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Abstract

We develop a nonparametric estimator for the spectral density of a bivariate pure-jump Itô
semimartingale from high-frequency observations of the process on a fixed time interval with
asymptotically shrinking mesh of the observation grid. The process of interest is locally stable,
i.e., its Lévy measure around zero is like that of a time-changed stable process. The spectral
density function captures the dependence between the small jumps of the process and is time
invariant. The estimation is based on the fact that the characteristic exponent of the high-
frequency increments, up to a time-varying scale, is approximately a convolution of the spectral
density and a known function depending on the jump activity. We solve the deconvolution
problem in Fourier transform using the empirical characteristic function of locally studentized
high-frequency increments and a jump activity estimator.
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1 Introduction

In this paper we are interested in studying the dependence between the small jumps of the following

bivariate Itô semimartingale of pure-jump type:

dXt = atdt+ dJt, Jt =

∫ t

0

∫
R2

κ(x)µ̃(ds, dx) +

∫ t

0

∫
R2

κ′(x)µ(ds, dx), (1.1)

where at takes values in R2; κ is a R2-valued symmetric C3 function on R2 with κ(x) = x in

a neighborhood of the origin and κ(x) = 0 when ||x|| is sufficiently large; κ′(x) = x − κ(x); µ

is an integer-valued measure on R+ × R2 with compensator (Lévy measure) dt ⊗ νt(dx) and for

x = (r cos θ, r sin θ) with r ∈ R+ and θ ∈ [0, 2π), we have νt(dx) = νt(r, θ)drdθ where

νt(r, θ) = Lt−
g(θ)

r1+β
+ ν̃t(r, θ), β ∈ (0, 2), (1.2)

with Lt being a positive-valued process with càdlàg paths, g is some bounded and nonnegative-

valued function on [0, 2π), and ν̃t(r, θ) is some predictable and signed function on R+ × [0, 2π)

with
∫
R+

∫ 2π
0 (rβ

′ ∧ 1)|ν̃t(r, θ)|drdθ being locally bounded for some 0 ≤ β′ < β. Finally, µ̃(dt, dx) =

µ(dt, dx) − dtνt(dx) is the compensated jump measure. Additional (more technical) assumptions

for various processes in (1.1) and (1.2) are stated in the next section.

Around the origin, the first component of νt(r, θ) on the right hand side of (1.2) dominates the

second one. Hence, this piece of νt(r, θ) determines the behavior of the “small” jumps of X. In

particular, β controls the activity of jumps (and it is equal to the so-called Blumenthal-Getoor

index of the jumps, see e.g., Jacod and Protter (2012)) and the function g controls the dependence

between the “small” jumps of the two components of the vector process X. Our interest in this

paper is the nonparametric estimation of g from discrete observations of X on a fixed time interval

with asymptotically shrinking mesh of the observation grid.

The leading case of the above model is when X is a bivariate β-stable process, which corresponds

to at = a, Lt = L and ν̃t = 0, see e.g., chapter 2 of Samorodnitsky and Taqqu (1994). In the stable

case, g captures the dependence between the jumps of the two components of X, regardless of their

size, and is referred to as the spectral density. With a slight abuse of notation, henceforth we will

continue to refer to g as the spectral density even in the general case when X is not necessarily

bivariate stable but satisfies only (1.1)-(1.2).

More generally, the setup in (1.1)-(1.2) nests “locally” stable Lévy processes, i.e., Lévy processes

whose measure around the origin behaves like that of a bivariate stable process. An example is

the popular class of tempered stable Lévy processes (Rosiński (2007)). Further, (1.1)-(1.2) also

holds for time-changed “locally” stable Lévy processes with absolutely continuous time-change,
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with Lt playing the role of the density of the time-change, see e.g., Carr et al. (2003) for their use

in mathematical finance.

Models of pure-jump type have been used in various applications, see e.g., Cheng and Rachev

(1995), Barndorff-Nielsen and Shephard (2001), Mikosch et al. (2002), Carr et al. (2002, 2003),

Klüppelberg et al. (2004), Andrews et al. (2009), Klüppelberg et al. (2010) and Todorov and

Tauchen (2011b). The small jumps replace the diffusion in capturing the small moves in X. Unlike

the case of diffusions, where the dependence between the elements of the vector process are captured

by the (spot) covariance matrix (which is constant when the processes are Lévy), in the case of

jumps we need a function (i.e., g above) to fully characterize the dependence between the small

jumps. Most of the work to date on inference for pure-jump models has been either for the univariate

case or in the special multivariate stable case. The goal of the current paper is to study dependence

between small jumps in the general setting of (1.1)-(1.2) which allows for the Lévy measure to vary

stochastically over time.

How can we estimate the spectral density function g from high-frequency observations of X? To

gain intuition, let us first consider the case when X is a symmetric bivariate stable process, i.e., a

bivariate stable process with its spectral density satisfying g(θ) = g(θ+π). That is, we consider the

specification (1.1)-(1.2) with at = 0, Lt = 1, ν̃t(r, θ) = 0, for t ∈ [0, 1], and g(θ) = g(θ + π). In this

case, the log-characteristic function log(E(ei〈u,X1〉)), for u = (u1, u2) ∈ R2, is given by (Theorem

2.4.3 of Samorodnitsky and Taqqu (1994))

Φ(u) = −Cβ
∫ π

0
|u1 cos θ + u2 sin θ|β(g(θ) + g(θ + π))dθ, (1.3)

where Cβ is some known function of β. If we restrict attention to u ∈ S1, where S1 =
{
x ∈ R2 : ||x|| = 1

}
is the unit circle, then the right-hand side of (1.3) can be expressed as a convolution of g with an-

other function depending only on β, see e.g., Pivato and Seco (2003). Therefore, if β is known

and Φ(u) can be estimated from the data, then we can solve the deconvolution problem in Fourier

transform and estimate g nonparametrically, see e.g., Fan (1991) and the references therein.

In the general case of (1.1)-(1.2), Φ(u) is not the log-characteristic function of X1 but only a

local approximation of it. Nevertheless, it turns out that we can still recover (up to a constant) Φ(u)

from the high-frequency increments of X. The recovery of Φ(u) is challenging as the increments of X

do not have exact stable distribution and are heteroskedastic. Moreover, the law of the increments

changes with the sampling frequency even in the stable case. To overcome these difficulties, we adopt

a self-normalization approach, similar to the one proposed in Todorov (2015) for the estimation of

the Blumenthal-Getoor index (i.e., β in (1.2)). First, we difference the high-frequency increments

to mitigate the asymptotic effect of the drift term in X (at in (1.1)) on our statistics. Then,
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we normalize the differenced increments by local power variations formed from a local window of

increments preceding the ones that are scaled. The law of the high-frequency increments of X

is dominated by the first part of νt(r, θ) on the right-hand side of (1.2) and with Lt kept fixed

at its value at the beginning of the interval. Therefore, by the self-similarity property of the

stable process, the differenced high-frequency increment of X behaves (conditionally) like a scaled

bivariate symmetric stable random vector with a scale that depends on the sampling frequency

and varies over time. The normalization of the increments purges this unknown random scale and

thus the normalized increments behave approximately like uncorrelated and identically distributed

stable random vectors. Therefore, our estimate of (a scaled version of) Φ(u) is simply the empirical

characteristic function of the normalized differenced high-frequency increments.

Given the estimate of Φ(u) from the high-frequency data and an estimate of the jump activity

index β as in Todorov (2015), the recovery of g (its symmetrized version g(θ) + g(θ + π) to be

precise) proceeds using the Fourier-based deconvolution technique discussed earlier. We derive the

asymptotic order of the associated mean integrated squared error. As standard for deconvolution

problems, the asymptotic order of the estimation error depends on the smoothness of the function g

to be estimated as well as on the smoothness of the function it is convoluted with in the expression

for Φ(u) in (1.3). The latter is determined by the value of β, with higher values of β corresponding

to a slower rate of convergence of the estimator for a given level of smoothness of g. Since the error

in recovering β is of the same order of magnitude as the one due to the estimation of Φ(u), the fact

that the smoothness of the function that is convoluted with the object of interest is unknown does

not impact the rate of convergence of the nonparametric estimator of g.

The results in the current paper relate to several strands of literature. First, Press (1972),

Cheng and Rachev (1995), McCulloch et al. (2001) and Pivato and Seco (2003) consider estimation

of the spectral density of a multivariate stable distribution from i.i.d. observations. By contrast,

our asymptotic setup is the high-frequency one, i.e., we observe discretely a stochastic process on a

fixed interval with asymptotically shrinking mesh. This is a non-trivial difference as in our setting

the law of the increments depends on the sampling frequency. In addition, unlike the above cited

papers, our setup is more general and covers processes which are only “locally” stable and can

have time-varying jump intensity. Second, the current paper is also related to existing work on

the recovery of the Blumenthal-Getoor index from high-frequency data, see e.g., Ait-Sahalia and

Jacod (2009), Bull (2016), Jing et al. (2011), Jing et al. (2012), Kong et al. (2015), Todorov (2015),

Todorov and Tauchen (2011a), Woerner (2003, 2007). Similar to that work, our interest here is also

the behavior of the small jumps. However, unlike that work, the focus here is on the recovery of the
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spectral density function which governs the dependence between the small jumps of the observed

vector. Third, the current paper is connected with existing studies on nonparametric deconvolution

problems. These studies are primarily done in the i.i.d. random variables setup which as explained

earlier is very different from our high-frequency setup. In addition, in the standard deconvolution

problems the smoothness of the function that the object of interest is convoluted with is either

known, see e.g., Fan (1991) and the many references therein, or is inferred from an independent

source of information in the form of an additional i.i.d. data set, see e.g., Johannes (2009) and the

many references therein. By contrast, in our case the smoothness of the function we are decoupling

our object of interest (i.e., the spectral density) is determined by the unknown value of the jump

activity index which we estimate from the same data set used for inferring Φ(u).

The rest of the paper is organized as follows. In Section 2 we introduce the setting and state our

assumptions. In Section 3 we build our estimator of the spectral density from the high-frequency

data and in Section 4 we characterize its asymptotic behavior. Section 5 presents numerical exper-

iments on simulated data. Section 6 contains the proofs.

2 Setting and Assumptions

We start with the assumptions that we need for our results. The process X in (1.1) is defined on

a filtered probability space (Ω,F , (Ft)t≥0,P). Throughout, we will make use of a reference stable

process S, which is defined exactly as J in (1.1)-(1.2) but with Lt = 1 and ν̃t(r, θ) = 0 for every

t ≥ 0. We will refer to the distributional properties of S only and hence its relation to all other

quantities defined on the probability space is irrelevant. The real part of the log-characteristic

function of S1, <(log(E(ei〈u,S1〉))), is given by Φ(u) defined in (1.3). In what follows we will design

a way to infer Φ(u) from a discrete record of X.

We now state the assumptions. The first one is for the smoothness of g.

Assumption A. For the bounded and nonnegative-valued function g, we have |
∫ 2π

0 g(x)eimxdx| ≤
C(1 +m)−α, for positive constants C and α > 1 and ∀m ∈ Z.

As well known, the decay rate of the Fourier transform of g is connected with its smoothness

properties, with higher values of α corresponding to smoother g. The constant α will play a central

role in our analysis.

Our next assumption is for the drift, stochastic intensity and the “residual” jump compensator,

i.e., a, L and ν̃t(r, θ). As in the introduction, we will denote with κ a truncation function.
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Assumption B. (a) The processes a and L have càdlàg paths and further there exists a sequence of

stopping times Tk increasing to infinity and a sequence of positive numbers Γk such that E||at∧Tk −
as∧Tk ||2 ≤ Γk|t− s| and E|Lt∧Tk −Ls∧Tk |2 ≤ Γk|t− s|. In addition, Lt and Lt− are strictly positive

for every t ≥ 0.

(b) There exists a sequence of stopping times Tk increasing to infinity and a sequence of positive

numbers Γk such that for t < Tk we have
∫
R+

(|r|β′ ∧ 1)|ν̃t(r, θ)|dr ≤ Γk, for θ ∈ [0, 2π) and some

nonnegative β′ < β.

(c) When β < 1, we denote ãt = at −
∫
R2 κ(x)νt(dx) and assume that ãt is of the form ãt =

ã0 +
∫ t

0

∫
R2 δ(s,x)η(ds, dx), where δ : R+ × R2 → R2 is some predictable function and η is a Pois-

son random measure on R+ × R2 with compensator dt × dx. There is a localizing sequence Tk

of stopping times and, for each k, a deterministic nonnegative function Γk(x) on R2 satisfying∫
R2(Γk(x) ∧ 1)β+ιdx <∞, for all ι > 0, and such that ||δ(t,x)|| ≤ Γk(x) for all t < Tk.

Part (a) of Assumption A is a weak “smoothness in squared expectation” condition for the

processes a and L which is satisfied, for example, when they are Itô semimartingales. Part (b)

of the assumption restricts the residual part ν̃t(r, θ) of the jump compensator to be dominated

near the origin by the stable part of νt(r, θ). Importantly, we note that ν̃t is a signed function.

Therefore, ν̃t can completely annihilate the stable part of νt(r, θ) for the “big” jumps. Thus the

above assumption restricts only the behavior of the “small” jumps of X. Finally, in part (c), we

impose additional assumptions for the “effective” drift term (i.e., the drift after controlling for the

compensation of the small jumps) in the case when β < 1. This assumption is significantly more

restrictive than the one imposed in the general case in part (a).

3 Estimation of the Spectral Density

Henceforth we assume that we observe X on a finite interval, which without loss of generality we

set to [0, 1]. The observation times are given by the equidistant grid 0, 1
n , ..., 1, with n → ∞. The

distance between consecutive observation times is denoted with ∆n = 1
n . Our estimation strategy

is based on first recovering Φ(u) in (1.3) (up to a constant) and the jump activity index β from the

high-frequency observations of X, and then using deconvolution and Fourier inversion techniques

to infer the spectral density from these estimates.
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3.1 Estimation of Φ(u) and β

The estimation of Φ(u) and β is based on the fact that at high frequencies the “residual” compo-

nent of the jump compensator, ν̃t(r, θ), plays a negligible role and the same holds true for the drift

term at in (1.1) (provided we difference the increments). Further, to account for the time-varying

intensity process L, we will estimate it locally, and then we will use the estimate to standardize the

high-frequency increments with it. The estimation of L will be achieved via local power variations

constructed from blocks of kn high-frequency increments preceding the increments to be standard-

ized, where for the block size we have kn → ∞ and kn/n → 0, i.e., the block size increases but

its time-span shrinks asymptotically. For a generic univariate process Y , we denote its p-th local

power variation as

V (Y, p)ni =
1

kn

∑
j∈Iin

|∆n
j Y −∆n

j−1Y |p, ∆n
j Y = Y j

n
− Y j−1

n
, (3.4)

where Iin = {i− 2kn, i− 2kn + 2, ...., i− 2}. The differenced and standardized increments are then

defined as:

X(j)(p)ni =
∆n
i X

(j) −∆n
i−1X

(j)

(V (X(1), p)ni + V (X(2), p)ni )1/p
, j = 1, 2. (3.5)

Our statistics will be based on X(j)(p)ni . The asymptotic results that will follow can be intuitively

explained as follows. At high frequencies, we have ∆n
i X−∆n

i−1X ≈ L
1/β
(i−2)∆n

(∆n
i S−∆n

i−1S), where S

is defined at the beginning of Section 2. Therefore, V (X(1), p)ni +V (X(2), p)ni ≈ Cp,β×∆
p
β
n L

p/β
(i−2)∆n

,

for 0 < p < β and where Cp,β is some constant that depends on p and β but importantly not

on the intensity process L. Then, using the self-similarity property of the stable process, we have

that X(j)(p)ni is approximately the j-th component of a symmetric bivariate stable process with

log-characteristic function which up to a constant is given by Φ(u). Moreover, for high frequencies,

X(j)(p)nk and X(j)(p)nl become approximately independent whenever |k − l| > 1.

We note that the differencing of the increments in X(j)(p)ni is essential for what follows and is

done to minimize the impact of the drift term in X on our statistics. This is easiest to see when the

drift process a in (1.1) is constant. In this case the drift component cancels in the first difference

of the high-frequency increments. Otherwise, a determines the limit of the local power variation

for β < 1 (i.e., the drift will “dominate” the finite variation jumps in the power variation) and it

slows down its rate of convergence when β ≥ 1. This carries over to the statistics we introduce

below. Differencing of increments has been used in other related contexts, see e.g., Todorov (2013,

2015) and Kong et al. (2015). One consequence of the differencing of the increments is that we

loose the information in the data about the asymmetry of the spectral density. That is, we can
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only recover the sum g(θ) + g(θ + π). We stress, however, that the analysis that follows does not

require symmetry, i.e., we do not assume g(θ) = g(θ + π).

Our estimates of Φ(u) and β are based on the empirical characteristic function of the differenced

and standardized increments which is defined as

L̂np (u1, u2) =
1

n− 2kn − 1

n∑
i=2kn+2

cos
(
u1X

(1)(p)ni + u2X
(2)(p)ni

)
, (3.6)

where u1, u2 ∈ R and we further set

Lnp (u1, u2) = L̂np (u1, u2)
∨ 1

kn
. (3.7)

Under our assumptions and given the above discussion, we have

Lnp (u1, u2)
P−→ Lp(u1, u2), u1, u2 ∈ R, (3.8)

where

Lp(u1, u2) = exp

(
−
∫ π

0
|u1 cos(θ) + u2 sin(θ)|β g̃(θ)dθ

)
, (3.9)

with

g̃(θ) =
g(θ) + g(θ + π)

K
β/p
g,p µ

β/p
p

, µp =
Γ(1+p

2 )Γ(1− p
β )

√
πΓ(1− p

2)
,

and

Kg,p =

(∫ π

0

| cos(θ)|β(g(θ) + g(θ + π))dθ

) p
β

+

(∫ π

0

| sin(θ)|β(g(θ) + g(θ + π))dθ

) p
β

.

The function g̃(θ) is a scaled version of g(θ) + g(θ + π). The scale factor K
β/p
g,p µ

β/p
p is due to the

standardization of the increments of X by the local power variations. We note that the limit result

in (3.8) is not sufficient for what follows as we will need the convergence of Lnp (u1, u2) as a function.

Next, we can construct easily an estimator of β from Lnp (u1, u2) . Following Todorov (2015),

our estimator is given by:

β(p) =
log(− log(Lnp (u1, u1)))− log(− log(Lnp (u2, u2)))

log(u1/u2)
, (3.10)

for some fixed u1 6= u2 with u1, u2 ∈ R+, and for simplicity we suppress the dependence on u1

of u2 in the notation of the above estimator of β. We further correct the above estimator by the

following bias term that reflects the impact on the estimation of β which is due to the variation of

the local power variation:

B̂np,β =
1

2kn

(
β(p)

p

)2 log(Lnp (u2, u2)/Lnp (u1, u1))

log(u1/u2)

(
Σ̂n
p

K̂np
− 1

)
. (3.11)
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Here Σ̂n
p and K̂np are estimators of the asymptotic variance of the local power variation which are

defined from

ξni = |∆n
i X

(1) −∆n
i−1X

(1)|p + |∆n
i X

(2) −∆n
i−1X

(2)|p, (3.12)

as follows:

Σ̂n
p =

n∑
i=1

(ξni )2 and K̂np =

n∑
i=4

ξni ξ
n
i−2. (3.13)

With this notation, the debiased jump activity estimator is given by

β̂(p) =

[(
β(p)− B̂np,β

)∨ 1

kn

]∧(
2− 1

kn

)
. (3.14)

We note that the above jump activity estimator makes use of L̂np (u, u) for two values of u only.

Additional efficiency gains in the recovery of β can be achieved by incorporating information across

a range of u-s, see e.g., Theorem 3 in Todorov (2017). To keep the analysis simple, we do not do

this here.

Exactly as for the estimation of the jump activity, while log(Lnp (u1, u2)) is a valid estimator

of log(Lp(u1, u2)), it contains an asymptotic bias due to the scaling by the local power variations.

This bias can be removed in a feasible way, however, and this improves the rate of convergence of

the debiased estimator. The bias correction term is given by

B̂np (u1, u2) =
1

2kn

(
Σ̂np

K̂np
− 1

)

×
[

log(Lnp (u1, u2))
β̂(p)

p

(
β̂(p)

p
+ 1

)
+ log2(Lnp (u1, u2))

(
β̂(p)

p

)2]
,

(3.15)

and our bias-corrected estimate of log(Lp(u1, u2)) is log(Lnp (u1, u2))− B̂np (u1, u2).

3.2 Deconvolution of the Spectral Density

We proceed with showing how to recover g̃(θ) from the asymptotic limit of Lnp (u1, u2), i.e., Lp(u1, u2),

and we will then develop the feasible counterpart of this deconvolution procedure. For the recovery

of g̃(θ), we will need only the log-characteristic function evaluated on points in R2 lying on the unit

circle which we denote as

γp(y) = − log(Lp(cos(y), sin(y))) =

∫ π

0
| cos(y − θ)|β g̃(θ)dθ. (3.16)

If we further denote the function h(x) = | cosx|β, then we can write

γp(y) =

∫ π

0
h(y − θ)g̃(θ)dθ, y ∈ [0, π).
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That is, the function γ is a convolution of the functions h and g̃. Hence

γ∗p(m) = πh∗(m)g̃∗(m), m ∈ Z, (3.17)

where for a generic function f on the interval [0, π) belonging to L1([0, π]), we denote its Fourier

transform via

f∗(m) =
1

π

∫ π

0
f(x)e−2imxdx, m ∈ Z.

Then, since under Assumption A the sequence {g̃∗(m)}m∈Z of Fourier coefficients is absolutely

summable and as shown in the proofs |h∗(m)| > 0 for m ∈ Z, we have by Fourier inversion

g̃(θ) =
1

π

∞∑
m=−∞

γ∗p(m)

h∗(m)
e2imθ, θ ∈ [0, π). (3.18)

Now an estimator of g̃(θ) is easy to construct. We will replace in the above sum γ∗p(m) with an

estimator based on L̂np (u1, u2), h∗(m) with an estimator based on β̂(p), and we will further truncate

the higher frequencies. The spectral density estimator is thus given by

ĝnp (θ) =
1

π

mn∑
m=−mn

(
1− |m|

mn

)
γ̂∗p(m)

ĥ∗p(m)
e2imθ, θ ∈ [0, π), (3.19)

where mn is a deterministic sequence with mn →∞ as n→∞, ĥ∗p(m) is the counterpart of h∗p(m)

in which β is replaced with β̂(p), and further

γ̂∗p(m) =
1

π

∫ π

0

log(Lnp (cosx, sinx))− B̂np (cosx, sinx)

log(Lnp (1, 1))− B̂np (1, 1)
e−2imxdx. (3.20)

We note that in γ̂∗p(m) we rescale the estimate of γ∗p(m) by log(Lnp (1, 1))− B̂np (1, 1). This implies

that ĝnp (θ) will be an estimator for the following scaled version of g̃(θ):

G(θ) =
g̃(θ)∫ π

0 | cos(θ) + sin(θ)|β g̃(θ)dθ

=
g(θ) + g(θ + π)∫ π

0 | cos(θ) + sin(θ)|β(g(θ) + g(θ + π))dθ
, θ ∈ [0, π),

(3.21)

which does not depend on the power p used for the local power variation. Note that, as discussed

already in Section 2, we can recover the spectral density up to a constant. The reason for the

rescaling in (3.20) is to minimize the impact of the local power variation (which contains asymptotic

biases) on our statistic. In γ̂∗p(m), due to the rescaling, the local power variation has no first-order

asymptotic effect and this greatly improves the asymptotic behavior of the estimator.
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3.3 Adapting to the Unknown β

The behavior of the power variation, used to scale the increments with, depends in a crucial way

on the magnitude of p relative to the unknown β, and in particular we need 0 < p < β/2. Hence,

in order to improve the convergence rate of our estimator, we will use a preliminary estimator of β

and we will set p as a function of it. In particular, we will use the first pn increments, for some pn

with pn →∞ and pn/n→ 0, to estimate β as follows. We first set for some q > 0

Ṽ n
1 (q) = 1

pn−1

∑2
j=1

∑pn
i=2 |∆n

i X
(j) −∆n

i−1X
(j)|q,

Ṽ n
2 (q) = 1

pn−3

∑2
j=1

∑pn
i=4 |∆n

i X
(j) −∆n

i−1X
(j) + ∆n

i−2X
(j) −∆n

i−3X
(j)|q.

With this notation, the preliminary estimate of β is given by

β̂1 =
q log(2)

log
(
Ṽ n2 (q)

Ṽ n1 (q)

∨
2
q
2

pn
pn−1

) . (3.22)

We then set

p̂ =
β̂1

4
, (3.23)

and use p̂ for the spectral density estimation, i.e., we work with ĝnp̂ (θ). A more conservative choice

for p̂ (which is asymptotically equivalent to the one above) is the following. On the basis of β̂1 we

can construct a confidence interval for β and then set p̂ to be 1/4 of the lower end of this interval.

We also note that we can use the preliminary activity estimator β̂1 to optimally choose u1 and

u2 for the construction of β(p̂). Since this does not improve the rate of the convergence of the

latter, we do not do this here.

Another extension of the above analysis is to consider the case pn = n, i.e., to use all the data

in the calculation of the preliminary estimator β̂1. For such an extension, however, one would need

uniform in p convergence results for L̂np (u1, u2) and β̂(p), similar to the analysis in Todorov and

Tauchen (2011a) for the jump activity estimation. This is a nontrivial extension which does not

provide asymptotic efficiency improvements, and for this reason we do not consider it here.

4 Asymptotic Behavior of the Spectral Density Estimator

We next state the asymptotic properties of ĝnp̂ (θ) in the following theorem.

Theorem 1 Let Assumptions A and B hold for the process X with β′ < β/2 and β > q for some

q > 0. Set p̂ as in (3.22)-(3.23) with pn → ∞ and pn ≤ 2kn. Let kn � n$ and mn � n%, where

11



3
8 ≤ $ < 1

2 and % > 0. Then, for ∀ι > 0, we have:∫ π

0

(
ĝnp̂ (θ)−G(θ)

)2
dθ

= Op

m−2α+1
n

∨
m3+2β
n

∆β∧1−ι
n ∨ ∆

1
2

(
β
β′−1

)
−ι

n

kn


 .

(4.24)

We note that in the above theorem we derive the order of magnitude in probability of the integrated

squared error in recovering the spectral density rather than providing a bound for its expectation.

This is because some of the error terms in estimating the spectral density can be bounded only in

probability and not in expectation. The first term in the bound in (4.24) depends only on α and

is due to the bias in the estimation coming from the use of a finite number of frequencies in the

Fourier inversion. The smoother the spectral density G, the smaller the bias. The second term in

the bound in (4.24) is due to the error in recovering the log-characteristic function Φ and the jump

activity index β. It consists both of bias type terms and terms that are centered at zero and drive

the limit distribution in estimating Φ and β. In particular, the term in (4.24) involving the block

size kn reflects a bias due to the scaling with local power variations. We note in this regard that we

have significant flexibility in choosing kn, i.e., $ can take values in the range
[

3
8 ,

1
2

)
(we can allow

for even lower values of $ at the cost of more bias type terms in (4.24)). Of course, it is optimal to

set $ as close as possible to 1/2, in which case the term involving kn in (4.24) becomes of higher

order.

The effect of the jump activity on the spectral density is twofold. On one hand, a higher β

makes estimation more difficult as h∗(m) becomes smaller and hence deconvolution is more difficult.

On the other hand, when β < 1 the error in recovering the characteristic exponent Φ and the jump

activity β from the high-frequency data becomes larger. In addition, since the order of magnitude

of the errors in recovering Φ and β is the same, the fact that β has to be estimated from the data

does not have an impact on the order of magnitude of the integrated squared error in recovering

the spectral density.

We can alternatively write (4.24) as∫ π

0

(
ĝnp̂ (θ)−G(θ)

)2
dθ = Op(∆

Ψn
n ), (4.25)

where

Ψn = [(2α− 1)%]
∧

[β ∧ 1− ι− (3 + 2β)%]
∧[

1

2

(
β

β′
− 1

)
− ι+$ − (3 + 2β)%

]
.

12



When the residual term ν̃t(r, θ) in (1.2) is absent, then the last term in Ψn disappears. In this case,

the optimal choice of % is

%∗ =
β ∧ 1− ι

2α+ 2β + 2
,

for some ι > 0 arbitrary small, and the corresponding Ψn is given by

Ψ∗n =
(2α− 1)(β ∧ 1− ι)

2α+ 2β + 2
.

Finally, we note that one important feature of the model (1.1)-(1.2) is that the dependence

between the “small” jumps is time-invariant, i.e., the spectral density g does not depend on time.

This mirrors our assumption for β, which is similarly assumed to be constant, consistent with

the existing literature in univariate settings, see, e.g., Todorov (2017) and references therein. A

generalization of the above setup will be to allow g to depend on time and be random. We

conjecture that the same analysis we conducted here will go through for the estimation of g locally

at a given point in time, i.e., from a block of increments with asymptotically shrinking time span,

provided appropriate smoothness in expectation assumption is made for the time-variation in g.

This, however, will be at the cost of much slower rates of convergence than the ones exhibited in

Theorem 1.

Remark 1 Our asymptotic setup is one of regular (equidistant) sampling. To extend the above

analysis to the case of irregular sampling, we will need to appropriately rescale the increments

when taking their difference in the construction of L̂np (u1, u2) and β̂(p), in order to account for the

differences in the length of the intervals they are computed from. This will guarantee the cancelation

of the drift when differencing in the case it is constant, and more generally it will reduce the impact

of the drift on the statistic exactly as in the regular sampling case. Therefore, the result of Theorem 1

should be easy to extend to cover the situation when sampling times are irregular in the symmetric

case (i.e., when g(θ) = g(θ + π)) at least when the sampling times are deterministic.

5 Numerical Experiments

We now test the performance of our estimator on simulated data from a model for X in which the

drift process a is some vector of constants (due to the differencing of the increments the values of

these constants do not matter) and the Lévy density is given by

νt(r, θ) = A
e−λ|r|

|r|β+1
g(θ)σt, r ∈ R+, θ ∈ [0, 2π), (5.26)

with the time-varying intensity process σ specified below. When σt is constant, then the Lévy

density in (5.26) is that of a bivariate tempered stable process (Rosiński (2007)). The parameter β

13



coincides with the Blumenthal-Getoor index of the individual components of X and the parameter

λ > 0 controls the tempering of the Lévy measure at infinity. The constant A is the following

function of β

A =
β(β − 1)

2Γ(2− β)| cos(βπ/2)|
, β ∈ (1, 2). (5.27)

With this choice of A, the constant Cβ in (1.3) equals 1/2. Finally, the stochastic intensity process

σ is modeled as the square-root diffusion

dσt = 0.3× 252(252− σt)dt+ 0.1× 252
√
σtdWt, (5.28)

with W being a Brownian motion.

In all experiments we set the tempering parameter to λ = 0.2. We experiment with three values

of the BG index: β = 1.2, 1.5 and 1.8. For the spectral density, g(θ), we consider the following

model:

g(θ) =


x
2 , if θ ∈ (0, π4 ],
π
4 −

x
2 , if θ ∈ (π4 ,

π
2 ],

0, if θ ∈ (π2 , π].
(5.29)

The support of this function is (0, π/2). g(θ) is continuous but its derivative g′(θ) has discontinuities

at θ = 0, θ = π
4 and θ = π

2 . This parametric specification for the spectral density satisfies

Assumption A with α = 2.

The simulation from the bivariate tempered stable process is done via discretization of the

dependence function g(θ) and simulation of univariate tempered stable processes. We simulate X

on unit interval which corresponds to 1 year of 252 trading days. On each trading day we sample

X at 100 equidistant points. This corresponds approximately to 5-minute sampling frequency for

a typical financial application and results in n = 25200. [Alternatively, we can think of the unit

interval representing approximately 50 trading days of 1 minute records of X, etc.] We set kn = 100

for the local power variation and pn = 2kn for the initial jump activity estimator. We use q = 0.25

for β̂1 and for the final jump activity estimator β̂(p̂) we use u1 = 1.5 and u2 = 3.

The results from 100 Monte Carlo replications are reported on Figure 1. As seen from the

figure, we have a bias-variance tradeoff which is typical for nonparametric function estimation.

Higher values of mn lead to more precision but this is at the cost of noisier estimates of the spectral

density function. We can also see from the figure the effect of the value of β on the precision of the

estimation. For lower values of β, the accuracy of the estimation is higher and hence one can take

higher values of mn. For higher values of β, on the other hand, one has to be more conservative in

the choice of mn as the signal from the data becomes much weaker.
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Figure 1: Estimated Spectral Densities. On each plot the solid thick line is the true spectral density
and the thin dashed lines are estimates from 100 simulation draws with settings explained in the
text. The x-axis is a multiple of π.

6 Proofs

Using Parseval’s formula we have

1

π

∫ π

0

(
ĝnp̂ (θ)−G(θ)

)2
dθ =

∑
|m|≤mn

(ĝn,∗p̂ (m)−G∗(m))2 +
∑
|m|>mn

|G∗(m)|2, (6.30)

15



where ĝn,∗p̂ (m) = 1
π

(
1− |m|mn

)
γ̂∗p̂(m)

ĥ∗
p̂
(m)

. Therefore, we can bound the integrated squared error by a

bias and a variance term: ∫ π

0

(
ĝnp̂ (θ)−G(θ)

)2
dθ ≤ C(IB + IV ), (6.31)

for some positive constant C and where

IB =
1

m2
n

∑
|m|≤mn

|mG∗(m)|2 +
∑
|m|>mn

|G∗(m)|2, (6.32)

and IV =
∑
|m|≤mn(An1 (m) +An2 (m) +An3 (m)) with An1 (m), An2 (m) and An3 (m) defined as:

An1 (m) =
1

h∗(m)2

(∫ π

0

|ân(x)− a(x)|dx
)2

,

An2 (m) =

(
1

ĥ∗p̂(m)
− 1

h∗(m)

)2(∫ π

0

|ân(x)− a(x)|dx
)2

,

An3 (m) =
G∗(m)2

ĥ∗p̂(m)2

(
ĥ∗p̂(m)− h∗(m)

)2

,

with the additional notation

a(x) =
log(Lp̂(cosx, sinx))

log(Lp̂(1, 1))
, x ∈ [0, π],

ân(x) =
log(Lnp̂ (cosx, sinx))− B̂np̂ (cosx, sinx)

log(Lnp̂ (1, 1))− B̂np̂ (1, 1)
, x ∈ [0, π].

For the bias term, we have by Assumption A that IB = O(m−2α+1
n ). For the variance term, we

need to derive the order of magnitude of h∗(m) (and related functionals) as m → ∞ and analyze

the asymptotic behavior of log(Lnp̂ (u1, u2)) − B̂np̂ (u1, u2) and β̂(p). We do this in the subsequent

sections.

6.1 Alternative Representation of X and Localization

After appropriately extending the probability space and using Grigelionis decomposition (Theorem

2.1.2 in Jacod and Protter (2012)), we can represent J equivalently as

Jt =

∫ t

0

∫
R2

κ(σs−x)µ̃(ds, dx) +

∫ t

0

∫
R2

κ′(σs−x)µ(ds, dx) + Yt, (6.33)

where σt = L
1/β
t and with slight abuse of notation, µ now is a Poisson measure with compensator

dt⊗ ν(dx) with

ν(dx) =
g(θ)

r1+β
drdθ, for x = (r cos θ, r sin θ), (6.34)

16



and Y is a process of the form

Yt =

∫ t

0

∫
R2

κ(x)µ̃1(ds, dx) +

∫ t

0

∫
R2

κ′(x)µ1(ds, dx)

−
∫ t

0

∫
R2

κ(x)µ̃2(ds, dx)−
∫ t

0

∫
R2

κ′(x)µ2(ds, dx),

(6.35)

where µ1 and µ2 are some integer-valued measures on R+×R2, having some dependence with µ, and

whose compensators are of the form dt⊗νjt(dx) with νjt(dx) = νjt(r, θ)drdθ, for x = (r cos θ, r sin θ)

and j = 1, 2, and ν1t(r, θ) = |ν̃t(r, θ)| and ν2t(r, θ) = 2|ν̃t(r, θ)|1{ν̃t(r,θ)<0}.

We further denote (recall also Assumption B(c))

ãt =

{
at −

∫
R2 κ(x)νt(dx), if β < 1,

at −
∫
R2 (κ(σt−x)− σt−κ(x)) ν(dx), if β ≥ 1,

(6.36)

S̃t =

{ ∫ t
0

∫
R2 xµ(ds, dx), if β < 1,∫ t

0

∫
R2 κ(x)µ̃(ds, dx) +

∫ t
0

∫
R2 κ

′(x)µ(ds, dx), if β ≥ 1,
(6.37)

Ỹt =

{ ∫ t
0

∫
R2 xµ1(ds, dx)−

∫ t
0

∫
R2 xµ2(ds, dx), if β < 1,

Yt, if β ≥ 1.
(6.38)

Note that S̃t has the same distribution as St, where St is defined at the beginning of Section 2, and

in particular, the real part of the log-characteristic function of S̃1 is given by Φ(u) in (1.3). With

this notation we can finally write:

Xt =

∫ t

0
ãudu+

∫ t

0
σu−dS̃u + Ỹt. (6.39)

We will prove the results under the following strengthened version of Assumption B:

Assumption SB. Assume Assumption B holds and in addition:

(a) The processes a and L are bounded and further E||at−as||2 ≤ Γ|t−s| and E|Lt−Ls|2 ≤ Γ|t−s|
for some finite constant Γ > 0 and every s, t ≥ 0. In addition, |Lt|−1 and |Lt−|−1 are bounded by

a finite positive constant.

(b) The jumps of Y are bounded and further
∫
R+
|r|β′ |ν̃t(r, θ)|dr ≤ Γ, for θ ∈ [0, 2π), some nonneg-

ative β′ < β and a finite constant Γ > 0.

(c) When β < 1, there is a positive constant A such that ||δ(t,x)|| ≤ Γ(x), Γ(x) ≤ A and
∫
R2(Γ(x)∧

1)β+ιdx <∞ for all ι > 0.

Extending the proof to the weaker Assumption B follows by standard localization techniques,

see e.g., Lemma 4.4.9 of Jacod and Protter (2012).
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6.2 Auxiliary Results

Our first auxiliary result is a lower bound in absolute value and asymptotic size of the Fourier

transform h∗(m) as m→∞.

Lemma 1 For the Fourier transform h∗(m) of the function h(x) = | cosx|β on the interval [0, π]

and for ∀ε > 0, we have

inf
β∈(ε,2−ε)

|h∗(m)| > 0, for every m ∈ Z, (6.40)

|h∗(m)| > Cβ|m|−β−1, for |m| sufficiently large, (6.41)

where Cβ > 0 is a constant that depends only on β and infβ∈B Cβ > 0 for any compact set B in

(0, 1) or [1, 2). For all ε ∈ (0, 1) and β ∈ (ε, 1], we have

|h∗(m)| > Cε|m|−2, for |m| sufficiently large, (6.42)

where Cε > 0 is a constant that depends only on ε. Further, we have∣∣∣∣ ∫ π

0
h(x) logq | cosx|e−2imxdx

∣∣∣∣ < Cβ|m|−β−1 logq |m|, q ∈ N, (6.43)

for sufficiently large integer m and Cβ > 0 is a constant that depends only on β and supβ∈B Cβ <∞
for any compact set B in (0, 1] or (1, 2). For β ∈ [1, 2), we have∣∣∣∣ ∫ π

0
h(x) logq | cosx|e−2imxdx

∣∣∣∣ < C|m|−2 logq |m|, q ∈ N, (6.44)

where the constant C does not depend on β and m.

Proof of Lemma 1. We need to evaluate
∫ π

0 cos(mx)| cosx|βdx when m is an even integer and
throughout the proof we will assume that this is the case. By splitting the region of integration
and using standard trigonometric identities we have

h∗(m/2) =
2

π

∫ π
2

0

cos(mx)| cos(x)|βdx, (6.45)

and further

h∗(m/2) =

{
2
π

∫ π
4

0
cos(mx)(| cosx|β + | sinx|β)dx, if m

2 is even,
2
π

∫ π
4

0
cos(mx)(| cosx|β − | sinx|β)dx, if m

2 is odd.
(6.46)

The bound in (6.40) when β ≤ 1. When m/2 is even, using (6.45), we have h∗(m/2) = 1
π

∑m/4
i=1 Ai

where Ai = 2
m

∫ i2π
(i−1)2π cosxf

(
x
m

)
dx and f(x) = | cosx|β. By changing the variable of integration

and using standard trigonometric identities we get

Ai =
2

m

∫ π
2

0

cosx

(
f

(
x+ (2i− 2)π

m

)
− f

(
x+ (2i− 1)π

m

)
− f

(
(2i− 1)π − x

m

)
+ f

(
2iπ − x
m

))
dx.
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Since f
′′
(x) < 0 for x ∈

(
0, π2

)
, we have supβ∈(ε,1]Ai < 0 for every 0 < ε < 1 and every i = 1, ..., m4 .

When m/2 is odd we have h∗(m/2) = 2
mπ

∫ π
0 cosxf

(
x
m

)
dx + 1

π

∑(m−2)/4
i=1 Ai, where Ai =

2
m

∫ i2π+π
(i−1)2π+π cosxf

(
x
m

)
dx and f(x) = | cosx|β. By changing the variable of integration and using

standard trigonometric identities, we get

Ai = − 2

m

∫ π
2

0

cosx

(
f

(
x+ (2i− 1)π

m

)
− f

(
x+ i2π

m

)
− f

(
i2π − x
m

)
+ f

(
(2i+ 1)π − x

m

))
dx.

Since f
′′
(x) < 0 for x ∈

(
0, π2

)
, we have infβ∈(ε,1]Ai > 0 for every 0 < ε < 1 and every i = 1, ..., m−2

4 .

Further, since f
′
(x) < 0 for x ∈

(
0, π2

)
, we have

2

m

∫ π

0

cosxf
( x
m

)
dx =

2

m

∫ π
2

0

cosx

(
f
( x
m

)
− f

(
π − x
m

))
dx ≥ 0.

The bound in (6.40) when β > 1. Using integration by parts twice, we can write∫ π
4

0

cos(mx)| cosx|βdx =
β

m2

∫ π
4

0

cos(mx)(| cosx|β − (β − 1)| cosx|β−2 sin2 x)dx

+
sin(mπ/4)

m
| cos(π/4)|β .

Therefore (
1− β

m2

)∫ π
4

0

cos(mx)| cosx|βdx = −β(β − 1)

m2

∫ π
4

0

cos(mx)| cosx|β−2dx

+
sin(mπ/4)

m
| cos(π/4)|β ,

(6.47)

and similarly (
1− β

m2

)∫ π
4

0

cos(mx)| sinx|βdx = −β(β − 1)

m2

∫ π
4

0

cos(mx)| sinx|β−2dx

+
sin(mπ/4)

m
| sin(π/4)|β .

(6.48)

Combining (6.46) with (6.47)-(6.48), we have

h∗(m/2) =

{
−2β(β−1)
m2−β

1
π

∫ π
4

0
cos(mx)f(x)dx, if m

2 is even,
−2β(β−1)
m2−β

1
π

∫ π
4

0
cos(mx)g(x)dx, if m

2 is odd,
(6.49)

where f(x) = | cosx|β−2 + | sinx|β−2 and g(x) = | cosx|β−2 − | sinx|β−2. Further, we can

write
∫ π

4
0 cos(mx)f(x)dx = 1

m

(∑bm
8
c

i=1 Ai,f +Rf

)
, where Ai,f =

∫ i2π
(i−1)2π cosxf

(
x
m

)
dx and Rf =∫ mπ

4

bm
8
c2π cosxf

(
x
m

)
dx. Similarly, we have

∫ π
4

0 cos(mx)g(x)dx = 1
m

(∑bm
8
c

i=1 Ai,g +Rg

)
, with Ai,g =∫ i2π

(i−1)2π cosxg
(
x
m

)
dx and Rg =

∫ mπ
4

bm
8
c2π cosxg

(
x
m

)
dx. Therefore, it suffices to show that for i =

2, ..., bm8 c and every ε > 0, we have infβ∈(1,2−ε)Ai,f > 0 and supβ∈(1,2−ε)Ai,g < 0, infβ∈(1,2−ε)Rf ≥ 0

and also supβ∈(1,2−ε)Rg ≤ 0, as well as infβ∈(1,2−ε)(β − 1)A1,f > 0 and supβ∈(1,2−ε)(β − 1)A1,g < 0.
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By splitting the integration over regions and using standard trigonometric identities, we have

Ai,h =

∫ π
2

0

cosx

(
h

(
x+ (2i− 2)π

m

)
− h

(
x+ (2i− 1)π

m

)
− h

(
(2i− 1)π − x

m

)
+ h

(
2iπ − x
m

))
dx, h = f, g.

(6.50)

Therefore, since f
′′
(x) > 0 and g

′′
(x) < 0 for x ∈

(
0, π4

)
, we have Ai,f > 0 and Ai,g < 0 for every

β ∈ (1, 2). Note also that limβ↓1(β − 1)A1,f > 0 and limβ↓1(β − 1)A1,g < 0.

Next, we have

Rf =

∫ π
2

0
cosx

(
f

(
x+ bm/8c2π

m

)
− f

(
mπ/4− x

m

))
dx.

From here, since f
′
(x) < 0 for x ∈

(
0, π4

)
, we have Rf ≥ 0. We are left with Rg for which we have

two cases depending on whether (m− 2)/4 is even or odd. When (m− 2)/4 is even, we have

Rg =

∫ π
2

0

cosxg

(
x+ bm/8c2π

m

)
dx,

and since g(x) < 0 for x ∈
(
0, π4

)
, we have Rg ≤ 0 in this case. When (m− 2)/4 is odd, we have

Rg =

∫ π
2

0

cosx

(
g

(
x+ bm/8c2π

m

)
− g

(
x+ bm/8c2π + π

m

)
− g

(
bm/8c2π + π − x

m

))
dx.

Since in this case bm/8c = m−6
8 , by applying integration by parts, we have

Rg = − 1

m

∫ π
2

0

sinx

(
g′
(
x+ bm/8c2π

m

)
− g′

(
x+ bm/8c2π + π

m

)
+ g′

(
bm/8c2π + π − x

m

))
dx.

From here, making use of g′(x) > 0 and g
′′
(x) < 0 for x ∈

(
0, π4

)
, we have Rg ≤ 0 in the case when

(m− 2)/4 is odd.

We now turn to ((6.41)). First, the result can be shown by direct calculation for β = 1 and

below we look separately at the cases β > 1 and β < 1.

The bound in ((6.41)) when β > 1. From (6.49) by applying integration by parts, we have(
1− β

m2

)
h∗(m/2) = −2β(β − 1)

πm2

∫ bm8 c 2πm
0

cos(mx)| sinx|β−2dx+ η(β,m),

if m
2 is even and(

1− β

m2

)
h∗(m/2) =

2β(β − 1)

πm2

∫ bm8 c 2πm
0

cos(mx)| sinx|β−2dx+ η(β,m),
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if m
2 is odd and where supβ∈[1,2] |η(β,m)| = O

(
1
m3

)
. Next we analyze

∫ bm8 c2π
0

cosx

(∣∣∣∣ sin( xm
)∣∣∣∣β−2

−
∣∣∣∣ xm
∣∣∣∣β−2)

dx.

First, since β − 2 ≥ −1 and using the inequality | sinx/x− 1| ≤ 1
6 |x|

2 for x 6= 0, we have for some
positive constant C and m sufficiently high∫ 2π

0

∣∣∣∣∣∣∣∣ sin( xm
)∣∣∣∣β−2

−
∣∣∣∣ xm
∣∣∣∣β−2∣∣∣∣dx ≤ C.

Then by integration by parts for any positive integer k ≤ m
2 (note that sin(x/m) ≥ 0 for x ∈

[0, 2kπ]), we have ∫ 2kπ

2π

cosx

(∣∣∣∣ sin( xm
)∣∣∣∣β−2

−
∣∣∣∣ xm
∣∣∣∣β−2)

dx

=
2− β
m

∫ 2kπ

2π

sinx

(∣∣∣∣ sin( xm
)∣∣∣∣β−3

cos

(
x

m

)
−
∣∣∣∣ xm
∣∣∣∣β−3)

dx,

and using the trigonometric identity 1 − cosx = 2 sin2(x/2) and β ≥ 1, we have that the last
integral is equal to a term bounded in absolute value by a constant that does not depend on m and
β and the following expression

2− β
m

∫ 2kπ

2π

| sinx|
(∣∣∣∣ sin( xm

)∣∣∣∣β−3

−
∣∣∣∣ xm
∣∣∣∣β−3)

dx,

which in turn is bounded in absolute value by

2− β
mβ−2

∫ 2kπ

2π

xβ−3

∣∣∣∣1− ∣∣∣∣ sin(x/m)

x/m

∣∣∣∣3−β∣∣∣∣ 1∣∣∣∣ sin(x/m)
x/m

∣∣∣∣3−β
dx,

and using the inequality | sinx/x− 1| ≤ 1
6 |x|

2 for x 6= 0, as well as the fact that k ≤ bm8 c, we have
that the last integral is bounded by a positive constant uniformly over β ∈ [1, 2] for m sufficiently
high. Altogether:

h∗(m/2) = −2β(β − 1)

πm2

∫ bm8 c 2πm
0

cos(mx)|x|β−2dx+ η(β,m), if m/2 is even,

h∗(m/2) =
2β(β − 1)

πm2

∫ bm8 c 2πm
0

cos(mx)|x|β−2dx+ η(β,m), if m/2 is odd,

where supβ∈[1,2] |η(β,m)| = O
(

1
m3

)
.

So we are left with analyzing
∫ 2kπ

0 cos(x)xβ−2dx for some positive integer k ≤ bm8 c. First, we

have supβ∈(1,2](β− 1)
∫ 2π

0 | cosx|xβ−2dx < C for some positive constant C that does not depend on

m and β. Next, using integration by parts we have
∫ 2kπ

2π cos(x)xβ−2dx = (2− β)
∫ 2kπ

2π sin(x)xβ−3dx

and furthermore for k ≤ bm8 c we have supβ∈(1,2]

∫ 2kπ
2π | sinx|x

β−3dx < C for some positive constant

21



C that does not depend on m and β. Therefore
∫ 2kπ

0 cos(x)xβ−2dx is finite and bounded by a

constant that does not depend on m for k ≤ bm8 c. We further have
∫ 2kπ

0 cos(x)xβ−2dx =
∑k

i=1 ai

where ai =
∫ 2iπ

2(i−1)π cos(x)xβ−2dx. Then by using the properties of the cosine function we can write

ai =
∫ 2(i−1)π+π

2

2(i−1)π cos(x)fβ(x)dx for fβ(x) being positive, and thus we have that all ai have the same

sign and are different from zero. Moreover, |a1| ≥ 1√
2

∣∣∣∫ π
4

0 fβ(x)dx
∣∣∣, and direct calculation shows

infβ∈(1,2)(β − 1)
∣∣∣ 1√

2

∫ π
4

0 fβ(x)dx
∣∣∣ > 0. Therefore, |

∑k
i=1 ai| is bounded from below by a positive

constant uniformly in β ∈ (1, 2− ε) for every ε > 0.

The bound in (6.41) when β < 1. The proof is very similar to the case when β > 1 and therefore
we provide only a sketch of it. Using integration by parts we can write for some η(β,m) with
supβ∈(0,1) |η(β,m)| = O

(
1
m2

)
:

h∗(m/2) =

{
− 2
π
β
m

∫ bm8 c 2πm
0

sin(mx)| sin(x)|β−1dx+ η(β,m), if m
2 is even,

2
π
β
m

∫ bm8 c 2πm
0

sin(mx)| sin(x)|β−1dx+ η(β,m), if m
2 is odd.

Then exactly the same analysis as for the case β > 1 leads to

h∗(m/2) =

{
− 2
π
β
m

∫ bm8 c 2πm
0

sin(mx)|x|β−1dx+ η(β,m), if m
2 is even,

2
π
β
m

∫ bm8 c 2πm
0

sin(mx)|x|β−1dx+ η(β,m), if m
2 is odd,

with supβ∈(0,1) |η(β,m)| = O
(

1
m2

)
.

From here, we can decompose
∫ 2kπ

0 sin(x)|x|β−1dx =
∑k

i=1 ai with ai =
∫ 2iπ

2(i−1)π sin(x)xβ−1dx =∫ 2iπ−π
2(i−1)π sin(x)(xβ−1 − (x + π)β−1)dx. Therefore, ai > 0 for i = 1, ..., k as the integrand is always

positive. Moreover, the sum
∑k

i=1 ai is bounded from above by a constant. Since ai is a continuous

function of β, the above results hold obviously uniformly over β lying in compact subsets of (0, 1).

The bound in (6.42). We consider only the case when m/2 is even, with the case when m/2 is odd
being proven in exactly the same way. By integration by parts we have

h∗(m/2) = − 2β

πm

∫ π
4

0

sin(mx)
(
| sinx|β−1 cosx− | cosx|β−1 sinx

)
dx.

We define h∗1(m/2) = − 2β
πm

∫ π
4

0 sin(mx)| sinx|β−1dx and h∗2(m/2) = h∗(m/2) − h∗1(m/2). Using

integration by parts again, for η(β,m) with supβ∈(0,1) |η(β,m)| = O
(

1
m3

)
, we have

h∗2(m/2) = − 2β

πm2
cos
(mπ

4

)
sin
(π

4

)β−1
+ η(β,m).

h∗1(m/2) =
2β

πm2
cos
(mπ

4

)
sin
(π

4

)β−1
− 2β

πm2
sin

(
bm

8
c2π
m

)β−1

− 2β

πm

∫ bm
8
c 2π
m

0
sin(mx)| sinx|β−1dx+ η(β,m).
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Therefore, for η(β,m) with supβ∈(0,1) |η(β,m)| = O
(

1
m3

)
:

h∗(m/2) = − 2β

πm2

∫ bm8 c2π
0

sinx
∣∣∣sin( x

m

)∣∣∣β−1

dx− 2β

πm2
sin

(
bm

8
c2π
m

)β−1

+ η(β,m).

For ai =
∫ 2iπ

2(i−1)π sinx
∣∣sin ( xm)∣∣β−1

dx we can write
∫ bm

8
c2π

0 sinx
∣∣sin ( xm)∣∣β−1

dx =
∑bm

8
c

i=1 ai. Now

we have ai =
∫ (2i−1)π

2(i−1)π sinx
(∣∣sin ( xm)∣∣β−1 −

∣∣sin (x+π
m

)∣∣β−1
)
dx. Since sin(x) is an increasing func-

tion for x ∈
(
0, π4

)
, we have that ai ≥ 0 for i = 1, ..., bm8 c locally uniformly in β. Therefore, for m

sufficiently high, we have |h∗(m/2)| > (1− ι) 2β
πm2 sin

(
bm8 c

2π
m

)β−1
for some small ι ∈ (0, 1).

The bound in (6.43) when β > 1. By changing variable of integration, it suffices to look at the

order of magnitude of
∫ π

2
0 cos(mx)| cosx|β logq | cosx|dx and

∫ π
2

0 cos(mx)| sinx|β logq | sinx|dx in m,
for m being an even integer. Applying integration by parts twice, exactly as in the proof of (6.41),
we have ∫ π

2

0

cos(mx)| cosx|β logq | cosx|dx

=
1

m2

∫ π
2

0

cos(mx)| cosx|β−2

 2∑
j=0

αj logq−j | cosx|

 dx+ η(β,m),

where αj are constants depending on q and β, αj = 0 if q−j < 0, and supβ∈(1,2) |η(β,m)| = O
(

1
m3

)
.

We have similar expression for the integral in which cosx is replaced with sinx. As in the proof of
(6.41), we have∣∣∣∣ ∫ π

2

0

cos(mx)| cosx|β−2dx

∣∣∣∣ < Cβm
1−β and

∣∣∣∣ ∫ π
2

0

cos(mx)| sinx|β−2dx

∣∣∣∣ < Cβm
1−β ,

with supβ∈B Cβ <∞ for B being an arbitrary compact subset of (1, 2).

Hence we are left with deriving the order of magnitude of
∫ π

2
0 cos(mx)q(x)dx for q(x) =

| cosx|β−2 logq | cosx| or q(x) = | sinx|β−2 logq | sinx| and q being a positive integer. Since we
are interested in the above integrals only for even integers m, a change of variable of integra-
tion reduces the problem finally to evaluating the order of magnitude of the following integrals∫ π

4
0 cos(mx)q(x)dx, for q(x) being | cosx|β−2 logq | cosx| or | sinx|β−2 logq | sinx|. Integration by

parts shows that supβ∈(1,2)

∣∣∣∫ π
4

0 cos(mx)q(x)dx
∣∣∣ = O(1/m), for q(x) = | cosx|β−2 logq | cosx|, and

hence the case q(x) = | sinx|β−2 logq | sinx| remains only. By changing the variable of integration

we need to evaluate the integral 1
m

∫mπ
4

0 cosxq(x/m)dx for m being an even integer. We split the
interval of integration into three and bound each of the resulting integrals using the inequality

| sinx/x− 1| ≤ |x|2 and integration by parts for the integral over the middle region. Altogether we
get for m sufficiently high∫ 2π

0

| cosxq(x/m)|dx+

∣∣∣∣ ∫ bm8 c2π
2π

cosxq(x/m)dx

∣∣∣∣ ≤ Cβm2−β logq(m),
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and
∫mπ

4

bm
8
c2π | cosxq(x/m)|dx ≤ Cβ for m sufficiently high. For Cβ we have supβ∈B Cβ < ∞ for B

being an arbitrary compact subset of (1, 2). Combining these results we have the bound in (6.43).

The bound in (6.43) when β ≤ 1. Applying integration by parts we have∫ π
2

0

cos(mx)| cosx|β logq | cosx|dx

=
1

m

∫ π
2

0

sin(mx)| cosx|β−1

 1∑
j=0

αj logq−j | cosx|

 dx+ η(β,m),

where αj are constants depending on q and β, αj = 0 if q − j < 0, and supβ∈(0,1] |η(β,m)| =

O
(

1
m2

)
. Then exactly the same steps as for the case β > 1, reduce the problem to deducing

the order of magnitude of the integrals 1
m

∫mπ
4

0 sin(x)q( xm)dx for q(x) = | sinx|β−1 logq | sinx| and

q(x) = | cosx|β−1 logq | cosx|. Deriving the order of magnitude of these integrals is done in exactly

the same way as for their counterparts in the case β > 1 by splitting the region of integration into

the intervals (0, π2 ), (π2 , b
m−2

4 cπ + π
2 ) and (bm−2

4 cπ + π
2 ,

mπ
4 ).

The bound in (6.44). This is shown in exactly the same way as the bound in (6.43) when β ≤ 1. �

Before stating the next lemma, we introduce the following additional notation:

Bnp (u1, u2) =
1

2kn

(
Σp

(2Cβ)
2p
β µ2

pK
2
g,p

− 1

)
Bp(u1, u2),

where

Bp(u1, u2) =

[
log(Lp(u1, u2))

β

p

(
β

p
+ 1

)
+ log2(Lp(u1, u2))

(
β

p

)2]
,

and

Σp = E
(∣∣∣S̃(1)

3 − 2S̃
(1)
2 + S̃

(1)
1

∣∣∣p +
∣∣∣S̃(2)

3 − 2S̃
(2)
2 + S̃

(2)
1

∣∣∣p)2

,

with the bivariate stable process S̃ being defined in Section 6.1, and where S̃(j) denotes the j-th

element of the vector process.

Similarly, we further denote with Bnp,β the analogue of B̂np,β in which β(p) is replaced with β, Σ̂n
p

with Σp, and K̂np with Kp = (2Cβ)
2p
β µ2

pK
2
g,p.

Henceforth, we will denote with C > 0 a constant that does not depend on n, and when it
depends in addition on some parameter k, we will denote it with Ck > 0, and in this case Ck will
be locally bounded in k, i.e., supk∈K Ck < ∞ for any compact set K. We also denote 1 = (1, 1).
Finally, we set for ι > 0 arbitrary small constant:

αn = ∆
β
2
p+1
β+1∧

(
p
β′ ∧1− pβ

)
−ι

n .
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Lemma 2 Assume A and SB, p ∈
(
β
4 − ε,

β
4 + ε

)
for some 0 < ε <

(
1
β −

β
4

)
∧ β

12 , and kn � n$

and mn � n%, for $ ∈ (0, 1
2) and % > 0. Denote u = (u1, u2), with u1, u2 ∈ R+. We have for

∀ι > 0:

sup
u∈S1
|L̂np (u1, u2)− Lp(u1, u2)| = Op

(
αn ∨∆

β∧1
2 −ι

n ∨ 1√
kn

)
, (6.51)

E

∣∣∣∣∣ L̂np (u1, u2)− Lp(u1, u2)

Lp(u1, u2)
− Bnp (u1, u2)

∣∣∣∣∣
2

≤ Cu

[
kn
n
∨ α2

n ∨
1

kn

(
kn
n

)1− 2p
β −ι

∨ 1

k
β
2p

∧
2−ι

n

]
,

(6.52)

E
∣∣∣∣ L̂np (u1, u2)

Lp(u1, u2)
− 1− Bnp (u1, u2)− Φ(u)

Φ(1)

( L̂np (1, 1)

Lp(1, 1)
− 1− Bnp (1, 1)

)∣∣∣∣
≤ Cu

[
∆

β∧1
2 −ι

n ∨ α2
n ∨

αn√
kn
∨ ∆

p
2−ι
n

kn
∨ k−

3
2

n ∨ 1

kn

(
kn
n

) 1
2−

p
β−ι ]

,

(6.53)

∆
1− 2p

β
n Σ̂np − Σp

∫ 1

0

|σs|2pds = Op

(
∆

p
2∧( p

β′−
p
β )−ι

n

)
, (6.54)

∆
1− 2p

β
n K̂np − (2Cβ)

2p
β µ2

pK
2
g,p

∫ 1

0

|σs|2pds = Op

(
∆

p
2∧( p

β′−
p
β )−ι

n

)
, (6.55)

β̂(p)− β = Op

(
α2
n ∨∆

β∧1
2 −ι

n ∨ αn√
kn
∨ ∆

p
2−ι
n

kn
∨ k−

3
2

n ∨ 1

kn

(
kn
n

) 1
2−

p
β−ι
)
. (6.56)

Proof of Lemma 2. Preliminary results. In the proof we will denote with U a compact subset of

R2. We also use the shorthand notation

V (p)ni = V (X(1), p)ni + V (X(2), p)ni .

We will make use of several bounds which we now state and/or derive. First, using Assumption
SB(a), the smoothness of the truncation function κ as well as the boundedness from below of the
values of the process Lt, we have

Eni−2

∣∣∣∣∣∣∣∣ ∫ i∆n

(i−2)∆n

(ãs − ãs−∆n)ds

∣∣∣∣∣∣∣∣q ≤ C∆
3q
2
n , q ∈ (0, 2]. (6.57)

and given the additional condition for ã in Assumption SB(c) we also have for some arbitrary small ι > 0:

Eni−2

∣∣∣∣∣∣∣∣ ∫ i∆n

(i−2)∆n

(ãs − ãs−∆n
)ds

∣∣∣∣∣∣∣∣q ≤ C∆
q+ q

β

∧
1−ι

n , if β < 1. (6.58)

Using Assumption SB(c) as well as the algebraic inequality |
∑
i ai|p ≤

∑
i |ai|p for p ∈ (0, 1) and ai ∈ R

(and Burkholder-Davis-Gundy inequality if q > 1), we have

Eni−2||∆n
i Ỹ −∆n

i−1Ỹ ||q ≤ C∆
q
β′
∧

1−ι
n , q > 0, ∀ι > 0. (6.59)

We next split S̃t = S̃t,1 + S̃t,2 where

S̃t,1 =

∫ t

0

∫
R2

κ(x)µ(ds, dx) and S̃t,2 =

∫ t

0

∫
R2

κ′(x)µ(ds, dx), when β < 1,
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S̃t,1 =

∫ t

0

∫
R2

κ(x)µ̃(ds, dx) and S̃t,2 =

∫ t

0

∫
R2

κ′(x)µ(ds, dx), when β ≥ 1.

Using Burkholder-Davis-Gundy inequality, the algebraic inequality |
∑

i ai|p ≤
∑

i |ai|p for p ∈
(0, 1) and ai ∈ R, and Jensen’s inequality, we have for j = 0, 1:

Eni−2

∣∣∣∣∣∣∣∣ ∫ (i−j)∆n

(i−j−1)∆n

(σu− − σ(i−2)∆n
)dS̃u,1

∣∣∣∣∣∣∣∣q ≤ C∆
q
2 + q

β∧1−ι
n , q ∈ (0, 2], ∀ι > 0. (6.60)

Next, for 0 < q < β ∧ 1, since the q-th power of the jumps of S̃t,2 is absolutely summable, we have
for j = 0, 1 and q ∈ (0, β ∧ 1):

Eni−2

∣∣∣∣∣∣∣∣ ∫ (i−j)∆n

(i−j−1)∆n

(σu − σ(i−2)∆n
)dS̃u,2

∣∣∣∣∣∣∣∣q ≤ C∆
1+ q

2
n . (6.61)

Finally, using the above inequalities we can proceed exactly as in Lemma 1 of Todorov (2017)
(note that given the restriction on p in the lemma we have p < 1/β which is needed for applying
Lemma 1 of Todorov (2017)), and show

∆−p/βn Eni−2||∆n
i X

(j) −∆n
i−1X

(j)|p − |σ(i−2)∆n
|p|∆n

i S̃
(j) −∆n

i−1S̃
(j)|p|

≤ Cαn, j = 1, 2,
(6.62)

P ((Ani )c) < Ck
− β

2p+ι
n , Ani = {ω : ∆−p/βn V (p)ni > ε}, (6.63)

for some sufficiently small ε > 0 (which depends on the lower bound on the process L, and the

value of β). The bounds in (6.62) and (6.63) are derived in Todorov (2017) under the assumption

β ≥ 1 but they are easily extended to the case β < 1 given the results in (6.57)-(6.61) above (note

that (6.41) in Todorov (2017) gets changed to Kεp−βEni−2|χ̃2|β in the notation of that paper).

The results in (6.51)-(6.53). We denote the function

fni (x,u) = exp

(
2|σ(i−2)∆n

|β

xβ/p
Φ(u)

)
,

where Φ(u) is defined in (1.3) and we note that fni

(
(2Cβ)

p
β |σ(i−2)∆n

|pKg,pµp,u
)
≡ Lp(u1, u2).

With this notation, we can make the decomposition

L̂np (u1, u2)− Lp(u1, u2) = Z(1)(u) + Z(2)(u) + Z(3)(u),

where Z(j)(u) = 1
n−2kn−1

∑n
i=2kn+2 z

(j)
i (u) for

z
(1)
i (u) = cos(u1X

(1)(p)ni + u2X
(2)(p)ni )− Eni−2(cos(u1X

(1)(p)ni + u2X
(2)(p)ni )),

z
(2)
i (u) = Eni−2(cos(u1X

(1)(p)ni + u2X
(2)(p)ni ))− fni (∆−p/βn V (p)ni ,u),

z
(3)
i (u) = fni (∆−p/βn V (p)ni ,u)− Lp(u1, u2).
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We further define Z̃(j)(u) = Z(j)(u)/Lp(u1, u2) and z̃(j)(u) = z(j)(u)/Lp(u1, u2).

We split the proof of (6.51)-(6.53) into several steps.
Step 1. Results for Z(1)(u). Using the bound in (6.63) we have

E
(

sup
u∈U

(|z(1)
i (u)|q)1{(Ani )c}

)
≤ Ck−

β
2p+ι

n , ∀q > 0. (6.64)

Using successive conditioning and the boundedness of z
(1)
i (u), we have

E

(
n∑

i=2kn+2

z
(1)
i (u)1{Ani })

)2

≤ Cun. (6.65)

Combining the above two bounds, we have for some ι > 0 arbitrary small:

E
∣∣Z̃(1)(u)

∣∣2 ≤ Cu

(
∆n ∨ k

− β
2p+ι

n

)
. (6.66)

We next denote

z
(1)
i (u) = cos

(
u1σ(i−2)∆n

(∆n
i S̃

(1) −∆n
i−1S̃

(1)) + u2σ(i−2)∆n
(∆n

i S̃
(2) −∆n

i−1S̃
(2))

(V (p)ni )1/p

)
− fni (∆−p/βn V (p)ni ,u).

Using the bounds in (6.57)-(6.61), we have for ∀ι > 0:

E

(
n∑

i=2kn+2

sup
u∈U
|z(1)
i (u)− z(1)

i (u)|q1{Ani }

)
≤ CU n∆

β∧1
2 −ι

n , ∀q ≥ 1. (6.67)

If we further denote

Bni =

{
ω : ∆

− 1
β

n |∆n
i S̃

(1) −∆n
i−1S̃

(1)| ≤
√
n ∩ ∆

− 1
β

n |∆n
i S̃

(2) −∆n
i−1S̃

(2)| ≤
√
n

}
,

then with this notation we have for ∀ι > 0:

E

(
n∑

i=2kn+2

sup
u∈U
|z(1)
i (u)|q1{(Bni )c}

)
≤ CUn

1− β2 +ι, q > 0. (6.68)

Next, for u,v ∈ R2, by splitting the sum
∑n
i=2kn+2(z

(1)
i (u)− z(1)

i (v))1{Ani ∩Bni }) into sums over the odd and
even terms, each of the latter becomes a sum of martingale increments, and then by applying Burkholder-
Davis-Gundy inequality and inequality in means we have

E
∣∣∣∣ n∑
i=2kn+2

(z
(1)
i (u)− z(1)

i (v))1{Ani ∩Bni }

∣∣∣∣q
≤ Cn

q
2−1

n∑
i=2kn+2

E(|(z(1)
i (u)− z(1)

i (v))1{Ani ∩Bni }|
q),

for any q ≥ 2. Now, using the asymptotic behavior of the tail probability of a stable random variable and
Karamata’s theorem (Proposition 1.5.8 in Bingham et al. (1987)), we have for ι > 0 sufficiently small and n
sufficiently high:

E|(z(1)
i (u)− z(1)

i (v))1{Ani ∩Bni }|
2 ≤ Cn

1+ι−β
2

∨
0|θu − θv|1+ι,
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when u = (cos(θu), sin(θu)) and v = (cos(θv), sin(θv)), with θu, θv ∈ [0, 2π). Therefore, applying standard
criteria for tightness on a compact interval on the real line, see e.g., Theorem 12.3 in Billingsley (1968), we

have n
β∧1
2 −ι−1

∑n
i=2kn+2 z

(1)
i (u), with u ∈ S1 and ι > 0 arbitrary small, is tight. Combining this with the

bounds in (6.64) and (6.67), we have

1

n− 2kn − 1

n∑
i=2kn+2

z
(1)
i (u) = op

(
∆

β∧1
2 −ι

n ∨ k−
β
2p+ι

n

)
, uniformly for u ∈ S1. (6.69)

Step 2. Results for Z(2)(u). As in the previous step we have

E

(
sup
u∈U

(|z(2)
i (u)|q)1{(Ani )c}

)
≤ Ck−

β
2p+ι

n , ∀q > 0,

and

E

(
sup
u∈U
|z(2)
i (u)|q1{Ani }

)
≤ CU∆

q β∧12 −ι
n , ∀q ≥ 1.

Applying these bounds we easily get for ι > 0 arbitrary small

E

(
sup
u∈U
|Z̃(2)(u)|

)q
≤ CU (k

− β
2p+ι

n ∨∆
q β∧12 −ι
n ), q ∈ [1, 2]. (6.70)

Step 3. Results for Z(3)(u). First, we denote

Ṽ (p)ni =
1

kn

∑
j∈Iin

Enj−2{|∆n
jX

(1) −∆n
j−1X

(1)|p + |∆n
jX

(2) −∆n
j−1X

(2)|p}.

Then using Burkholder-Davis-Gundy inequality and Hölder’s inequality, we have

E|∆−p/βn (V (p)ni − Ṽ (p)ni )|q ≤ Ck−
q
2

n , 0 < q <
β

p
. (6.71)

Next, using the smoothness in expectation assumption for σ in Assumption SB(a), we have

Es
∣∣σt − σs∣∣q ≤ C|t− s| q2∧1, 0 ≤ s < t, q > 0. (6.72)

Combining the above two results as well as using (6.62) and applying first-order Taylor expansion

for z
(3)
i (u), we have

E

(
sup
u∈U
|z(3)
i (u)|

)q
≤ CU (αn ∨ k−1/2

n ∨
√
kn∆n)q, q ∈ [0, 2]. (6.73)

Next, we denote

z̃
(3,a)
i (u) = −β

p
log(Lp(u1, u2))

∆
−p/β
n V (p)ni − (2Cβ)

p
β µpKg,p|σ(i−2)∆n

|p

(2Cβ)
p
β µpKg,p|σ(i−2)∆n

|p
,
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and the analogous expression, in which σ(i−2)∆n
in the denominator is replaced with σ(i−2kn−2)∆n

,

with z
(3,a)
i (u). Then using Hölder’s inequality, the bounds in (6.71)-(6.72) as well as the fact that

p < β/2, we get

E|∆−p/βn (V (p)ni − Ṽ (p)ni )(σ(i−2)∆n
− σ(i−2kn−2)∆n

)|2 ≤ Ck−1
n (kn∆n)1− 2p

β −ι, ∀ι > 0,

and this inequality and applying again (6.62) and (6.72) leads to

E|z̃(3,a)
i (u)− z(3,a)

i (u)|2 ≤ Cu (k−1
n (kn∆n)1− 2p

β −ι ∨ kn∆n), ∀ι > 0. (6.74)

Next, using successive conditioning, the fact that Eni−2kn−2

(
V (p)ni −Ṽ (p)ni
|σ(i−2kn−2)∆n |p

)
= 0 as well as Cauchy-

Schwartz inequality and (6.71), we have

∆−2p/β
n E

(
n∑

i=2kn+2

V (p)ni − Ṽ (p)ni
|σ(i−2kn−2)∆n

|p

)2

≤ Cn. (6.75)

Using first-order Taylor expansion, and the boundedness of the first and second derivatives of the
function f in x, we have

|z̃3
i (u)− z̃(3,a)

i (u)| ≤ Cu |∆−p/βn V (p)ni − (2Cβ)p/βµpKg,p|σ(i−2)∆n
|p|

β
2p

∧
2−ι, ∀ι > 0.

Therefore, using (6.62) and (6.71) as well as p < β/3 (note the restriction in ε in the statement of

the lemma), we have

E|z̃3
i (u)− z̃(3,a)

i (u)|2 ≤ Cu (k
− β

2p

∧
2+ι

n ∨ α3
n ∨ kn∆n). (6.76)

Combining (6.74)-(6.76) as well as (6.62) and (6.72), we finally get

E(Z̃(3)(u))2 ≤ Cu (k−1
n (kn∆n)1− 2p

β −ι ∨ α2
n ∨ k

− β
2p

∧
2+ι

n ∨ kn∆n), ∀ι > 0. (6.77)

Using third-order Taylor series expansion, we can further decompose

z̃
(3)
i (u) = z̃

(3,a)
i (u) + z̃

(3,b)
i (u) + z̃

(3,c)
i (u),

where we denote

z̃
(3,b)
i (u) = Bp(u1, u2)

(∆
−p/β
n V (p)ni − (2Cβ)p/βµpKg,p|σ(i−2)∆n

|p)2

(2Cβ)2p/βµ2
pK

2
g,p|σ(i−2)∆n

|2p
,

and z̃
(3,c)
i (u) is defined as the residual z̃

(3,c)
i (u) = z̃

(3)
i (u) − z̃(3,a)

i (u) − z̃(3,b)
i (u). We then denote

z
(3,b)
i (u) from z̃

(3,b)
i (u) by replacing σ(i−2)∆n

in the denominator with σ(i−2kn−2)∆n
, and further

(2Cβ)
p
β µpKg,p|σ(i−2)∆n

|p in the numerator with ∆
−p/β
n Ṽ (p)ni . Then, applying the bounds in (6.62)

and (6.72) as well as Hölder’s inequality, we have for ι > 0 arbitrary small:

E|z̃(3,b)
i (u)− z(3,b)

i (u)| ≤ Cu

[
α2
n ∨

kn
n
∨ αn√

kn
∨
√

∆n ∨
1

kn

(
kn
n

) 1
2−

p
β−ι]

. (6.78)
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We next set

ξ
n

i =

2∑
j=1

{|∆n
i X

(j) −∆n
i−1X

(j)|p − Eni−2(|∆n
i X

(j) −∆n
i−1X

(j)|p)},

ξ̂ni = |σ(i−2)∆n
|p

2∑
j=1

{|∆n
i S̃

(j) −∆n
i−1S̃

(j)|p − Eni−2(|∆n
i S̃

(j) −∆n
i−1S̃

(j)|p)},

and ξ̃ni = ξ̂ni /|σ(i−2)∆n
|p. With this notation we can split (recall the definition of Iin after (3.4))

(V (p)ni − Ṽ (p)ni )2 =
1

k2
n

∑
k∈Iin

(ξ
n

k )2 +
1

k2
n

∑
k,l∈Iin:|k−l|≥2

ξ
n

kξ
n

l , (6.79)

and analyze separately the sums on the right hand side of the above equality. We start with the
first of the two. Applying Hölder’s inequality and the bounds in (6.57)-(6.62), we get

∆
− 2p
β

n E||ξni |2 − |ξ̂ni |2| ≤ C(∆
p
2−ι
n ∨ αn), ∀ι > 0. (6.80)

Next, using Assumption SB(a) and successive conditioning, we have

E
∣∣∣∣
∑
k∈Iin

(ξ̂nk )2

|σ(i−2kn−2)∆n
|p
−
∑
k∈Iin

(ξ̃nk )2

∣∣∣∣ ≤ Ckn
√
kn
n
. (6.81)

Finally, using Hölder’s inequality and Burkholder-Davis-Gundy inequality and since p < β/2, we
have (recall the notation of Kp before the statement of the lemma):

E
∣∣∣∣ 1

kn(n− 2kn − 1)

n∑
i=2kn+2

(
∆−2p/β
n

∑
k∈Iin

(ξ̃nk )2

)
− (Σp −Kp)

∣∣∣∣ ≤ C∆
1−( 1

2∨
2p
β )−ι

n , ∀ι > 0. (6.82)

Combining the bounds in (6.80)-(6.82) and using the fact that β′ < β/2 as well as p < β/3 (so that
p
2 < 1−

(
1
2 ∨

2p
β

)
), we have

E
∣∣∣∣ 1

k2
n(n− 2kn − 1)

n∑
i=2kn+2

∆
−2p/β
n

∑
k∈Iin

(ξ
n

k )2

|σ(i−2kn−2)∆n
|p

− (Σp −Kp)
∣∣∣∣ ≤ C

(
∆

p
2−ι
n ∨ αn
kn

∨ 1√
knn

)
. (6.83)

We continue with the second term on the right hand side of (6.79). We denote χni = ∆
− 2p
β

n

∑
k,l∈Iin:|k−l|≥2

ξ
n
k ξ
n
l

|σ(i−2kn−2)∆n |p
.

With this notation we can split

n∑
i=2kn+2

χni =

2kn∑
j=1

χnj +

n∑
i=bn−2kn−1

2kn
c2kn+1

χni , χnj =

bn−2kn−1
2kn

c∑
i=1

χn(i−1)2kn+j .
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Using law of iterated expectations we have E(χni )2 ≤ Ck2
n and further

E(χnj )2 ≤
bn−2kn−1

2kn
c∑

i=1

E(χn(i−1)2kn+j)
2 ≤ Cknn,

and therefore

E
∣∣∣∣ n∑
i=2kn+2

χni

∣∣∣∣ ≤ Ckn√knn, (6.84)

which leads to

E
∣∣∣∣ 1

k2
n(n− 2kn − 1)

n∑
i=2kn+2

∆
−2p/β
n

∑
k,l∈Iin:|k−l|<2 ξ

n

kξ
n

l

|σ(i−2kn−2)∆n
|p

∣∣∣∣ ≤ C√
knn

. (6.85)

Finally, using the boundedness of the third derivative of the function f (in x) and the fact that
p < β/3, we have by applying the bounds in (6.62), (6.71) and (6.72):

E|z̃(3,c)
i (u)| ≤ Cu

[
k
− 3

2
n ∨ kn∆n ∨ α3

n

]
. (6.86)

Step 4. Combining the bounds in (6.69), (6.70) and (6.73), we get the result in (6.51). Combin-

ing the bounds in (6.69), (6.70) and (6.77), and making use of kn/n → 0, we get the result in

(6.52). Finally, combining the bounds in (6.69), (6.70), (6.78), (6.83), (6.85) and (6.86), and since

kn/
√
n→ 0, we get the result in (6.53).

The results in (6.54)-(6.55). The result (6.54) follows from using similar steps as for the derivation

of (6.80) as well as using Burkholder-Davis-Gundy inequality and (6.72). For the result in (6.55),

we first make use of the algebraic inequality ||a| − |b|| ≤ C|a− b| for some positive constant C and

∀ a, b ∈ R. We then use successive conditioning, (6.57)-(6.61) and (6.72), as well as Burkholder-

Davis-Gundy inequality.

The result in (6.56). Due to (6.51), on a set of probability approaching one, β̂(p) = β(p) − B̂np,β.

First, we can apply first-order Taylor expansion of β(p) as a function of L̂np (u1, u1) and L̂np (u2, u2).
Then we can use the bounds in (6.69), (6.70), (6.78), (6.83), (6.85) and (6.86) to derive a result

similar to that in (6.53) for L̂np (u1, u1) and L̂np (u2, u2), and from here by using in addition (6.51)-
(6.52), to get for ∀ι > 0:

β(p)− β − Bnp,β = Op

(
α2
n ∨∆

β∧1
2 −ι

n ∨ αn√
kn
∨ ∆

p
2−ι
n

kn
∨ k−

3
2

n ∨ 1

kn

(
kn
n

) 1
2−

p
β−ι
)
.
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Using the bounds in (6.51)-(6.52) and (6.54)-(6.55), we also have for ∀ι > 0:

B̂np,β − Bnp,β = Op

(
∆

p
2−ι
n

kn
∨ 1√

knn
∨ 1

k
1+1∧ β

4p−ι
n

∨ 1

kn
√
kn

(
kn
n

) 1
2−

p
β−ι
)
.

Combining the above two results we get (6.56). �

In the following lemma, we set Σp, µp and Kg,p to 1 if p ≥ β.

Lemma 3 Assume A and SB hold for X with β′ < β/2. Then, if β > q, pn → ∞ and pn ≤ 2kn,

we have

β̂1 − β = Op(∆
ε
n), (6.87)

for some ε > 0. In addition for kn � n$ with $ ∈
[

3
8 ,

1
2

)
, and with p = β/4 in αn, we have for

∀ι > 0:

sup
u∈S1
|L̂np̂ (u1, u2)− Lp̂(u1, u2)| = Op

(
αn ∨

1√
kn

)
, (6.88)

∫ π

0

∣∣∣∣∣ L̂np̂ (cosx, sinx)− Lp̂(cosx, sinx)

Lp̂(cosx, sinx)
− Bnp̂ (cosx, sinx)

∣∣∣∣∣
2

dx

= Op

[
kn
n
∨ α2

n ∨
∆−ιn√
knn

]
,

(6.89)

∫ π

0

∣∣∣∣ log(Lp̂(cosx, sinx))

log(Lp̂(1, 1))

( L̂np̂ (1, 1)

Lp̂(1, 1)
− 1− Bnp̂ (1, 1)

)
−

( L̂np̂ (cosx, sinx)

Lp̂(cosx, sinx)
− 1− Bnp̂ (cosx, sinx)

)∣∣∣∣dx = Op

[
∆

β∧1
2 −ι

n ∨ ∆
1
4

(
β
β′−1

)
−ι

n √
kn

]
,

(6.90)

∆
1− 2p̂

β
n Σ̂np̂ − Σp̂

∫ 1

0

|σs|2p̂ds = Op

(
∆

β
8−ι
n

)
, (6.91)

∆
1− 2p̂

β
n K̂np̂ − (2Cβ)

2p̂
β µ2

p̂K
2
g,p̂

∫ 1

0

|σs|2p̂ds = Op

(
∆

β
8−ι
n

)
, (6.92)

β̂(p̂)− β = Op

[
∆

β∧1
2 −ι

n ∨ ∆
1
4

(
β
β′−1

)
−ι

n √
kn

]
. (6.93)

Proof of Lemma 3. We start with (6.87). We have for all ι > 0:

∆
−q/β
n Ṽ n

1 (q)− (2Cβ)
q
β µqKg,q|σ0|q

∆
−q/β
n Ṽ n

2 (q)− (4Cβ)
q
β µqKg,q|σ0|q

}
= Op

∆
q
2
n

∨√
pn
n

∨(
1

pn

)1−
(

1
2
∨ q
β

)
−ι
 .

This result follows by combining the bounds in (6.57)-(6.61), using the “smoothness in expectation”

assumption for L (and its boundedness from below) as well as a Burkholder-Davis-Gundy inequality.

From here the result in (6.87) follows by making a Taylor series expansion of β̂1 as a function of

Ṽ n
1 (q) and Ṽ n

2 (q).
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We continue with (6.88)-(6.93). We introduce the set

Ωn =
{
ω : |β̂n1 − β| > ∆ε/2

n

}
. (6.94)

Given (6.87), we have P(Ωn) → 1. Therefore, it is no restriction to restrict attention to the set

Ωn, and we note that for n sufficiently high on this set we have
∣∣∣p̂− β

4

∣∣∣ < ( 1
β −

β
4

)
∧ β

12 . Then,

we can apply the bounds for the terms Z̃(1)(u), Z̃(2)(u) and Z̃(3)(u) in the proof of Lemma 3.

The only exception is for the terms {z̃(j)
i (u)}i=2kn+2,...,4kn , and j = 1, 2, 3. The reason is that

for them there is an overlap between the increments of V̂ (p̂)ni and those used in the calculation

of β̂n1 . However, given the boundedness of the cosine and exponential functions, we easily have

1
n−2kn−1

∑3
j=1

∑4kn
i=2kn+2 supu∈R2 |z(j)

i (u)| = Op
(
kn
n

)
. This implies immediately the results in (6.88)-

(6.90) and (6.93). For the results in (6.91)-(6.92), we can use the following inequality on the set

Ωn ∣∣∣∆−1/β
n (∆n

i X
(j) −∆n

i−1X
(j))
∣∣∣p̂ ≤ ∣∣∣∆−1/β

n (∆n
i X

(j) −∆n
i−1X

(j))
∣∣∣pn

+
∣∣∣∆−1/β

n (∆n
i X

(j) −∆n
i−1X

(j))
∣∣∣pn , j = 1, 2,

where pn = β
4 −

∆
ε/2
n
4 and pn = β

4 + ∆
ε/2
n
4 . We can apply this inequality for the first 2kn terms in Σ̂n

p

and K̂np to bound their effect on the results in (6.54)-(6.55) to Op(kn/n) while for the rest of the

summands the bounds in Lemma 2 apply directly. �

6.3 Proof of Theorem 1 continued

Now we are ready to complete the proof of Theorem 1. We will analyze separately the terms∑mn
m=1

(
1

ĥ∗
p̂
(m)
− 1

h∗(m)

)2

,
∑mn

m=1G
∗(m)2h∗(m)2

(
1

ĥ∗
p̂
(m)
− 1

h∗(m)

)2

and
∫ π

0 |â
n(x) − a(x)|dx. We

start with the first two. Since β̂(p̂) is a consistent estimate of β, we need only to look on a

set on which |β̂(p̂)− β| < ι for some arbitrary small 0 < ι < (q ∧ (2− β)). Using Taylor expansion
we have for some positive integer l:

ĥ∗p̂(m)− h∗(m) =

l∑
k=1

(β̂(p̂)− β)k

πk!

∫ π

0

| cosx|β logk | cosx|e−2imxdx

+
(β̂(p̂)− β)l+1

π(l + 1)!

∫ π

0

| cosx|β̃(x) logl+1 | cosx|e−2imxdx,

where β̃(x) is an intermediate value between β̂(p̂) and β that depends on x. From here, using the
bounds of Lemma 1, we have for some arbitrary small ι ∈ (0, q ∧ (2 − β)) on the set on which

|β̂(p̂)− β| < ι (whose probability approaches one):
mn∑
m=1

(
1

ĥ∗p̂(m)
− 1

h∗(m)

)2

≤ C
l∑

k=1

|β̂(p̂)− β|2km3+2β+2ι
n log2k(mn) + C|β̂(p̂)− β|2l+2m3+4β+2ι

n ,
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for some constant C > 0 that does not depend on mn (but depends on l). Now, mn � n% for a

finite positive %, and from Lemma 2 and the conditions of the theorem, β̂(p̂) − β = Op(∆
α
n) for

some α > 0. Therefore, if we pick l sufficiently high (so that αl > β%), the last term is dominated
asymptotically by the first term on the right-hand-side of the above inequality (and its leading term
is its first summand). As a result,

mn∑
m=1

(
1

ĥ∗p̂(m)
− 1

h∗(m)

)2

� (β̂(p̂)− β)2m3+2β+ι
n , ∀ι > 0. (6.95)

Similarly, and making use also of Assumption A, we have

mn∑
m=1

G∗(m)2h∗(m)2

(
1

ĥ∗p̂(m)
− 1

h∗(m)

)2

� (β̂(p̂)− β)2(m1−2α+ι
n ∨ 1), ∀ι > 0. (6.96)

We continue with
∫ π

0 |â
n(x)− a(x)|dx. We have the decomposition

ân(x)− a(x) =

5∑
j=1

anj (x),

where anj (x) = ãnj (x)/
(

log(Lnp̂ (1, 1))− B̂np̂ (1, 1)
)

and

ãn1 (x) =

(
Lp̂(cosx, sinx)

L̃np̂ (cosx, sinx)
− 1

)(Lnp̂ (cosx, sinx)

Lp̂(cosx, sinx)
− 1

)
,

ãn2 (x) = −
(
B̂np̂ (cosx, sinx)− Bnp̂ (cosx, sinx)

)
,

ãn3 (x) = −
log(Lp̂(cosx, sinx))

log(Lp̂(1, 1))

(
Lp̂(1, 1)

L̃np̂ (1, 1)
− 1

)(Lnp̂ (1, 1)

Lp̂(1, 1)
− 1

)
,

ãn4 (x) =
log(Lp̂(cosx, sinx))

log(Lp̂(1, 1))

(
B̂np̂ (1, 1)− Bnp̂ (1, 1)

)
,

ãn5 (x) =

[
Lnp̂ (cosx, sinx)− Lp̂(cosx, sinx)

Lp̂(cosx, sinx)
− Bnp̂ (cosx, sinx)

]

−
log(Lp̂(cosx, sinx))

log(Lp̂(1, 1))

[
Lnp̂ (1, 1)− Lp̂(1, 1)

Lp̂(1, 1)
− Bnp̂ (1, 1)

]
,

with L̃np̂ (cosx, sinx) being an intermediate value between Lnp̂ (cosx, sinx) and Lp̂(cosx, sinx), and

similarly L̃np̂ (1, 1) being an intermediate value between Lnp̂ (1, 1) and Lp̂(1, 1). We now bound∫ π
0 ãnj (x)dx, for j = 1, ..., 5, using Lemma 3.

We have ∫ π

0

|ãn1 (x)|dx

≤ C

infx∈[0,π] |L̃np̂ (cosx, sinx)|

∫ π

0

(Lnp̂ (cosx, sinx)− Lp̂(cosx, sinx))2dx.
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Therefore, applying (6.88) (as well as the fact that infu∈S1 Lp̂(u1, u2)) > 0) and (6.89) (note that

supx∈[0,π] |Bnp̂ (cosx, sinx)| = Op(k
−2
n ) and an analogue of (6.89) holds for L̂np̂ (1, 1) as well), we have∫ π

0

|ãn1 (x)|dx+

∫ π

0

|ãn3 (x)|dx = Op

(
kn
n
∨ α2

n ∨
∆−ιn√
knn

)
. (6.97)

To bound
∫ π

0 ãn2 (x)dx, we fist use Taylor series expansion to bound

|B̂np̂ (cosx, sinx)− Bnp̂ (cosx, sinx)| ≤ Ĉn(x)

kn

{∣∣∣∣∆1− 2p
β

n Σ̂np̂ − Σp̂

∫ 1

0

|σs|2pds
∣∣∣∣

+

∣∣∣∣∆1− 2p
β

n K̂np̂ − (2Cβ)
p̂
β µ2

p̂K
2
g,p̂

∫ 1

0

|σs|2pds
∣∣∣∣

+ |β̂(p̂)− β|+ |L̂p̂(cosx, sinx)− Lp̂(cosx, sinx)|
}
,

where Ĉn(x) is some nonnegative random function of x for which, using the bounds in (6.88) and

(6.91)-(6.93) as well as infu∈S1 Lp̂(u1, u2)) > 0, we have supx∈[0,π] Ĉ
n(x) = Op(1). Using the above

bound (and an analogous one for |B̂np̂ (1, 1)−Bnp̂ (1, 1)|) as well as (6.88) and (6.91)-(6.93), we have

∫ π

0

|ãn2 (x)|dx+

∫ π

0

|ãn4 (x)|dx = Op

(
∆

β
8−ι
n

kn
∨ 1

kn
√
kn

)
. (6.98)

We are left with
∫ π

0 ãn5 (x)dx. Application of (6.90) yields

∫ π

0

|ãn5 (x)|dx = Op

(
∆

β∧1
2 −ι

n ∨ ∆
1
4

(
β
β′−1

)
−ι

n √
kn

)
, ∀ι > 0. (6.99)

The above bounds continue to hold for the corresponding
∫ π

0 |a
n
j (x)|dx terms as due to the bounds

in Lemma 3, we have log(Lnp̂ (1, 1)) − B̂np̂ (1, 1) = Op(1). From here, using the restriction on $, we

have ∫ π

0

5∑
j=1

|anj (x)|dx = Op

(
∆

β∧1
2 −ι

n ∨ ∆
1
4

(
β
β′−1

)
−ι

n √
kn

)
∀ι > 0. (6.100)

To bound the order of magnitude of An1 (m), An2 (m) and An3 (m), we then use the order of magnitude

of β̂(p̂)− β in (6.93), as well as (6.95) and (6.96), and we get altogether

∑
|m|≤mn

An1 (m) = Op

m3+2β
n

∆β∧1−ι
n ∨ ∆

1
2

(
β
β′−1

)
−ι

n

kn


 , ∀ι > 0,

∑
|m|≤mn

An2 (m) = Op

m3+2β+ι
n

∆2(β∧1)−ι
n ∨ ∆

(
β
β′−1

)
−ι

n

k2
n


 , ∀ι > 0,

∑
|m|≤mn

An3 (m) = Op

(m1−2α+ι
n ∨ 1)

∆β∧1−ι
n ∨ ∆

1
2

(
β
β′−1

)
−ι

n

kn


 , ∀ι > 0.

From here, using the bound on the integrated squared bias, the result of the theorem follows.
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Klüppelberg, C., A. Lindner, and R. Maller (2004). A Continuous Time GARCH Process Driven by a Lévy
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