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Abstract

We consider a process Xt, which is observed on a finite time interval [0, T ], at discrete times
0, ∆n, 2∆n, · · · . This process is an Itô semimartingale with stochastic volatility σ2

t . Assuming that
X has jumps on [0, T ], we derive tests to decide whether the volatility process has jumps occurring
simultaneously with the jumps of Xt. There are two different families of tests, for the two possible
null hypotheses (common jumps or disjoint jumps). They have a prescribed asymptotic level, as
the mesh ∆n goes to 0. We show on some simulations that these tests perform reasonably well
even in the finite sample case, and we also put them in use on S&P 500 index data.
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1 Introduction

Financial asset prices have two well-documented salient features: their volatility changes
over time, and their trajectories can exhibit large discontinuities. Both features have
nontrivial implications for risk modeling and management as the underlying asset itself
is no longer sufficient to span all the available risks in it and derivatives (written on it)
are typically needed. Of central importance then becomes the relationship between the
price jumps and volatility. For example, if the volatility is driven by a single (Markov)
diffusion process, then one can separate the management of volatility and jump risks by
using first at-the-money options for the former and then out-of-the-money options for the
latter. But such a simple separate management of these two risks will obviously not work
if the price jumps are associated with simultaneous discontinuous changes in the level of
volatility. Empirical evidence in [9] based on the behavior of close-to-maturity options
written on the stock market index, suggest that this indeed might be the case. And this is
exactly what we try to investigate in this paper: are price jumps accompanied by jumps
in volatility?
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The link between price and volatility jumps is intrinsically associated with the observed
path, and therefore we develop tests that are as much as possible independent from the
underlying model. More specifically, we suppose that we have discrete observations from an
arbitrary Itô semimartingale (typically the log-price) at times i∆n for i = 0, 1, ..., [T/∆n]
where the time span T will stay fixed and the length of the high-frequency intervals
∆n → 0. Under such sampling scheme, we propose tests that determine the common
arrival or not of the price and volatility jumps on the discretely-observed path over [0, T ].

The test statistics that we construct can be intuitively described as follows. First, we
identify the high-frequency price increments containing jumps as those being higher in
absolute value than a truncation level which goes to zero at a certain (known) rate. Then,
for the set of identified jump times we construct left and right local volatility estimators
from the neighboring high-frequency price increments. Our statistics are simple sums
of certain functions of the identified jumps and the associated left and right volatility
estimators. Then the tests we develop are based on the different limit behavior of these
statistics on the sets of common and disjoint arrival of the price and volatility jumps.

While the results in the paper are derived for general functions measuring the dis-
tance between the left and right volatility, there is one specific choice which is particularly
attractive for our testing purposes and we use it in our applications. This function cor-
responds to the log-likelihood ratio test for deciding whether two independent samples
of i.i.d. zero-mean normal variables have the same variance. The link with our analysis
comes from the fact that the leading terms in the asymptotic expansions of the left and
right local volatility estimators are (close to) sample averages of squared increments of a
Brownian motion multiplied by the volatility level straight before and after the price jump
time. The “local Gaussianity” of the high-frequency increments has been also used in [7]
in a different context, i.e., for constructing various integrated measures of volatility in a
continuous setting. Unlike [7], however, our analysis is for processes with jumps.

Finally, our results can be related with [6] in which we propose tests for deciding
common arrival of jumps for two discretely observed processes. The major difference
with that paper is that here one of the processes, namely the volatility, is not directly
observed and it has to be estimated from the price increments first. This has nontrivial
consequences, as it is essentially the error associated with measuring the volatility that
determines the asymptotic behavior of our statistics, and it can significantly slow down
their rate of converge. The intrinsic nonsymmetric nature of the price and volatility is
reflected in our construction of the tests here, and this makes the statistical problem very
different from the one analyzed in [6].

The paper is organized as follows. Section 2 introduces our setup and states the
assumptions to be used in the rest of the paper. In Section 3 we propose statistics con-
structed from the high-frequency data to measure the simultaneous arrival of price and
volatility jumps. In this section we also derive Central Limit Theorems associated with
the statistics. Section 4 constructs our tests using the statistics of Section 3. Section 5
contains Monte Carlo evidence for the performance of the tests, while Section 6 applies
our tests to real financial data. Proofs are in Section 8.
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2 Setting and assumptions

We suppose throughout that our underlying process X is an Itô semimartingale on a
filtered space (Ω,F , (Ft)t≥0,P). This means that it can be written as

Xt = X0 +
∫ t
0 bsds +

∫ t
0 σs dWs

+
∫ t
0

∫
E(δ(s, z)1{|δ(t,z)|≤1})(µ− ν)(ds, dz)

+
∫ t
0

∫
E(δ(s, z)1{|δ(t,z)|>1})µ(ds, dz).

(2.1)

where W is a standard Brownian motion and µ is a Poisson random measure on [0,∞)×
E, with (E, E) an auxiliary measurable space, on the space (Ω,F , (Ft)t≥0,P) and the
predictable compensator (or intensity measure) of µ is ν(ds, dz) = ds⊗λ(dz) for some given
σ-finite measure λ on (E, E). We write ct = (σt)2 for the volatility process. The processes
bt and σt should be progressively measurable and δ(ω, t, z) should be a predictable function
on Ω× R+ × E. We refer to [4] for all unexplained, but classical, notation.

We need some assumptions on X, and below r ∈ [0, 2).

Assumption (H-r): (a) The process bt is locally bounded.

(b) The process σt is càdlàg, and neither σt nor σt− vanish.

(c) We have |δ(ω, t, x)| ≤ Γt(ω)γ(x), for a locally bounded process Γt and a (non-
random) function γ ≥ 0 satisfying

∫
E(γ(x)r ∧ 1)λ(dx) < ∞.

When r = 2 this is little more than X being an Itô semimartingale, except for the
fact that σt and σt− do not vanish. When r < 2 it requires further that the jumps are
r-summable, and the bigger r is, the weaker is the assumption. When (H-0) holds, then
the jumps of X have finite activity.

Next, we make an assumption on the local behavior of σt. We want to accommodate
two extreme cases: one is when σt is itself an Itô semimartingale (a quite usual assumption
for stochastic volatility models), and one is when it is the sum of finitely many jumps
plus a continuous process having pathwise some Hölder continuity property, such as a
fractional Brownian motion. So we present an assumption which may look complicated
but is satisfied by all models used so far, and implies that σt is càdlàg. In this assumption,
v is in (0, 1], and the bigger it is, the stronger is the assumption.

Assumption (K-v): We have σt = Σ(Zt, Zt), where Σ is a C1 function on R2, and Zt

and Zt are two adapted processes with the following properties:

(a) The process Z is an Itô semimartingale satisfying (H-2) when v ≤ 1/2, whereas
when v > 1/2 it satisfies (H-1/v) and its continuous martingale part vanishes.

(b) The process Zt satisfies, for some locally bounded process Γ′:

0 < s ≤ 1 ⇒ |Zt+s(ω)− Zt(ω)| ≤ Γ′t+s(ω) sv . (2.2)
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3 Limit theorems for functionals of jumps and volatility

Our aim is to decide whether we have jumps of X and c occurring at the same times, and
for this we make use of the following processes, where ∆Yt = Yt − Yt− is the jump size at
time t of any càdlàg process Y :

U(F )t =
∑

s≤t

F (∆Xs, cs−, cs) 1{∆Xs 6=0}. (3.1)

Here, F is a function on R × R∗+ × R∗+, where R∗+ = (0,∞). The derivatives of F , when
they exist, are denoted by F ′

j and F ′′
jk, for j, k = 1, 2, 3. The general idea will be to choose

a function F which, for example, is nonnegative and F (x, y, z) = 0 if and only if y = z;
then U(F )T > 0 on the set where the two processes X and c have common jumps within
the time interval [0, T ], and U(F )T = 0 elsewhere.

The process U(F ) is not directly observable, because we only observe Xi∆n for i ∈ N.
Consequently, we ”approximate” it by an observable process which we presently describe.
We need some notation. For any process Y we set

∆n
i Y = Yi∆n − Y(i−1)∆n

. (3.2)

We choose two sequences un > 0 and kn ∈ N∗ which serve as cutoff level and window
size at stage n: we must have un → 0 but more slowly than

√
∆n, and kn →∞ but more

slowly than 1/∆n. To this end it is convenient to choose two exponents $ and ρ such
that, for some constant K,

1
K
≤ un

∆$
n

≤ K,
1
K
≤ kn∆ρ

n ≤ K, with 0 < $ <
1
2
, 0 < ρ < 1. (3.3)

The next variables serve as ”local estimators” of the volatility:

ĉ(kn)i =
1

kn∆n

kn∑

j=1

|∆n
i+jX|2 1{|∆n

i+jX|≤un}. (3.4)

Note that (b) of (H-r) implies that ∆n
i X 6= 0 a.s. for all i, n, so ĉ(kn)i > 0 a.s. and we

can set

U(F, kn)t =
[t/∆n]−kn∑

i=kn+1

F (∆n
i X, ĉ(kn)i−kn−1, ĉ(kn)i) 1{|∆n

i X|>un}. (3.5)

The aim of this section is to describe the asymptotic behavior of those observable processes
U(F, kn).

3.1 The law of large numbers

Here we describe under which conditions on F we have U(F, kn) → U(F ). Basically, this
requires that F be continuous, plus some additional conditions. However, we want to
apply the result when, for example, F has the form F (x, y, z) = 1{|x|>a} g(y, z), where
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a > 0, and such an F is of course not continuous: so the desired convergence does not
take place, unless with probability 1 there is no jump of X with size a or −a. This is why
we introduce the following family R of subsets R:

R ∈ R ⇔ • R is open, with a finite complement
• D = {x : P

(∃s > 0 with ∆Xs = x
)

> 0} ⊂ R.
(3.6)

Theorem 3.1 Assume (H-r) for some r < 2 and (K-v) and (3.3), and let F be a Borel
function on R × R∗2+ which is continuous at each point of R × R∗2+ for some R ∈ R. The
processes U(F, kn) converge in probability, for the Skorokhod topology, to U(F ), as soon
as one of the following three sets of hypotheses is satisfied:

(a) F (x, y, z) = 0 for |x| ≤ ε for some ε > 0;

(b) we have r = 0;

(c) we have |F (x, y, z)| ≤ K|x|r(1 + y + z) if |x| ≤ ε for some ε,K > 0.

3.2 The central limit theorems

The above consistency result is not enough for us, and we need a central limit theorem
(CLT) associated with it. Moreover, in view of the statistical applications given later, we
need a joint CLT for the process U(F, kn) and for the similar process U(F, wkn) obtained
by substituting kn with wkn for some integer w ≥ 2.

The test function F should satisfy some smoothness conditions, in connection with the
index r in (H-r), and involving another index p ≥ 1 as well. Namely, we suppose that
there exist R ∈ R and ε ≥ 0 such that

• F is C1 on R× R∗2+
• 1

|x|p−1 F ′
1(x, y, z) is locally bounded on R× R∗2+

• 1
|x|r F ′

2(x, y, z), 1
|x|r F ′

3(x, y, z) are bounded on [−ε, ε]× R∗2+
(3.7)

(recall that any R ∈ R contains [−ε, ε] for some ε > 0). When ε = 0 the last condition is
empty. When p = 1 the second condition is empty.

We need some additional notation. Let (Ω′,F ′,P′) be an auxiliary space endowed
with four sequences (V −

p ), (V +
p ), (V ′−

p ) and (V ′+
p ) of independent N (0, 1) variables. We

introduce the following extension (Ω̃, F̃ , P̃) of (Ω,F ,P):

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P⊗ P′.

Any variable or process defined on Ω or Ω′ will be extended to Ω̃ in the usual way, without
change of notation. We consider an arbitrary sequence (Tp)p≥1 of positive stopping times
on (Ω,F , (Ft)t≥0,P), which exhausts the jumps of X: this means that Tp 6= Tq if Tp < ∞
and q 6= p, and that for each ω the set {t : ∆Xt 6= 0} is contained in {Tp : p ≥ 1}.



6

Below we assume (H-r), and F satisfies (3.7). Then the formulas




Ut =
∑

p≥1

(
F ′

2(∆XTp , cTp−, cTp)cTp−
√

2V −
p

+F ′
3(∆XTp , cTp−, cTp)cTp

√
2V +

p

)
1{Tp≤t}

U ′t =
∑

p≥1

(
F ′

2(∆XTp , cTp−, cTp)cTp−
√

2V ′−
p )

+F ′
3(∆XTp , cTp−, cTp)cTp

√
2V ′+

p )
)

1{Tp≤t}

(3.8)

define two càdlàg adapted processes U and U ′ on the extended filtered space (Ω̃, F̃ , (F̃t)t≥0, P̃),
where (F̃t) is the smallest filtration which contains (Ft) and such that the variables
V +

p , V −
p , V ′+

p , V ′−
p are F̃Tp-measurable. Moreover, conditionally on F , these two processes

are independent, with the same (conditional) laws, and are centered Gaussian martingales
(hence with independent increments), and with the conditional variances

Ẽ((Ut)2 | F) = Ẽ((U ′t)2 | F) = B(F )t, where

B(F )t = 2
∑

s≤t

(
c2
s− F ′

2(∆Xs, cs−, cs)2 + c2
s F ′

3(∆Xs, cs−, cs)2
)
.

(3.9)

Moreover, if we modify the exhausting sequence (Tp) we accordingly modify Ut and U ′t, but
we do not change their F-conditional laws, which is the only relevant property of (U ,U ′)
for the stable convergence in law below (all these facts are proved, in a slightly different
form, in [5]; we refer to [4] for the stable convergence in law).

Theorem 3.2 Assume (H-r) for some r < 2 and (K-v) and (3.3) with

ρ < (2$(2− r)) ∧ 2v

1 + 2v
. (3.10)

Let F satisfy (3.7) with ε ≥ 0 when r = 0 and ε > 0 otherwise, and let w ≥ 2 be an
integer.

(i) If either r = 0, or F (x, y, z) = 0 for |x| ≤ ε for some ε > 0, the two dimensional
processes (√

kn

(
U(F, kn)t − U(F )t

)
,
√

kn

(
U(F, wkn)t − U(F )t

))
. (3.11)

converge stably in law to the process
(U , 1

w (U +
√

w − 1U ′)), in the Skorokhod sense.

(ii) Assume that r > 0, that F (0, y, z) = 0 and that p > 1 + r/2 in (3.7). Assume also
that ρ and $ satisfy

$ <
1
2r

, ρ < (2$(p ∧ 2− r))
∧ 2p− 2− r

r

∧ 2v

1 + 2v
(3.12)

(which is stronger than (3.10)). Then for any fixed t > 0 the variables (3.11) converge
stably in law to the variables

(Ut,
1
w (Ut +

√
w − 1U ′t)).

In (ii) above we do not state the ”functional convergence” (stably in law), although it is
probably true. For the tests we are after in the paper, we need only the finite-dimensional
convergence of the above theorem.
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Our second CLT is about the case when the limiting process in the first CLT vanishes.
Another normalization is then needed, and also stronger smoothness assumptions on F .
Namely, we assume (3.7) and

• F (x, y, z) is C1 in x and C2 in (y, z) on R× R∗2+
• 1

|x|r F ′′
ij(x, y, z) for i, j = 2, 3 is bounded on [−ε, ε]× R∗2+

(3.13)

Of course, the limit in Theorem 3.2 may vanish under various circumstances, but for us
it is enough to consider the rather simple situation where there is a Borel set A ⊂ R and
some η > 0 such that

• either [−η, η] ⊂ A or [−η, η] ∩A = ∅
• x ∈ A, y ∈ R∗+ ⇒ F (x, y, y) = F ′

2(x, y, y) = F ′
3(x, y, y) = 0

• x /∈ A, y, z ∈ R∗+ ⇒ F (x, y, z) = 0.
(3.14)

Then obviously U(F )t = Ut = U ′t = 0 on the set ΩA
t on which, for all s ≤ t, we have

∆σs = 0 whenever ∆Xs ∈ A\{0}. When A = R the set ΩA
t is the set where X and σ have

no common jumps on [0, t].

When F satisfies (3.13), and with a given integer w ≥ 2, the formulas




U t =
∑

p≥1 c2
Tp

(
F ′′

22(∆XTp , cTp , cTp)(V −
p )2

+2F ′′
23(∆XTp , cTp , cTp)V −

p V +
p

)

+F ′′
33(∆XTp , cTp , cTp)(V +

p )2 1{Tp≤t}

U ′t = 1
w2

∑
p≥1 c2

Tp

(
F ′′

22(∆XTp , cTp , cTp)(V −
p +

√
w − 1V ′−

p )2

+2F ′′
23(∆XTp , cTp , cTp)(V −

p +
√

w − 1V ′−
p )(V +

p +
√

w − 1 V ′+
p )

)

+F ′′
33(∆XTp , cTp , cTp)(V +

p +
√

w − 1V ′+
p )2 1{Tp≤t}

(3.15)

define two càdlàg adapted processes U and U ′ on the extended filtered space (Ω̃, F̃ , (F̃t)t≥0, P̃).
Moreover, conditionally on F , the pair (U ,U ′) is a process with independent increments
and finite variation on compact intervals, and with the conditional means

Ẽ(U t | F) = B′(F )t, Ẽ(U ′t | F) = 1
w B′(F )t, where

B′(F )t =
∑

s≤t c2
s

(
F ′′

22(∆Xs, cs, cs) + F ′′
33(∆Xs, cs, cs)

)
.

(3.16)

Here again, if we modify the exhausting sequence (Tp) we accordingly modify U t and U ′t,
but we do not change their F-conditional laws.

Theorem 3.3 Assume (H-r) for some r < 2 and (K-v) and (3.3) with

ρ < ((2$(2− r))
∧ 2v

1 + 2v

∧ 1
2
. (3.17)

Let F satisfy (3.14) for some A ⊂ R, and (3.13) for ε = 0 when r = 0 and some ε > 0
otherwise.
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(i) If either r = 0, or F (x, y, z) = 0 for |x| ≤ ε for some ε > 0, the two dimensional
variables

(
knU(F, kn)t, knU(F, wkn)t

)
converge stably in law, in restriction to the set ΩA

t ,
to the variable (U t,U ′t).

(ii) The same holds when r > 0, provided ρ and $ satisfy

ρ <
(
$(4− r)− 1

)∧ (2v) ∧ 1
1 + (2v) ∧ 1

∧ 1
2
. (3.18)

4 Construction of the tests

4.1 Preliminaries

Now we are ready to construct our tests using the limit results of the previous section. The
overall interval on which the process X is observed, at times i∆n, is [0, T ]. In our tests
the processes X and σ will not play a symmetrical role, mainly because X is observed,
whereas σ is not.

Although our main concern is to test for common jumps, irrespective of their sizes, it
might be useful to test also whether there are jumps of X with size in a subset A of R,
occurring at the same time as jumps of σ: for example, A = (a,∞) or A = (−∞,−a)
(positive or negative jumps of X of size bigger than a only), or A = (−∞,−a) ∪ (a,∞)
(jumps of X of size bigger than a).

We thus pick a subset A ⊂ R satisfying the first part of (3.14), and we are interested
in the following two disjoint sets:

ΩA,j
T = {ω : ∃s ∈ (0, T ] with ∆Xs(ω) ∈ A\{0} and ∆σs(ω) 6= 0}

ΩA,d
T = {ω : ∀s ∈ (0, T ], ∆Xs(ω) ∈ A\{0} ⇒ ∆σs(ω) = 0,

and ∃s ∈ (0, T ] with ∆Xs(ω) ∈ A\{0}}.
(4.1)

The subscript ”j” and ”d” stand for ”Joint” jumps and ”Disjoint” jumps. One could also
specify a subset A′ in which the jumps of σ lie, but it requires more sophisticated CLTs
than Theorems 3.1 and 3.2 and we will not consider this case here. Note that ΩA,d

T is
contained in the set ΩA

T of Theorem 3.3.

Next, we recall that testing a null hypothesis “we are in a subset Ω0” of Ω, against
the alternative “we are in a subset Ω1”, with of course Ω0 ∩Ω1 = ∅, amounts to finding a
critical (rejection) region Cn ⊂ Ω at stage n. The asymptotic size and asymptotic power
for this sequence (Cn) of critical regions are the following numbers:

α = sup (lim supn P(Cn | H) : H ∈ F , H ⊂ Ω0, P(H) > 0)

β = inf (lim infn P(Cn | H) : H ∈ F , H ⊂ Ω1, P(H) > 0) .
(4.2)

In all forthcoming tests, we fix a priori two sequences un and kn satisfying (3.3):
typically un = a∆$

n and kn = [a′/∆ρ
n] where a, a′ > 0 are constants. Some restrictions on

$ and ρ will also be made, depending on the test at hand.

Finally, similar to the tests for deciding whether price and volatility jump together
or not which we develop here, one can use the limit results of Section 3 to derive various
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other tests about the relationship between jumps in X and its volatility. Examples include:
(1) testing whether all jumps in X are associated with volatility jumps, and (2) testing
whether jumps in X of given sign always lead to positive (negative) volatility jumps.

4.2 Testing the null hypothesis ”no common jump”

Here we take the null hypothesis to be ”X and σ have no common jump” with jump size
of X in A, that is Ω(A,d)

T , for A like in (3.14).

4.2.1 General family of tests

The idea is to use the variable U(F )T of (3.1) and its approximations U(F, kn)T for a
suitable function F , namely:

F (x, y, z) = f(x)g(y, z), with{
f is C1 on R, x ∈ [−ε, ε] ⇒ |f ′(x)| ≤ C|x|p−1

x ∈ A\{0} ⇒ f(x) > 0, x /∈ A\{0} ⇒ f(x) = 0




g is C2 with bounded first and second derivatives
z 6= y ⇒ g(y, z) > 0, z = y ⇒ g(y, z) = 0
g′1(y, y) = g′2(y, y) = 0, g′′11(y, y) + g′′22(y, y) > 0,

(4.3)

and where p ≥ 1 ∨ r. These ensure that F satisfies (3.7), (3.13) and (3.14). It also
implicitly implies conditions on the set A, since A\{0} = f−1((0,∞)) and f is C1 on R,
whose complement is finite.

By Theorem 3.1, we have the following convergence:

U(F, kn)T
P−→ U(F )T

{
= 0 on the set Ω(A,d)

T

> 0 on the set Ω(A,j)
T .

(4.4)

So in order to test the null hypothesis Ω(A,d)
T it is natural at stage n to take a critical

region of the form Cn = {U(F, kn)T > Zn} for some (possibly random) Zn > 0. In order
to determine Zn in such a way that the asymptotic level of the test be some α, we make use
of Theorem 3.3, which says that, in restriction to the set Ω(A,d)

T , the variables knU(F, kn)T

converge stably in law to UT , as defined by (3.15). Conditionally on F , this variable is a
weighted chi-square variable, with mean B′(F )T given by (3.16).

One simple, not very efficient, way to derive test with a prescribed level α makes
use of Bienaymé-Tchebycheff inequality, plus the fact that by Theorem 3.1 again we can
approximate the variable B′(F ) by U(G, kn)T , where

G(x, y, z) = y2 f(x) (g′′11(y, z) + g′′22(y, z)) (4.5)

satisfies all the requirements of that theorem. At this point, the critical region is taken to
be

Cn =
{

U(F, kn)T >
U(G, kn)T

α kn

}
, (4.6)

and the following is straightforward:
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Theorem 4.1 Assume (H-r) and (K-v), and F as in (4.3) with p ≥ r, and choose un and
kn such that (3.3) and (3.18) hold. Then the critical region (4.6) has asymptotic level less
than α for testing the null hypothesis Ω(A,d)

T , and asymptotic power 1 for the alternative
Ω(A,j)

T .

The actual asymptotic size of this test is usually much lower than α, because Bienaymé-
Tchebycheff is a crude approximation. However we can use a Monte-Carlo simulation to
better fit the size, in the spirit of [6]: we take a sequence Nn → ∞, and we simulate
independent N (0, 1) variables V −

i (j) and V +
i (j) of independent N (0, 1) variables, for

j = 1, · · · , Nn and i = 1, · · · , [T/∆n]. Then, with the observed values of ∆n
i X, hence of

the variables ĉ(kn)i as well, we set

U(n, j) =
∑[T/∆n]−kn

i=kn+1 f(∆n
i X)1{|∆n

i X|>un} (ĉ(kn)i)2(
g′′11(ĉ(kn)i−kn−1, ĉ(kn)i)(V −

i (j))2

+g′′22(ĉ(kn)i−kn−1, ĉ(kn)i)(V +
i (j))2

+2g′′12(ĉ(kn)i−kn−1, ĉ(kn)i)V −
i (j)V +

i (j)
)
.

(4.7)

Next, we consider the order statistics of these simulated variables, that is U(n)(1) ≥
U(n)(2) ≥ · · · ≥ U(n)(Nn) such that {U(n)j : 1 ≤ j ≤ Nn} = {U(n, j) : 1 ≤ j ≤ Nn}, and
we take as our critical region the following:

Cn =
{

U(F, kn)T >
U(n)([Nnα])

kn

}
. (4.8)

Theorem 4.2 Assume (H-r) and (K-v), and F as in (4.3) with p ≥ r, and choose un

and kn such that (3.3) and (3.18) hold. Then the critical region (4.8), constructed with
any sequence Nn increasing to infinity, has asymptotic level equal to α for testing the null
hypothesis Ω(A,d)

T , and asymptotic power 1 for the alternative Ω(A,j)
T .

4.2.2 A leading example

Here we specialize A to be either A = R or A = [−a, a]c for some positive a, and in the
first case we will need r = 0, that is our process X has finite activity jumps. In both
cases, we end up using finite number of jumps of X (jumps of size higher than a fixed
value are almost surely of finite number), therefore we consider F (x, y, z) = f(x)g(y, z)
with f(x) = 1{x∈A}. Since for this choice f(x) is discontinuous at x = ±a, we need
±a /∈ D (recall (3.6)) in order for (3.13) to be satisfied. Of course, D is unknown, but
in the typical case when the Lévy measure of X has no atom, D = {0} and thus any
a > 0 works. Otherwise, we can replace 1{|x|>a} by a C1 function which is very close to
this. Practically this should make no significant difference, and therefore we stick to the
indicator function, with a /∈ D. When A = R we set a = 0.

A natural choice for the function g is the following:

g(y, z) = 2 log
y + z

2
− log y − log z. (4.9)
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This choice corresponds to the log-likelihood ratio test for testing that two independent
samples of i.i.d. zero-mean normal variables have the same variance. The link with our
testing comes from the fact that around a jump time the high-frequency increments of X
are “approximately” i.i.d. normal.

With this choice of F , our test for common jumps becomes essentially pivotal, i.e. the
limiting distribution of the test statistics depends only on the number of jumps, and is
thus straightforward to implement. To see this note that in this case (3.15) writes as

UT =
1
2

∑

p≥1

(V +
p − V −

p )2 1{|∆XTp |>a}. (4.10)

Conditionally on F , this variable has the same law as a chi-square variable with NT degrees
of freedom, where NT =

∑
p≥1 1{|∆XTp |>a}. The variable NT is not observable. However,

we have

Nn
T =

[T/∆n]∑

i=1

1{|∆n
i X|>a∨un}

P−→ NT , (4.11)

and since these are integer-valued variables we even have P(Nn
T = NT ) → 1.

Therefore, denoting by z(α, n) the α-quantile of a chi-square variable χ2
n with n degrees

of freedom, that is the number such that P(χ2
n > z(α, n)) = α, we may take the following

critical region at stage n:

Cn =
{
U(F, kn)T >

z(α,Nn
t )

kn

}
. (4.12)

Theorem 4.3 Assume (H-r) and (K-v), and F as above with either a = 0 if r = 0 or a
positive and ±a /∈ D if r ≥ 0. Choose un and kn such that (3.3) and (3.17) hold. Then the
critical region (4.11) has asymptotic level equal to α for testing the null hypothesis Ω(A,d)

T ,
and asymptotic power 1 for the alternative Ω(A,j)

T .

Note that for constructing the critical region in (4.12), we need only the critical values
of a chi-square variable χ2

n, and thus there is no need for simulation.

4.3 Testing the null hypothesis ”common jump”

Now we take the null hypothesis to be ”X and σ have common jumps” with sizes in A

for X, that is Ω(A,j)
T , for A like in (3.14). We take an integer w ≥ 2 and a function F

satisfying (4.3), and introduce the statistics

Sn =
U(F, wkn)T

U(F, kn)T
. (4.13)

If we combine Theorems 3.1 and 3.3, we first obtain




Sn
P−→ 1 on the set Ω(A,j)

T

Sn
L−(s)−→ U ′T

UT
6= 1 a.s. on the set Ω(A,d)

T ,
(4.14)
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where
L−(s)−→ stands for the stable convergence in law; for the second convergence we must

assume that kn satisfies (3.17), and U ′T is implicitly depending on w; note that the pair
(UT ,U ′T ) has F-conditionally a density, implying U ′T /UT 6= 1 a.s.

To determine the asymptotic level of a test based upon Sn, we make use of Theorem
3.2, which by way of the delta method shows that, in restriction to the set Ω(A,j)

T , the
variables

√
kn (Sn− 1) converge stably in law to

(√
w − 1U ′T − (w− 1)UT

)
/wU(F )T . The

limit is F-conditionally centered Gaussian with variance (w−1)B(F )T /w(U(F )T )2, recall
(3.9). Hence, if

G(x, y, z) = 2f(x)2
(
y2 g′1(y, z)2 + z2 g′2(y, z)2

)

Vn = (w−1) U(G,kn)T

w kn (U(F,kn)T )2
,

(4.15)

we deduce that, in restriction to the set Ω(A,j)
T , the variables (Sn−1)/

√
Vn converge stably

in law to a standard normal variable, under (3.12) of course.

Then we may take the following critical region at stage n, where zα denotes the sym-
metric α-quantile of an N (0, 1) variable V , that is P(|V | > zα) = α.

Cn =
{|Sn − 1| > zα

√
Vn

}
. (4.16)

Theorem 4.4 Assume (H-r) and (K-v), and F as in (4.3) with p > 1 + r/2. Choose un

and kn such that (3.3) and (3.12) hold. Then the critical region (4.16) has asymptotic
level α for testing the null hypothesis Ω(A,j)

T .

There is no statement about the asymptotic power for the alternative Ω(A,d)
T , which is

any case is not equal to 1. Indeed, on Ω(A,d)
T , the variables (Sn−1)/

√
Vn converge stably in

law to some limit V (easily constructed from UT , U ′T , and also the variable UT associated
with the function G) as soon as G satisfies the assumption of Theorem 3.3. The variable
V is a.s. non vanishing, and the asymptotic power of our test is

β = inf(P(|V| > zα | H) : H ∈ F , H ⊂ Ω(A,d)
T , P(H) > 0).

This quantity cannot be computed explicitly and may be close to 0, as simulations show
later on.

To avoid this power problem, we can ”truncate” the estimated variance Vn: Let vn

be a sequence of positive numbers (possibly random, but of course depending only on the
observations at stage n), such that vn → 0 and knvn →∞, and set

V ′
n = Vn ∧ vn.

Since knVn converges to a positive finite limit on Ω(A,j)
T , we have P(Vn = V ′

n) → 1 and this
truncation has no effect on the behavior of our standardized statistics under the null, and
we take the following critical region:

C ′
n =

{|Sn − 1| > zα

√
V ′

n

}
. (4.17)
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Theorem 4.5 Assume (H-r) and (K-v), and F as in (4.3) with p > 1 + r/2. Choose un

and kn such that (3.3) and (3.17) hold. Then if vn → 0 and knvn →∞, the critical region
(4.17) has asymptotic level α for testing the null hypothesis Ω(A,j)

T , and asymptotic power
1 for the alternative Ω(A,d)

T .

Remark 4.6 Exactly as in the previous subsection, when r = 0 we may use the function
F (x, y, z) = g(y, z) given by (4.9), and A = R. When r > 0 we can use F (x, y, z) =
g(y, z) 1{|x|>a}, with g as above and a > 0 and A = [−a, a]c, provided ±a /∈ D. In these
cases, ρ and $ are subject to the weaker condition (3.10) only.

4.4 Practical aspects

The construction of the tests involves several choices to be made by the user. The first
one is about the functions f and g in (4.3). A good choice seems to be f(x) = 1{|x|>a} for
some a ≥ 0 and g as given by (4.9). However this works only when (H-0) holds (a serious
restriction indeed), or when a > 0, and in the latter case we only test for common jumps
when the size of the jumps of X is bigger than a. Then the user can perform the testing for
various levels of a. In addition, if jumps of certain size in X are more important, 1{|x|>a}
can be replaced with an appropriate weighting function for the jumps of different size.
Finally, if the user wants to check cojumping including the very “small” jumps in X, then
a good choice is to take f(x) = x2 and g(y, z) = h(y − z) where h is a C2 function with
bounded first and second derivatives, and h(0) = h′(0) = 0 and h′′(0) > 0 and h(x) > 0
when x 6= 0.

The second choice in implementing the tests is about the sequences un and kn. Here
we face a natural tradeoff between efficiency and robustness. un and kn should satisfy
(3.10) or (3.17) when f(x) = 1{|x|>a}, and (3.12) or (3.18) otherwise, depending on which
test is performed. These conditions depend on the a priori unknown numbers r and v in
(H-r) and (K-v). The higher the r and the lower the v are, the stricter the conditions are,
and the lower the rate at which kn can grow, i.e. the slower the rate at which U(F, kn)T

converges. Intuitively, high r makes difficult to distinguish the many small jumps from
the Brownian increments, while low v means volatility is very “active” over short intervals
and that makes estimation from neighboring increments “noisier”.

Most stochastic volatility models imply that σt is an Itô semimartingale and therefore
v = 1

2 . If in addition we assume that r < 1, i.e. jumps are of finite variation, then we can
choose $ and ρ arbitrarily close to 1

2 , which is the optimal choice. Alternatively, if we are
willing to assume only that r ≤ r0 for some 1 < r0 < 2, then we can write the conditions
on $ and ρ with respect to r0 and pick un and kn so that they are fulfilled. One should
emphasize that $ and ρ only give an order of magnitude, and the concrete choice of un

and kn when one is faced with a set of data and thus with n and ∆n given is always a
difficult question: in the Monte-Carlo study we provide some guidance on that.

The last choice to be made, for the second test, is choosing the integer w. Under the
null Ω(A,j)

T the normalized asymptotic F-conditional variance of Sn takes the form w−1
w Φ,

where Φ = B(F )Y /(U(F )T )2 does not depend on w. The minimum of w−1
w for w ≥ 2

is achieved at w = 2. At the same time the effect of changing w under the alternative
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hypothesis is unclear and in general depends on the particular realization. For that reason
we suggest to take w = 2 and we do so in our numerical applications without further
mention. Some Monte Carlo experiments (not reported here) with w = 4 provide further
support for this choice.

5 Monte Carlo study

In this section we check the performance of our tests on simulated data. We work with
the stochastic volatility model

dXt =
√

V 1
t + V 2

t dWt + α0

∫

R
xµ(dt, dx, dy),

dV 1
t = κ1(θ − V 1

t )dt + σ
√

V 1
t dW ′

t , (5.1)

dV 2
t = −κ2V

2
t dt + α1

∫

R
yµ(dt, dx, dy) + α2

∫

R
yµ′(dt, dy),

where W and W ′ are two independent Brownian motions; the (finite activity) Poisson
measures µ and µ′ are independent with compensators

ν(dt, dx, dy) =
λ

2(h− d)(u− d)
1(x∈[−h;−l]∪[l;h]) 1(y∈[d;u]) dtdxdy,

for 0 < l < h and 0 < d < u and ν ′(dt, dy) = λ
u−d 1(y∈[d;u]) dtdy. This two-factor volatility

structure is found to fit high-frequency financial data very well in [8], see also references
therein. The above cited study finds the continuous volatility factor to be very persistent,
while the discontinuous one to be transient. This is reflected in our choice of the parameter
values of κ1 and κ2 in the Monte Carlo settings, in an effort to make them realistically
plausible for financial applications. In Table 1 we report the parameter values for all cases
considered. In all of them the variance of the jumps in X is fixed and its share in the
total price variation is in the range 0.2− 0.34, which is similar to one estimated from real
financial data (see e.g. [3]). Scenarios with higher number of jumps imply that the jumps
are of smaller size. The different parameter settings differ in the average number of jumps,
their sizes, whether jumps are present in the volatility, and when so whether they arrive
together with the jumps in X or not. The cases labeled with c and d are draws from the
set Ω(A,d)

T , while the cases labeled with j and m are draws from the set Ω(A,j)
T . To ensure

the latter, we discard simulations from scenarios m on which there is no common price and
volatility jumps. The behavior of the tests on the discarded simulation draws is exactly
as on the simulations from scenarios d.

In the simulated model we have (H-0) and (K-1/2), so we use the tests based on
f(x) = 1 and g given by (4.9), and A = R. Throughout, time is measured in days, and
the observation length is five days, i.e. T = 5, which constitutes one business week. We
simulate 5000 days, i.e. 1000 Monte Carlo replications. On each day we consider sampling
n = 1000, n = 5000 or n = 24000 times, corresponding approximately to sampling every
0.5 minutes, 5 seconds or 1 second for a trading day of 6.5 hours or equivalently to sampling
every 1.5 minutes, 15 seconds or 4 seconds for a trading day of 24 hours. Finally, for the
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Table 1: Parameter Settings used in the Monte Carlo

Case Parameters

κ1 θ σ κ2 α0 α1 α2 λ l h d u

I-c 0.02 0.4 0.04 0.5 1 0 0 0.5 0.1 1.0420
II-c 0.02 0.4 0.04 0.5 1 0 0 1.0 0.1 0.7197
III-c 0.02 0.4 0.04 0.5 1 0 0 4.0 0.1 0.3275
I-d 0.02 0.4 0.04 0.5 1 0 1 0.5 0.1 1.0420 0.04 0.7600
II-d 0.02 0.4 0.04 0.5 1 0 1 1.0 0.1 0.7197 0.04 0.3600
III-d 0.02 0.4 0.04 0.5 1 0 1 4.0 0.1 0.3275 0.04 0.0600
I-j 0.02 0.4 0.04 0.5 1 1 0 0.5 0.1 1.0420 0.04 0.7600
II-j 0.02 0.4 0.04 0.5 1 1 0 1.0 0.1 0.7197 0.04 0.3600
III-j 0.02 0.4 0.04 0.5 1 1 0 4.0 0.1 0.3275 0.04 0.0600
I-m 0.00 0.0 0.00 0.5 1 1 1 0.5 0.1 1.0420 0.04 0.7600
II-m 0.00 0.0 0.00 0.5 1 1 1 1.0 0.1 0.7197 0.04 0.3600
III-
m

0.00 0.0 0.00 0.5 1 1 1 4.0 0.1 0.3275 0.04 0.0600

calculation of the local volatility estimators we use a window kn = [5 × ∆−0.49
n ]. Our

choice for the truncation parameters a and $ determining un = a∆$
n is a = 5 × √BV

and $ = 0.49 respectively, where BV denotes the bi-power variation over the day ([2, 1]).
This choice of the truncation level reflects the time-variation in the volatility.

Figure 1 shows kernel density estimates of U(F, kn)T /Nn
T and Figure 2 shows the size

and power of the test for disjoint jumps. Overall the test behaves as prescribed by our
asymptotic results. Not surprisingly, the size of the jumps have the strongest finite sample
effect: the last row of Figure 2, corresponding to the scenarios with the smallest on average
jumps, shows that for n = 1000 we have slight overrejection when the null is true (cases c
and d) and lower power when the alternative is true (cases j and m). The size distortion
disappears and the power converges to 1 as we increase the sampling frequency.

Turning to the test for common jumps, Figure 3 shows kernel density estimates of
log(Sn). The statistics is centered around 0 on the samples in Ω(A,j)

T (cases j and m),
as predicted from our theoretical results. The distribution of log(Sn) on these samples
becomes more concentrated around the true value of 0 as we increase the frequency. On
the other hand, on the samples in Ω(A,d)

T (cases c and d), the statistics is centered around
log(0.5) and its distribution remains nearly unchanged across the different sampling fre-
quencies (because for those samples Sn converge to a random variable and not a constant).

Figure 4 shows the size and power of the test for common jumps when we standardize
|Sn − 1| by Vn. The test has overall good size with the only exception being the cases
with high intensity of arrival of small size jumps (last row of the figure), for which even
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Figure 1: Kernel density estimate of U(f, g, kn)T /Nn
t from the Monte Carlo. The dashed

line corresponds to sampling frequency of n = 1000, the dotted line to sampling frequency
of n = 5000 and the solid line to sampling frequency of n = 24000.
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Figure 2: Size and power of the test for disjoint price and volatility jumps. The x-axis
shows the nominal level of the corresponding test, while the y-axis shows the percentage
of rejection in the Monte Carlo. The dashed line corresponds to sampling frequency of
n = 1000, the dotted line to sampling frequency of n = 5000 and the solid line to sampling
frequency of n = 24000.
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Figure 3: Kernel density estimate of log(Sn) from the Monte Carlo. The dashed line
corresponds to sampling frequency of n = 1000, the dotted line to sampling frequency of
n = 5000 and the solid line to sampling frequency of n = 24000.
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Figure 4: Size and power of the test for common price and volatility jumps with Vn

used in the construction of the critical region. The x-axis shows the nominal level of
the corresponding test, while the y-axis shows the percentage of rejection in the Monte
Carlo. The dashed line corresponds to sampling frequency of n = 1000, the dotted line to
sampling frequency of n = 5000 and the solid line to sampling frequency of n = 24000.
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Figure 5: Size and power of the test for common price and volatility jumps with V ′
n

used in the construction of the critical region. The x-axis shows the nominal level of
the corresponding test, while the y-axis shows the percentage of rejection in the Monte
Carlo. The dashed line corresponds to sampling frequency of n = 1000, the dotted line to
sampling frequency of n = 5000 and the solid line to sampling frequency of n = 24000.
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for n = 24000 we have somewhat significant overrejection. On the other hand, from the
first two columns of Figure 4 we can see that, when using Vn, the test has essentially no
power against the considered alternatives. The lack of power is explained after Theorem
4.4.

We next performed the test with rejection region C ′
n of (4.17), corresponding to the

truncated variance V ′
n = Vn ∧ vn, and we have taken vn = k−0.125

n × 1
z(0.5,Nn

t ) , where Nn
T

is given by (4.11). The choice of vn reflects the fact that on Ω(A,d)
T , Vn is distributed

approximately as 1/χ2
Nn

T
. The results of the test with the truncated asymptotic variance

are reported on Figure 5. The power against all alternatives improves in all cases, as seen
from the first two columns of the figure. The cost of this is finite sample overrejection in
the scenarios of frequent small jumps, i.e. the last row on Figure 5. The overrejection for
cases III-j and III-m is quite big.

Overall, we conclude that the test for disjoint jumps performs well in finite samples
and has relatively good power. The test for common jumps should be always performed
using the truncated variance V ′

n, and it can significantly overreject the null in the case
of jumps of small size. Finally, as confirmed by the Monte Carlo, using coarser sampling
frequencies in performing the tests leads to larger errors in estimating the left and right
volatility. Therefore, our ability to distinguish small price and volatility jumps worsens in
such cases. As a result, on coarser frequencies the tests will perform worse (i.e. weaker
power against alternatives and possible size distortions) when jumps are small, e.g., cases
III in our Monte Carlo, and there will be little effect when jumps are bigger, e.g., cases I
and II considered here.

6 Empirical application

Before going to the empirical application, let us mention a crucial point. Our construction
of the tests assumes that the stochastic process is observed without error, and the Monte
Carlo in the previous section is conducted in this way. In financial applications at very
high frequencies, e.g., seconds, the presence of microstructure noise in the prices is non-
negligible. If, for example, we have an i.i.d. noise, say with a continuous bounded density
φ, then ∆n

u3
n

ĉ(kn)i converges in probability to 2
3

∫
φ(x)φ(−x)dx for all i: so obviously

our test statistics behave in a very different way than in our theorems for their limiting
behavior in probability, not to speak about the CLTs. Intuitively, the microstructure noise
will tend to bias downwards the estimated difference between left and right volatility, i.e.,
a bias in favor of no common price and volatility jumps hypothesis.

There seems to be two ways to get around the problem of microstructure noise. One
is to use a coarser frequency at which the microstructure noise is considered as being
negligible. Given our conclusions from the Monte Carlo, this way will inevitably sacrifice
somewhat the performance of the tests when very small jumps are involved. An alternative
is to develop tests which are robust against the noise, like using a pre-averaging preliminary
procedure for our local volatility estimators, but this will inevitably lead to a further
decrease in the rates of convergence. Furthermore such an extension of our tests, while
building on the theoretical results here, asks for a significantly more involved mathematical
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approach which goes beyond the scope of the current paper and is thus left for future work.

In our empirical application we use one minute S&P 500 index futures data. The S&P
500 index futures contract is one of the most liquid financial instruments and thus the
microstructure noise should be of little concern at the selected one minute frequency. The
sample period is from January 1997 till June 2007, which has 2593 trading days. We
aggregate the data into business weeks (a total of 552) and perform the tests over these
periods. Our choice for F is g(y, z)1{|x|>a} with g(y, z) given by (4.9) and we report results
for various truncation sizes a. The choice of un, kn and vn is done exactly as in the Monte
Carlo study above.

Table 2: Testing for disjoint and common price and volatility jumps for S&P 500 index
data

Jump Size # of weeks Rejection Rate
with jumps Null = Ω(A,d)

T Null = Ω(A,j)
T

α = 5% α = 10% α = 5% α = 10%

any size 238 60.50% 64.71% 42.02% 51.26%
> 0.2% 163 61.96% 65.64% 40.49% 50.31%
> 0.3% 96 69.79% 70.83% 38.54% 48.96%
> 0.4% 56 73.21% 73.21% 42.86% 50.00%

Note: the test for common jumps is based on C ′
n in (4.17).

Table 2 reports the rejection rates of the two tests (for the conventional 5% and 10%
significance levels) for various levels of the truncation size a, while Figure 6 plots the kernel
density estimate of the test statistics together with rejection curves of the two tests for the
case of a = 0. The results suggest very strongly that the jumps in the level of the S&P 500
index are accompanied by jumps in its volatility. This is further confirmed from Table 3
in which we report the percentage of weeks in which both tests suggest the observed path
is in Ω(A,j)

T , Ω(A,d)
T , or disagree. Based on the results in Table 3 for the weeks in which

the S&P 500 index jumps: (1) in approximately 40% of them there is strong evidence
for common price and volatility jumps, (2) in around 20% of them there is evidence for
disjoint jumps, and (3) for the rest of the weeks the tests are inconclusive. Given our
Monte Carlo study, this last part of the sample can be explained with a lot of small jumps
for which detecting common or disjoint arrival needs even higher frequencies.

7 Conclusion

In this paper we derive tests for deciding whether jumps in a stochastic process are ac-
companied by simultaneous jumps in its volatility using only high-frequency data of the
process. Our application of the tests to S&P 500 index data indicates that most stock
market jumps are associated with volatility jumps as well.
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Figure 6: Test results for S&P 500 index data for truncation level a = 0. The top and
bottom left panels show kernel density estimates of U(f, g, kn)T /Nn

t and log(Sn) respec-
tively. The top and bottom right panels plot empirical rejection rates against nominal size
of the tests for disjoint and common jumps respectively. The latter one is based on C ′

n in
(4.17).
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Table 3: Decision Matrix based on the two tests for S&P 500 index data

accept Ω(j)
T reject Ω(j)

T

accept Ω(d)
T 19.33% 20.17%

reject Ω(d)
T 38.66% 21.85%

Note: Numbers based on the two tests with 5% significance level and truncation level
a = 0. The test for common jumps is based on C ′

n in (4.17).

8 Proofs

8.1 Preliminaries

Under (H-r) and (K-v), both X and Z are Itô semimartingales, with (2.1) for X, and Z
has a similar representation, in which (up to ”augmenting” the Poisson measure µ) it is
no restriction to assume that the Poisson measure is the same. That is, we can write

Zt = Z0 +
∫ t
0 b̂sds +

∫ t
0 σ̂s dWs +

∫ t
0 σ̂′s dW ′

s

+
∫ t
0

∫
E(δ̂(s, z)1{|δ̂(t,z)|≤1})(µ− ν)(ds, dz)

+
∫ t
0

∫
E(δ̂(s, z)1{|δ̂(t,z)|>1})µ(ds, dz)

(8.1)

where W ′ is another standard Brownian motion, independent of W . Moreover we have
|δ̂(ω, t, z)| ≤ Γt(ω)γ̂(z), where we can always take the same process Γt than in (H-r) for
X, as we may do for the process Γ showing in (2.2). Note also that

v ≤ 1
2 ⇒ ∫

(γ̂(z)2 ∧ 1)λ(dz) < ∞
v > 1

2 ⇒ ∫
(γ̂(z)1/v ∧ 1)λ(dz) < ∞, σ̂ = σ̂′ = 0.

(8.2)

By a well known localization procedure, see for example [5], it is enough to prove all
theorems of Section 3, hence also of Section 4, when in addition to the relevant assumptions
(H-r) and (K-v) we have

|bt|+ |σt|+ 1
|σt| + |̂bt|+ |σ̂t|+ |σ̂′t|+ Γt + |Xt|+ |Zt|+ |Zt|+ γ(z) + γ̂(z) ≤ C (8.3)

for some constant C. This additional assumption will be supposed throughout. In the
sequel, K is a constant which varies from line to line and may depend on C above and also
on r, v,$ and on the function γ in (H-v), and is written Kq if it depends on an additional
parameter q.

Under (8.3), we can write X as X = X ′ + X ′′, where

X ′′
t =

{ ∫ t
0

∫
E δ(s, z)(µ− ν)(ds, dz) if r > 1

∫ t
0

∫
E δ(s, z)µ(ds, dz) if r ≤ 1

X ′
t = X0 +

∫ t
0 b′sds +

∫ t
0 σs dWs, where

b′t =

{
bt +

∫
{|δ(t,z)|>1} δ(t, z) λ(dz) if r > 1

bt −
∫
{|δ(t,z)|≤1} δ(t, z) λ(dz) if r ≤ 1.
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We also need a long series of additional notation. For each integer m ≥ 1 we denote by
(S(m, q) : q ≥ 1) the successive jump times of the counting (Poisson) process µ([0, t]×{z :
1
m < γ(z) ≤ 1

m−1}). We relabel the two-parameter sequence (S(m, q) : m, q ≥ 1) as a
single sequence (Tp : p ≥ 1), which clearly exhausts the jumps of X.

When m ≥ 1 we denote by Tm the set of all p’s such that Tp = S(m′, q) for some q ≥ 1
and m′ ∈ {1, · · · ,m}. We set I(n, i) = ((i− 1)∆n, i∆n] and

i(n, p) = the unique integer such that Tp ∈ I(n, i(n, p))

J(n,m) = {i(n, p) : p ∈ Tm}, J ′(n,m) = N∗\J(n,m)

Ωn,t,m = ∩p6=q, p,q∈Tm {Tp > t, or Tp > 3kn∆n and |Tp − Tq| > 6kn∆n.}

We have
lim

n→∞ P(Ωn,t,m) = 1. (8.4)

When m ∈ N we also set

Am = {z : γ(z) ≤ 1/m}, γm =
∫
Am

γ(z)r λ(dz)

b′(m)t =

{
b′t −

∫
(Am)c δ(t, z) λ(dz) if r > 1

b′t if r ≤ 1

X ′(m)t = X0 +
∫ t
0 b′(m)s ds +

∫ t
0 σs dWs

Y (m)t =
∫ t
0

∫
(Am)c δ(s, z)µ(ds, dz)

X ′′(m)t =

{ ∫ t
0

∫
Am

δ(s, z) (µ− ν)(ds, dz) if r > 1
∫ t
0

∫
Am

δ(s, z) µ(ds, dz) if r ≤ 1

Y (m) = X ′(m) + X ′′(m) = X − Y (m).

(8.5)

Note that A0 = E, b′(0) = b′, Y (0) = 0, X ′(0) = X ′ and X ′′(0) = X ′′. When r ≤ 1,
we can also define those quantities when m = ∞, in which case A∞ = {z : γ(z) = 0},
b′(∞) = b′, Y (∞) = X ′′, X ′(∞) = X ′ and X ′′(∞) = 0.

Next, similar to (3.4), we put

η(kn)i =
1

kn∆n

kn∑

j=1

|∆n
i+jW |2. (8.6)

This notation, as well as (3.4), is extended for convenience to the case where i ≤ 0, with
the convention that ∆n

i Y = 0 when i ≤ 0 for any process Y . Finally, we set

ĉ(kn, p−) = ĉ(kn)i(n,p)−kn−1, ĉ(kn, p+) = ĉ(kn)i(n,p)

η(kn, p−) = η(kn)i(n,p)−kn−1, η(kn, p+) = η(kn)i(n,p)

κ(kn, p−) =
√

kn

(
ĉ(kn, p−)− cTp−

)
, κ(kn, p+) =

√
kn

(
ĉ(kn, p+)− cTp

)

κ′(kn, p−) =
√

kn

(
η(kn, p−)− 1

)
, κ′(kn, p+) =

√
kn

(
η(kn, p+)− 1

)
.
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8.2 Estimates

We proceed here to recalling or proving a number of useful estimates. As said before,
we always assume (H-r) and (K-v) and (8.3). Mostly, these estimates are conditional
with respect to a possibly larger filtration than (Ft). So we fix m ∈ N, and denote by
µ(m) and µ′(m) the restrictions of the measure µ to the sets R+ × Am and R+ × (Am)c

respectively. These are two independent Poisson measures, independent of W and W ′ as
well. We denote by Gm the σ-field generated by the measure µ′(m), and by (F (m)

t ) the
smallest filtration containing (Ft) and such that F (m)

0 contains Gm.

We set Dm = {(ω, s) : µ′(m)(ω, {s} ×E) = 1}, which is also the union of the graphs of
the stopping times Tp for p ∈ Tm. Then we define the process

Z(m)t = Zt −
∑

s≤t

∆Zs 1Dm(s).

Due to the independence of W , W ′, µ(m) and µ′(m), the processes W and W ′ and the
measure µ(m) are still Wiener processes and a Poisson random measure, relative to the
filtration (F (m)

t ). Hence X ′(m) and X ′′(m) are Itô semimartingales, with the same form
as in (8.5) (we can replace µ and ν by µ(m) and its deterministic compensator, because of
the presence of 1Am), and relative to the filtration (F (m)

t ). In the same way Z(m) is still
of the form (8.1), driven by W , W ′ and µ(m) (instead of µ), relatively to (F (m)

t ) (and up
to replacing b̂t by b̂(m)t = b̂t −

∫
(Am)c δ̂(t, z) 1{|δ̂(t,z)|≤1} λ(dz), which is still bounded).

1 - Estimates on σ. The latter property, together with (8.3) and classical estimates and
the fact that σ̂t = σ̂′t = 0 identically when v > 1/2 imply that for any p ≥ 1:

E(sup
s≤t

|Z(m)R+s − Z(m)R|p | F (m)
R ) ≤

{
Kp t(p/2)∧1 if v ≤ 1/2
Kp t(pv)∧1 if v > 1/2

(8.7)

for any finite (F (m)
t )-stopping time R. Since Z and Z stay in a compact set, we have

|σt+s − σt| ≤ K(|Zt+s − Zt|+ |Zt+s − Zt|).

Moreover, Zt − Zs = Z(m)t − Z(m)s if s < t and (s, t] ∩ Dm = ∅. If R is a finite
(F (m)

t )-stopping, the set {(R,R + t] ∩Dm = ∅} belongs to F (m)
0 , so (2.2) and (8.7) yield

E(sup
s≤t

|σR+s − σR|p | F (m)
R ) ≤ Kt(pv)∧1 on

{
(R, R + t] ∩Dm = ∅}. (8.8)

2 - Estimates on X. The following classical estimates use (8.3) and |b′(m)t| ≤ Km(r−1)+ .
Below, q > 0 and p ≥ r and i is an integer, possibly random but F (m)

0 -measurable, and
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we have

E
(|∆n

i W |q | F (m)
(i−1)∆n

) ≤ Kq∆
q/2
n

E
(|∆n

i X ′(m)|q | F (m)
(i−1)∆n

) ≤ Kq∆
q/2
n (1 + ∆q/2

n mq(r−1)+)

E
(|∆n

i X ′′(m)|p | F (m)
(i−1)∆n

) ≤
{ Kp∆nγm

mp−r

(
1 + (∆nmr)(p−1)+

)
if r ≤ 1

Kp∆nγm

mp−r

(
1 + (∆nmr)(p−2)+/2

)
if r > 1

E
(∣∣∆n

i X ′(m)−σ(i−1)∆n
∆n

i W
∣∣q |F (m)

(i−1)∆n

) ≤ K
(
∆q/2+(qv)∧1

n +∆q
n mq(r−1)+

)

on the set {I(n, i) ∩Dm = ∅}.

(8.9)

Next, we also have for p ≥ r:

E
(|∆n

i X ′′(m)|p ∧ up
n | F (m)

(i−1)∆n

) ≤ Kup−r
n ∆nγm. (8.10)

These estimates hold when m = 0 as well (in which case F (0)
t = Ft and i is not random,

and Y (0) = 0). In particular, in this case we deduce

E
(|∆n

i X|2 | F(i−1)∆n

) ≤ K∆n. (8.11)

Next, with any measurable subset A of E we consider the increasing process G(A)t =∫ t
0

∫
A γ(z)µ(ds, dz). This process is infinite for all t > 0 if

∫
A γ(z)λ(dz) = ∞, and otherwise

is a Lévy process, and known estimates on Lévy processes yield for all q > 0:

E((G(A)t)q) ≤ Kq

(
t

∫

A
γ(z)qλ(dz) +

(
t

∫

A
γ(z)λ(dz)

)q∨1)
. (8.12)

(Since γ is bounded, when q ≤ 1 the right side above is smaller than Kqt
∫
A γ(z)qλ(dz).)

Since |∆n
i Y (m)| ≤ ∆n

i G(Ac
m), we deduce (for i ≥ 1 not random):

q ≥ r ⇒ E
(|∆n

i Y (m)n
i |q | F(i−1)∆n

) ≤ Kq

(
∆n + (∆nm(r−1)+)q∨1

)
. (8.13)

3 - Estimates on ĉ(kn)i. Below, i ≥ 1 is a non-random integer. First (8.11) yields

E
(
ĉ(kn)i | Fi∆n

) ≤ K. (8.14)

We need also estimates on the difference ĉ(kn)i − ct for suitable times t. If S is a F (m)
0 -

measurable positive finite time and i ≥ 1 an F (m)
0 -measurable random integer, the sets

Ω(m, n, S, i)+ =
{
(i− 1)∆n < S ≤ i∆n, (S, S + (kn + 1)∆n] ∩Dm = ∅}

Ω(m, n, S, i)− =
{
(i− 1)∆n < S ≤ i∆n, (S − (kn + 2)∆n, S) ∩Dm = ∅}

are F (m)
0 -measurable, and we have:

Lemma 8.1 Assume (H-r) and (K-v) and (8.3). Let q = 1 or q = 2, and assume (3.3)
with also

q = 1 ⇒ ρ < 2v
1+2v

∧
(2$(2− r))

q = 2 ⇒ ρ < (2v)∧1
1+(2v)∧1

∧ (
$(4− r)− 1

)
.

(8.15)
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Then there is a sequence αn(q) → 0 such that, for m ≥ 0 and any F (m)
0 -measurable

variables S and i as above, we have:

E
(|ĉ(kn)i − cS η(kn)i|q | F (m)

S

) ≤ Km αn(q)

k
q/2
n

on Ω(m,n, S, i)+

E
(|ĉ(kn)i−kn−1 − cS− η(kn)i−kn−1|q | F (m)

(i−kn−1)∆n

)

≤ Km αn(q)

k
q/2
n

on Ω(m,n, S, i)−

(8.16)

and also

E
(|ĉ(kn)i − cS |q | F (m)

S

) ≤ Km

k
q/2
n

on Ω(m,n, S, i)+

E
(|ĉ(kn)i−kn−1 − cS−|q | F (m)

(i−kn−1)∆n

) ≤ Km

k
q/2
n

on Ω(m,n, S, i)−
(8.17)

Moreover, as soon as r < 2, and under (3.3) only, we have

ĉ(kn)i
P−→ cS on Ω(m,n, S, i)+

ĉ(kn)i−kn−1
P−→ cS− on Ω(m,n, S, i)−.

(8.18)

Proof. We will prove for example the second claims of (8.16), (8.13) and (8.18) (the first
ones are slightly easier). On the set Ω(m,n, S, i)− the variable ĉ(kn)i−kn−1 is equal to the
variable ĉ′(kn)i−kn−1 associated in the same way with the process Y (m).

The following estimate, for all x, y, z ∈ R, u > 0, w > 0, is straightforward:
∣∣∣|x + y + z|21{|x+y+z|≤u} − x2

∣∣∣
q

≤ Kq

(
(y ∧ u)2q + z2q + |x|q(|y| ∧ u)q + |x|q|z|q + |x|(2+w)q

uwq

)
.

This will be applied with x = σ(j−1)∆n
∆n

j W and y = ∆n
j X ′′(m) and z = ∆n

j X ′(m) −
σ(j−1)∆n

∆n
j W (so ∆n

j Y (m) = x+ y + z), and u = un and w such that w(1− 2$) ≥ 2, and
when j = i− kn− 1, i− kn, · · · , i− 1: using Hölder’s inequality, we deduce from (8.9) and
(8.10) and the boundedness of σt, and after some calculation, that in this case

E
(∣∣(∆n

j Y (m))2 1{|∆n
j Y (m)|≤un} − c(j−1)∆n

(∆n
j W )2

∣∣q | F (m)
(i−kn−1)∆n

)

≤ Km,θ

(
∆1+(2q−r)$

n + ∆q+(qv)∧θ
n

)

for any θ ∈ (0, 1), on the set Ω(m,n, S, i)−, because I(n, j) ∩Dm = ∅.
Next, we write |c(j−1)∆n

−cS−| ≤ |c(j−1)∆n
−cj∆n |+|cj∆n−cS−|, and we apply (8.8) and

(8.9) and either Hölder’s inequality plus the boundedness of σt, or successive conditioning,
to get for j and θ as above:

E
(|c(j−1)∆n

− cS−|q (∆n
j W )2q | F (m)

(i−kn−1)∆n

)

≤ Kθ

(
∆q

n(kn∆n)(qv)∧1 + ∆q+(qv)∧θ
n

)
.

These estimates, together with the definition of ĉ′(kn)i−kn−1 and η(kn)i−kn−1, yield

E
(|ĉ′(kn)i−kn−1 − cS− η(kn)i−kn−1|q | F (m)

(i−kn−1)∆n

) ≤ Km,θ a(q)n
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on the set Ω(m,n, S, i)−, where a(q)n = ∆1+(2q−r)$−q
n + ∆((qv)∧1)(1−ρ)

n + ∆(qv)∧θ
n . Then

(3.3) and a proper choice of θ show that a(q)nk
q/2
n → 0 for q = 1, 2, under (8.12), and

a(1)n → 0 as soon as r < 2. This in particular gives the second part of (8.16).

Finally (8.17) and (8.18) follow from the above, from the boundedness of the process
ct, and from the following property: if R is any (F (m)

t )-stopping time and i∆n ≥ R, then

E
(
(η(kn)i − 1)2 | F (m)

R

)
= 2/kn.

This readily follows from the fact that η(kn)i is independent of F (m)
R and given by (8.6).2

8.3 The stable convergence of ĉ(kn)i

From now on, the integer w ≥ 2 is fixed. The aim of this subsection is to prove the
following stable convergence:

Proposition 8.2 As soon as (H-r), (K-v), (8.3) and (8.15) for q = 1 hold, the sequence
of variables

(
(
κ(kn, p−), κ(kn, p+), κ(wkn, p−), κ(wkn, p+)

)
p≥1

(8.19)

converges stably in law as n →∞ (for the product topology on RN∗) to
(
cTp−

√
2V −

p , cTp

√
2V +

p , cTp−
√

2
w (V −

p +
√

w − 1V ′−
p ),

cTp

√
2
w (V +

p +
√

w − 1V ′+
p )

)
p≥1

,
(8.20)

where the variables V −
p , V +

p , V ′−
p , V ′+

p are defined on an extension of the original space
(Ω,F ,P) and are all independent and N (0, 1)-distributed, and independent of F .

Proof. Step 1) It is enough to prove the convergence of any finite sub-family of indices
p. In other words, instead of considering the infinite sequence indexed by p ≥ 1 in (8.19)
and (8.20), we can fix an arbitrarily large integer P and consider the families indexed by
p ∈ {1, · · · , P}. All p smaller than P are in some Tm, and we consider the set Ωn on
which for any p ≤ P and any q ∈ T we have Tp > 3kn∆n and |Tp − Tq| > 6kn. Obviously,
P(Ωn) → 1 as n →∞.

Now we will apply Lemma 8.1 with S = Tp for p ≤ P , and i = i(n, p): then S

and i are F (m)
0 -measurable, and the set Ωn is included into both Ω(m,n, Tp, i(n, p))+ and

Ω(m,n, Tp, i(n, p))−. Since P(Ωn) → 1, we deduce from this lemma that
√

kn

(
ĉ(kn, p−)− cTp−η(kn, p−)

) P−→ 0
√

kn

(
ĉ(kn, p+)− cTpη(kn, p+)

) P−→ 0
(8.21)

Step 2) Now we set

χn =
(
κ′(kn, p−), κ′(kn, p+), κ′(wkn, p−), κ′(wkn, p+)

)
1≤p≤P

χ =
(√

2V −
p ,
√

2V +
p ,

√
2
w (V −

p +
√

w − 1V ′−
p ),√

2
w (V +

p +
√

w − 1V ′+
p )

)
1≤p≤P

.

(8.22)
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By (8.21), we are left to prove that the variables χn stably converge in law to χ. Taking
into account that χ is independent of F , this amounts to proving

E(U f(χn)) → E(U)E(f(χ)), (8.23)

where U is any bounded F-measurable variable and f is continuous bounded.

In fact, if (G(m)
t ) denotes the smallest filtration to which W is adapted and such that

Gm ⊂ G(m)
0 , each χn is G(m)

∞ -measurable. So, up to substituting U with E(U | G∞) above,
it is clearly enough to prove (8.23) when U is G(m)

∞ -measurable.

Step 3) We introduce some further notation: first the set Fn = ∪1≤p≤P ((Tp − (wkn +
1)∆n)+, Tp + (wkn + 1)∆n], which is a random G(m)

0 -measurable set, and second the pro-
cesses

W
n
t =

∫ t

0
1Fn(s) dWs, W

′n = W −W
n

(those are well defined because W is a (G(m)
t )-Brownian motion). The σ-fields Hn gener-

ated by G(m)
0 and all variables W

′n
t increase with n, and

∨
nHn = G(m)

∞ . Therefore it is
enough to prove (8.23) when U is Hq-measurable for some q: to see this, let U be G(m)

∞ -
measurable; set Uq = E(U | Hq); if (8.23) holds for each Uq, it also holds for U because
Uq → U in L1(P).

The set Ωn of Step 1 is Gm-measurable, henceHq-measurable for all q. Since P(Ωn) → 1
it is enough to prove that for any bounded Hq-measurable variable U ,

E
(
U 1Ωn f(χn)

) → E(U)E(f(χ)), (8.24)

Step 4) We introduce a double sequence (N(p, i) : p, i ≥ 1) of i.i.d. N (0, 1) variables
on some auxiliary probability space. Then, define the variables

ζ(kn, p−) = 1√
kn

∑kn
i=1(N(p, i)2 − 1)

ζ(kn, p+) = 1√
kn

∑(w+1)kn

i=wkn+1(N(p, i)2 − 1)

ζ(wkn, p−) = 1√
wkn

∑wkn
i=1 (N(p, i)2 − 1)

ζ(wkn, p+) = 1√
wkn

∑2wkn
i=wkn+1(N(p, i)2 − 1).

Observe that in restriction to the set Ωn the variable χn involves increments of W which
are different for different values of p, and are increments of the process W

n above, which
is independent of W

′n. Therefore if q is fixed, for any n ≥ q and in restriction to the Hq-
measurable set Ωn, the Hq-conditional distribution of the variable χn of (8.22) is exactly
the law of

ζn =
(
ζ(kn, p−), ζ(kn, p+), ζ(wkn, p−), ζ(wkn, p+)

)
1≤p≤P

.

This means that the left side of (8.24) for n ≥ q is equal to E(U1Ωn)E(f(ζn)).

At this stage, we see that (8.24) amounts to proving that ζn converges in law to the
variable χ given in the second half of (8.22). This is an obvious consequence of the 4P -
dimensional ordinary central limit theorem. 2
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8.4 Proof of Theorem 3.1

1) As said before we assume (H-r) and (K-v) and (8.3). If m ≥ 1 and J(n,m, t) = J ′(n,m)∩
{kn + 1, kn + 2, · · · , [t/∆n]− kn} and Tm(n, t) = {p ∈ Tm : Tp ≤ ∆n[t/∆n]}, we have

t ≤ T ⇒ U(F, kn)t = Ũn(m)t + U
n(m)t on the set Ωn,T,m, where

Ũn(m)t =
∑

p∈Tm(n,t) F (∆n
i(n,p)X, ĉ(kn, p−), ĉ(kn, p+))1{∆n

i(n,p)
X|>un}

U
n(m)t =

∑
i∈J(n,m,t) F (∆n

i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i) 1{|∆n
i Y (m)|>un}.

(8.25)

The sum defining Ũn(m)t has a bounded number of summands, as n varies. We also have
for p ∈ Tm:

∆n
i(n,p)X → ∆XTp , P(|∆n

i(n,p)Y (m)| > un/2) → 0

∆n
i(n,p)X = ∆XTp + ∆n

i(n,p)Y (m) on Ωn,t,m

(8.26)

(use (8.9) and
√

∆n /un → 0 for the second property). We have P(∆XTp ∈ R) = 1 by

(3.6) and F is continuous on R × R∗2+ . Since ĉ(kn, p−) P−→ cTp− and ĉ(kn, p+) P−→ cTp

on Ωn,t,m ∩ {Tp ≤ t} (use (8.18) with S = Tp), the pth summand in Ũn(m)t converges
to F (∆XTp , cTp−, cTp)1{∆XTp 6=0} 1{Tp≤t} in probability. Therefore we have the following
convergence in probability, for the Skorokhod topology:

Ũn(m)t
P−→ Ũ(m)t =

∑

p∈Tm

F (∆XTp , cTp−, cTp) 1{Tp≤t}. (8.27)

2) Next, we show the result in case (a). Pick m > 2/ε. Since |∆Y (m)s| ≤ 1/m, for
any t > 0 we have |∆n

i Y (m)| ≤ 2/m for all i ≤ [t/∆n], on a set Ωn
t whose probability goes

to 1. On Ωn
t we have U

n(m)s = 0 for all s ≤ t, because of the property of F , which also
implies Ũ(m) = U(F ) identically. Then the result readily follows from (8.27).

3) Next, we show the result in case (b). The notation (8.5) is also valid for m = ∞,
and (8.27) holds for m = ∞ (the right side is a finite sum) and Ũ(∞) = U(F ). Since
Y (∞) = X ′(∞), it follows from the second part of (8.9) (which also holds with m = ∞
when r = 0) that P(∆n

i Y (∞)| > un) ≤ Kq∆
q/2
n u−q

n , which is smaller than K∆2
n if q =

4
1−2$ . So Borel-Cantelli Lemma yields that, for each t, we have |∆n

i Y (∞)| ≤ un for all
i ≤ [t/∆n], hence U

n(∞)s = 0 for s ≤ t, when n is large enough. We then conclude as
above.

4) It remains to consider the case (c). First, |F (∆Xs, cs−, cs)| ≤ K|∆Xs|r as soon as
|∆Xs| ≤ ε (recall that cs is bounded). Since

∑
s≤t |∆Xs|r < ∞ a.s. for all t, whereas

|∆Xs| ≤ 1/m when s differs from all Tp for p ∈ Tm, we deduce from the dominated
convergence theorem that Ũ(m) → U(F ) a.s., locally uniformly in time as m → ∞.
Therefore by (8.27) it remains to prove that for all t > 0,

η > 0 ⇒ lim
m→∞ lim sup

n→∞
P
(

sup
s≤t

|Un(m)s| > η
)

= 0. (8.28)

On the one hand, as in the previous step we deduce from (8.9) and from |∆X ′′(m)s| ≤
1/m that, if m > 4/ε, we have |∆n

i X ′(m)| ≤ un/2 and |∆n
i X ′′(m)| ≤ ε/2 for all i ≤ [t/∆n],
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when n is large enough. On the other hand, our assumption on F yields that if |x| ≤ un/2
and |x′| ≤ ε/2, then |F (x + x′, y, z)|1{|x+x′|>un} ≤ K|x′|r(1 + y + z) as soon as un ≤ ε.
Hence for any given t, and outside a set Ω′n,t,m satisfying P(Ω′n,t,m) → 1 as n → ∞, we
have |Un(m)s| ≤ Hn(m)t for all s ≤ t, where

Hn(m)t = K

[t/∆n]−kn∑

i=kn+1

|∆n
i X ′′(m))|r (

1 + ĉ(kn)i−kn−1 + ĉ(kn)i)
)
.

Therefore we are left to show that for all t,

lim
m→∞ sup

n
E

(
Hn(m)t

)
= 0. (8.29)

The estimates (8.13) and (8.14) and successive conditioning yield that

E
(|∆n

i X ′′(m))|r (
1 + ĉ(kn)i−kn−1 + ĉ(kn)i)

) ≤ K ∆n γm.

Since γm → 0 as m →∞, we deduce (8.29) and Theorem 3.1 is proved.

8.5 Proof of Theorem 3.2

We need many steps, and as before we assume (H-r) and (K-v), and also (8.3).

Step 1) We use the notation (8.25) of the previous proof when we deal with kn and
write instead Ũ ′n(m) and U

′n(m) when we deal with wkn. We also use Ũ(m)t, as defined
in (8.27), and

Ûn(m)t = U
n(m)t −

∑

p≥1, p/∈Tm

F (∆XTp , cTp−, cTp)1{Tp≤t}

and Û ′(m) is the same with U
′n(m) instead of U

n(m). We have

Ũn(m)t − Ũ(m)t =
∑

p∈Tm

ζn
p , Ũ ′n(m)t − Ũ(m)t =

∑

p∈Tm

ζ ′np ,

where

ζn
p = F (∆n

i(n,p)X, ĉ(kn, p−), ĉ(kn, p+)) 1{∆n
i(n,p)

X|>un} 1{Tp≤∆n[t/∆n]}
−F (∆XTp , cTp−, cTp)1{∆XTp 6=0} 1{Tp≤t}

ζ ′np = F (∆n
i(n,p)X, ĉ(wkn, p−), ĉ(wkn, p+)) 1{∆n

i(n,p)
X|>un} 1{Tp≤∆n[t/∆n]}

−F (∆XTp , cTp−, cTp)1{∆XTp 6=0} 1{Tp≤t}.

We also set

ζ
n
p =

(
F ′

2(∆XTp , cTp−, cTp)κ(kn, p−)

+F ′
3(∆XTp , cTp−, cTp)κ(kn, p+)

)
1{∆XTp 6=0}

ζ
′n
p =

(
F ′

2(∆XTp , cTp−, cTp)κ(wkn, p−)

+F ′
3(∆XTp , cTp−, cTp)κ(wkn, p+)

)
1{∆XTp 6=0}.

(8.30)
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Step 2) In this step we prove that
(√

kn

(
Ũn(m)− Ũ(m)

)
,
√

kn

(
Ũ ′n(m)− Ũ(m)

))

L−s=⇒ (U(m), 1
w (U(m) +

√
w − 1U ′(m)

))
,

(8.31)

(stable functional convergence in law), where U(m) and U ′(m) are as described in (3.8),
except that the sum is taken over the p ∈ Tm only. By Proposition 8.2, we have

∑

p∈Tm

(
ζ

n
p , ζ

′n
p

)
1{Tp≤t}

L−s=⇒ (U(m)t,
1√
w

(U(m)t +
√

w − 1U ′(m)t

))
,

whereas note the normalization in κ(wkn, p±) is by
√

wkn. Hence proving (8.31) amounts
to show that for each p ∈ Tm we have

√
kn ζn

p − ζ
n
p

P−→ 0,
√

wkn ζ ′np − ζ
′n
p

P−→ 0, (8.32)

in restriction to each set {Tp ≤ t}. We will prove for example the first property. We have
P(∆n[t/∆n] < Tp ≤ t) → 0 and (8.4) and (8.26), implying that the set {|∆n

i(n,p)X| > un}
converges in probability to the set {∆XTp 6= 0}. Therefore it is enough to show that

√
kn

(
F (∆n

i(n,p)X, ĉ(kn, p−), ĉ(kn, p+))− F (∆XTp , cTp−, cTp)
)

−
(
F ′

2(∆XTp , cTp−, cTp)κ(kn, p−) + F ′
3(∆XTp , cTp−, cTp)κ(kn, p+)

) P−→ 0.

The sequences κ(kn, p±)n are bounded in probability and ∆XTp ∈ R a.s., so (3.7) and
Taylor’s formula yield

√
kn

(
F (∆XTp , ĉ(kn, p−), ĉ(kn, p+))− F (∆XTp , cTp−, cTp)

)

−F ′
2(∆XTp , cTp−, cTp)κ(kn, p−)− F ′

3(∆XTp , cTp−, cTp)κ(kn, p+) P−→ 0.

So in fact it is enough to prove that

√
kn

(
F (∆n

i(n,p)X, ĉ(kn, p−), ĉ(kn, p+))

−F (∆XTp , ĉ(kn, p−), ĉ(kn, p+))
) P−→ 0.

(8.33)

Since ∆XTp ∈ R a.s. and the two sequences ĉ(kn, p−) and ĉ(kn, p+) are tight in (0,∞),

the first part of (3.7) yields that (8.33) will hold if
√

kn |∆n
i(n,p)X−∆XTp | P−→ 0. Therefore

(8.33) follows from the facts that kn∆n → 0 and that the sequence 1√
∆n
|∆n

i(n,p)X−∆XTp |
is bounded in probability, the latter coming for example from Lemma 8.5 of [5]. This ends
the proof of (8.33), hence of (8.31).

Step 3) Here we prove (i). Suppose first that F (x, y, z) = 0 for |x| ≤ ε for some ε > 0, and
take m > 2/ε. As in the previous theorem we then have U(F ) = Ũ(m) and U = U(m)
and U ′ = U ′(m), whereas U(F, kn)s = Ũ(m)s for all s ≤ t on a set Ωn

t having P(Ωn
t ) → 1.

The result follows from (8.31).
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Next we assume r = 0. Again as in the previous proof, we argue with m = ∞: we
have U(F ) = Ũ(∞) and U = U(∞) and U ′ = U ′(∞), whereas U(F, kn)s = Ũ(∞)s for all
s ≤ t on a set Ω′nt having P(Ω′nt ) → 1. Then the result follows as before.

Step 4) Now we assume r > 0. By (3.9) and the boundedness of ct, we have

Ẽ
(|Ut − U(m)t|2 | F

) ≤ K
∑

s≤t

|∆Xs|2r 1{|∆Xs|≤1/m}

as soon as m ≥ 1/ε. This goes to 0 a.s. as m →∞, because of (H-r), and it follows that
U(m) u.c.p.−→ U (convergence in probability, locally uniformly in time). In the same way, we
have U ′(m) u.c.p.−→ U ′. Therefore, it remains to prove that for all t, η > 0,

lim
m→∞ lim sup

n→∞
P
(√

kn |Ûn(m)t| > η
)

= 0, (8.34)

and the same for Û ′n(m). We will prove (8.34) only. Observe that, with the simplifying
notation cn

i = ci∆n and c′ni = c(i−1)∆n
, we have Ûn(m) =

∑2
j=1 V (m, j)n +

∑3
j=1 V (m, j)n,

where V (m, j)n
t =

∑
i∈J(n,m,t) ζ(m, j)n

i and, with J ′(n, m, t) = {i : 1 ≤ i ≤ [t/∆n]} ∩
J(n,m, t)c,

V (m, 1)n
t = −∑

i∈J ′(n,m,t)

∑
s∈I(n,i) F (∆Y (m)s, cs−, cs)

V (m, 2)n
t = −∑

0<s≤kn∆n
F (∆Xs, cs−, cs)

−∑
[t/∆n]−kn)∆n<s≤t F (∆Xs, cs−, cs)

ζ(m, 1)n
i =

(
F (∆n

i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i)
−F (∆n

i Y (m), c′ni , cn
i )

)
1{∆n

i Y (m)|>un}
ζ(m, 2)n

i = F (∆n
i Y (m), c′ni , cn

i ) 1{∆n
i Y (m)|>un}

−∑
s∈I(n,i) F (∆Y (m)s, c

′n
i , cn

i )
ζ(m, 3)n

i =
∑

s∈I(n,i)

(
F (∆Y (m)s, c

′n
i , cn

i )− F (∆Y (m)s, cs−, cs)
)
.

In view of (8.4) we are thus left to prove the existence of sets Ω(n,m, t, j) and Ω(n,m, t, j)
satisfying for all m ≥ 2/ε

lim
n→∞ P(Ω(n,m, t, j)) = 1, lim

n→∞ P(Ω(n,m, t, j)) = 1, (8.35)

such that, for j = 1, 2 and j = 1, 2, 3 respectively,

lim
m→∞ lim sup

n→∞

√
kn E

(
1Ω(n,m,t,j)|V (m, j)n

t |
)

= 0 (8.36)

lim
m→∞ lim sup

n→∞

√
kn E

(
1Ω(n,m,t,j)

[t/∆n]∑

i=1

|ζ(m, j)n
i |

)
= 0. (8.37)

Step 5) In this step we prove (8.36). In view of the second part of (3.7) and of F (0, y, z) = 0
and (8.3) we have when m > 1/ε:

∑

s∈I(n,i)

|F (∆Y (m)s, cs−, cs)| ≤ a(n, i) = K
∑

s∈I(n,i)

|∆Y (m)s|p.
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Moreover, we have the following estimate, for all i possibly random but F (m)
0 -measurable:

E(a(n, i) | F (m)
0 ) ≤ K∆n

∫

Am

γ(z)p λ(dz) ≤ K∆nγm. (8.38)

Since kn∆n → 0 the set Ω(n,m, t, 2) = {Dm ∩ [0, kn∆n] = ∅, Dm ∩ [t− (kn + 1)∆n, t] = ∅}
satisfies (8.35), and on this set we have |V (m, 2)n

t | ≤
∑kn

i=1 a(n, i) +
∑[t/∆n]+1

i=[t/∆n]−kn
a(n, i).

Then (8.36) for j = 2 readily follows from (8.38) and the property k
3/2
n ∆n ≤ K, see (3.12).

Now we consider the case j = 1. We have |V (m, 1)n
t | ≤

∑kn

i∈J ′(n,m,t) a(n, i). The

successive integers in J ′(n,m, t) are F (m)
0 -measurable, and the number of them is a Poisson

variable independent of the a(n, i)’s and with some parameter α(m, t) (exploding with m).
Then E(|V (m, 1)n

t |) ≤ Kα(m, t)∆n, and (8.36) for j = 1 holds with Ω(n,m, t, 1) = Ω.

Step 6) In this step we prove (8.37) for j = 1. The sets

Ω(n, m, t, 1) = ∩i≤[t/∆n] {|∆n
i Y (m)| ≤ 2/m, |∆n

i X ′(m)| ≤ un/2} (8.39)

satisfy the first part of (8.35) because |∆Y (m)s| ≤ 1/m and P(|∆n
i X ′(m)| > un/2) ≤

Km∆2
n (use (8.9) for this). When m ≥ 2/ε, (3.7) yields that |ζ(m, 1)n

i | ≤ ζ(m, 4)n
i on the

set Ω(n,m, t, 1) and for all i ≤ [t/∆n], where

ζ(m, 4)n
i = K|∆n

i X ′′(m)|r(|ĉ(kn)i−kn−1 − c′ni |+ |ĉ(kn)i)− cn
i |

)
.

Then it remains to prove that (8.37) holds for j = 4 and Ω(n,m, t, 4) = Ω.

Apply (8.17) with m = 0 and S = (i− 1)∆n or S = i∆n (so Ω(0, n, S, i)± = Ω) to get

E(|ĉ(kn)i−kn−1 − c′ni |) ≤ K√
kn

, E(|ĉ(kn)i − cn
i | | Fi∆n) ≤ K√

kn
. (8.40)

Moreover (8.9) gives E(|∆n
i X ′′(m)|r | F(i−1)∆n

) ≤ K∆nγm. Then by successive condi-
tioning we obtain E(ζ(m, 4)n

i ) ≤ K∆nγm/
√

kn. Since γm → 0 as m → ∞ we deduce
(8.37).

Step 7) Now we prove (8.37) for j = 3, with Ω(n,m, t, 3) = Ω. We suppose that m ≥ 1/ε,
so |∆Y (m)s| ≤ ε and (3.7) yields that |ζ(m, 3)n

i | ≤ K(ζ(m, 5)n
i + ζ(m, 6)n

i ), where

ζ(m, 5)n
i =

∑
s∈I(n,i) |∆Y (m)s|r |cs− − c′ni |

ζ(m, 6)n
i =

∑
s∈I(n,i) |∆Y (m)s|r |cn

i − cs|.

So it is enough to prove (8.37) for j = 5, 6. The case j = 5 is simple: the process
|cs− − c′ni |1s>(i−1)∆n

is predictable, hence

E(ζ(m, 5)n
i ) = E

(∫

I(n,i)

∫

Am

|cs− − c′ni | |δ(s, z)|r µ(ds, dz)
)

= E
(∫

I(n,i)
ds

∫

Am

|cs− − c′ni | |δ(s, z)|r λ(dz)
)

≤ γm

∫

I(n,i)
E(|cs− − c′ni |)ds ≤ K∆1+v

n γm,
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where the last inequality comes from (8.8) with m = 0 and R = (i − 1)∆n. Then (8.37)
for j = 5 follows because ∆v

n

√
kn → 0 by (3.12).

For j = 6 we use again (8.8) with m = 0 and R = Tp below to get

E(ζ(m, 6)n
i ) =

∑

p≥1

E
(|∆Y (m)Tp |r |cn

i − cTp | 1I(n,i)(Tp)
)

≤ K∆v
n

∑

p≥1

E
(|∆Y (m)Tp |r 1I(n,i)(Tp)

)

≤ K∆v
nE

( ∑

s∈I(n,i)

|∆Y (m)s|r
)
≤ K∆1+v

n γm,

and we conclude as above.

Step 8) Now we start proving (8.37) for j = 2. Set

ζ(m, 7)n
i = F (∆n

i Y (m), c′ni , cn
i ) 1{∆n

i Y (m)|>un}
−∑

s∈I(n,i) F (∆Y (m)s, c
′n
i , cn

i )1{∆Y (m)s|>un}.

If m ≥ 1/ε, we deduce from (3.7) and the boundedness of ct that

|ζ(m, 2)n
i − ζ(m, 7)n

i | ≤ K
∑

s∈I(n,i)

|∆Y (m)s|p 1{|∆Y (m)s|≤un}.

Therefore

E(|ζ(m, 2)n
i − ζ(m, 7)n

i |) ≤ K∆n

∫

{z:γ(z)≤un}
γ(z)pλ(dz) ≤ K∆1+$(p−r)

n γm.

Taking (3.12) into consideration, we deduce that

lim
n→∞

√
kn E

( [t/∆n]∑

i=1

|ζ(m, 2)n
i − ζ(m, 7)n

i |
)

= 0,

and thus we are left to prove (8.37) for j = 7.

Step 9) In this auxiliary step we fix m > 2/ε, and also some l ∈ (1, 1/2r$) (this is
possible by (3.12)). We write qn = [(un)−l] and we suppose that n is big enough for
having 1/qn < un < 1/m. We complement the notation (8.5) with

A′n = Am ∩ (Aqn)c, Y n
t =

∫ t
0

∫
A′n

δ(s, z)µ(ds, dz)

bn
t =

{ − ∫
A′n

δ(t, z)λ(dz) if r > 1
0 if r ≤ 1

Bn
t =

∫ t
0 bn

s ds

Y
n = Y (m)− Y n = X ′(qn) + X ′′(qn) + Bn

Nn
t = µ([0, t]×A′n), H(n, i) =

{|∆n
i Y

n| ≤ un
2

} ∩ {∆n
i Nn ≤ 1

}
.

(8.41)

First, Nn is a Poisson process with parameter λ(A′n) ≤ Kγmqr
n, hence

P(∆n
i Nn ≥ 2 | F (m)

(i−1)∆n
) ≤ K∆2−2rl$

n γm. (8.42)
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Second, upon observing that ∆nqr
n ≤ K (because rl$ ≤ 1) and |bn

t | ≤ qr−1
n γm when r > 1

and bn
t = 0 if r ≤ 1, that

ι ≥ r ⇒ E(|∆n
i Y

n|ι | F (qn)
(i−1)∆n

) ≤ Kι

(
∆ι/2

n + ∆1+l$(ι−r)
n γm

)
. (8.43)

This applied with ι = 4
1−2$ ∨ 1+lr$

$(l−1) and Markov’s inequality yield

P(|∆n
i Y

n| > un/2) ≤ K∆2
n. (8.44)

Next, on the set H(n, i), we have |∆n
i Y

n| ≤ un/2 and |∆n
i Y n| ≤ 1/m, and also

|∆Y (m)s| ≤ un for all s ∈ I(n, i), except when ∆n
i Nn = 1 for a single value of s for which

∆Y (m)s = ∆n
i Y n (whose absolute value may be smaller or greater than un). In other

words, on H(n, i) we have

ζ(m, 7)n
i =

(
F (∆n

i Y n + ∆n
i Y

n
, c′ni , cn

i ) 1{|∆n
i Y n+∆n

i Y
n|>un}

−F (∆n
i Y n, c′ni , cn

i ) 1{|∆n
i Y n|>un}

)
1{|∆n

i Y n|≤1/m, |∆n
i Y

n|≤un/2}.

The following estimate, when u ∈ (0, 1/m) and y, z ∈ (0,M ] for some M (this will be the
bound of the process ct) and x, x′ ∈ R with |x| ≤ 1/m and |x′| ≤ u/2, is easy to prove,
upon using (3.7):

∣∣F (x + x′, y, z)1{|x+x′|>u} − F (x, y, z)1{|x|>u}
∣∣ ≤ K

(|x|p−1 |x′|+ (|x| ∧ u)p
)
.

Therefore, on the set H(n, i) again we have

|ζ(m, 7)n
i | ≤ K

(|∆n
i Y n|p−1|∆n

i Y
n|+ (|∆n

i Y n| ∧ un)p
)
. (8.45)

The process Y n satisfies the same estimate than X ′′(m) in (8.10), hence since p ≥ r:

E
(
(|∆n

i Y n| ∧ un)p | F (m)
(i−1)∆n

) ≤ K∆nup−r
n γm ≤ K∆1+(p−r)$

n γm. (8.46)

On the other hand, we can apply (8.43) with ι = 2 and Cauchy-Schwarz inequality to
obtain E

(|∆n
i Y

n| | F (qn)
(i−1)∆n

) ≤ K
√

∆n. We also have |∆n
i Y n| ≤ ∆n

i G(A′n) (see before

(8.12) for this notation), and ∆n
i G(A′n) is F (qn)

0 -measurable. Therefore, in view of (8.12)
applied with the power (p− 1)∨ r and Hölder’s inequality, and upon applying (r ∨ 1)(1−
(r − 1)+l$) ≥ 1, and with the notation q = 1 ∧ p−1

r , we see that

E
(|∆n

i Y n|p−1|∆n
i Y

n|) = E
(
|∆n

i Y n|p−1 E
(|∆n

i Y
n| | F (qn)

(i−1)∆n

))

≤ K
√

∆n E
(|∆n

i Y n|p−1
) ≤ K∆1/2+q

n γq
m.

Hence by (8.45) and (8.46), we deduce

E
(|ζ(m, 7)n

i | 1H(n,i)

) ≤ Kγq
m

(
∆1+(p−r)$

n + ∆1/2+q
n

)
. (8.47)
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Step 10) Now we are ready to prove the result for j = 7. We take Ω(n, m, t, 7) =
∩1≤i≤[t/∆n]H(n, i), which by (8.42) and (8.44) satisfies

P(Ω(n, m, t, 7)c) ≤
[t/∆n]∑

i=1

P(H(n, i)c) ≤ Kt∆1−2rl$
n ,

hence (8.35) because 2rl$ < 1. Finally,

E
(
1Ω(n,m,t,7)

[t/∆n]∑

i=1

|ζ(m, 7)n
i |) ≤

[t/∆n]∑

i=1

E(|ζ(m, 7)n
i | 1H(n,i)),

so (8.47) shows that (8.35) holds, provided the sequences ∆(p−r)$
n

√
kn and ∆q−1/2

n
√

kn are
bounded. These amount to having 2(p − r) ≥ ρ and 2q − 1 ≥ ρ, which are implied by
(3.12).

8.6 Proof of Theorem 3.3

Step 1) We assume (H-r) and (K-v) and (8.3). Recalling (2.1) and (8.2), we set δ(t, z) =
δ(t, z) 1{δ(t,z)/∈A}∪{δ̂(t,z)=0}, and define X by (2.1) with δ instead of δ. This process satisfies
(H-r) as well, and coincides with X on the interval [0, t], in restriction to the set ΩA

t .
Hence the variables U(F, kn)t and U(F )t and U t and U ′t are the same on ΩA

t , whether
computed using X or X. So it is enough to prove the result for the process X. Or, in
other words, we can assume throughout that

∆Xs ∈ A\{0} ⇒ ∆σs = 0 identically. (8.48)

We use the same arguments as in the previous proof, and the same notation, except
that the variable ζ

n
p of (8.30) should be replaced by

ζ
n
p = 1

2

(
F ′′

22(∆XTp , cTp−, cTp)κ(kn, p−)2 + F ′′
33(∆XTp , cTp−, cTp)κ(kn, p+)2

+2F ′′
23(∆XTp , cTp−, cTp)κ(kn, p+)κ(kn, p−)

)
1{∆XTp 6=0}

and the same for ζ
′n
p with wkn instead of kn.

Step 2) In this step we prove that
(
knŨn(m), knŨ ′n(m)

) L−s=⇒ (U(m),U ′(m)
)
, (8.49)

where U(m) and U ′(m) are as in (3.15), except that the sum is taken over the p ∈ Tm

only. By Proposition 8.2, we have
( ∑

p∈Tm

ζ
n
p 1{Tp≤t},

∑

p∈Tm

ζ
′n
p 1{Tp≤t}

) L−s=⇒ (U(m)t, wU ′(m)t

)
,

so proving (8.31) amounts to show that for each p ∈ Tm and on each set {Tp ≤ t} we have

kn ζn
p − ζ

n
p

P−→ 0, wkn ζ ′np − ζ
′n
p

P−→ 0, (8.50)
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We prove only the first property, which (like in Theorem 3.2; note that here F (∆XTp , cTp−, cTp) =
0 by (3.14) and (8.48)) amounts to showing convergence of

knF (∆n
i(n,p)X, ĉ(kn, p−), ĉ(kn, p+))− 1

2

(
F ′′

22(∆XTp , cTp−, cTp)κ(kn, p−)2+

2F ′′
23(∆XTp , cTp−, cTp)κ(kn, p+)κ(kn, p−)+F ′′

33(∆XTp , cTp−, cTp)κ(kn, p+)2
)

to 0 in probability. Upon using again (3.14) and (8.48), we deduce from Taylor’s formula
and the tightness of the sequences κ(kn, p±) that, on the set {∆XTp ∈ R} which has
probability 1, the variables

knF (∆XTp , ĉ(kn, p−), ĉ(kn, p+))− 1
2

(
F ′′

22(∆XTp , cTp , cTp)κ(kn, p−)2+

2F ′′
23(∆XTp , cTp , cTp)κ(kn, p−)κ(kn, p+) + F ′′

33(∆XTp , cTp , cTp)κ(kn, p+)2
)

go to 0 in probability. Hence the first part of (8.50) will follow if we show

kn

(
F (∆n

i(n,p)X, ĉ(kn, p−), ĉ(kn, p+))−F (∆XTp , ĉ(kn, p−), ĉ(kn, p+))
) P−→0.

This is proved exactly as (8.33), except that here we use the property kn

√
∆n → 0.

Step 3) The proof of (i) follows from (8.49) in exactly the same way as in Step 3 of the
proof of Theorem 3.2.

Step 4) Now we start proving (ii), so r > 0. We can suppose that A contains a neighbor-
hood of 0, otherwise we are in the second situation of case (i). Hence we may take ε > 0
in (3.13) such that also [−ε, ε] ⊂ A. Similar to (3.16), and by the boundedness of ct and
(3.13), we have if m ≥ 1/ε:

Ẽ
(|U t − U(m)t| | F

) ≤ K
∑

s≤t

|∆Xs|r 1{|∆Xs|≤1/m}

This goes to 0 a.s. as m →∞, because of (H-r), so U(m) u.c.p.−→ U , and also U ′(m) u.c.p.−→ U ′.
Then it remains to prove that for all t, η > 0,

lim
m→∞ lim sup

n→∞
P
(
kn |Ûn(m)t| > η

)
= 0. (8.51)

and the same for Û ′n(m). We will prove (8.51) only.

Because of our assumptions we have here Ûn(m) = U
n(m). Then, in view of the

definition (8.25), and since the sets Ω(n,m, t, 1) of (8.39) satisfy (8.35), it is enough to
prove that

lim
m→∞ lim sup

n→∞
kn E

(
1Ω(n,m,t,1)

[t/∆n]∑

i=1

|ζ(m, 1)n
i |

)
= 0, (8.52)

where
ζ(m, 1)n

i = F (∆n
i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i)1{∆n

i Y (m)|>un}.

On Ω(n, m, t, 1), when m > 2/ε, for all i ≤ [t/∆n] we have |∆n
i Y (m)| ≤ ε and also

|∆n
i Y (m)| ≤ 2|∆n

i X ′′(m)| when further |∆n
i Y (m)| > un. Then, using (3.13) and a Taylor
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expansion around (∆n
i Y (m), ci∆n , ci∆n) and since F (x, y, y) = F ′

2(x, y, y) = F ′
3(x, y, y) = 0

for all x, y, we see that

|ζ(m, 1)n
i | ≤ K

(
ζ(m, 2)n

i + ζ(m, 3)n
i

)
on Ω(n,m, t, 1) and for i ≤ [t/∆n],

where

ζ(m, 2)n
i = |∆n

i X ′′(m)|r(|ĉ(kn)i−kn−1 − c(i−1)∆n
|2 + |ĉ(kn)i − ci∆n |2

)

ζ(m, 3)n
i = |∆n

i X ′′(m)|r |∆n
i c|2.

Hence we are left to prove that, for j = 2, 3, we have

lim
m→∞ lim sup

n
kn E

( [t/∆n]∑

i=1

ζ(m, j)n
i

)
= 0 (8.53)

Step 5) On the one hand, successive conditioning, plus the third estimate in (8.9) with
p = r, plus (8.17) with m = 0 and q = 2, yield E(ζ(m, 2)n

i ) ≤ K∆nγm/kn. Then (8.53)
for j = 2 follows. For j = 3 we will prove the stronger statement, for m large enough:

lim
n

kn E
( [t/∆n]∑

i=1

ζ(m, j)n
i

)
= 0. (8.54)

Therefore, we fix m ≥ 2/ε below.

First, suppose that r ≤ 1. Then X ′′(m)t =
∑

s≤t ∆X ′′(m)s, and since |x + x′|r ≤
|x|r + |x′|r and cs = cs− when ∆X(m)′′s 6= 0 (recall m ≥ 2/ε and (8.48)), we have
ζ(m, 3)n

i ≤ ζ(m, 4)n
i , where

ζ(m, 4)n
i =

∑

s∈I(n,i)

|∆Y (m)s|r |cs− − c(i−1)∆n
|2 +

∑

s∈I(n,i)

|∆Y (m)s|r |ci∆n − cs|2.

Then exactly as in Step 7 of Theorem 3.2, and upon using (8.8) with p = 2 instead of
p = 1, we obtain E(ζ(m, 3)n

i ) ≤ K∆1+(2v)∧1
n . Then (8.54) holds for j = 4, hence for j = 3,

by (3.18).

It remains to consider the case r > 1. We take l = 1/r$, and we use the notation
qn = [(un)−l] and (8.41), which we complement as follows:

Z(5)n = Bn, Z(6)n = X ′′(qn), Z(7)n = Y n,

so X ′′(m) =
∑7

j=5 Z(j)n, and we associate the variables

ζ(m, j)n
i = |∆n

i Z(j)|r |∆n
i c|2.

It is thus enough to prove (8.54) when j = 5, 6, 7. First, we have |∆n
i Z(5)n| ≤ K∆1−l$(r−1)

n γm

and thus by (8.8) we get E(ζ(m, 5)n
i ) ≤ K∆r−(r−1)rl$+(2v)∧1

n , which equals K∆1+(2v)∧1
n ,

and (8.54) for j = 5 holds, by (3.18). Next, (8.9) applied with qn instead of m implies
that for any p ≥ 2 we have E(|∆n

i Z(6)|p) ≤ Kp∆
p/r
n (use again rl$ = 1). Then by (8.8)
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and Hölder’s inequality we see that E(ζ(m, 6)n
i ) ≤ Kθ∆

1+(2v)∧θ
n for any θ ∈ (1/2, 1). Then

again, upon taking θ close to 1, we have (8.54) for j = 6.

Finally, we set Y (n, i)t =
∑

(i−1)∆n<s≤t |∆Y n
s | for t ∈ I(n, i). Observe that

|∆n
i Z(7)n|r ≤ Y (n, i)r

∆n
=

∑

s∈I(n,i)

(
(Y (n, i)s− + |∆Y n

s |)r − Y (n, i)r
s−

)

≤ K
∑

s∈I(n,i)

(|∆Y n
s |r + Y (n, i)r−1

s− |∆Y n
s |

)
.

Since |∆Y n| ≤ |∆Y (m)|, it follows that ζ(m, 7)n
i ≤ K(ζ(m, 4)n

i + ζ(m, 8)n
i + ζ(m, 9)n

i ),
where ζ(m, 4)n

i is as in the case r ≤ 1 and

ζ(m, 8)n
i =

∑
s∈I(n,i) Y (n, i)r−1

s− |∆Y n
s | |cs− − c(i−1)∆n

|2

ζ(m, 9)n
i =

∑
s∈I(n,i) Y (n, i)r−1

s− |∆Y n
s | |ci∆n − cs|2.

We have seen that (8.54) is satisfied for j = 4 (this is irrespective of the value of r). For
proving it for j = 8 and j = 9 we use the same argument as in Step 7 of Theorem 3.2
again, thus getting:

E(ζ(m, 8)n
i ) ≤ γm

∫
I(n,i) E

(
Y (n, i)r−1

s− |cs− − c(i−1)∆n
|2) ds

E(ζ(m, 9)n
i ) ≤ K∆(2v)∧1

n E
(∑

s∈I(n,i) Y (n, i)r−1
s− |∆Y n

s |
)

≤ K∆(2v)∧1
n E

(
sups≤i∆n

(Y (n, i)s)r
)
.

Note that Y (n, i) has the same structure as X ′′(qn) does in case r ≤ 1, so although
r > 1 here we have, as in the first part of the third estimate in (8.9),

p ≥ r ⇒ E
(

sup
s≤i∆n

(Y (n, i)s)p
)
≤ Kp

(
∆1+(p−r)l$

n + ∆p+r(p−1)l$
n

) ≤ Kp∆p/r
n .

Applying (8.8) and Hölder’s inequality yields E(ζ(m, 8)n
i ) ≤ Kθ∆

r+(2v)∧θ
n for any θ ∈

(1/2, 1), whereas obviously E(ζ(m, 9)n
i ) ≤ Kθ∆1+2v

n . Then (8.54) holds for j = 8 and
j = 9.

8.7 Proof of the results on the tests

Proof of Theorem 4.1. Theorems 3.1 and 3.3 yield that, in restriction to Ω(A,d)
T , the

variables knU(F, kn)T /U(G, kn)T converge stably to a positive variable V which, con-
ditionally on F , has mean 1. Hence if H ⊂ Ω(A,d)

T and with Cn given by (4.6), we have
lim supn P(Cn∩H) ≤ P̃(H∩{V ≥ 1/α}), which is smaller than αP(H) because Ẽ(V | F) =
1, and the result for the asymptotic level follows. Since knU(F, kn)T /U(G, kn)T

P−→∞ on
the set Ω(A,j)

T by Theorem 3.1, the asymptotic power is clearly 1. 2

Proof of Theorem 4.2. We will be very sketchy here. By localization we may assume
(8.3).
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First, we can suppose that the simulated variables V ±
i (j) are defined on our auxiliary

space (Ω′,F ′,P′), so that the U(n, j)’s are defined on the extension (Ω̃, F̃ , P̃). Then we can
reproduce the proof of Theorem 4.4 of [6] to obtain that, if Zn

P−→ Z are F-measurable
variables, we have

P̃(U(n, 1) > Zn | F) P−→ P̃(UT > Z | F). (8.55)

The only slightly different point is that we need here E((ĉ(kn)i)2 | F(i−1)∆n
) ≤ K. This

does not follow from (8.14), but it does from (8.17) applied with q = 2, because by
hypothesis (8.15) holds.

Then, using (8.55) and that knU(F, kn)T
L−(s)−→ UT on the set Ω(A,d)

T , we can reproduce
the proof of Theorem 5.1, Part (c), of [6], and we obtain the claim about the asymptotic
level. In the course of this proof it is also shown that F-conditionally the variables U (|Nnα])

converge in law to the unique variable Z(α) such that P̃(UT > Z(α) | F) = α, from which
U (|Nnα])

P−→ Z(α) follows.

Finally knU(F, kn)T
P−→∞ on Ω(A,j)

T . This and U (|Nnα])
P−→ Z(α), yields that P̃(Cn ∩

Ω(A,j)
T ) → P(Ω(A,j)

T . Hence the asymptotic power equals 1. 2

Proof of Theorem 4.3. The proof is the same as for Theorem 4.1, with the following
changes: we now have P(Cn ∩ H) → αP(H) because knU(F, kn)T converges stably in
law on Ω(A,d)

T to a chi-square variable with NT degrees of freedom, independent of F ,
and Nn

T = NT for n large enough. This gives that the asymptotic level is α, and for

the asymptotic power we use the fact that knU(F, kn)T
P−→ ∞ and NT < ∞ on the set

Ω(A,j)
T . 2

Proof of Theorem 4.4. The result readily follows from the stable convergence in law of
(Sn − 1)/

√
Vn to a standard normal. 2

Proof of Theorem 4.5. Since V ′
n = Vn for all n large enough, on the set Ω(A,j)

T , only
the claim about the power needs a proof. Now, V ′

n → 0, and we have the second part of
(4.14) on Ω(A,d)

T : that the asymptotic power equals 1 is now obvious. 2
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