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1 Introduction

Linear discrete-time factor models permeate academic asset pricing finance and also form

the basis for a wide range of practical portfolio and risk management decisions. Importantly,

within this modeling framework equilibrium considerations imply that only non-diversifiable

risk, as measured by the factor loading(s) or the sensitivity to the systematic risk factor(s),

should be priced, or carry a risk premium. Conversely, so-called neutral strategies that

immunize the impact of the systematic risk factor(s) should earn the risk free rate.

Specifically, consider the one-factor representation,

ri = αi + βir0 + εi, i = 1, ..., N, (1)

where ri and r0 denote the returns on the ith asset and the systematic risk factor, respectively,

and the idiosyncratic risk, εi, is assumed to be uncorrelated with r0. Then, provided suffi-

ciently weak cross-asset dependencies in the idiosyncratic risks (see Ross (1976) and Cham-

berlain and Rothschild (1983)), the absence of arbitrage implies that E(ri) = rf + λ0βi,

where rf and λ0 denote the risk free rate and the premium for bearing systematic factor

risk, respectively, so that the differences in expected returns across assets are solely deter-

mined by the cross-sectional variation in the betas. This generic one-factor setup obviously

encompasses the popular market model and CAPM implications in which the betas are pro-

portional to the covariation of the assets with respect to the aggregate market portfolio.

However, the use of other benchmark portfolios in place of r0, or more general dynamic

multi-factor representations (see, e.g., the discussion in Sentana and Fiorentini (2001) and

Fiorentini et al. (2004)), attach the same key import to the corresponding betas.

The beta(s) of an asset is(are), of course, not directly observable. The traditional way of

circumventing this problem and estimating betas rely on rolling linear regression, typically

based on five years of monthly data, see, e.g., the classical studies by Fama and MacBeth

(1973) and Fama and French (1992).1 Meanwhile, the recent advent of readily-available

high-frequency financial prices have spurred a renewed interest into alternative ways for

more accurately estimating betas. In particular, Andersen et al. (2005), Andersen et al.

1For additional references on the estimation of time-varying betas based on more sophisticated data-driven
filters and explicit parametric models see, e.g., Ghysels and Jacquier (2006).
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(2006), Bollerslev and Zhang (2003), Barndorff-Nielsen and Shephard (2004a) and Hooper

et al. (2006) among others, have all explored new procedures for measuring and forecast-

ing period-by-period betas based on so-called realized variation measures constructed from

the summation of squares and cross-products of higher frequency within period returns.

These studies generally confirm that the use of high-frequency data results in statistically

far superior beta estimates relative to the traditional regression based procedures.

Meanwhile, another strand of the burgeoning recent empirical literature concerned with

the analysis of high-frequency intraday financial data have argued that it is important to al-

low for the possibility of price dis-continuities, or jumps, in satisfactorily describing financial

asset prices; see, e.g., Andersen et al. (2007) Barndorff-Nielsen and Shephard (2004b, 2006),

Huang and Tauchen (2005), Mancini (2001, 2006), Lee and Mykland (2008) and Ait-Sahalia

and Jacod (2008b). Related to this, there is mounting empirical evidence from derivatives

markets that options traders price the expected variation in equity returns associated with

sharp price dis-continuities, or jumps, differently from the expected variation associated with

more smooth, or continuous, price moves; see, e.g., Bates (2000), Eraker (2004), Pan (2002)

and Todorov (2007).2 In other words, it appears as if the market rewards erratic price moves

differently from more orderly or smooth price variation, and implicitly treating the risk pre-

mia for two different types of price variation to be the same, as it is commonly done in most

existing pricing models, is too simplistic.

Combining these recent ideas and empirical observations naturally suggests decomposing

the return on the benchmark portfolio(s) within the linear factor model framework into the

returns associated with continuous and dis-continuous price moves (rc
0 and rd

0, respectively).

In particular, for the one-factor model in equation (1),

ri = αi + βc
i r

c
0 + βd

i r
d
0 + εi, i = 1, ..., N, (2)

where by definition r0 = rc
0 + rd

0, and the two separate betas represent the systematic risks

attributable to each of the two return components.3 Of course, for βc
i = βd

i the model triv-

2Similarly, the results in Wright and Zhou (2007) suggest that bond prices contain a separate premium
for jump risk.

3A very different economically motivated decomposition of the beta within the context of the one factor
market model into so-called cash-flow and discount rate betas have recently been proposed by Campbell and
Vuolteenaho (2004).
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ially reduces to the standard one-factor model in equation (1). However, there is no apriori

theoretical reason to restrict, let alone expect, the two betas to be the same. Indeed, the

classical paper by Merton (1976) hypothesized that in the context of the market model, jump

risks for individual stocks are likely to be non-systematic, so that effectively βd
i = 0. On the

other hand, the evidence for larger cross-asset correlations for extreme returns documented

in Ang and Chen (2002) among others, indirectly suggests non-zero jump sensitivities, or

βd
i > 0. Despite the potential importance of such a decomposition, both from a theoretical

asset pricing as well as a practical portfolio management perspective, direct empirical assess-

ment has hitherto been hampered by the lack of formal statistical procedures for actually

estimating different types of betas. The present paper fills this void by developing a general

theoretical framework for disentangling and separately estimating sensitivity towards sys-

tematic continuous and systematic jump risks. For simplicity and ease of notation, we will

focus on the one-factor representation in equation (2), but the same ideas and estimation

procedures extend to more general multi-factor representations.

The asymptotic theory underlying our results rely on the notion of increasingly finer

sampled returns over a fixed time-interval. Our estimation and inference procedures thus

extend the results in Barndorff-Nielsen and Shephard (2004a) on realized covariation mea-

sures for continuous sample path diffusions. The derivation of our results directly builds

on and extends the work of Jacod (2008) on power variation for general semimartingales

(containing jumps) as well as the recent work of Ait-Sahalia and Jacod (2008b) and Jacod

and Todorov (2008) on testing for jumps in discretely sampled univariate and multivariate

processes. Related ideas have also recently been explored by Mancini (2006) and Gobbi

and Mancini (2007). Additionally, we also utilize the procedures of Barndorff-Nielsen and

Shephard (2004b) and Barndorff-Nielsen et al. (2005) for measuring the continuous sample

path variation in the construction of feasible estimates for the asymptotic variances of the

betas.

To illustrate the practical usefulness of the new procedures, we estimate separate con-

tinuous and jump betas with respect to an aggregate market portfolio for a sample of forty

individual stocks, focussing on the monthly horizon. Consistent with the aforementioned

studies on high-frequency based beta estimates, which implicitly restrict the two kind of
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betas to be the same, we find overwhelming empirical evidence that both kinds of betas

vary non-trivially over time. Our findings of systematically positive jump betas for all of the

stocks directly contradict the notion that jump risk is diversifiable. Our results also show

that for some of the stocks the two types of betas can be quite different, with the estimated

jump betas typically being larger and less persistent than their continuous counterparts.

The calendar time span of high-frequency data available for the empirical analysis is too

short to allow for the construction of meaningful statistical tests for whether the separate

betas truly reflect differences in priced systematic risks. However, the differences in the

magnitudes of the estimates for some of the companies are such that the new betas developed

here could make a material difference in terms of pricing and similarly allow for more informed

portfolio and risk management decisions.

The rest of the paper proceeds as follows. Section 2 details our theoretical setup and

assumptions, along with the intuition for how to calculate continuous and jump betas in the

unrealistic situation when continuous price records are available. Our new procedures for

actually estimating separate betas based on discretely sampled high-frequency observations

and the corresponding asymptotic distributions allowing for formal statistical inference are

presented in Section 3. Our empirical application entailing estimates of the betas for the

extended market model for the forty individual stocks is discussed in Section 3. Section 4

concludes. All of the proofs are relegated to a technical Appendix.

2 The Continuous Record Case and Assumptions

Discrete-time models and procedures along the lines of the simple one-factor model in equa-

tion (1) are commonly used in finance for describing returns over annual, quarterly, monthly

or even daily horizons. Our goal here is to make inference for the separate betas in the ex-

tended one-factor model in (2) under minimal assumptions about the processes that govern

the returns within the discrete time intervals.

To this end, assume that within some fixed time-interval [0, T ] the log-price process pi is
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generated by the following general process (defined on some probability space (Ω,F ,P)),

dpit = αitdt + βc
i σ0tdW0t + σitdWit + βd

i

∫

E0

κ(δ0(t, x))µ̃0(dt, dx) + βd
i

∫

E0

κ′(δ0(t, x))µ0(dt, dx)

+

∫

Ei

κ(δi(t, x))µ̃i(dt, dx) +

∫

Ei

κ′(δi(t, x))µi(dt, dx), i = 1, ..., N, (3)

where (W0,W1, ..., WN) denotes a (N + 1)× 1 standard Brownian motion with independent

elements; µ0 is a Poisson random measure on [0,∞)×E0 with (E0, E0) an auxiliary measurable

space, with the compensator of µ0 denoted ν0(ds, dz) = ds⊗λ0(dz) for some σ-finite measure

λ0 on (E0, E0); µi is a Poisson random measure on [0,∞) × Ei with (Ei, Ei) an auxiliary

measurable space, with the compensator of µi denoted νi(ds, dz) = ds ⊗ λi(dz) for some

σ-finite measure λi on (Ei, Ei); the measures µi are mutually independent for i = 0, 1, ..., N ;

µ̃i := µi−νi is the compensated jump measure for i = 0, 1, ..., N ; κ(x) is a continuous function

on R into itself with compact support such that κ(x) ≡ x around 0 and κ′(x) = x− κ(x).4

This very general theoretical framework essentially encompasses all discrete-time one-

factor models described by the benchmark representation in equation (1). The systematic

diffusive risk is captured by σ0tdW0t, explicitly allowing for time-varying stochastic volatil-

ity. The systematic jump risk is determined by the Poisson measure µ0 and the jump size

function δ0(·, ·), which allow for both time-varying jump intensities and jump sizes. Consis-

tent with the extended discrete-time model in (2), the continuous-time representation in (3)

also explicitly allows for different (but constant over [0, T ]) sensitivities to the systematic

diffusive and jump risks, captured by βc
i and βd

i , respectively.

Now, suppose that continuous records over the [0, T ] time-interval were available for all

of the price processes. Is it possible to separately infer the βc
i and βd

i , i = 1, ..., N coefficients,

without making any additional parametric assumptions about the underlying process? The

answer to this question is a qualified ’yes’.

In particular, it follows by standard arguments that for i 6= j,

[pc
i , p

c
j](0,T ] = βc

i β
c
j

∫ T

0

σ2
0sds and

∑
s≤T

|∆pis|τ |∆pjs|τ = |βd
i β

d
j |τ

∫ T

0

∫

E0

|δ0(t, x)|2τµ0(dt, dx), (4)

4Note that κ(x) + κ′(x) = x, and therefore we integrate the big jumps with respect to the jump measure
and the small jumps with respect to the compensated one. The big jumps are almost surely of finite number
and thus integration for them can be done in the usual sense. The small jumps, on the other hand, can be
of infinite variation and this requires defining integration in a stochastic sense with respect to a martingale
measure (see Jacod and Shiryaev (2003)), section II.1.d.
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where [pc
i , p

c
j](0,T ] is the quadratic covariation between the continuous parts of pi and pj over

[0, T ]; for arbitrary asset i and time s, ∆pis = pis − pis− with pis− denoting the limit from

the left (the processes are càdlàg ); τ is some positive number such that
∫ T

0

∫
E0
|δ0(t, x)|2τ ∧

dtλ0(dx) < ∞ almost surely, i.e. 2τ is above the generalized Blumenthal-Getoor index of

Ait-Sahalia and Jacod (2008a) of the process p0 on [0, T ]. Hence, ratios of the separate betas

are readily obtained as,

βc
i

βc
j

=
[pc

i , p
c
k](0,T ]

[pc
j, p

c
k](0,T ]

, (5)

and

βd
i

βd
j

=
sign{∑s≤T sign{∆pis∆pks}|∆pis∆pks|τ}
sign{∑s≤T sign{∆pjs∆pks}|∆pjs∆pks|τ}

(
|∑s≤T sign{∆pis∆pks}|∆pis∆pks|τ |
|∑s≤T sign{∆pjs∆pks}|∆pjs∆pks|τ |

)1/τ

, (6)

for some k = 1, ..., N , such that k 6= i, and k 6= j, provided of course we have non-vanishing

systematic diffusion and jump risk on (0, T ].5 The sign in (6) is taken simply to recover

the signs of the jump betas that get “destroyed” when taking absolute values. Note that

the ratios in (5) and (6) provide an assessment of the relative magnitude of the sensitivities

toward systematic risks without the use of any observations on the systematic risk factor

itself.

Meanwhile, most practical uses of factor models in finance, and one-factor models in

particular, associate the source of the systematic risks with specific assets, or benchmark

portfolios. Specifically, suppose that observations are available on some reference asset 0

that is only exposed to systematic risk, i.e.,

dp0t = α0tdt + σ0tdW0t +

∫

E0

κ(δ0(t, x))µ̃0(dt, dx) +

∫

E0

κ′(δ0(t, x))µ0(dt, dx). (7)

Standardizing by this benchmark asset in equations (5) and (6), it follows that for i = 1, ..., N ,

βc
i =

[pc
i , p

c
0](0,T ]

[pc
0, p

c
0](0,T ]

, (8)

5An alternative estimator for the ratio of the jump betas that does not involve a reference asset k may
be constructed as ∣∣∣∣

βd
i

βd
j

∣∣∣∣ =

(∑
s≤T |∆pis|2+α|∆pjs|2∑
s≤T |∆pis|2|∆pjs|2+α

)1/α

, α > 0.
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and

βd
i = sign{

∑
s≤T

sign{∆pis∆p0s}|∆pis∆p0s|τ}
(∑

s≤T sign{∆pis∆p0s}|∆pis∆p0s|τ∑
s≤T |∆p0s|2τ

)1/τ

, (9)

so that the actual values of the betas, and not just their ratios, may be uncovered from

the continuous price records. Even if the one-factor structure in equation (3) does not

hold exactly, the βc
i and βd

i in equations (8) and (9), respectively, still provide meaningful

measures of the (average over [0, T ]) sensitivity of asset i to the diffusive and jump moves in

the reference asset 0.

The expressions for the betas given above form the basis for all of our estimators and

inference procedures discussed below. However, for the results reported on below, we need

the following, mostly, technical conditions on the underlying process in (3).

Assumption A1

(a) The processes αit, σ0t and σit are càdlàg and δ0(ω, t, x) and δi(ω, t, x) are predictable

functions of t for all i = 1, ..., N .

(b) |δ0(ω, t, x)| ≤ γk(x) for t ≤ Tk(ω), where γk(x) is a deterministic function such that
∫

E0
(|γk(x)|2∧1)λ0(dx) < ∞, and Tk is a sequence of stopping times increasing to +∞.

A similar condition holds for δi(ω, t, x) for all i = 1, ..., N .

(c)
∫ t

0
|σ0s|ds > 0 a.s. for every t > 0.

(d) σ0 and σi for i = 1, ..., N , are Itô semimartingales, with coefficients satisfying the

conditions in (a) and (b).

Assumption A1 is identical to the assumptions made in Jacod (2008). It is a rather weak

set of assumptions, and with the possible exception of part (c), which rules out pure-jump

specifications, virtually all parametric models employed in finance satisfy these conditions.

In addition to the minimal Assumption A1, for some of our results we will need the

additional slightly stronger assumption.

Assumption A2: |δ0(ω, t, x)| ≤ γk(x) for t ≤ Tk(ω), where γk(x) is deterministic function

such that
∫

E0
|γk(x)|s∧1λ0(dx) < ∞ for some s ∈ [0, 2], and Tk denotes a sequence of stopping

times increasing to +∞. A similar condition holds for δi(ω, t, x) for all i = 1, ..., N .
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Assumption A2 is again adapted from the general setup in Jacod (2008). It strengthens

part (b) of Assumption A1 (when s in A2 is strictly less than 2), in restricting the activity

of the jumps in the prices. In the case of time-homogeneous jumps it amounts to requir-

ing the so-called Blumenthal-Getoor index (Blumenthal and Getoor (1961)) of the jumps to

be no larger than s. Intuitively, if the small jumps are too frequent, they become statisti-

cally indistinguishable from the diffusive part of the process, rendering the decomposition

meaningless.

3 Estimation of Systematic Diffusive and Jump Risks

The discussion and formulas in the preceding section were predication on the notion of

continuous price records. In practice, of course, we do not have access to continuously

recorded prices over the [0, T ] time-interval. Instead, assume that the prices are observed

over some discrete time grid, say ı∆n for ı = 0, 1, · · · , [T/∆n]. Using such discretely observed

price data we next discuss how to actually implement the ideas in the previous section

in estimating the sensitivity parameters of interest, βc
i and βd

i . We also present Central

Limit Theorems for the resulting estimators based on the conceptual idea of increasingly

finely sampled prices, or ∆n → 0. We begin with the estimation of the sensitivity towards

systematic jump risk.

3.1 Inference about βd
i

Our estimator for the sensitivity towards systematic jump risk is constructed by consistently

estimating the numerator and denominator in the infeasible ratio in equation (6). In so doing,

we build on some of the results in Jacod and Todorov (2008). The latter paper derives tests

for deciding common arrival of jumps, while the current paper’s goal is estimating systematic

jump risks in individual prices (and separating those from the diffusive risks). The two

problems are related but obviously different.

To this end, let p = (p0, p1, ..., pN), and denote the corresponding vector of discrete price

increments,

∆n
ı p = pı∆n − p(ı−1)∆n . (10)
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With any measurable function φ we associate the process

Vn(φ)t =

[t/∆n]∑
ı=1

φ(∆n
ı p), 0 ≤ t ≤ T, (11)

and an analogous one based on the “big increments”

V
′
n(φ, α, $)t =

[t/∆n]∑
ı=1

φ(∆n
ı p)1{|∆n

ı p0|>α∆$
n ∪...∪|∆n

ı pN |>α∆$
n }, 0 ≤ t ≤ T, α ≥ 0, $ > 0. (12)

The constants α and $ in the truncation of the individual components in (12) were chosen

the same for the ease of exposition only. They can, and later in the empirical section will,

be taken different. In the estimation we make use of the RN+1 ×RN+1 measurable function

f , given by f = (fij)i,j=0,1,...,N for

fij(p, τ) = sign{pipj}|pipj|τ , τ > 0, (13)

where i, j = 0, 1, ..., N . For ease of notation, we use fij(p) to denote fij(p, τ), as τ will be

kept constant in the estimation.

Our estimator for the ratio of the jump betas between assets i and j may then be

compactly expressed as

(̂
βd

i

βd
j

)
= sign{Vn(fki)T Vn(fkj)T}

( |Vn(fki)T |
|Vn(fkj)T |

)1/τ

, (14)

for some k = 0, 1, ..., N . To avoid trivial (and uninteresting) cases we further restrict i 6= j,

i 6= k, and j = k if and only if j = k = 0. Note that for k = j = 0, the ratio provides a

direct estimate of βd
i . The feasible estimator in equation (14) directly mirrors the expression

in (6) based on continuously recorded prices. In order to be consistent for the ratio of jump

betas, however, we need to restrict τ ≥ 2, as the contribution from the continuous part of the

prices in fij(∆
n
ı p) will be negligible (asymptotically) only for powers greater than or equal

to 2. Intuitively, higher powers (higher than two) serve to “compress” the contribution from

the continuous price moves, while at the same time inflating the contribution coming from

jumps, in effect making the jumps “visible”.6

6For simplicity we focus on the function in (13) and the accompanying estimator in (14). However, as
discussed in more detail in Jacod and Todorov (2008), the same logic applies for arbitrary twice-continuously
differentiable functions on R2, in which the second partial derivatives go to 0 around the origin.
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We consider also an alternative estimator to (14), which uses only the “big” increments,

(̃
βd

i

βd
j

)
= sign{V ′

n(fki, α,$)T V
′
n(fkj, α,$)T}

( |V ′
n(fki, α, $)T |

|V ′
n(fkj, α, $)T |

)1/τ

. (15)

As shown below, this estimator is asymptotically equivalent to
(̂

βd
i

βd
j

)
.

In order to characterize the distribution of the estimators, we will consider an auxiliary

space (Ω′,F ′,P′), which is an extension of the original one and supports two sequences (Uq)

and (U ′
q) for q = 0, 1, .., N of N+1-dimensional standard normals, as well as a sequence (κq) of

uniform random variables on [0, 1], all of which are mutually independent. We further denote

by (Sq)q≥1 the sequence of stopping times that exhausts the “jumps” in the measures µ0 and

µi, i = 1, ..., N ; i.e., for each ω we have Sp(ω) 6= Sq(ω) if p 6= q, while µ0(ω, {t} ×E0) = 1 or

µi(ω, {t}×E) = 1 if and only if t ≡ Sq(ω) for some q. Finally, following Jacod and Todorov

(2008) we define the following subsets of Ω,

Ω
(ij)
T = {ω : on [0, T ] the process ∆pis∆pjs is not identically 0}, (16)

for i, j = 1, ...N and i 6= j. The set Ω
(ij)
T represents the events for which there is at least one

common jump in pi and pj over the [0, T ] time-interval. Because of the assumed one-factor

structure, these sets are equivalent to the set Ω
(0)
T with at least one systematic jump on [0, T ].

Note that even if the model allows for systematic jump risk in the assets, it still might be

the case that the observed realization of the prices is not in the set Ω
(0)
T . This can happen

with a positive probability for example if the systematic jumps are compound Poisson. The

following theorem provides the distribution of our estimators on all non-empty sets, Ω
(0)
T .7

Theorem 1 Assume that pi and p0 are governed by equations (3) and (7), respectively,

and that βd
i 6= 0 for all i = 1, ..., N . Further assume that Assumption A1 holds. Then for

∆n → 0, τ ≥ 2 and i 6= 0:

(a) (̂
βd

i

βd
j

)
P−→ βd

i

βd
j

on Ω
(0)
T , (17)

7The notation
L−(s)−→ denotes convergence stable in law. This convergence is stronger than the usual

convergence in law, and implies joint convergence in law of the converging sequence with any random variable
defined on the original probability space (see Jacod and Shiryaev (2003) for further details of this mode of
convergence on filtered probability spaces).
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(b)

1√
∆n




(̂
βd

i

βd
j

)
− βd

i

βd
j


 L−(s)−→ Ld

T on Ω
(0)
T , (18)

Ld
T =

βd
i

βd
j

∑
q:Sq≤T

(
sign

(
∆p0Sq

) |∆p0Sq |2τ−1
[√

κq R
1

q +
√

1− κq R
2

q

])
∑

s≤T |∆p0s|2τ
, (19)

R
1

q =
1

βd
i

σiSq−U i
q − 1{j 6=0}

1

βd
j

σjSq−U j
q and R

2

q =
1

βd
i

σiSqU
′i
q − 1{j 6=0}

1

βd
j

σjSqU
′j
q . (20)

Conditional on FT , Ld
T has mean 0 and variance

VT =

∑
q:Sq≤T

[
|∆p0Sq |4τ−2

((
σ2

iSq− + σ2
iSq

)
+ 1{j 6=0}

(
βd

i

βd
j

)2 (
σ2

jSq− + σ2
jSq

))]

2(βd
j )

2(
∑

s≤T |∆p0s|2τ )2
. (21)

If in addition ∆p0Sq∆σiSq ≡ 0 for all Sq ≤ T , then conditional on FT , Ld
T is normal.

(c) The results in parts (a) and (b) continue to hold for
(̃

βd
i

βd
j

)
for arbitrary values of α ≥ 0

and $ > 1
2τ−1

.

(d) If in addition Assumption A2 holds for some s < 2, then for j = k = 0 the asymptotic

variance VT in (21) can be estimated consistently on Ω
(0)
T by

V̂T =

∑[T/∆n−kn−1]
ı=kn+2 |∆n

ı p0|4τ−2 (ĉ(n,−)ı + ĉ(n, +)ı) 1{|∆n
ı p0|≥α∆$

n }

2
(∑[T/∆n]

ı=1 |∆n
ı p0|2τ1{|∆n

ı p0|≥α∆$
n }

)2 , (22)

ĉ(n,±)ı =
1

kn∆n

π

2

∑

∈In,±(ı)

|∆n
 p̂cn

i0 ||∆n
−1p̂

cn
i0 |, p̂cn

i0 := pi − β̂c
i p0,

where In,−(ı) = {ı−kn, ı−kn +1, · · · , ı−1} for ı > kn +1, In,+(ı) = {ı+2, · · · , ı+kn}
for ı < [T/∆n]− kn; α > 0, $ ∈ (0, 1

2
); kn →∞ and kn∆n → 0; and β̂c

i denotes some

consistent estimator for βc
i .

Proof: See Appendix.

Part (a) of the theorem shows that the proposed estimator does indeed converge to

the ratio of the sensitivities toward systematic jump risk. Importantly, this convergence is

12



restricted to the set Ω
(0)
T .8 This is, of course, quite natural as it isn’t possible to infer any

quantities/parameters related to co-jumping in the absence of common jump arrivals. As

such, the estimator in equation (14) should only be used in situations when systematic jumps

are actually present. Note also that the convergence in probability and the Central Limit

Theorem stated in part (a) and part (b) of the theorem hold under very general conditions

and in particular no restriction on the jump activity: finite or infinite activity, finite or

infinite variation jumps are all allowed.

Several observations regarding the asymptotic limit in (19) are in order. First, the larger

the systematic jumps, the lower the asymptotic variance and the more accurate the estimates

for the sensitivities to systematic jump risk. Intuitively, smaller common jumps are generally

harder to separate from continuous co-movements, and in turn result in less precise estimates

of βd
i . Second, the longer the [0, T ] time-interval, the more realizations of systematic jumps

on average, and hence the more accurate the estimates. Of course, this assumes that the

same one-factor structure with identical jump sensitivities in (3) hold true over the entire

time-interval. We will return to this issue in the empirical section below. Third, the less

the idiosyncratic risks, the more precise the estimates. In particular, if observations on the

common (systematic) factor p0 are available, the use of these will result in the most precise

estimates.

As noted in part (b) of the theorem, the absence of any common jumps between the

price levels and the stochastic volatility for the continuous price process implies that the

distribution of Ld
T will be mixed normal. In the empirical results reported on below we simply

proceed under this maintained assumption. The results reported in Jacod and Todorov

(2008) suggest that even if this assumption is violated, the use of the right approximating

limit for Ld
T , obtained by substituting the jumps in Ld

T with the price increments and the

stochastic volatilities with the square root of the ĉ’s, would not give rise to materially different

8For the events in (Ω(0)
T )c corresponding to only idiosyncratic jumps in i, j or k, the limiting value of

the estimator in (14) is a random quantity conditional on the observed prices. When neither systematic nor
idiosyncratic jumps are present on [0, T ], the limit equals

√√√√ 3(βc
i β

c
k)2

∫ T

0
σ4

0sds + 1{k 6=0}(βc
i )2

∫ T

0
σ2

ksσ
2
0sds + (βc

k)2
∫ T

0
σ2

isσ
2
0sds + 1{k 6=0}

∫ T

0
σ2

isσ
2
ksds

3(βc
jβ

c
k)2

∫ T

0
σ4

0sds + 1{k 6=0}(βc
j )2

∫ T

0
σ2

ksσ
2
0sds + 1{j 6=0}(βc

k)2
∫ T

0
σ2

jsσ
2
0sds + 1{j 6=0,k 6=0}

∫ T

0
σ2

jsσ
2
ksds

,

which for j = k = 0 is strictly greater than the sensitivity towards the diffusive systematic risk.
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distributions and test statistics.

Part (c) of the theorem formally shows that the asymptotic results in parts (a) and (b)

remain true if we drop the terms in Vn(fki)T for which both price increments are smaller than

some pre-specified threshold level. Intuitively, these terms will capture continuous moves and

their impact will therefore be negligible asymptotically. In finite samples, however, it might

be desirable to use the truncated estimator in equation (15) as it is based on the “big”

increments. Of course, for very high values of $ the two estimators will be numerically the

same. We will discuss reasonable choices for α and $ in the empirical section below.

The final part (d) of the theorem provides a consistent estimator for VT in the case of

j = k = 0. This is the estimator that we will actually rely on in the empirical section.9 In

addition to the previous Assumption 1, the V̂T estimator requires that Assumption 2 holds

for some s < 2. This is a very weak regularity type assumption. Jumps for which s = 2 are

extremely active and for practical purposes impossible to separate from the continuous price

movements. Otherwise the estimator for VT is essentially based on a portfolio consisting of

assets pi and p0, which eliminates the systematic diffusive risk, along with an estimate of the

local stochastic variance of the continuous part of this portfolio, ĉ(n,±)ı. The truncation em-

ployed in the estimator is asymptotically immaterial. Just like the truncated estimator itself

defined in part (c), the price increments only enter the variance estimator in powers higher

than two so that the contribution from the continuous part is asymptotically negligible.

3.2 Inference about βc
i

Analogous to the estimator for the sensitivity towards jump risk discussed above, our esti-

mator for the sensitivity towards continuous systematic risk is based on the first infeasible

ratio in equation (5), replacing the numerator and denominator by feasible estimates.

To this end, we need some additional notation. In particular, let X denote a generic

9It is also possible to construct an estimator for VT in the general case of k 6= 0 by estimating the
limiting variance in the multivariate CLT stated as part of the proof of the theorem. However, this estimator
is considerably more complicated and less intuitive than V̂T , and since we do not use it in the empirical
analysis, we leave out the details.
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N -dimensional semimartingale. The following multidimensional realized truncated variation

V
′′
n (X, α, $)t =




V
′′1
n (X, α, $)t

...
V
′′N
n (X,α, $)t


 =




∑[t/∆n]
ı=1 (∆n

ı X
1)21{||X||≤α∆$

n }
...∑[t/∆n]

ı=1 (∆n
ı X

N)21{||X||≤α∆$
n }


 , (23)

then represents a natural extension of the univariate truncated realized variation measures

analyzed in Mancini (2001, 2006) and Jacod (2008). A similar comment for the constants

α and $ as the one made after (12) applies here as well. Also, define the following vector

constructed from the original prices,

X ij
k =




pi + pk

pi − pk

pj + pk

pj − pk


 , (24)

for i = 1, ..., N and j, k = 0, 1, ..., N .

Our estimator for the ratio of the continuous betas is then defined as,

(̂
βc

i

βc
j

)
=

V
′′1
n (X ij

k , α, $)T − V
′′2
n (X ij

k , α, $)T

V ′′3
n (X ij

k , α, $)T − V ′′4
n (X ij

k , α, $)T

. (25)

The following theorem characterizes the behavior of the estimator. As in the previous sub-

section, to avoid uninteresting cases we restrict i 6= j, i 6= k, and j = k if and only if

j = k = 0.

Theorem 2 Assume that pi and p0 are governed by equations (3) and (7), respectively with

βc
i 6= 0 for i = 1, ..., N . Further assume that Assumption A1 holds, and let α > 0 and

$ ∈ (0, 1
2
). Then for ∆n → 0:

(a) (̂
βc

i

βc
j

)
P−→ βc

i

βc
j

. (26)

(b) If in addition Assumption A2 holds for some s ≤ 4$−1
2$

,

1√
∆n

((̂
βc

i

βc
j

)
− βc

i

βc
j

)
L−(s)−→ Lc

T := KT × U, (27)
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where U ∼ N(0, 1) is defined on an extension of the original probability space and is

independent of the filtration F , and

KT =

√
∫ T

0

(
(βc

k)
2σ2

0u + 1{k 6=0}σ2
ku

)(
σ2

iu + 1{j 6=0}
(

βc
i

βc
j

)2

σ2
ju

)
du

βc
jβ

c
k

∫ T

0
σ2

0udu
.

(c) The variance KT may be consistently estimated by

K̂T =

√
K̂1

T

K̂2
T

,

where,

K̂1
T =

π2

4∆n

[T/∆n]−3∑
ı=1

∣∣∣∣∆n
ı pk∆

n
ı+1p̂

cn
ij ∆n

ı+2pk∆
n
ı+3p̂

cn
ij

∣∣∣∣,

K̂2
T =

π

8

[T/∆n]−1∑
ı=1

(|∆n
ı (pj + pk)∆

n
ı+1(pj + pk)| − |∆n

ı (pj − pk)∆
n
ı+1(pj − pk)|),

and p̂cn
ij := pi −

(̂
βc

i

βc
j

)
pj.

Proof: See Appendix.

Part (a) of the theorem shows that the use of the truncated variation measures afford a

consistent estimator for the quantity of interest. This consistency holds true for any values

of α > 0 and $ ∈ (0, 1
2
). Of course, as discussed further in the empirical section below, the

actual numerical value of the estimator for a given ∆n will depend upon the specific choice

of these tuning parameters. Assumption A1, part (c) guarantees non-vanishing systematic

diffusive risk, so that in contrast to the estimator for the sensitivity towards systematic

jump risk in Theorem 1, which only converges on Ω
(0)
T , the estimator for the sensitivity to

systematic diffusive risk converges on the whole set Ω.

Unlike the CLT for the jump beta in Theorem 1, which holds quite generally, the CLT

for the continuous beta in part (b) of Theorem 2 involves a non-trivial restriction related

to the activity of the jumps. In practical applications it is natural to choose $ to be close

to 0.5, so that in the case of time-homogenous jumps the restriction in part (b) essentially

excludes jumps of infinite variation. Importantly, the limiting distribution of Lc
T is always
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normal. In parallel to the estimates for the jump beta, the expression for the asymptotic

variance of Lc
T indicates that the precision of the continuous beta estimates increases with

the use of longer [0, T ] time-periods and assets with less idiosyncratic risk.

The consistent estimator for the asymptotic variance of Lc
T in part (c) is based on multi-

power variation measures, see Barndorff-Nielsen and Shephard (2004b) and Barndorff-Nielsen

et al. (2005). Analogous to the construction in part (d) in Theorem 1, the estimate K̂1
T in-

volves a linear combination, p̂cn
ij , of assets i and j that eliminates the systematic diffusive

risk. The particular ordering of pk and p̂c
ij used in defining K̂1

T is, of course, arbitrary.10

Before we turn to the practical empirical illustration of the new estimators and distribu-

tional results derived in Theorems 1 and 2, we finish this section with a few more specific

remarks related to the statistical properties of the estimators.

Remark 3.1. Based on our continuous beta estimate, a natural alternative estimator for the

dis-continuous beta is given by equation (15) with τ = 1 and $ ∈ (0, 0.5). Indeed, the proof

of Theorem 2 already establishes the limit and asymptotic distribution of such an estimator.

However, while an assumption of the type in A2 used in Theorem 2 is unavoidable for the

estimation of the continuous beta, we prefer not to impose it for the estimation of the dis-

continuous beta. Consequently, we need the power τ > 2 in equations (14) and (15).

Remark 3.2. The continuous beta estimate in (25) has been proposed independently in con-

current work by Gobbi and Mancini (2007) (they also propose a cojump measure parallel the

one discussed in Remark 3.1). However, their derivation of the asymptotic distribution of

the estimator is based on the more restrictive assumption of finite activity jumps only.

Remark 3.3. Equation (3) impose that the sensitivities toward systematic diffusive and jump

risks are constant over the [0, T ] time-interval. In the empirical section we will discuss

ways in which to assess that assumption in practice. Meanwhile, even if the betas vary

over the estimation interval [0, T ], our estimators still provide meaningful estimates of the

sensitivities towards systematic diffusive and jump risks. The only conceptual difference is

that in this case the limiting quantities of our estimators will be random variables, as opposed

10An alternative, and somewhat more complicated, estimator for KT could be constructed from appropri-
ately defined truncated power variation measures.

17



to constants. We prefer to impose the factor structure in (3), which is commonly employed

not only in finance but many other areas, as it simplifies the interpretation.

Remark 3.4. The estimators of the dis-continuous and continuous betas in equations (15)

(with k = j = 0) and (25), respectively, are naturally interpreted as regression coefficients.

Indeed, it is possible to view the two estimates as (powers of) slope coefficients in a regres-

sion of the high-frequency “big”, respectively “small”, individual price increments (or their

powers) on the corresponding high-frequency “big”, respectively “small”, systematic factor in-

crements (or their powers) over the [0, T ] time-interval. Of course, the estimators developed

may be seen as formally justifying such regressions.

4 Empirical Illustration

Our empirical illustration is based on high-frequency transaction prices for forty large capi-

talization stocks over the January 1, 2001 to December 31, 2005 sample period, for a total

of 1, 241 active trading days. The data were obtained from the Trade and Quote Database

(TAQ). The name and ticker symbols for each of the individual stocks are given in the tables

below. The same data has previously been analyzed by Bollerslev et al. (2008) from a very

different perspective, and we refer to the discussion therein for further details concerning the

methods and filters employed in cleaning the raw price data.

The theoretical results derived in the preceding section is based on the notion of increas-

ingly finer sample prices, or ∆n → 0. Meanwhile, a host of practical market microstructure

complications, including bid-ask spreads, price discreteness and non-synchronous trading

effects, prevent us from sampling too frequently, while maintaining the fundamental semi-

martingale assumption underlying our results. Ways in which to best deal with the market

microstructure ”noise” in the implementation of univariate realized variation measures is

currently a very active area of research; see, e.g., Zhang et al. (2005), Hansen and Lunde

(2006), Barndorff-Nielsen et al. (2008), and the references therein. However, these procedures

do not easily generalize to a multivariate context, where the issues are further confounded

by non-synchronous recording of prices across assets, and little work has yet been done in

regards to the practical estimation of multivariate power variation measures in the presence
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of ”noise.” Hence, we simply follow most of the literature in the use of an intermediate

sampling frequency as a way to strike a reasonable balance between the desire for as finely

sampled prices as possible on the one hand and the desire not to overwhelm the measures

by market microstructure effects on the other. While the magnitude and the impact of the

”noise” obviously differs across stocks and across time, the analysis in Bollerslev et al. (2008)

suggests that a conservative sampling frequency of 22.5 minutes strikes such a balance and

effectively mitigates the impact of the ”noise” for all of the forty stocks in the sample.11

The one-factor market model most often employed in practice identifies the systematic

risk factor with the return on the aggregate market portfolio. Thus, rather than estimating

the relative factor sensitivities across the forty stocks, we treat the market as asset 0 and

focus on the sensitivities with respect to that benchmark as defined in equations (8) and

(9). These direct beta estimates are obviously also somewhat easier to interpret than the

more generally valid sensitivity ratios.12 We use the S&P500 index as our measure for the

aggregate market, with the corresponding high-frequency returns constructed from the prices

for the SPY Exchange Traded Fund (ETF).

Our model-free approach only permits the estimation of discontinuous betas over periods

in which there were actually jumps in the reference asset 0, as formally defined by the set

Ω
(0)
T . We therefore begin our empirical analysis with testing for systematic jumps in the SPY

contract. Consistent with previous studies on similar data, here we use the non-parametric

test in Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen (2005) based on the

difference in the logarithmic daily realized variance and bipower variation measures. Since

the SPY is less susceptible to market microstructure ”noise” than many of the forty stocks

in the sample, we rely on a finer 5-minute sampling frequency in the implementation of the

tests. To avoid falsely classifying no-jump days as jump days, we use a fairly conservative

critical value of 3.09 for the normally distributed test statistic, corresponding to a 0.2%

significance level. The resulting tests indicate that the market jumped on 106 of the 1, 241

days in sample. At the monthly level 50 out of the 60 months in the sample contained at

11For simplicity we decided to maintain the identical sampling frequency for all of of the stocks throughout
the sample. However, we also experimented with the use of other sampling frequencies, resulting in the same
basic findings as the ones reported below.

12As noted above, the distributional results in Theorems 1 and 2 also imply that the use of the ”right”
benchmark asset will give rise to the most accurate sensitivity estimates.

19



least one significant jump day, while all of the 20 quarters contained significant jumps. In

the following we restrict our calculation of jump betas to only those significant time periods;

i.e., 106 days, 50 months, and 20 quarters.

In calculating the betas, we rely on the estimators defined in equations (15) and (25)

with j = k = 0 and τ = 2. Both estimators involve truncation of the price increments,

necessitating a choice of α and $. As previously noted, choosing $ = 0.49 < 0.5 essentially

excludes jumps of infinite variation (recall the condition on the jump activity s in part (b)

of Theorem 2), which are (perhaps) hard to differentiate from continuous price moves with

discretely sample observations. For β̂d
i we set α = 2

√
BV(0,T ), where BV(0,T ) denotes the

bi-power variation of the relevant price process, which provides a measure of the continuous

price variation over the period.13 Intuitively, over short time-periods the continuous part of

the price process is approximately normal, so that our choice of α used in estimating the jump

betas discard only those price increments which are within two standard deviations of 0, and

thus most likely to be associated with continuous price movements. On the other hand, for

β̂c
i we set α = 3

√
BV(0,T ), discarding only those price increments which are more than three

standard deviations away from 0, and thus unlikely to be associated with continuous price

moves. These two different values of α arguably reflect a conservative choice in classifying

(and consequently discarding) a price increment as being either continuous or one that

contains jump(s). Of course, asymptotically the values of α and $ do not matter. 14

Turning to the actual empirical results, Figures 1-4 plot the time series of quarterly,

monthly and daily continuous and jump beta estimates for two representative firms, IBM

and Genentech. The daily beta estimates are obviously somewhat noisy and difficult to

interpret. Meanwhile, the estimates for the monthly betas appear much more stable, while

still showing interesting and clearly discernable patterns over time. Even though the same

longer run dynamic dependencies are visible in the quarterly betas, some of the more subtle

variations appear to have been lost at the quarterly horizon. In the following we will therefore

13The asymptotic theory in the previous section is derived for a threshold that does not depend on the
data within the interval [0, T ]. Thus a theoretically correct way of incorporating the time-varying volatility
of the continuous price in constructing the threshold would be to use the previous period bi-power variation.
In practice this makes very little difference because the volatility is a persistent process.

14We also experimented with other values for these tuning parameters, resulting in very similar beta
estimates to the ones reported below. Further details concerning these results are available upon request.
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concentrate our discussion and analysis on the monthly beta estimates.15

In order to more directly compare the monthly beta estimates, Figure 5 combines the

separate betas for each of the two representative stocks in the same graph. The plot in the

top panel shows that the betas for IBM tend to be close. However, the plot for Genentech

in the bottom panel reveals some rather marked differences in the estimates. In particular,

for the months in which there were systematic jumps, β̂d
i is almost always greater than β̂c

i ,

and sometimes by a considerable amount. Before starting to speculate on the economic

significance and importance of these findings, it is naturally to ask whether these apparent

differences in the betas are actually statistically significant.

The asymptotic distributional results in Theorems 1 and 2 afford a direct way of assessing

the accuracy of the beta estimates, and in turn allow for the calculation of period-by-period

confidence intervals. Looking at the corresponding 95-percent confidence intervals in Fig-

ures 6-7, it is clear that the intervals for the monthly Genentech betas often do not have any

points in common, indicating that the betas are indeed different. Meanwhile, the intervals

for IBM generally involve some overlap making it impossible to statistically tell the two

betas apart. Note that the width of the confidence intervals for the jump betas vary much

more than the width of the intervals for the continuous betas. As discussed in connection

with Theorem 1 above, this is to be expected. Intuitively, it is much easier to estimate

the sensitivity to systematic jump risk in months where the market experienced a few large

jumps than it is in months involving more moderate sized jumps.

To illustrate the results on a broader basis, we report in Table 1 the average monthly

continuous and jump beta estimates for each of the forty stocks in the sample. We also

include (in square brackets) the corresponding 95-percent confidence intervals for the aver-

ages, constructed from the asymptotic variances in Theorems 1 and 2. Consistent with the

visual impression from the figures, the average betas for IBM are very close, 0.981 versus

0.984, with overlapping confidence intervals, while those for Genentech are very different,

0.992 versus 1.287, with non-overlapping confidence intervals. Looking across all of the forty

stocks, for only five of the stocks do the confidence intervals for the average betas overlap,

thus indicating that on average most of the stocks do indeed respond differently to contin-

15This also mirrors the ubiquitous monthly return regressions in the empirical finance literature.
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uous and discontinuous market moves. Moreover, with a few exceptions the average jump

betas are greater than the continuous betas, suggesting that for the large capitalization

stocks analyzed here, larger (jump) market moves tend to be associated with proportionally

larger systematic price reactions than smaller more common (continuous) market moves.

Also, while Genentech exhibits the largest numerical difference of 0.295, the differences in

the average betas for many of the other stocks are non-trivial and economically important.16

In addition to allowing for the estimation of separate betas, one of the main attractive

features of the high-frequency based estimation approach developed here is the ability to

reliably estimate the betas and any temporal variation therein over relatively short time

spans, such as a month.17 The monthly averages reported in Table 1, of course, obscures

any variation in the betas over time. Thus, to complement these results and more directly

highlight this important feature of our new procedures, we present a series of tests for

constancy of the betas.

In particular, let β̂c
i,t denote the estimate for βc

i for month t = 1, ..., 60 in the sample.

The following three test statistics,

T c
i,m =

30∑
t=1

(
β̂c

i,2t − β̂c
i,2t−1

)2

Âvar(β̂c
i,2t) + Âvar(β̂c

i,2t−1)

L−→ χ2
30, (28)

T c
i,q =

10∑
t=1

(∑3
j=1

(
β̂c

i,6(t−1)+3+j − β̂c
i,6(t−1)+j

))2

∑3
j=1

(
Âvar

(
β̂c

i,6(t−1)+3+j

)
+ Âvar

(
β̂c

i,6(t−1)+j

)) L−→ χ2
10, (29)

T c
i,y =

2∑
t=1

(∑12
j=1

(
β̂c

i,24(t−1)+12+j − β̂c
i,24(t−1)+j

))2

∑12
j=1

(
Âvar

(
β̂c

i,24(t−1)+12+j

)
+ Âvar

(
β̂c

i,24(t−1)+j

)) L−→ χ2
2, (30)

16We also calculated the proportion of the total diffusive and jump variation for each of the stocks due to
idiosyncratic variation,

Rc
i =

∫ T

0
σ2

isds
∫ T

0
σ2

isds + (βc
i )2

∫ T

0
σ2

0sds
and Rd

i =

∫ T

0

∫
Ei

δ2
i (t, x)µi(dt, dx)

∫ T

0

∫
Ei

δ2
i (t, x)µi(dt, dx) + (βd

i )2
∫ T

0

∫
E0

δ2
0(t, x)µ0(dt, dx)

.

The average values of the two measures averaged across the forty stocks and sixty (resp. fifty) months in the
sample were close and equal to 0.688 and 0.696, respectively. The averages generally also differed very little
for each of the individual stocks, with a maximum difference of only 0.071 for Texas Instruments. Further
details of these results are available upon request.

17As noted above in connection with our discussion of the representative time series plots for IBM and
Genentech, the monthly beta estimates for both of the stocks do indeed seem to vary in an orderly and
reliable fashion from one month to the next.
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then provide direct tests for equality of adjacent monthly betas, quarterly-averaged monthly

betas, and annual-averaged monthly betas, respectively. Similarly, we define the test statis-

tics T d
i,m, T d

i,q and T d
i,y based on the monthly β̂d

i,t estimates, to test for equality of the jump

betas over monthly, quarterly, and annual horizons. Since, there were no systematic jumps

in 10 of the 60 months in the sample, T d
i,m has a limiting χ2

25 distribution under the null

of constant monthly jump betas. The limiting distributions of T d
i,q and T d

i,y are χ2
10 and χ2

2,

respectively. The actual results of the tests reported in Table 2 strongly reject that the

monthly and quarterly betas stayed the same over the sample. This is true for both types

of betas.18 Meanwhile, for a few of the stocks we are not able to reject the hypothesis that

the annual averages are constant.

In a sum, the empirical results show that not only do the monthly continuous and jump

betas differ significantly for most of stocks in the sample, the betas also changed significantly

through time. As such the results clearly highlight the benefits and insights afforded by our

new estimation and inference procedures vis-a-vis the more traditional regressions based

approaches for estimating betas, restricting the continuous and jump betas to be the same

and implicitly treating the betas to be constant over long multi-year periods.

5 Conclusion

Discrete-time factor models are used extensively in asset pricing finance. We provide a

new theoretical framework for separately identifying and estimating sensitivities towards

continuous and discontinuous systematic risks, or betas, within this popular model setup.

Our estimates and distributional results are based on the idea of increasingly finer sampled

returns over fixed time-intervals. Using high-frequency data for a large cross-section of

individual stocks and a benchmark portfolio mimicking the aggregate market, we find that

allowing for separate continuous and jump betas can result in materially different estimates

from the ones restricting the two betas to be the same. These results raise a number of new

interesting questions.

18These results also indirectly suggests that temporal variation in the betas might be predictable. We
will not pursue the issue of modeling and forecasting the betas here, instead referring to Andersen et al.
(2006) where reduced-form time series models for simpler realized monthly betas based on standard realized
variation measures are presented.
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As discussed in the introduction, several recent studies have argued that the risk premia

associated with discontinuous, or jump, risks often appear to be quite different from the

premia associated with continuous risks. The relatively limited time-span of high-frequency

data available for the empirical analysis here invariably limits the scope of such investigations.

Nonetheless, it would be interesting to somehow test whether the two types of betas carry

separate risk premia. Along these lines, our findings of different sensitivities to systematic

jump risks also has important implications for practical portfolio and risk management. In

particular, our results suggest that portfolios designed to hedge the largest market moves,

or systematic price jumps, might have to be constructed differently from portfolios intended

to neutralize, or immunize, the more common systematic day-to-day market movements. At

a more fundamental level, the ability to accurately estimate separate betas over relatively

short calendar time-spans also raise the possibility of empirically investigating the economic

determinants behind the different types of risks and any temporal variation therein. In spite

of the continued dominance of the market model in practical applications, more complicated

multi-factor representations have often been shown to provide more accurate descriptions

of the cross-sectional variation in expected returns. It would be interesting to formally

extend the theoretical results for the one-factor model presented here to a multi-factor setting

allowing for the estimation of different continuous and jump betas with respect to specific

factor representing portfolios, including the popular Fama-French book-to-market and size

sorted portfolios as well as momentum based portfolios. We leave further investigations of

all of these issues for future research.
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Technical Appendix

A Proof of Theorem 1

Part (a). Part (a) of the Theorem follows directly from Lemma 8.3 in Jacod and Todorov (2008).
Part (b). To prove part (b) we first introduce some additional notation. We define σt, a random
(N + 1)× (N + 1) matrix as follows

σt =




σ0t 0 . . . . . . . . . 0
β1σ0t σ1t 0 . . . . . . 0

... 0
. . . 0 . . . 0

...
...

. . . . . . . . .
...

...
...

. . . . . . 0
βNσ0t 0 . . . . . . 0 σNt




. (A.1)

Note that σtσ
′
t = ct, where Ct =

∫ t
0 csds is the second characteristic of the Itô semimartingale p

(see Jacod and Shiryaev (2003) for a definition of the characteristics of semimartingales). Using σt

we define the N + 1-dimensional variable

Rq =
√

κq σSq−Uq +
√

1− κq σSqU
′
q, (A.2)

and we denote with Ri−1
q the i-th element of Rq for i = 1, ..., N + 1. The proof of Theorem 1, part

(b) is based on the following Lemma.

Lemma 1 For the Itô semimartingale p satisfying the conditions in Theorem 1 and the functions
fij(·) defined in (13) we have

1√
∆n




Vn(fk0)T −
∑

s≤T fk0(∆ps)
Vn(fk1)T −

∑
s≤T fk1(∆ps)
...

Vn(fkN )T −
∑

s≤T fkN (∆ps)




L−(s)−→




Zk0
T

Zk1
T
...

ZkN
T


 , k = 0, 1, ..., N, (A.3)

where for arbitrary i we define

Zki
t =

∑

q:Sq≤t

(
τsign{∆piSq}|∆pkSq |τ−1|∆piSq |τRk

q + τsign{∆pkSq}|∆pkSq |τ |∆piSq |τ−1Ri
q

)
.

Proof of Lemma 1: First note that the elements Zki
t are well defined using Lemma 8.1 in Jacod

and Todorov (2008). The proof of the stable convergence result in (A.3) follows from Theorem 8.4
in Jacod and Todorov (2008). ¤

Using the CLT result in equation (A.3) and a Delta method, it follows that 1√
∆n

((̂
βd

i

βd
j

)
−

∣∣∣∣
βd

i

βd
j

∣∣∣∣
)

converges stably in law on Ω(0)
T to the random variable

1
τ
sign{∆pks∆pjs}

(∑
s≤T |∆pks∆pis|τ

) 1
τ
−1

(∑
s≤T |∆pks∆pjs|τ

) 1
τ

Zki
T − 1

τ
sign{∆pks∆pis}

(∑
s≤T |∆pks∆pis|τ

) 1
τ

(∑
s≤T |∆pks∆pjs|τ

) 1
τ
+1

Zkj
T ,

(A.4)
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where s denotes an arbitrary jump time in the process p0. Using equations (3) and (7) we have

sign{∆pks∆pjs}

(∑
s≤T |∆pks∆pis|τ

) 1
τ
−1

(∑
s≤T |∆pks∆pjs|τ

) 1
τ

=
|βd

kβd
i |1−τ

βd
kβd

j

1∑
s≤T |∆p0s|2τ

, (A.5)

sign{∆pks∆pis}

(∑
s≤T |∆pks∆pis|τ

) 1
τ

(∑
s≤T |∆pks∆pjs|τ

) 1
τ
+1

=
βd

kβd
i

|βd
kβd

j |1+τ

1∑
s≤T |∆p0s|2τ

, (A.6)

Zki
t =

∑

q:Sq≤t

τsign{|∆p0Sq |}|∆p0Sq |2τ−1
(
sign{βd

i }|βd
i |τ |βd

k |τ−1Rk
q + sign{βd

k}|βd
i |τ−1|βd

k |τRi
q

)
,

(A.7)
for arbitrary i. Plugging the last three expressions into equation (A.4) we get (19). To show (21)
we use (A.1) and the definition of Ri

q to write

R0
q =

√
κqσ0Sq−U0

q +
√

1− κqσ0SqU
0′
q ,

Ri
q = βd

i R0
q +

√
κqσiSq−U i

q +
√

1− κqσiSqU
i′
q , (A.8)

for arbitrary i 6= 0. Equation (21) now follows trivially.
Part(c). The result in part (c) follows if we can show that for two arbitrary Itô semimartingales
X1 and X2 it holds that

1√
∆n

[T/∆n]∑

ı=1

|∆n
ı X1|τ |∆n

ı X2|τ1{|∆n
ı X1|<α∆$

n ,|∆n
ı X1|<α∆$

n }
P−→ 0. (A.9)

First, it is convenient to introduce the following two functions g(x1, x2) = |x1|τ |x2|τ and
gn(x1, x2) = |x1|τ |x2|τ1{|x1|<α∆$

n ,|x2|<α∆$
n }. Second, for a generic semimartingale X we denote

with Xc its continuous component and with Xd its discontinuous one for an arbitrary truncation
function. It follows therefore

1√
∆n

[T/∆n]∑

ı=1

|∆n
ı X1|τ |∆n

ı X2|τ1{|∆n
ı X1|<α∆$

n ,|∆n
ı X2|<α∆$

n } (A.10)

=
1√
∆n

[T/∆n]∑

ı=1

gn(∆n
ı Xc

1,∆
n
ı Xc

2) +
1√
∆n

[T/∆n]∑

ı=1

(gn(∆n
ı X1, ∆n

ı X2)− gn(∆n
ı Xc

1, ∆
n
ı Xc

2)) .

For the first term on the right side of the above equation using the results in Barndorff-Nielsen
et al. (2005) we have that

0 ≤ 1√
∆n

[T/∆n]∑

ı=1

gn(∆n
ı Xc

1, ∆
n
ı Xc

2) ≤
1√
∆n

[T/∆n]∑

ı=1

g(∆n
ı Xc

1,∆
n
ı Xc

2)
P−→ 0. (A.11)

Thus, we are left with showing

1√
∆n

[T/∆n]∑

ı=1

(gn(∆n
ı X1, ∆n

ı X2)− gn(∆n
ı Xc

1, ∆
n
ı Xc

2))
P−→ 0. (A.12)
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We prove this via several inequalities. First, it is easy to show the following algebraic inequality

|gn(x1 + y1, x2 + y2)− gn(x1, x2)| ≤ K∆(2τ−1)$
n (|y1| ∧ (α∆$

n ) + |x1| ∧ (α∆$
n )), (A.13)

for arbitrary x1, x2, y1, y2 and K being some constant. Now we can introduce a sequence of
stopping times (indexed by T ) that bounds the absolute value of the jump size of Xd

i up to T .
Then for the stopped process X̃dT

t (T standing for the bound on the jump size) we have using
Burkholder-Davis-Gundy inequality (see e.g. Protter (2004), Theorem IV.48)

En
ı−1|∆n

ı X̃dT
i | ≤ K

√
∆n, i = 1, 2, (A.14)

where we use the abbreviation En
ı−1 = E

(·|F(ı−1)∆n

)
. Therefore using (A.13)

1√
∆n
En

ı−1|gn(∆n
ı Xc

1 + ∆n
ı X̃dT

1 , ∆n
ı Xc

2 + ∆n
ı X̃dT

2 )− gn(∆n
ı Xc

1, ∆
n
ı Xc

2)| ≤ K∆3$
n , (A.15)

and since $ > 1
2τ−1 we have for a fixed T

1√
∆n

[T/∆n]∑

ı=1

(
gn(∆n

ı Xc
1 + ∆n

ı X̃dT
1 ,∆n

ı Xc
2 + ∆n

ı X̃dT
2 )− gn(∆n

ı Xc
1,∆

n
ı Xc

2)
) P−→ 0. (A.16)

The proof of (A.12) then follows by simply taking T to infinity (note that the sequence of stopping
times increases to infinity because of the local boundedness of the jumps). This completes the proof
of part(c).
Part (d). We are left with showing part (d) of the Theorem. To do so we will make use of the
following generic one-dimensional Itô semimartingale:

Xt = X0 +
∫ t

0
budu +

∫ t

0
σudWu +

∫ t

0

∫

E
κ(δ(t, x))µ̃(du, dx) +

∫ t

0

∫

E
κ′(δ(t, x))µ(du, dx), (A.17)

where W is a Brownian motion and µ is a Poisson measure with compensator ds ⊗ λ(dx) and all
other quantities associated with the process are defined similar to the corresponding price process
in (3). For the proof of part (d) we first state and proof a result of independent interest.

Lemma 2 For the process X in (A.17) assume that Assumption A1 and Assumption A2 for some
s < 2 are both satisfied. Then for some l > 2 we have

[T/∆n−kn−1]∑

ı=kn+2

|∆n
ı X|l (ĉ(n,−)ı + ĉ(n,+)ı)

P−→
∑

q:Sq≤T

|∆XSq |l
(
σ2

Sq− + σ2
Sq

)
, (A.18)

where

ĉ(n,±)ı =
1

kn∆n

π

2

∑

∈In,±(ı)

|∆n
 X||∆n

−1X|,

and In,±(ı) and kn are defined in Theorem 1.

Proof of Lemma 2: The proof parallels the proof of Theorem 4, part (b) in Ait-Sahalia and
Jacod (2008b), and we follow the main steps therein (Ait-Sahalia and Jacod (2008b) use a different
ĉ(n,±)ı than ours). In parallel to that proof, we will prove Lemma 2 under the stronger condition
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that the drift, the stochastic volatility (and its coefficients in the Itô semimartingale decomposition)
and the jumps of the process X are bounded. The result after this can be extended to the general
case using a localization procedure as in Jacod (2008). Our proof consists of two steps.

Step1. We denote δn
ı = σ(ı−1)∆n

∆n
ı W . Then in this first step we show that Lemma 2 will follow

if we have proved the following

1
kn∆n

π

2

[T/∆n−kn−1]∑

ı=kn+2

∑

∈In(ı)

|∆n
ı X|l|δn

 ||δn
−1| P−→

∑

q:Sq≤T

|∆XSq |l
(
σ2

Sq− + σ2
Sq

)
, (A.19)

where In(ı) = In,−(ı) ∪ In,+(ı). We note that this is somewhat similar to the result in Barndorff-
Nielsen et al. (2006) regarding the robustness of realized multipower variation estimators with
respect to Lévy type jumps. To establish Step 1 we first prove some preliminary results. Recall
from the proof of part (c) the abbreviation En

ı−1 = E
(·|F(ı−1)∆n

)
. Using the boundedness of bu, σu

and δ(u, x), the following three inequalities are straightforward,

En
ı−1

∣∣∣∣
∫ ı∆n

(ı−1)∆n

budu

∣∣∣∣ ≤ K∆n, (A.20)

En
ı−1

∣∣∣∣
∫ ı∆n

(ı−1)∆n

(σu − σ(ı−1)∆n
)dWu

∣∣∣∣ ≤
√√√√En

ı−1

(∫ ı∆n

(ı−1)∆n

(σu − σ(ı−1)∆n
)2du

)
, (A.21)

En
ı−1

∣∣∣∣
∫ ı∆n

(ı−1)∆n

∫

E
κ′(δ(u, x))µ(du, dx)

∣∣∣∣ ≤ En
ı−1

(∫ ı∆n

(ı−1)∆n

∫

E
|κ′(δ(u, x))|duλ(dx)

)
≤ K∆n. (A.22)

We proceed with bounding the conditional expectation of the increment of X due to the jump
martingale. First if s < 1, the jump martingale can be split into two integrals (one with respect to
µ and the other one with respect to ν) and we can then bound the conditional expectation of the
jump martingale as in the above case. Thus, assume that s ≥ 1 and choose an arbitrary α such
that s < α < 2. Then, using Jensen’s inequality and the Burkholder-Davis-Gundy inequality we
have

En
ı−1

∣∣∣∣
∫ ı∆n

(ı−1)∆n

∫

E
κ(δ(u, x))µ̃(du, dx)

∣∣∣∣ ≤
(
En

ı−1

∣∣∣∣
∫ ı∆n

(ı−1)∆n

∫

E
κ(δ(u, x))µ̃(du, dx)

∣∣∣∣
α
)1/α

(A.23)

≤ K


En

ı−1

(∫ ı∆n

(ı−1)∆n

∫

E
κ2(δ(u, x))µ(du, dx)

)α/2



1/α

≤ K

(
En

ı−1

(∫ ı∆n

(ı−1)∆n

∫

E
|κ(δ(u, x))|αµ(du, dx)

))1/α

≤ K∆1/α
n ,

where for the last inequality we used the fact that since s < α < 2 we have the following inequality

holding pathwise
(∑

0<s≤T κ2(∆Xs)
)2

≤ ∑
0<s≤T |κ(∆Xs)|α for an arbitrary T . Now using the

fact that σu is itself an Itô semimartingale (assumption A1(d)) and an application of the same type
inequalities as in (A.20)-(A.23) yields

En
ı−1

(∫ ı∆n

(ı−1)∆n

(σu − σ(ı−1)∆n
)2du

)
≤ K∆2

n. (A.24)
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In fact (A.24) is much stronger than what we really need (i.e. a bound of K∆1+ε
n for ε > 0 suffices

for what follows). Further (see e.g. Jacod (2008) for a proof),

En
ı−1 (|∆n

ı X|q) ≤ K∆q/2∧1, q ≥ 1. (A.25)

Finally, we also have the following basic algebraic inequality
∣∣∣∣|∆n

ı X||∆n
ı−1X| − |δn

ı ||δn
ı−1|

∣∣∣∣ ≤ |∆n
ı X − δn

ı ||∆n
ı−1X − δn

ı−1|
+|δn

ı ||∆n
ı−1X − δn

ı−1|+ |∆n
ı X − δn

ı ||δn
ı−1|. (A.26)

Then the absolute value of the difference between the left-hand-sides of (A.18) and (A.19) can be
bounded by a sum of terms of the following form

K
1

kn∆n
|∆n

τ1X|l||∆n
τ2X − δn

τ2 ||δn
τ3 | or K

1
kn∆n

|∆n
τ1X|l||∆n

τ2X − δn
τ2 ||∆n

τ3X − δn
τ3 |, (A.27)

where τ1, τ2 and τ3 are three integers different from each other and K is some constant. Then upon
taking successive conditional expectations and using the bounds of the moments in (A.20)-(A.26)
we have that the products in (A.27) are bounded by K∆3/2+1/α

n for some constant K and where
α is the constant in (A.23). Then a simple count of the number of terms of the type in (A.27)
that bounds the difference between the left-hand-sides of (A.18) and (A.19) shows that the latter
difference is asymptotically negligible and this proves Step 1.

Step 2. In the second step we verify that

π

2
1

kn∆n

∑

∈I−n,q

|δn
−1||δn

 | P−→ σ2
ıSq−,

π

2
1

kn∆n

∑

∈I+
n,q

|δn
−1||δn

 | P−→ σ2
ıSq−, (A.28)

where as in Ait-Sahalia and Jacod (2008b) we set ı(n, q) = inf(ı : ı∆n ≥ Sq), I−n,q = { :  6=
ı(n, q), | − ı(n, q)| ≤ kn,  < ı(n, q)}, I+

n,q = { :  6= ı(n, q), | − ı(n, q)| ≤ kn,  > ı(n, q)} and
recall that Sq is any sequence of stopping times exhausting the jump times of X. Then similar to
Ait-Sahalia and Jacod (2008b), we also define

Un
q =

π

2
1

kn∆n

∑

∈I−n,q

|∆n
−1W ||∆n

 W | tnq = inf
u∈[Sq−(kn+2)∆n,Sq)

σ2
u, Tn

q = sup
u∈[Sq−kn∆n,Sq)

σ2
u.

(A.29)
Then by a standard Law of Large Numbers, we have that Un

q
a.s.−→ 1, tnq

a.s.−→ σ2
Sq− and Tn

q
a.s.−→ σ2

Sq−.
Hence the first part of (A.28) follows. The second part of (A.28) is proved analogously. This
establishes Step 2.

Combining Step 1 and Step 2 along with the proof of Theorem 4, part (b) in Ait-Sahalia and
Jacod (2008b) (where loosely speaking it is shown that substitution of |∆n

i X|l with the jumps
|∆X|l does not change the estimator) the claim in Lemma 2 follows. ¤

Using Lemma 2 trivially establishes part (d) of Theorem 1. The difference between V̂T and
the same estimator with β̂c

i substituted by βc
i can be bounded with a sum of functions of the type

|β̂c
i − βc

i |pKn, where Kn
P−→ K for some processes Kn and K (this follows from using inequalities

analogous to the one in (A.26)). Therefore part (d) follows from the consistency of β̂c
i for βc

i . (Note
that the indicator function in the denominator of V̂T does not matter asymptotically). ¤
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B Proof of Theorem 2

Part (a). Part (a) follows trivially from the following results, see e.g. Jacod (2008), Theorem
2.4. (dimension plays no role here of course), taking into account the restrictions on i, j and k in
defining Xij

k in (24)

V
′′1
n (Xij

k , α, $)t
P−→ (βc

i + βc
k)

2

∫ t

0
σ2

0sds +
∫ t

0
(σ2

is + 1{k 6=0}σ2
ks)ds,

V
′′2
n (Xij

k , α, $)t
P−→ (βc

i − βc
k)

2

∫ t

0
σ2

0sds +
∫ t

0
(σ2

is + 1{k 6=0}σ2
ks)ds,

V
′′3
n (Xij

k , α, $)t
P−→ (βc

j + βc
k)

2

∫ t

0
σ2

0sds +
∫ t

0
(1{j 6=0}σ2

js + 1{k 6=0}σ2
ks)ds,

V
′′4
n (Xij

k , α, $)t
P−→ (βc

j − βc
k)

2

∫ t

0
σ2

0sds +
∫ t

0
(1{j 6=0}σ2

js + 1{k 6=0}σ2
ks)ds,

Part (b). We make use of the following Lemma.

Lemma 3 Let X be a N -dimensional Itô semimartingale, satisfying the same conditions as price
process p in Theorem 2 defined on the probability space (Ω,F ,P). Set Ct =

∫ t
0 cudu to be the second

characteristic of the semimartingale X. We have

1√
∆n


V

′′
n (X,α, $)−




∫ •
0 c11

u du
...∫ •

0 cNN
u du





 L−(s)−→

√
2

∫ •

0
AudW u, (B.1)

where W is a N -dimensional Brownian motion defined on an extension of the original probability
space, independent from the filtration F ; Au is a N ×N matrix with entries aij

u satisfying (cij
u )2 =∑N

s=1 ais
u ajs

u .

Proof of Lemma 3: Follows from an application of Theorem 2.12 in Jacod (2008), which is
multidimensional. ¤

Using this Lemma the proof of part (b) is easy. Set

V
′′1
n (Xij

k , α, $) =
1√
∆n

(
V
′′1
n (Xij

k , α,$)−
∫ T

0
[(βc

i + βc
k)

2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]du

)
,

V
′′2
n (Xij

k , α, $) =
1√
∆n

(
V
′′2
n (Xij

k , α,$)−
∫ T

0
[(βc

i − βc
k)

2σ2
0u + σ2

iu + 1{k 6=0}σ2
ks]du

)
,

V
′′3
n (Xij

k , α, $) =
1√
∆n

(
V
′′3
n (Xij

k , α,$)−
∫ T

0
[(βc

j + βc
k)

2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]du

)
,

V
′′4
n (Xij

k , α, $) =
1√
∆n

(
V
′′4
n (Xij

k , α,$)−
∫ T

0
[(βc

j − βc
k)

2σ2
0u + 1{j 6=0}σ2

ju + 1{k 6=0}σ2
ks]du

)
.

Then a Delta method and the above Lemma imply that

1√
∆n




(̂
βc

i

βc
j

)
− βc

i

βc
j


 =

1
4βc

jβ
c
k

1∫ T
0 σ2

0udu

(
V
′′1
n (Xij

k , α, $)− V
′′2
n (Xij
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Applying Lemma 3 to the process Xij
k we have
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Combining everything yields the result in (27).

Part (c). For the case when β̂c
i

βc
j

is replaced with βc
i

βc
j

in K̂T , part (c) of the Theorem follows from

general results about realized multipower variation in Barndorff-Nielsen et al. (2005) (the presence
of jumps does not affect the limit). As shown exactly in the proof of Theorem 1, part (d), the
substitution of a consistent estimator for βc

i
βc

j
does not alter the results. ¤
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Table 1: Average Monthly Betas

Stock β̄c
i β̄d

i

Abbott Laboratories (ABT) 0.7643 [0.7460; 0.7826] 0.8771 [0.8561; 0.8980]
AIG (AIG) 0.9337 [0.9166; 0.9508] 0.9997 [0.9833; 1.0160]
American Express (AXP) 1.0216 [1.0040; 1.0392] 1.1586 [1.1411; 1.1760]
Bank of America (BAC) 0.8196 [0.8043; 0.8350] 0.8854 [0.8700; 0.9007]
BellSouth(BLS) 0.9435 [0.9240; 0.9630] 1.0921 [1.0719; 1.1123]
Bristol-Myers (BMY) 0.7992 [0.7790; 0.8194] 0.9076 [0.8858; 0.9293]
Citigroup (C) 1.1106 [1.0954; 1.1257] 1.1668 [1.1519; 1.1816]
Genentech (DNA) 0.9915 [0.9588; 1.0243] 1.2869 [1.2557; 1.3182]
Fannie Mae (FNM) 0.6853 [0.6657; 0.7049] 0.9086 [0.8878; 0.9295]
General Electric (GE) 1.0922 [1.0769; 1.1074] 1.1518 [1.1368; 1.1668]
Goldman Sachs (GS) 1.0996 [1.0806; 1.1187] 1.1160 [1.0962; 1.1358]
The Home Depot (HD) 1.0837 [1.0644; 1.1030] 1.1980 [1.1782; 1.2178]
IBM (IBM) 0.9809 [0.9609; 0.9900] 0.9843 [0.9699; 0.9987]
Johnson & Johnson (JNJ) 0.6354 [0.6212; 0.6495] 0.7622 [0.7486; 0.7759]
JP Morgan Chase (JPM) 1.1690 [1.1490; 1.1889] 1.2109 [1.1914; 1.2304]
Coca Cola (KO) 0.7040 [0.6885; 0.7194] 0.7919 [0.7765; 0.8074]
Eli Lilly (LLY) 0.7620 [0.7436; 0.7804] 0.8922 [0.8730; 0.9114]
Lowe’s Companies (LOW) 1.0312 [1.0101; 1.0523] 1.2248 [1.2014; 1.2481]
Mcdonald’s (MCD) 0.7993 [0.7786; 0.8200] 0.9509 [0.9299; 0.9719]
Medtronic (MDT) 0.6841 [0.6668; 0.7013] 0.8214 [0.8023; 0.8404]
Merrill Lynch (MER) 1.2344 [1.2127; 1.2562] 1.2345 [1.2125; 1.2565]
3M Co. (MMM) 0.8057 [0.7908; 0.8206] 0.8873 [0.8726; 0.9020]
Altria Group (MO) 0.6326 [0.6128; 0.6524] 0.6552 [0.6368; 0.6737]
Motorola (MOT) 1.4497 [1.4204; 1.4789] 1.5041 [1.4736; 1.5346]
Merck & Co. (MRK) 0.7767 [0.7552; 0.7983] 0.8466 [0.8238; 0.8693]
Nokia (NOK) 1.2119 [1.1878; 1.2359] 1.1842 [1.1630; 1.2054]
Pepsico (PEP) 0.6306 [0.6163; 0.6449] 0.7466 [0.7319; 0.7613]
Pfizer Inc. (PFE) 0.8359 [0.8180; 0.8538] 0.9423 [0.9177; 0.9668]
Procter & Gamble Co. (PG) 0.6113 [0.5966; 0.6261] 0.6899 [0.6744; 0.7053]
Schlumberger Limited (SLB) 0.7012 [0.6758; 0.7267] 0.7489 [0.7239; 0.7738]
Target (TGT) 1.1038 [1.0815; 1.1261] 1.2621 [1.2399; 1.2844]
Texas Instruments (TXN) 1.8551 [1.8252; 1.8851] 1.8320 [1.8012; 1.8629]
Tyco International (TYC) 1.0953 [1.0662; 1.1244] 1.2938 [1.2585; 1.3291]
UPS (UPS) 0.5533 [0.5409; 0.5657] 0.6723 [0.6588; 0.6857]
United Technologies (UTX) 0.8856 [0.8679; 0.9032] 1.0092 [0.9903; 1.0280]
Verizon (VZ) 0.8751 [0.8572; 0.8929] 1.0081 [0.9892; 1.0280]
Wachovia (WB) 0.9017 [0.8857; 0.9176] 1.0285 [1.0123; 1.0447]
Wells Fargo & Co. 0.7402 [0.7268; 0.7536] 0.8901 [0.8763; 0.9039]
WalMart (WMT) 0.9396 [0.9236; 0.9555] 1.0130 [0.9972; 1.0289]
Exxon Mobil (XOM) 0.8173 [0.8010; 0.8336] 0.8568 [0.8412; 0.8725]

25-th quantile 0.7511 0.8665
50-th quantile 0.8803 0.9920
75-th quantile 1.0879 1.1755



Table 2: Tests for Equality of Betas

Stock T c
i,m T c

i,q T c
i,y T d

i,m T d
i,q T d

i,y

Abbott Laboratories (ABT) 101.6 69.8 42.0 2428.4 206.2 37.3
AIG (AIG) 131.9 40.1 257.2 2020.9 565.2 229.1
American Express (AXP) 125.0 82.6 310.5 2188.6 975.8 193.8
Bank of America (BAC) 198.4 133.9 13.1 9365.4 839.5 8.5
BellSouth(BLS) 108.8 147.3 249.1 7480.5 467.4 108.6
Bristol-Myers (BMY) 116.6 75.1 45.1 1118.8 257.9 137.2
Citigroup (C) 222.4 81.6 106.5 1855.0 708.1 6.1
Genentech (DNA) 131.2 88.1 7.4 2013.0 636.0 93.5
Fannie Mae (FNM) 148.3 37.1 41.8 909.1 470.2 13.7
General Electric (GE) 116.1 111.3 57.3 6878.4 789.2 30.5
Goldman Sachs (GS) 269.7 146.1 16.7 4230.0 754.8 169.1
The Home Depot (HD) 213.1 156.6 4.6 1524.5 866.0 9.2
IBM (IBM) 172.3 106.0 22.8 867.4 1080.9 113.7
Johnson & Johnson (JNJ) 170.1 95.3 144.5 1856.4 564.7 71.5
JP Morgan Chase (JPM) 154.3 98.7 156.0 5996.3 340.4 27.4
Coca Cola (KO) 120.5 91.6 16.5 5063.2 575.7 6.3
Eli Lilly (LLY) 135.9 58.8 189.8 1483.7 472.3 161.5
Lowe’s Companies (LOW) 260.5 143.1 6.5 3707.6 1221.4 14.5
Mcdonald’s (MCD) 135.5 35.0 21.0 429.1 465.7 24.7
Medtronic (MDT) 92.5 31.1 3.8 1886.6 360.3 6.1
Merrill Lynch (MER) 230.9 63.5 21.1 25037.8 754.4 21.4
3M Co. (MMM) 127.1 83.6 9.5 1590.0 900.7 187.7
Altria Group (MO) 86.0 122.3 2.6 1649.5 1469.8 21.1
Motorola (MOT) 142.0 65.8 38.0 3882.3 762.4 39.5
Merck & Co. (MRK) 108.0 78.4 130.0 5861.0 121.7 129.8
Nokia (NOK) 177.2 150.6 59.4 1203.0 622.7 8.3
Pepsico (PEP) 107.8 166.3 105.4 3188.6 406.6 8.3
Pfizer Inc. (PFE) 180.4 71.9 48.0 1468.1 551.9 75.5
Procter & Gamble Co. (PG) 129.5 60.8 15.9 885.7 273.1 108.2
Schlumberger Limited (SLB) 115.2 71.3 22.1 5254.7 268.2 68.8
Target (TGT) 199.3 90.4 16.3 1142.5 1398.2 14.7
Texas Instruments (TXN) 190.5 117.2 82.2 1954.6 989.8 16.0
Tyco International (TYC) 184.6 86.3 207.1 11586.7 368.8 164.2
UPS (UPS) 158.2 54.7 144.4 2176.4 670.0 134.2
United Technologies (UTX) 152.0 66.9 19.3 274.2 540.4 28.5
Verizon (VZ) 137.5 71.6 165.0 8000.4 565.4 166.2
Wachovia (WB) 210.7 71.3 204.5 10320.3 672.4 40.3
Wells Fargo & Co. 139.4 53.5 42.7 2147.1 577.1 98.8
WalMart (WMT) 225.8 126.6 3.2 2561.0 2586.7 53.5
Exxon Mobil (XOM) 163.9 94.5 50.1 2386.8 837.7 14.5

χ2 95-th quantile 43.8 18.3 6.0 37.7 18.3 6.0
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Figure 1: Quarterly, monthly and daily continuous betas for IBM.
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Figure 2: Quarterly, monthly and daily jump betas for IBM.
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Figure 3: Quarterly, monthly and daily continuous betas for Genentech.
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Figure 4: Quarterly, monthly and daily jump betas for Genentech.
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Figure 5: Monthly continuous and jump betas for IBM and Genentech.
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Figure 6: 95% confidence intervals for monthly IBM betas.
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Figure 7: 95% confidence intervals for monthly Genentech betas.
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