∆n

(σu− − σ(i−4)∆n−)dS
(2)
u +∆n

i Y.

We finally set ξ̃
(j)
i = ∆

−1/β
n ξ

(j)
i for j = 1, ..., 4. We then have for the first element of the vector A3

A3(1) = ∆n

n∑
i=4


∣∣∣∣∣∣

4∑
j=1

ξ̃
(j)
i

∣∣∣∣∣∣
p

−
∣∣∣ξ̃(1)i

∣∣∣p
 .

We first can decompose the difference

n∑
i=4

(
|ξ̃(1)i + ξ̃

(2)
i |p − |ξ̃(1)i |p

)
= Bn +Rn, Bn =

n∑
i=4

ζi, ζi = p|ξ̃(1)i |p−1sign(ξ̃
(1)
i )ξ̃

(2)
i 1{|ξ̃(1)i |≥2|ξ̃(2)i |},

with |Rn| ≤ K

n∑
i=4

(
|ξ̃(2)i |p1{|ξ̃(1)i |<2|ξ̃(2)i |} + |ξ̃(1)i |−1+ι|ξ̃(2)i |p+1−ι

)
, ∀ι > 0.

Making use of the fact that by successive conditioning En
i (ζi+j) = 0 for j ≥ 2, we can further write

E
(

1√
n
Bn

)2

=
1

n
E

(
n∑

i=4

ζ2i + 2

n∑
i=5

ζi−1ζi

)
≤ 3

n
E

(
n∑

i=4

ζ2i

)
,

ζ2i ≤ K|ξ̃(1)i |−1+ι+(2p−1)∨0|ξ̃(2)i |2+(2p−1)∧0−ι =⇒ 1√
n
Bn = Op

(
∆(2−1/β)(1+(p−1/2)∧0−ι)

n

)
, ∀ι > 0.

1

n
E|Rn| ≤

K

n

n∑
i=4

E
(
|ξ̃(1)i |−1+ι|ξ̃(2)i |p+1−ι

)
=⇒ 1

n
Rn = Op

(
∆(2−1/β)(p+1−ι)

n

)
, ∀ι > 0.

Therefore altogether we have

1

n

n∑
i=4

(
|ξ̃(1)i + ξ̃

(2)
i |p − |ξ̃(1)i |p

)
= Op

(
∆(2−1/β)(p+1−ι)

n ∨∆1/2+ι′
n

)
, ∀ι > 0 and some ι′ > 0. (32)
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To get a bound on A3(1), we are left with
1
n

∑n
i=4

(∣∣∣∑4
j=1 ξ̃

(j)
i

∣∣∣p − |ξ̃(1)i + ξ̃
(2)
i |p

)
. To proceed further

we use the inequality∣∣∣∣∣∣
∣∣∣∣∣∣

4∑
j=1

ξ̃
(j)
i

∣∣∣∣∣∣
p

− |ξ̃(1)i + ξ̃
(2)
i |p

∣∣∣∣∣∣ ≤ |ξ̃(4)i |p +
∣∣∣|ξ̃(1)i + ξ̃

(2)
i + ξ̃

(3)
i |p − |ξ̃(1)i + ξ̃

(2)
i |p

∣∣∣ . (33)

Before analyzing each of the terms on the right-hand side of the above inequality, we derive
several bounds that we make use of. Using Burkholder-Davis-Gundy inequality, the algebraic one
|
∑

i ai|p ≤
∑

i |ai|p for p ∈ (0, 1), the boundedness of {σt}t∈[0,1], as well as the bound in (28), we
have

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(σu− − σ(i−4)∆n−)dS
(1,a)
u

∣∣∣∣∣
q

≤ KE

(∫ i∆n

(i−1)∆n

∫
R
|σu− − σ(i−4)∆n−|

q|κ(x)|qµ(du, dx)

)
≤ K∆1+q∧1

n , q ∈ (β, 1 + 1{β≥1}).

(34)

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σnudS
(1,b)
u

∣∣∣∣∣
q

≤ KE

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ u

(i−4)∆n

(̃bσs − b̃σ(i−4)∆n
)dsdu

∣∣∣∣∣
q

+KE

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ u

(i−4)∆n

∫
E
δσ(s, x)µ(ds, dx)du

∣∣∣∣∣
q

, q ∈ (β, 1).

(35)

By changing the order of integration (note that the integral with respect to the random measure µ
is a standard Lebesgue-Stieltjes integral and one can apply Fubini’s theorem), we can further write

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ u

(i−4)∆n

∫
E
δσ(s, x)µ(ds, dx)du

∣∣∣∣∣
q

≤ K∆q
nE

(∫ (i−1)∆n

(i−4)∆n

∫
E
|δσ(s, x)|qµ(ds, dx)

)

+KE

(∫ i∆n

(i−1)∆n

∫
E
(i∆n − s)q|δσ(s, x)|qµ(ds, dx)

)
≤ K∆1+q

n , q ∈ (β, 1),

(36)

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ u

(i−4)∆n

(̃bσs − b̃σ(i−4)∆n
)dsdu

∣∣∣∣∣
q

≤ K∆q
nE

∣∣∣∣∣
∫ (i−1)∆n

(i−4)∆n

(̃bσs − b̃σ(i−4)∆n
)ds

∣∣∣∣∣
q

+KE

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(i∆n − s)(̃bσs − b̃σ(i−4)∆n
)ds

∣∣∣∣∣
q

≤ K∆3q
n , q ∈ (β, 1),

(37)

where we made use of E|̃bσs − b̃σ(i−4)∆n
| ≤ K|s−(i−4)∆n| which follows from the Itô semimartingale

assumption for bσt in assumption SB(d) (note also that in this case β < 1 and further |δσ(t, x)| ≤ γ(x)
uniformly in t ∈ [0, 1] from assumption SB(c)). Similarly,

E

{∣∣∣∣∣
∫ i∆n

(i−1)∆n

σnudS̃
(1,b)
u

∣∣∣∣∣
q

+

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σnudŜ
(1,b)
u

∣∣∣∣∣
q}

≤ K∆1+q∧1
n , q ∈ (β, 1 + 1{β≥1}). (38)
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Next, when β < 1, upon interchanging the order of integration, we have

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(αn
u − αn

u−∆n
)du

∣∣∣∣∣
q

≤

(∫ i∆n

(i−1)∆n

∫ u

u−∆n

E|̃bαs − b̃α(i−4)∆n
|dsdu

)q

+K

∫ (i−1)∆n

(i−2)∆n

∫
E
|s− (i− 2)∆n|q|γ(x)|qdsλ(dx) +K

∫ i∆n

(i−1)∆n

∫
E
|i∆n − s|q|γ(x)|qdsλ(dx)

≤ K∆1+q
n , q ∈ (β, 1),

(39)

where we made use of E|̃bαs − b̃α(i−4)∆n
| ≤ K|s − (i − 4)∆n| which again follows from assumption

SB(d) about the process bαt .
When β ≥ 1, using Burkholder-Davis-Gundy inequality and assumption SB(c), we have

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(αn
u − αn

u−∆n
)du

∣∣∣∣∣
q

≤ KE

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫ u

u−∆n

∫
E
δα(s, x)µ̃(ds, dx)du

∣∣∣∣∣
q

+K∆2q−2
n

∫ i∆n

(i−1)∆n

∫ u

u−∆n

E
(
|̃bαs − b̃α(i−4)∆n

|q +
∣∣∣∣∫

E
κ′(δα(s, x))λ(dx)

∣∣∣∣q) dsdu ≤ K∆1+q
n , q ∈ (β, 2).

(40)

Combining the results in (34)-(40), we get altogether

E|ξ̃(3)i |q ≤ K∆1+1∧q−q/β
n , q ∈ (β, 1 + 1{β≥1}). (41)

We are now ready to bound the L1 norms on the terms on the right-hand side of (33). We start
with the first one. Making use of the algebraic inequality |

∑
i ai|p ≤

∑
i |ai|p for p ∈ (0, 1) (note

that Y , Ŝ(a) and S̃(a) are all sums of jumps when β′ < 1), Hölder inequality and Burkholder-Davis-
Gundy inequality if β′ ≥ 1, which is possible for parts (a) of Theorem 1 and Theorem 2, as well as
assumptions A and SB(e), we get

E|ξ̃(4)i |p ≤ K∆p/β′∧1−p/β−ι
n =⇒ 1

n

n∑
i=4

ξ̃
(4)
i = Op(∆

p/β′∧1−p/β−ι
n ), p < β ∧ 1, ∀ι > 0. (42)

Proceeding with the second term on the right-hand side of (33), we make use of the following
algebraic inequality

||a+b|p−|a|p| ≤ K
(
|a|p−1|b|1{|a|>ϵ, |b|<0.5ϵ} + |b|p1{|a|≤ϵ} + |b|p1{|b|≥0.5ϵ}

)
, a, b ∈ R, ϵ > 0, p ∈ (0, 1).

Applying the above inequality with a = ξ̃
(1)
i + ξ̃

(2)
i and b = ξ̃

(3)
i , we have∣∣∣|ξ̃(1)i + ξ̃

(2)
i + ξ̃

(3)
i |p − |ξ̃(1)i + ξ̃

(2)
i |p

∣∣∣ ≤ K|ξ̃(1)i + ξ̃
(2)
i |p−1|ξ̃(3)i |1{|ξ̃(1)i +ξ̃

(2)
i |>ϵ, |ξ̃(3)i |<0.5ϵ}1{S

c
i }

+K
(
|ξ̃(3)i |p1{|ξ̃(1)i +ξ̃

(2)
i |≤ϵ} + |ξ̃(3)i |p1{|ξ̃(3)i |≥0.5ϵ}

)
1{Sc

i } +K|ξ̃(3)i |p1{Si}.
(43)

We bound the expected value of each of the terms on the right-hand side of (43). Starting with

the first term, in the case of β > 1, we can use the fact that on the set Sc
i ,

2
3 |ξ̃

(1)
i + ξ̃

(2)
i | ≤ |ξ̃(1)i | ≤
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2|ξ̃(1)i + ξ̃
(2)
i |, the fact that ξ̃

(1)
i is symmetric stable random variable and the latter has moments of

order −1 + ι finite for ι ∈ (0, 1 + β), the Hölder inequality, and finally (41), to get

E
∣∣∣|ξ̃(1)i + ξ̃

(2)
i |p−1|ξ̃(3)i |1{|ξ̃(1)i +ξ̃

(2)
i |>ϵ, |ξ̃(3)i |<0.5ϵ}1{S

c
i }

∣∣∣
≤ K

[
E
(
|ξ̃(1)i |(p−1) β

β−1 1{|ξ̃(1)i |> 2
3
ϵ}

)]β−1
β
[
E
(
|ξ̃(3)i |β

)] 1
β

≤ Kϵ−(1/β−p)∨0−ι∆1/β−ι
n , when β > 1,

(44)

where the constant K above does not depend on ϵ and ι > 0 is any sufficiently small number. In
the case when β ≤ 1, we can first note that (using again the definition of the set Sc

i )∣∣∣|ξ̃(1)i + ξ̃
(2)
i |p−1|ξ̃(3)i |1{|ξ̃(1)i +ξ̃

(2)
i |>ϵ, |ξ̃(3)i |<0.5ϵ}1{S

c
i }

∣∣∣ ≤ K|ξ̃(1)i |p−β|ξ̃(3)i |β.

Using this inequality as well as (41), we get

E
∣∣∣|ξ̃(1)i + ξ̃

(2)
i |p−1|ξ̃(3)i |1{|ξ̃(1)i +ξ̃

(2)
i |>ϵ, |ξ̃(3)i |<0.5ϵ}1{S

c
i }

∣∣∣ ≤ Kϵp−βE|ξ̃(3)i |β ≤ Kϵ−(β−p)∆β−ι
n , when β ≤ 1,

(45)

where the constant K does not depend on ϵ and ι > 0 is any sufficiently small number.
Turning to the second term on the right-hand side of (43), applying Hölder inequality, using

the definition of the set Sc
i , and the bound in (41), we get

E
∣∣∣|ξ̃(3)i |p1{|ξ̃(1)i +ξ̃

(2)
i |≤ϵ}1{S

c
i }

∣∣∣ ≤ K
[
E|ξ̃(3)i |β

]p/β [
P
(
|ξ̃(1)i | ≤ 2ϵ

)]1−p/β
≤ K∆

(1∧β) p
β
−ι

n ϵ1−p/β−ι,

(46)

where the constant K does not depend on ϵ and ι > 0 is any sufficiently small number.
Next, for the third term on the right-hand side of (43), making use again of (41), we have

E
∣∣∣|ξ̃(3)i |p1{|ξ̃(3)i |≥0.5ϵ}

∣∣∣ ≤ Kϵ−(β−p)E|ξ̃(3)i |β ≤ Kϵ−(β−p)∆1∧β−ι
n , (47)

where the constant K does not depend on ϵ.
Finally, for the last term on the right-hands side of (43), using the boundedness of {σt}t∈[0,1]

from above and below as well as the boundedness from above of {b̃αt }t∈[0,1] and {b̃σt }t∈[0,1], we first
have

P(Si) ≤ KE|∆−1/β
n (∆n

i S −∆n
i−1S)|−1+ι∆(2−1/β)(1−ι)

n ≤ K∆(2−1/β)(1−ι)
n , ι ∈ (0, 1 + β). (48)

From here, using Hölder inequality and also (41), we have

E
∣∣∣|ξ̃(3)i |p1{Si}

∣∣∣ ≤ K
[
E|ξ̃(3)i |

]p
[P(Si)]

1−p ≤ K∆(2−1/β)(1−ι)
n , (49)

for ι > 0 any sufficiently small number. Now, we can set ϵ = ∆x
n for x = β∧1

β+1 in (44)-(47), and this
together with (49), yields

1

n

n∑
i=4

(
|ξ̃(1)i + ξ̃

(2)
i + ξ̃

(3)
i |p − |ξ̃(1)i + ξ̃

(2)
i |p

)
= Op(∆

p+1
β+1

(β∧1)−ι
n +∆(2−1/β)(1−ι)

n +∆1/β−ι
n ), for ∀ι > 0.

(50)
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One can then easily show that for p ∈
(

|β−1|
2(β∧1) ,

β
2

)
and provided β >

√
5−1
2 , we have p+1

β+1(β∧1) > 1/2.

Combining the result in (24) for A1 as well as the bound in (42), we prove Theorem 1 (note

that in the Lévy case we do not have the term A2 as well as the components of A3 involving ξ̃
(1)
i ,

ξ̃
(2)
i and ξ̃

(3)
i ).

Similarly, combining the results for A1 in (24), for A2 in (31), and for A3 in (32), (42) and (50),
we get parts (a) and (b) of Theorem 2. �

5.3 Proof of Corollaries 1 and 2

The consistency of β̂ follows from part(a) of Theorems 1 and 2 and continuous mapping theorem.
Using next Taylor series expansion and the limiting results in Theorems 1 and 2, we have

√
n(β̂ − β) =

β2

p log(2)

1

µ̃p(β)
∫ 1
0 |σs|pds

√
n

(
∆1−p/β

n Ṽ 1
n (p,X)− µ̃p(β)

∫ 1

0
|σs|pds

)
− β2

p log(2)

1

2p/βµ̃p(β)
∫ 1
0 |σs|pds

√
n

(
∆1−p/β

n Ṽ 2
n (p,X)− 2p/βµ̃p(β)

∫ 1

0
|σs|pds

)
+ op(1).

(51)

From here (17) and (18) readily follow from the limits in parts (b) of Theorems 1 and 2. �

5.4 Proof of Theorem 3

Using Taylor series expansion we have on a set with probability approaching one (the set on which
β̂ is above zero)

∆1−p/β̂
n Ṽ 1

n (p,X) = ∆1−p/β
n Ṽ 1

n (p,X) +
p

(β∗)2
∆p/β−p/β∗

n ∆1−p/β
n Ṽ 1

n (p,X) log(∆n)(β̂ − β), (52)

where β∗ is a value between β̂ and β. Next, since β̂ − β = op(∆
α
n) for some α > 0, we have

∆
p/β−p/β∗
n

P−→ 1. Thus, applying part(a) of Theorem 2, we get from (52) the result in (19).
Continuing with part(b) of Theorem 3, using (52) and (51) as well as the convergence result in

(15), we easily get (20). �
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