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We derive a nonparametric estimator of the jump-activity index
β of a “locally-stable” pure-jump Itô semimartingale from discrete
observations of the process on a fixed time interval with mesh of the
observation grid shrinking to zero. The estimator is based on the em-
pirical characteristic function of the increments of the process scaled
by local power variations formed from blocks of increments span-
ning shrinking time intervals preceding the increments to be scaled.
The scaling serves two purposes: (1) it controls for the time varia-
tion in the jump compensator around zero and (2) it ensures self-
normalization, i.e., that the limit of the characteristic function based
estimator converges to a non-degenerate limit which depends only on
β. The proposed estimator leads to nontrivial efficiency gains over
existing estimators based on power variations. In the Lévy case, the
asymptotic variance decreases multiple times for higher values of β.
The limiting asymptotic variance of the proposed estimator, unlike
that of the existing power variation based estimators, is constant.
This leads to further efficiency gains in the case when the charac-
teristics of the semimartingale are stochastic. Finally, in the limiting
case of β = 2, which corresponds to jump-diffusion, our estimator of
β can achieve a faster rate than existing estimators.

1. Introduction. In this paper we are interested in estimating the
jump activity index of a process defined on a filtered probability space
(Ω,F , (Ft)t≥0,P) and given by

(1.1) dXt = αtdt+ σt−dLt + dYt,

when L is locally stable pure-jump Lévy process (i.e., a pure-jump Lévy pro-
cess whose Lévy measure around zero behaves like that of a stable process)
and Y is a pure-jump process which is “dominated” at high-frequencies by
L in a sense which is made precise below (see Assumption A). All formal
conditions for X are given in Section 2. The jump activity index of X on a
given fixed time interval is the infimum of the set of powers p for which the
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sum of p-th absolute moments of the jumps is finite. Provided σ does not
vanish on the interval and has càdlàg paths, the jump activity index of X
coincides with the Blumenthal-Getoor index of the driving Lévy process L
(recall Y is dominated by L at high frequencies). The dominant role of L
at high frequencies, together with its stable-like Lévy measure around zero,
manifests into the following limiting behavior at high frequencies

(1.2) h−1/β(Xt+sh −Xt)
L−→ σt × (St+s − St), as h→ 0 and s ∈ [0, 1],

for every t and where S is β-stable process, with the convergence being for
the Skorokhod topology. (1.2) holds when β > 1 which is the case we consider
in this paper (when β < 1 the drift will be the “dominant” component at
high-frequencies and some of our results can be extended to this case as
well). We study estimation of β from discrete equidistant observations of X
on a fixed time interval with mesh of the observation grid shrinking to zero.

Estimation of the jump activity index has received a lot of attention re-
cently. [20] consider estimation from low frequency observations in the set-
ting of Lévy processes. [4] and [6] consider estimation from low-frequency
data in the setting of time-changed Lévy processes with an independent
time-change process. [2] consider estimation from low-frequency and op-
tions data. [3] and [5] consider estimation from low frequency data in certain
stochastic volatility models. [27–29] propose estimation from high-frequency
data using power variations in a pure-jump setting. [1] and [16] consider es-
timation in high-frequency setting when the underlying process can contain
a continuous martingale via truncated power variations. [23] propose esti-
mation of the jump activity index in pure-jump setting via power variations
with adaptively chosen optimal power. [22] extend [23] via power variations
of differenced increments which provide further robustness and efficiency
gains. [15] consider jump activity estimation from noisy high-frequency data.

The estimation of β from high frequency data, thus far, makes use of the
dependence of the scaling factor of the high-frequency increments in (1.2)
on β. For example, consider the power variation

(1.3) V (p,∆n) =

n∑
i=1

|∆n
i X|p, ∆n

i X = X i
n
−X i−1

n
, ∆n =

1

n
, p > 0.

Under certain technical conditions, (1.2) implies

∆1−p/β
n V (p,∆n)

P−→ µ

∫ 1

0

|σs|pds, (2∆n)1−p/βV (p, 2∆n)
P−→ µ

∫ 1

0

|σs|pds,

where µ is some constant. An estimate of β then can be simply formed as a
nonlinear function of the ratio V (p,∆n)

V (p,2∆n) . This makes inference for β possible
despite the unknown process σ.
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The limit result in (1.2), however, contains much more information about
β than previously used in estimation. In particular, (1.2) implies that over a
short interval of time the increments of X, conditional on σ at the beginning
of the interval, are approximately i.i.d. stable random variables. In this paper
we propose a new estimator of β that utilizes this additional information in
(1.2) and leads to significant efficiency gains over existent estimators based
on high-frequency data.

The key obstacle in utilizing the result in (1.2) in inference for β is the fact
that the process σ is unknown and time-varying. The idea of our method
is to form a local estimator of σ using a block of high-frequency increments
with asymptotically shrinking time span via a localized version of (1.3). We
then divide the high-frequency increments of X by the local estimator of σ.
The division achieves “self-normalization” in the following sense. First, the
scale factor for the local estimator of σ and the high-frequency increment
of X are the same and hence by taking the ratio they cancel. Second, both
the high-frequency increment of X and the local estimator of σ are approxi-
mately proportional to the value of σ at the beginning of the high-frequency
interval and hence taking their ratio cancels the effect of the unknown σ.
The resulting scaled high-frequency increments are approximately i.i.d. sta-
ble random variables and we make inference for β via an analogue of the
empirical characteristic function approach which has been used in various
other contexts, see e.g., [8].

After removing an asymptotic bias, the limit behavior of the empirical
characteristic function of the scaled high-frequency increments is determined
by two correlated normal random variables. One of them is due to the lim-
iting behavior of the empirical characteristic function of the high-frequency
increments scaled by the limit of the local power variation. The other is due
to the error in estimating the local scale by the local realized power vari-
ation. Importantly, because of the “self-normalization”, the F-conditional
asymptotic variance of the empirical characteristic function of the scaled
high-frequency increments is not random but rather a constant that depends
only on β and the power p. This makes feasible inference very easy.

When comparing the new estimator with existing ones based on the power
variation, we find nontrivial efficiency gains. There are two reasons for the
efficiency gains. First, as we noted above, our estimator makes full use of
the limiting result in (1.2) and not just the dependence of the scale of the
high-frequency increments on β, which is the case for existing ones. Second,
by locally removing the effect of the time-varying σ, we make the inference
as if σ is constant, i.e., the limit variance is the same regardless whether
X is Lévy or not. By contrast, the estimator based on the ratios of power
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variations is asymptotically mixed normal with F-conditional variance of

the form K(p, β)
∫ 1
0 |σs|

2pds

(
∫ 1
0 |σs|pds)

2 , for some constant K(p, β) and we note that∫ 1
0 |σs|

2pds

(
∫ 1
0 |σs|pds)

2 ≥ 1 with equality whenever the process |σ| is almost everywhere

constant on the interval [0, 1]. That is, the presence of time-varying σ de-
creases the precision of the power-variation based estimator of β.

The efficiency gains of our estimator are bigger for higher values of β. In
the limit case of β = 2, which corresponds to L being a Brownian motion,
we show that our estimator can achieve a faster rate of convergence than
the standard

√
n rate for existing estimators.

The rest of the paper is organized as follows. In Section 2 we introduce
the setting. In Section 3 we construct our statistic and in Section 4 we derive
its limit behavior. In Section 5 we build on the developed limit theory and
construct new estimators of the jump activity and derive their limit behavior.
This section also shows the efficiency gains of the proposed jump activity
estimators over existing ones. Section 6 deals with the limiting case of jump-
diffusion. Sections 7 and 8 contain a Monte Carlo study and an empirical
application, respectively. Proofs are in Section 9.

2. Setting and Assumptions. We start with introducing the setting
and stating the assumptions that we need for the results in the paper. We
first recall that a Lévy process L with characteristic triplet (b, c, ν), with
respect to truncation function κ (Definition II.2.3 in [14]), is a process with
characteristic function given by

(2.1) E
(
eiuLt

)
= exp

[
itub− tcu2/2 + t

∫
R

(
eiux − 1− iuκ(x)

)
ν(dx)

]
, t ≥ 0.

In what follows we will always assume for simplicity that κ(−x) = −κ(x).
Our assumption for the driving Lévy process in (1.1) as well as the “residual”
jump component Y is given in assumption A.

Assumption A. L in (1.1) is a Lévy process with characteristic triplet
(0, 0, ν) for ν a Lévy measure with density given by

(2.2) ν(x) =
A

|x|1+β
+ ν ′(x), β ∈ (0, 2),

where A > 0 and ν ′(x) is such that there exists x0 > 0 with |ν ′(x)| ≤
C/|x|1+β′ for |x| ≤ x0 and some β′ < β.
Y is an Itô semimartingale with characteristic triplet ([14], Definition II.2.6)(∫ t

0

∫
R κ(x)νYs (dx)ds, 0, dt⊗ νYt (dx)

)
when β′ < 1 and

(
0, 0, dt⊗ νYt (dx)

)
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otherwise, with
∫
R(|x|β′+ι ∧ 1)νYt (dx) being locally bounded predictable, for

some arbitrary small ι > 0.

Assumption A formalizes the sense in which Y is dominated at high fre-
quencies by L: the activity index of Y is below that of L. We also stress that
Y and L can have dependence. Therefore, as shown in [24], we can accom-
modate in our setup time-changed Lévy models, with absolute continuous
time-change process, that have been extensively used in applied work. Fi-
nally, we note that (2.2) restricts only the behavior of ν around zero and ν ′ is
a signed measure. Therefore many parametric jump specifications outside of
the stable process are satisfied by Assumption A (e.g., the tempered stable
process). We next state our assumption for the dynamics of α and σ.

Assumption B. The processes α and σ are Itô semimartingales of the form

αt = α0 +

∫ t

0
bαs ds+

∫ t

0

∫
E
κ(δα(s, x))µ̃(ds, dx) +

∫
E
κ′(δα(s, x))µ(ds, dx),

σt = σ0 +

∫ t

0
bσs ds+

∫ t

0

∫
E
κ(δσ(s, x))µ̃(ds, dx) +

∫
E
κ′(δσ(s, x))µ(ds, dx),

(2.3)

where κ′(x) = x− κ(x), and

(a) |σt|−1 and |σt−|−1 are strictly positive;
(b) µ is Poisson measure on R+ × E, having arbitrary dependence with

the jump measure of L, with compensator dt⊗λ(dx) for some σ-finite
measures λ on E;

(c) δα(t, x) and δσ(t, x) are predictable, left-continuous with right limits
in t with |δα(t, x)| + |δσ(t, x)| ≤ γk(x) for all t ≤ Tk, where γk(x) is
a deterministic function on R with

∫
R(|γk(x)|r+ι ∧ 1)λ(dx) < ∞ for

arbitrary small ι > 0 and some 0 ≤ r ≤ β, and Tk is a sequence of
stopping times increasing to +∞;

(d) bα and bσ are Itô semimartingales having dynamics as in (2.3) with
coefficients satisfying the analogues of conditions (b) and (c) above.

We note that µ does not need to coincide with the jump measure of L and
hence it allows for dependence between the processes α, σ and L. This is
of particular relevance for financial applications. For example, Assumption
B is satisfied by the COGARCH model of [17] in which the jumps in σ are
proportional to the squared jumps in X. More generally, Assumption B is
satisfied if for example (X,α, σ) is modeled via a Lévy-driven SDE, with
each of the elements of the driving Lévy process satisfying Assumption A.
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3. Construction of the Self-Normalized Statistics. We continue
next with the construction of our statistics. The estimation in the paper
is based on observations of X at the equidistant grid times 0, 1

n , ..., 1 with
n → ∞, and we denote ∆n = 1

n . To minimize the effect of the drift in
our statistics, we follow [22] and work with the first difference of the in-
crements, ∆n

i X − ∆n
i−1X, where ∆n

i X = X i
n
− X i−1

n
for i = 1, ..., n. The

above difference of increments is purged from the drift in the Lévy case,
and in the general case the drift has a smaller asymptotic effect on it. For
each ∆n

i X −∆n
i−1X, we need a local power variation estimate for the scale.

It is constructed from a block of kn high-frequency increments, for some
1 < kn < n− 2, as follows

(3.1) V n
i (p) =

1

kn

i−2∑
j=i−kn−1

|∆n
jX −∆n

j−1X|p, i = kn + 3, ...., n.

Block-based local estimators of volatility have been also used in other con-
texts in a high-frequency setting, e.g., [13] and [25]. The empirical charac-
teristic function of the scaled differenced increments is given by

(3.2) L̂n(p, u) =
1

n− kn − 2

n∑
i=kn+3

cos

(
u

∆n
i X −∆n

i−1X

(V n
i (p))1/p

)
, u ∈ R+.

We proceed with some notation needed for the limiting theory of L̂n(p, u).
Let S1, S2 and S3 be random variables corresponding to the values of three
independent Lévy processes at time 1, each of which with characteristic
triplet (0, 0, ν), for any truncation function κ and where ν has the density
A

|x|1+β . Then we denote µp,β = (E|S1−S2|p)β/p, which does not depend on κ,

and we further use the shorthand notation E
(
eiu(S1−S2)

)
= e−Aβu

β
for any

u > 0 with Aβ being a (known) function of A and β. Using example 25.10
in [21] and references therein, we have

(3.3) Cp,β =
Aβ
µp,β

=

2pΓ
(

1+p
2

)
Γ
(

1− p
β

)
√
πΓ
(
1− p

2

)
−β/p ,

which depends only on p and β but not on the scale parameter of the stable
random variables S1 and S2. With this notation, we set

(3.4) L(p, u, β) = e−Cp,βu
β
, u ∈ R+,
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which will be the limit in probability of L̂n(p, u). We finish with some more

notation needed to describe the asymptotic variance of L̂n(p, u). First, we
denote for some u ∈ R+

ξ1(p, u, β) =

(
cos

(
u(S1−S2)

µ
1/β
p,β

)
− L(p, u, β), |S1−S2|p

µ
p/β
p,β

− 1

)′
,

ξ2(p, u, β) =

(
cos

(
u(S2−S3)

µ
1/β
p,β

)
− L(p, u, β), |S2−S3|p

µ
p/β
p,β

− 1

)′
.

(3.5)

We then set for u, v ∈ R+

(3.6) Ξi(p, u, v, β) = E
(
ξ1(p, u, β)ξ′1+i(p, v, β)

)
, i = 0, 1,

and
(3.7)

G(p, u, β) =
β

p
e−Cp,βu

β

Cp,βu
β , H(p, u, β) = G(p, u, β)

(
β

p
Cp,βu

β − β

p
− 1

)
.

4. Limit Theory for L̂n(p, u). We start with convergence in proba-
bility.

Theorem 1. Assume X satisfies Assumptions A and B for some β ∈
(1, 2) and β′ < β. Let kn be a deterministic sequence satisfying kn � n$ for
some $ ∈ (0, 1). Then, for 0 < p < β, we have

(4.1) L̂n(p, u)
P−→ L(p, u, β), as n→∞,

locally uniformly in u ∈ R+.

We note that we restrict β > 1, i.e., we focus on the infinite variation case.
The above theorem will continue to hold for β ≤ 1, but for the subsequent
results about the limiting distribution of L̂n(p, u), we will need quite strin-
gent additional restrictions in the case β ≤ 1. We do not pursue this here.
The other conditions for the convergence in probability result are weak. The
requirements for α and σ for Theorem 1 to hold are actually much weaker
than what is assumed in Assumption B, but for simplicity of exposition we
keep Assumption B throughout. We note that for consistency, we have a lot
of flexibility about the block size kn: (1) kn → ∞ so that we consistently
estimate the scale via V n

i (p) and (2) kn/n→ 0 so that the span of the block
is asymptotically shrinking to zero and therefore no bias is generated due to
the time variation of σ. In the case when X is a Lévy process, the second
condition is obviously not needed.
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To derive a central limit theorem (clt) for L̂n(p, u), we will need to restrict
the choice of kn more. We will assume kn/

√
n→ 0, so that biases due to the

time variation in σ, which are hard to feasible estimate, are negligible. For
such a choice of kn, however, an asymptotic bias due to the sampling error
of V n

i (p) appears and for stating a clt, we need to consider the following
bias-corrected estimator

L̂n(p, u, β)′ = L̂n(p, u)

− 1

kn

1

2
H(p, u, β)

(
Ξ

(2,2)
0 (p, u, u, β) + 2Ξ

(2,2)
1 (p, u, u, β)

)
.

(4.2)

We state the clt for L̂n(p, u, β)′ in the next theorem.

Theorem 2. Assume X satisfies Assumptions A and B with β ∈ (1, 2)
and β′ < β

2 , and that the power p and block size kn satisfy

(4.3)
ββ′

2(β − β′)
∨ β − 1

2
< p <

β

2
,

(4.4) kn � n$,
p

β

∨ 1

3
< $ <

1

2
.

Then, as n→∞, we have

(4.5)
√
n
(
L̂n(p, u, β)′ − L(p, u, β)

)
L−→ Z1(u) +G(p, u, β)Z2(u),

locally uniformly in u ∈ R+. Z1(u) and Z2(u) are two Gaussian processes
with the following covariance structure

(4.6) E (Z(u)Z(v)) = Ξ0(p, u, v, β) + 2Ξ1(p, u, v, β), u, v ∈ R+.

where Z(u) = (Z1(u), Z2(u))′.
Let β̂ be an estimator of β with β̂ − β = op(kn

√
∆n) as n→∞. Then

(4.7)
√
n
(
L̂n(p, u, β̂)′ − L̂n(p, u, β)′

)
P−→ 0,

locally uniformly in u ∈ R+.

The conditions for the power p in (4.3) are exactly the same as in [22] for
the analysis of the realized power variation and they are relatively weak. For
example, the condition p > β−1

2 will be always satisfied as soon as we pick
power slightly above 1

2 . Moreover, this condition is not needed in the case
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when X is a Lévy process. Further, the condition in (4.4) for kn shows that
we have more flexibility for the choice of kn whenever p is not very close to
its upper bound of β/2.

Due to the self-normalization in the construction of our statistic, the lim-
iting distribution in (4.5) is Gaussian and not mixed Gaussian, which is the
case for most limit results in high-frequency asymptotics (and in particular
for the power variation based estimator of β), see [26] for another excep-
tion. This is very convenient as the estimation of the asymptotic variance
is straightforward. The bias correction in (4.2) is infeasible, as it depends
on β. However, (4.7) shows that a feasible version of the debiasing would
work provided the initial estimator of β is op(kn

√
∆n). When one estimates

β using L̂n(p, u), with explicit estimators provided in the next section, β̂−β
will be Op(1/kn). Hence, such a preliminary estimate of β will satisfy the
required rate condition in Theorem 2.

5. Jump Activity Estimation. We now use the limit theory devel-
oped above to form estimators of β. The simplest one is based on L̂n(p, u)
and is given by

(5.1) β̂fs(p, u, v) =
log
(
− log(L̂n(p, u))

)
− log

(
− log(L̂n(p, v))

)
log(u/v)

,

for u, v ∈ R+ with u 6= v. Because of the asymptotic bias in L̂n(p, u),

β̂fs(p, u, v) − β will be only Op(1/kn), with p and kn satisfying (4.3)-(4.4).
An explicit estimate of β using feasible debiasing is given by

(5.2) β̂(p, u, v) =
log
(
− log(L̂n(p, u, β̂fs)′)

)
− log

(
− log(L̂n(p, v, β̂fs)′)

)
log(u/v)

,

for some u, v ∈ R+ with u 6= v, and where β̂fs is a suitable initial estimator
of β (like the one in (5.1)). While convenient, the above estimators have
two potential drawbacks. One, we do not take into account the information
about β in the constant Cp,β. This is because in the asymptotic limit of the
above estimators, Cp,β gets canceled. Second, u and v are chosen arbitrary
and one can include more moment conditions for the estimation of β using
L̂n(p, u, β̂fs)′. In the next theorem we provide a general estimator of β which
overcomes these drawbacks of the explicit estimators above.

Theorem 3. Assume X satisfies Assumptions A and B with β ∈ (1, 2)
and β′ < β/2, and that the conditions in (4.3) and (4.4) hold. Suppose β̂fs

is a consistent estimator of β with β̂fs − β = op(kn
√

∆n). Denote with ûl
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and ûh two sequences of K × 1-dimensional vectors, for some finite K ≥ 1,

satisfying ûl
P−→ ul and ûh

P−→ uh as n → ∞, for some ul,uh ∈ RK+
with uil < uih, ujl < ujh and (uil, u

i
h) ∩ (ujl , u

j
h) = ∅ for every i, j = 1, ...,K

with i 6= j where uil and uih denote the i-th element of the vectors ul and uh
respectively. Set further the shorthand u = [ul; uh] and û = [ûl; ûh].

Let W(p,u, β) be K ×K matrix with (i, j) element given by

(5.3) W(p,u, β)i,j =

∫ uih

uil

∫ ujh

ujl

w(p, u, v, β)dudv,

w(p, u, v, β) =
1

L(p, u, β)L(p, v, β)

(
1

G(p, u, β)

)′
Ξ(p, u, v, β)

(
1

G(p, v, β)

)
,

where Ξ(p, u, v, β) = Ξ0(p, u, v, β) + 2Ξ1(p, u, v, β).
Define the K × 1 vector m̂(p, û, β̂fs,u, β) by

(5.4) m̂(p, û, β̂fs,u, β)i =

∫ ûih

ûil

(
log(L̂n(p, u, β̂fs)′)− log(L(p, u, β))

)
du,

for i = 1, ...,K and set

(5.5) β̂(p,u) = argmin
β∈(1,2)

m̂(p, û, β̂fs,u, β)′W−1(p, û, β̂fs)m̂(p, û, β̂fs,u, β).

Finally define the K × 1 vector M(p,u, β) by

(5.6) M(p,u, β)i =

∫ uih

uil

∇β log(L(p, u, β))du, i = 1, ...,K.

Then for β ∈ (1, 2), p ∈
(

ββ′

2(β−β′) ,
β
2

)
, and β′ < β/2, we have

√
n
(
β̂(p,u)− β

)
L−→

√
M(p,u, β)′W−1(p,u, β)M(p,u, β)×N ,(5.7)

for n→∞ with N being standard normal random variable.
A consistent estimator for the asymptotic variance of β̂(p,u) is given by

(5.8) M(p, û, β̂)′W−1(p, û, β̂)M(p, û, β̂),

where M(p, û, β̂) is defined as M(p,u, β) with u and β replaced by û and β̂.

Theorem 3 allows to adaptively choose the range of u over which to match
L̂n(p, u, β̂fs)′ with its limit. This is convenient because the limiting variance
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of L̂n(p, u, β̂fs)′ depends on β. For this reason also the weight function in
(5.3) optimally weighs the moment conditions in the estimation. We dis-
cuss the practical issues regarding the construction of m̂(p, û, β̂fs,u, β) in
Section 7.

We now illustrate the efficiency gains provided by the new method over
existing power variation based estimators of β. The power variation estima-
tor based on the differenced increments is given by (see [22])

(5.9) β̃(p) =
p log(2)

log
[
Ṽ n

2 (p)/Ṽ n
1 (p)

]1{Ṽ n1 (p) 6=Ṽ n2 (p)},

where

Ṽ n1 (p) =

n∑
i=2

|∆n
i X −∆n

i−1X|p, Ṽ n2 (p) =

n∑
i=4

|∆n
i X −∆n

i−1X + ∆n
i−2X −∆n

i−3X|p.

On Figure 1, we plot the limiting standard deviation of the estimators in
(5.5) and (5.9) for different values of β (the estimator in (5.9) is derived under
exactly the same assumptions for X as our estimator here). The asymptotic
standard deviation of β̃(p) is computed from [22]. β̂(p, u) is far less sensitive
to the choice of p than β̃(p) is, with lower powers yielding marginally more
efficient β̂(p, u). The news estimator β̂(p, u) provides nontrivial efficiency
gains irrespective of the value of p and β. The gains are bigger for high
values of the jump activity. For example, for β = 1.75, β̂(p, u) is around two
times more efficient (in terms of asymptotic standard deviation) than β̃(p).

6. The Limiting Case of Jump-Diffusion. So far our analysis has
been for the pure-jump case of β ∈ (1, 2). We now look at the limiting case
of β = 2, which corresponds to L in (1.1) being a Brownian motion. In
this case the asymptotic behavior of the high-frequency increments in (1.2)
holds with S being a Brownian motion. Thus, deciding β = 2 versus β < 2
amounts to testing pure-jump versus jump-diffusion specification for X. It
turns out that when β = 2 our estimation method can lead to faster rate of
convergence than the

√
n rate we have seen for the case β ∈ (1, 2). This is

unlike the power-variation based estimation methods for which the rate of
convergence is

√
n, both for β = 2 and β < 2, see e.g., [23].

The faster rate of convergence in the case β = 2 can be achieved by letting

the argument u of the empirical characteristic function L̂(p, u) drift towards

zero as n → ∞. In this case, − log(L̂(p,un,2)′)
Cp,2u2

n
and − log(L̂(p,ρun,2)′)

Cp,2ρ2u2
n

, for some

ρ > 0, are asymptotically perfectly correlated and their difference converges
at a faster rate. We note that this does not work in the pure-jump case of
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Fig 1. Asymptotic standard deviation of jump activity estimators. The straight line corre-
sponds to the asymptotic standard deviation of the characteristic function based estimator
defined in (5.5) and the ∗ line to the power variation based estimator of [22] given in (5.9)
(when σ is constant). For each cases of β, the power p ranges in the interval p ∈

(
7
40
, 19

40

)
β.

For the estimator in (5.5), the vector ul = [0.1 : 0.05 : 5] and uh = [0.15 : 0.05 : 5.05].

β < 2. To state the formal result we first introduce some notation. For S1,
S2 and S3 being independent standard normal random variables we denote

ξ̃1(p) =
(
|S1−S2|4
µ2
p,2

− 12
µ2
p,2
, |S1−S2|p

µ
p/2
p,2

− 1
)′
,

ξ̃2(p) =
(
|S2−S3|4
µ2
p,2

− 12
µ2
p,2
, |S2−S3|p

µ
p/2
p,2

− 1
)′
,

(6.1)

and then set Ξ̃i(p) = E
(
ξ̃1(p)ξ̃′1+i(p)

)
for i = 0, 1. The difference from the

analogous expression for the case β < 2 is in the first terms of ξ̃1(p) and
ξ̃2(p). Note that the expression for the bias-correction remains exactly the
same as it involves only the variance and covariance of the second elements
of ξ̃1(p) and ξ̃2(p) which remain the same as their pure-jump counterparts.
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Theorem 4. Suppose X has dynamics given by (1.1) with L being a
Brownian motion, Y satisfying the corresponding condition for it in As-
sumption A, and α and σ satisfying Assumption B for some r < 2. Suppose
p < 1, kn

√
∆n → 0 and un → 0, and further

(6.2)
∆

(
p
β′−

p
2

)∧ p+1
r∨1+1−ι

n ∨ k−( 1
p∧

3
2 )+ι

n ∨ (kn∆n)1−ι

u6
n

√
∆n

→ 0,
(kn∆n)

1
r∧

2−p
2 −

1
2

u6
n

→ 0.

Then for some ρ > 0

(6.3) β̂fs(p, un, ρun)− 2 = Op(k
−1
n u2

n).

Further, if for some initial estimator β̂fs − 2 = op(knu
2
n

√
∆n), then

(6.4) √
n

u2
n(1− ρ2)

(
β̂(p, un, ρun)− 2

)
L−→ − 1

log(ρ)

(
1

24Cp,2
Z1 −

2

p
Cp,2Z2

)
,

where Z1 and Z2 are two zero-mean normal random variables with covari-
ance given by Ξ̃0(p) + 2Ξ̃1(p).

When X is a Lévy process, the requirement for kn and un reduces to

(6.5) un → 0,
∆

(
p
β′
∧

1− p2
)
−ι

n ∨ k−( 1
p∧

3
2 )+ι

n

u6
n

√
∆n

→ 0.

The rate of convergence of the estimator for β is now
√
nu−2

n and is
faster, than the one in Theortem 3, when un converges to zero. The latter
is determined by the restriction in (6.2), which in turn is governed by the
presence of the “residual” term Y , the variation in σ and the sampling
variation in measuring the scale via V n

i (p). For the condition to be satisfied
we need p ∈ (1/2, 1) and β′ < 1, i.e., the jumps in X are of finite variation
(for testing the null hypothesis of presence of diffusion when the process
can contain infinite variation jumps under the null see the recent work of
[19]). Without any prior knowledge on β′ and r, we can set kn according to
(4.4), with β = 2, and then set un � log(n)−1. The requirement on un can
be further relaxed when X is a Lévy process as evident from (6.5). Finally,
we can draw a parallel between our finding for faster rate of convergence of
the estimator of β when β = 2 with the result in [9, 10] for faster rate of
convergence for the maximum likelihood estimator of the stability index of
i.i.d. β-stable random variables when β = 2.

7. Monte Carlo. We test the performance of the proposed method for
jump activity estimation on simulated data from the following model

(7.1) dXt = σt−dLt, dσt = −0.03σtdt+ dZt,
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where L and Z are two Lévy processes independent of each other with Lévy

densities given by νL(x) = e−λ|x|
(

A0

|x|1+β + A1

|x|1+
β
3

)
and νZ(x) = 0.0293 e

−3x

x1.5 1{x>0}

respectively. σ is a Lévy-driven Ornstein-Uhlenbeck process with a tempered
stable driving Lévy subordinator. The parameters governing the dynamics
of σ imply E(σt) = 1 and half-life of shock in σ of around one month (when
unit of time is a day). L is a mixture of tempered stable processes with the
parameter β coinciding with the jump activity index of X. We fix λ = 0.25
and consider four cases for β. In each of the cases we set A0 and A1 so that

A0

∫
R |x|

1−βe−λ|x|dx = 1 and A1

∫
R |x|

1−β
3 e−λ|x|dx = 0.2. The four cases are:

(1) β = 1.05 and A0 = 0.1299, A1 = 0.0113; (2) β = 1.25 and A0 = 0.1443,
A1 = 0.0125; (3) β = 1.50 and A0 = 0.1410, A1 = 0.0141 and (4) β = 1.75
and A0 = 0.0975, A1 = 0.0158.

In the Monte Carlo we set T = 10 and n = 100 which corresponds ap-
proximately to two weeks of 5-minute return data in a typical financial
setting. We further set kn = 50 and p = 0.51. The initial estimator to con-
struct the moments and the optimal weight matrix is simply β̂fs(p, u, v)
with u = 0.1 and v = 1.1. If p ≥ β̂fs(p, u, v)/2, then we reduce the power
to p = β̂fs(p, u, v)/4. Based on the initial beta estimator, we estimate the
values of u for which L(p, u, β) = 0.95 and L(p, u, β) = 0.25, and then split
this interval in five equidistant regions which are used in constructing the
moment vector in (5.4).

Regarding the number of moment conditions, K, in the construction of
our estimator, we should keep in mind the following. Larger K helps im-
prove efficiency of the estimator as our equal weighting of the characteristic
function within each moment condition is suboptimal. However, the feasible
estimate of the optimal weight matrix is unstable in small samples when K
is large (this is similar to “curse of dimensionality” problems occurring in
related contexts, see e.g., [11] and [18]). Moreover, since the characteristic
function is smooth, one typically does not need many moment conditions
to gain efficiency. For example, we also experimented in the Monte Carlo
with ten moment conditions (by splitting the region of u into ten equidis-
tant regions). The performance of the estimator based on the ten moment
conditions was very similar to the one based on the five moment conditions
whose performance we summarize below.

The results from the Monte Carlo are reported in Table 1. For com-
parison, we also report results for β̃(p) where p is set to the level which
minimizes the corresponding asymptotic standard deviation in Figure 1. We
notice satisfactory finite sample performance of β̂(p,u). In all cases for β,
β̂(p,u) contains relatively small upward biases. These biases, however, are
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well below those of β̃(p). We note that the finite sample bias of β̂(p,u) can
be significantly reduced, if similar to β̃(p), one uses an adaptive choice of
power in the range (β/4, β/3). The superiority of β̂(p,u) holds also in terms
of precision in estimating β, with inter-quantile ranges of β̂(p,u) typically
well below those of β̃(p).

Table 1
Monte Carlo Results

Case β̂(p,u) β̃(p)

median IQR MAD median IQR MAD

β = 1.05 1.0801 0.0791 0.0518 1.1154 0.0925 0.0792

β = 1.25 1.3058 0.0817 0.0680 1.3229 0.1158 0.0932

β = 1.50 1.5398 0.0886 0.0622 1.5767 0.1405 0.1072

β = 1.75 1.7782 0.0806 0.0536 1.8196 0.1704 0.1183

Note: IQR is the inter-quartile range and MAD is the mean absolute deviation around
the true value. The power p for β̃(p) is set to the value which minimizes the

corresponding asymptotic standard deviation displayed on Figure 1.

8. Empirical Application. We now apply the developed inference
procedures on high-frequency data for the VIX index. The VIX index is
a option-based measure for volatility on the market (S&P 500 index). It
serves as a popular indicator for investors uncertainty, and it is used as
the underlying asset for many volatility-based derivative contracts traded
on the financial exchanges. Earlier work, consistent with parametric models
for volatility, has provided evidence that the VIX index is a pure-jump Itô
semimartingale. Here, we estimate its jump activity index. The estimation
is based on 5-minute sampled data during the trading hours for year 2010.
Like in the Monte Carlo, we split the year in intervals of 10 days (two weeks)
and estimate the jump activity over each of them. The moments, the power
p and the block size kn are selected in the same way as in the Monte Carlo.
Estimation results are presented on Figure 2. The estimated jump activ-
ity index takes values around 1.6. Overall, our results support a pure-jump
specification of the VIX index.

9. Proofs. In the proofs we use the shorthand notation Eni (·) ≡ E(·|Fi∆n)
and Pni (·) ≡ P(·|Fi∆n). We also denote with K a positive constant that does
not depend on n and u and might change from line to line in the inequalities
that follow. When we want to highlight that the constant depends only on
some parameters a and b, we write Ka,b.
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Fig 2. Jump Activity for the VIX Index. Estimation is done over periods of 10 days in
the year 2010. In the estimation, moments, p, and kn are selected as in the Monte Carlo.

9.1. Decompositions and Additional Notation. In what follows it is con-
venient to extend appropriately the probability space and then decompose
the driving Lévy process L as follows

(9.1) Lt + Ŝt = St + S̃t,

where S, Ŝ and S̃ are pure-jump Lévy processes with first two characteristics
zero (with respect to the truncation function κ(·)) and Lévy densities A

|x|1+β ,

2|ν ′(x)|1{ν′(x)<0}, and |ν ′(x)| respectively. We denote the associated count-
ing jump measures with µ, µ1 and µ2 (note that there can be dependence
between µ, µ1 and µ2).
S is β-stable process and Ŝ and S̃ are “residual” components whose effect

on our statistic, as will be shown, is negligible (under suitable conditions).
The proof of the decomposition in (9.1) as well as the explicit construction
of S, Ŝ and S̃ can be found in Section 1 of the supplementary appendix of
[24].

We now introduce some additional notation that will be used throughout
the proofs. We denote for i = kn + 3, ...., n

V̂ n
i (p) =

1

kn

i−2∑
j=i−kn−1

|σ(j−2)∆n−|
p|∆n

j S −∆n
j−1S|p,

V
n
i (p) =

1

kn

i−2∑
j=i−kn−1

|∆n
j S −∆n

j−1S|p

µ
p/β
p,β

,

V̇ ni (p) =

i−2∑
j=i−kn−1

{
[(i− j − 4) ∨ 0 + 1{j<i−3}]

kn

(
|σj∆n−|p − |σ(j−2)∆n−|

p
)

+
(|σ(j−1)∆n−|p − |σ(j−2)∆n−|p)1{j<i−2}

kn

}
|∆n

j S −∆n
j−1S|p,
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|σ|pi =
1

kn

i−2∑
j=i−kn−1

|σ(j−2)∆n−|
p.

We further denote the function

fi,u(x) = exp

(
−
Cp,βu

β|σ(i−2)∆n−|β

xβ/p

)
,

and direct computation yields f ′i,u(x) = β
p fi,u(x)

Cp,βu
β |σ(i−2)∆n−|

β

xβ/p+1 ,

f
′′

i,u(x) = fi(u, x)
(
β
p

Cp,βu
β |σ(i−2)∆n−|

β

xβ/p+1

)2

− fi(u, x)βp

(
β
p + 1

)
Cp,βu

β |σ(i−2)∆n−|
β

xβ/p+2 .

We note

(9.2) sup
x∈R+

|fi,u(x) + f ′i,u(x) + f
′′
i,u(x) + f

′′′
i,u(x)| < Ku,

where the positive constant Ku depends only on u and is finite as soon as u
is bounded away from zero.

With this notation, we make the following decomposition for any u ∈ R+

L̂n(p, u)− L(p, u, β) =
1

n− kn − 2

Ẑn1 (u) + Ẑn2 (u) +

4∑
j=1

Rnj (u)

 ,
where Ẑnj (u) =

∑n
i=kn+3 z

j
i (u) for j = 1, 2 with

z1
i (u) = cos

(
u
σ(i−2)∆n−(∆n

i S −∆n
i−1S)

(V ni (p))1/p

)
− exp

(
−
Aβu

β |σ(i−2)∆n−|β

∆−1
n (V ni (p))β/p

)
,

z2
i (u) = exp

− Cp,βu
β |σ(i−2)∆n−|β

∆−1
n

(
|σ|pi V

n

i (p)
)β/p

− exp

(
−
Cp,βu

β |σ(i−2)∆n−|β

(|σ|pi )
β/p

)
,

and Rnj (u) =
∑n

i=kn+3 r
j
i (u) for j = 1, 2, 3, 4 with

r1
i (u) = cos

(
u

∆n
i X −∆n

i−1X

(V ni (p))1/p

)
− cos

(
u
σ(i−2)∆n−(∆n

i S −∆n
i−1S)

(V ni (p))1/p

)
,

r2
i (u) = exp

(
−
Aβu

β |σ(i−2)∆n−|β

∆−1
n (V ni (p))β/p

)
− exp

(
−
Aβu

β |σ(i−2)∆n−|β

∆−1
n (V̂ ni (p))β/p

)
,
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r3
i (u) = exp

(
−
Aβu

β |σ(i−2)∆n−|β

∆−1
n (V̂ ni (p))β/p

)
− exp

 Cp,βu
β |σ(i−2)∆n−|β

∆−1
n

(
|σ|pi V

n

i (p)
)β/p

 ,

r4
i (u) = exp

(
−
Cp,βu

β |σ(i−2)∆n−|β

(|σ|pi )
β/p

)
− exp

(
−Cp,βuβ

)
.

We finally introduce the following: Z
n
1 (u) =

∑n
i=kn+3 z

1
i (u), Z

(a,n)
2 (u) =∑n

i=kn+3 z
(a,2)
i (u) and Z

(b,n)
2 (u) =

∑n
i=kn+3 z

(b,2)
i (u) where

z1
i (u) = cos

(
u∆−1/β

n µ
−1/β
p,β (∆n

i S −∆n
i−1S)

)
− L(p, u, β),

z
(a,2)
i (u) = G(p, u, β)

(
∆−p/βn V

n

i (p)− 1
)
, z

(b,2)
i (u) =

1

2
H(p, u, β)

(
∆−p/βn V

n

i (p)− 1
)2

.

9.2. Localization. We prove results under the following strengthened ver-
sion of Assumption B:

Assumption SB. We have assumption B and in addition

(a) the processes |σt| and |σt|−1 are uniformly bounded;
(b) the processes bα and bσ are uniformly bounded;
(c) |δα(t, x)| + |δσ(t, x)| ≤ γ(x) for all t, where γ(x) is a deterministic

bounded function on R with
∫
R |γ(x)|r+ιλ(dx) <∞ for arbitrary small

ι > 0 and some 0 ≤ r ≤ β;
(d) the coefficients in the Itô semimartingale representation of bα and bσ

satisfy the analogues of conditions (b) and (c) above;
(e) the process

∫
R(|x|β′+ι∧1)νYt (dx) is bounded and the jumps of Ŝ, S̃ and

Y are bounded.

Extending the results to the case of the more general Assumption B follows
by standard localization arguments given in Section 4.4.1 of [12].

9.3. Preliminary Results. The strategy of the proofs is to bound the

terms Rnj (u) for j = 1, 2, 3, 4 as well as Ẑn1 (u)−Zn1 (u) and Ẑn2 (u)−Z(a,n)
2 (u)−

Z
(b,n)
2 (u), and to derive the asymptotic limits of Z

n
1 (u), Z

(a,n)
2 (u) and Z

(b,n)
2 (u).

We do this in a sequence of lemmas starting with one containing some pre-
liminary bounds needed for the subsequent lemmas.

Lemma 1. Under Assumptions A and SB and kn � n$ for $ ∈ (0, 1),
we have for 0 < p < β, ι > 0 arbitrary small, and 1 ≤ x < β

p and y ≥ 1:

∆−p/βn E|V n
i (p))− V̂ n

i (p)| ≤ Kαn,(9.3)



JUMP ACTIVITY ESTIMATION VIA SELF-NORMALIZED STATISTICS 19

αn =
∆

(2−1/β)(1+(p−1/2)∧0−ι)
n √

kn

∨
∆

1
β−ι
n

∨
∆

p
β′ ∧1− pβ−ι
n

∨
∆

p+1
β+1−ι
n ,

(9.4)

E
∣∣∣∆−p/βn V̂ n

i (p)− µp/βp,β |σ|
p
i

∣∣∣x+E
∣∣∣∆−p/βn V

n
i (p)− 1

∣∣∣x ≤ K{ k
−x/2
n , if β/p > 2
k1−x
n , if β/p ≤ 2

,

(9.5)
∣∣Eni−kn−3(|σ|pi − |σ(i−2)∆n−|

p)
∣∣ ≤ Kkn∆n,

(9.6) Eni−kn−3

∣∣|σ|pi − |σ(i−2)∆n−|
p
∣∣y ≤ K(kn∆n)

y
r

∧
1−ι,

(9.7) ∆−p/βn

∣∣∣Eni−kn−3

(
V̂ n
i (p)− µp/βp,β |σ|

p
iV

n
i (p)− V̇ n

i (p)
)∣∣∣ ≤ Kkn∆n,

(9.8) ∆−xp/βn E
∣∣∣V̂ n
i (p)− µp/βp,β |σ|

p
iV

n
i (p)− V̇ n

i (p)
∣∣∣x ≤ K(kn∆n)

x
r

∧
1−ι,

(9.9) ∆−xp/βn E
∣∣∣V̇ n
i (p)

∣∣∣x ≤ K∆
β−xp
β

∧ x
r
−ι

n .

Proof of Lemma 1. We start with (9.3). We apply exactly the same de-
composition and bounds as for the term A3 in Section 5.2.3 in [22] to get
the result in (9.3). We continue with (9.4). Without loss of generality we
assume kn ≥ 2 and we denote the two sets{

Jei =
{
i− kn − 1 + 2k : k = 0, ..., bkn−1

2 c
}
,

Joi =
{
i− kn − 1 + 2k + 1 : k = 0, ..., bkn−2

2 c
}
.

With this notation, we can decompose V̂ n
i (p) into

V̂
(e,n)
i (p) =

1

kn

∑
j∈Jei

|σ(j−2)∆n−|
p|∆n

j S −∆n
j−1S|p, V̂

(o,n)
i (p) = V̂ ni (p)− V̂ (e,n)

i (p).

We further denote |σ|pe,i = 1
kn

∑
j∈Jei
|σ(j−2)∆n−|p and |σ|po,i = 1

kn

∑
j∈Joi
|σ(j−2)∆n−|p.

Using triangular inequality, we then have∣∣∣∆−p/βn V̂ ni (p)− µp/βp,β |σ|
p
i

∣∣∣
≤
∣∣∣∆−p/βn V̂

(e,n)
i (p)− µp/βp,β |σ|

p
e,i

∣∣∣+
∣∣∣∆−p/βn V̂

(o,n)
i (p)− µp/βp,β |σ|

p
o,i

∣∣∣ .
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Now, since Enj−2|∆n
j S − ∆n

j−1S|p = ∆
p/β
n µ

p/β
p,β , the sums ∆

−p/β
n V̂

(e,n)
i (p) −

µ
p/β
p,β |σ|

p
e,i and ∆

−p/β
n V̂

(o,n)
i (p)−µp/βp,β |σ|

p
o,i are discrete martingales. From here,

the result in (9.4) for the case β/p ≤ 2 follows by a direct application of the
Burkholder-Davis-Gundy inequality and the algebraic inequality

(9.10) |
∑
i

|ai||p ≤
∑
i

|ai|p, ∀p ∈ (0, 1] and any real-valued {ai}i≥1.

We are left with the case β/p > 2. We only show the bound involving

the term V̂
(e,n)
i (p), with the result for V̂

(o,n)
i (p) being shown analogously.

We first denote ∆
−p/β
n V̂

(e,n)
i (p) − µ

p/β
p,β |σ|

p
e,i = 1

kn

∑
j∈Jei

ζnj where ζnj =

∆
−p/β
n |σ(j−2)∆n−|p

(
|∆n

j S −∆n
j−1S|p − µ

p/β
p,β

)
. Applying Burkholder-Davis-

Gundy inequality, we have

E|
∑
j∈Jei

ζnj |x ≤ KE

∑
j∈Jei

(ζnj )2

x/2

.

If x ≤ 2, the result in (9.4) then follows by Jensen’s inequality. If x > 2,
applying again Burkholder-Davis-Gundy, we have

E

∑
j∈Jei

(ζnj )2

x/2

≤ KE

∑
j∈Jei

((ζnj )2 − Enj−2(ζnj )2)

x/2

+KE

∑
j∈Jei

Enj−2(ζnj )2

x/2

≤ KE

∑
j∈Jei

((ζnj )2 − Enj−2(ζnj )2)2

x/4

+Kkx/2n ,

(9.11)

where we also made use of the fact that β-stable random variable has finite
p-th absolute moment as soon as p ∈ (0, β). If x ≤ 4, the result will then
follow from an application of (9.10). If x > 4, then we repeat (9.11) with x
replaced by x/2 and ζnj replaced (ζnj )2 − Enj−2(ζnj )2. We continue this way

applying k = sup
{
i : 2i < x

}
times (9.11) and then (9.10). This shows (9.4).

We continue with (9.5) and (9.6). We make use of the following algebraic
inequality ∣∣|a+ b|p − |a|p − psign{a}|a|p−1b

∣∣ ≤ Kp|a|p−2|b|2,
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for any a, b ∈ R with a 6= 0, 0 < p < 1 and Kp that depends only on p.
Applying this inequality as well as triangular inequality, and using the fact
that under assumption SB the process |σ| is bounded from below, we have

(9.12) |Es(|σt|p − |σs|p)| ≤ K|t− s|, 0 ≤ s ≤ t,

(9.13) Es ||σt|p − |σs|p|q ≤ KEs
(
|σt − σs|q ∨ |σt − σs|2q

)
, 0 ≤ s ≤ t, q ≥ 1,

with some constant K that does not depend on s and t. From here (9.5)
follows. Application of Corollary 2.1.9 of [12] further gives

(9.14) Es|σt − σs|q ≤ K|t− s|
q
r

∧
1−ι, 0 ≤ s ≤ t, q ≥ 1,

and applying this inequality with q = y and q = 2y, for y the constant in
(9.6), we have that result.

We proceed with showing the bounds in (9.7)-(9.9). We can decompose
|σ|pi − |σ(k−2)∆n−|p =

∑4
j=1 a

j
k for k = i− kn − 1, ..., i− 2 and

a1
k = 1

kn

∑i−2
j=k+3

(
|σ(j−2)∆n−|p − |σk∆n−|p

)
,

a2
k = (i−k−4)∨0

kn

(
|σk∆n−|p − |σ(k−2)∆n−|p

)
,

a3
k =

(|σk∆n−|p−|σ(k−2)∆n−|
p)1{k<i−3}+(|σ(k−1)∆n−|

p−|σ(k−2)∆n−|
p)1{k<i−2}

kn
,

a4
k = 1

kn

∑k
j=i−kn−1

(
|σ(j−2)∆n−|p − |σ(k−2)∆n−|p

)
,

with a1
k being zero for k ≥ i− 4. Using law of iterated expectations and the

bound in (9.6), we have for k = i− kn − 1, ..., i− 2

(9.15) ∆−xp/βn E
(∣∣a1

k + a4
k

∣∣ |∆n
kS −∆n

k−1S|p
)x ≤ K(kn∆n)

x
r

∧
1−ι.

Using Hölder inequality, the bound in (9.12), as well as the fact that a stable
random variable has finite absolute moments for powers less than β, we have
for k = i− kn − 1, ..., i− 2

(9.16) ∆−xp/βn E
(∣∣a2

k + a3
k

∣∣ |∆n
kS −∆n

k−1S|p
)x ≤ K∆

(
βx/r
β−xp

∧
1
)
β−xp
β
−ι

n .

Combining (9.15) and (9.16), we get the results in (9.8) and (9.9).
Further, using (9.12), we get for k = i− kn − 1, ..., i− 2

(9.17) ∆−p/βn

∣∣Eni−kn−3

(
(a1
k + a4

k)|∆n
kS −∆n

k−1S|p
)∣∣ ≤ Kkn∆n.

From here we get the result in (9.7). 2
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Lemma 2. Under Assumptions A and SB and kn � n$ for $ ∈ (0, 1),
we have for 0 < p < β, ι > 0 arbitrary small, and every 0 < a < b <∞:

(9.18)
1

n− kn − 2
E

(
sup
u∈[a,b]

|Rn1 (u)|

)
≤ Ka,b

(
αn ∨ k

−( β
2p∧

β−p
p )+ι

n

)
,

(9.19)
1

n− kn − 2
E

(
sup
u∈[a,b]

|Rn2 (u)|

)
≤ Ka,bαn,

1

n− kn − 2
E

(
sup
u∈[a,b]

|Rn3 (u)|

)

≤


Ka,b

(
(kn∆n)1−ι ∨ k−1/2

n (kn∆n)
1
r∧

β−p
β −ι

)
, if β/p > 2,

Ka,b

(
(kn∆n)

1
r∧1−ι ∨∆

β−p
β −ι

n

)
, if β/p ≤ 2,

(9.20)

(9.21)
1

n− kn − 2
E

(
sup
u∈[a,b]

|Rn4 (u)|

)
≤ Ka,b(kn∆n)1−ι,

where Ka,b depends only on a and b and is finite-valued.

Proof of Lemma 2. We start with showing (9.18). We define the set

Cni =

{∣∣∣∆−p/βn V n
i (p)− µp/βp,β |σ|

p
i

∣∣∣ > 1

2
µ
p/β
p,β |σ|

p
i

)
, i = kn + 3, ..., n,

and then we note that

1{Cni } ≤ 1

(
∆−p/βn |V n

i (p)− V̂ n
i (p)| > 1

4
µ
p/β
p,β |σ|

p
i

)
+ 1

(
|∆−p/βn V̂ n

i (p)− µp/βp,β |σ|
p
i | >

1

4
µ
p/β
p,β |σ|

p
i

)
.

Hence, we can apply (9.3) and (9.4) and conclude

(9.22) E

[
sup
u∈R+

(|r1
i (u)|1{Cni })

]
≤ K

(
αn ∨ k

−
(
β
2p
∧β−p

p

)
+ι

n

)
.

We proceed with a sequence of inequalities. First, from assumption SB

(9.23) Eni−2

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(αu − αu−∆n)du

∣∣∣∣∣ ≤ K∆
1+ 1

r∨1
−ι

n .
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Next, if β′ < 1 we can decompose

(9.24) Ŝt =

∫ t

0

∫
R
xµ1(ds, dx)− t

∫
R
κ(x)2|ν ′(x)|1{ν′(x)<0}dx,

and separate accordingly
∫ i∆n

(i−1)∆n
σu−dŜu and

∫ (i−1)∆n

(i−2)∆n
σu−dŜu. For the dif-

ference of the integrals against time, we can proceed exactly as in (9.23).
Further, using the the algebraic inequality in (9.10), as well as Assumption
A for the measure ν ′, we have

(9.25) Eni−1

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫
R
σu−xµ1(du, dx)

∣∣∣∣∣
x

≤ K∆x/β′−ι
n , for x ≤ β′.

When β′ ≥ 1, we can apply Burkholder-Davis-Gundy inequality and get

(9.26) Eni−1

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σu−xdŜu

∣∣∣∣∣
x

≤ K∆x/β′−ι
n , for x ≤ β′.

Exactly the same inequalities hold for the analogous integrals involving S̃.
Next, application of Burkholder-Davis-Gundy and Hölder inequalities, as
well as Assumption SB yields

(9.27) Eni−2

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(σu− − σ(i−2)∆n−)κ(x)µ̃(du, dx)

∣∣∣∣∣ ≤ K∆
2
β
−ι

n .

Finally, denoting κ′(x) = x− κ(x) and upon noting that κ′(x) is zero for x
sufficiently close to zero, we have

(9.28) Eni−2

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(σu− − σ(i−2)∆n−)κ′(x)µ(du, dx)

∣∣∣∣∣
ι

≤ K∆n, ∀ι > 0.

Combining the estimates in (9.23)-(9.28), as well as the inequality | cos(x)−
cos(y)| ≤ 2|x− y|p for every x, y ∈ R and p ∈ (0, 1], we have

(9.29) E
[
sup
u≥a

(|r1
i (u)|1{(Cni )c})

]
≤ Ka

(
∆

β−β′
β(β′∨1)

−ι
n ∨∆

1
β

∧ 1
r∨1
−ι

n

)
.

(9.22) and (9.29) yield (9.18). We continue next with (9.19). This bound
follows from a first-order Taylor expansion of fi,u(x) and the bounds in
(9.2) and (9.3).
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We proceed with showing the result for Rn4 (u). Using second-order Taylor
expansion and Cauchy-Schwarz inequality, as well as (9.6), we get

(9.30) E

 sup
u∈[a,b]

∣∣∣∣∣∣Rn4 (u)− β

p
e−Cp,βu

β
Cp,βu

β
n∑

i=kn+3

r̃4
i

∣∣∣∣∣∣
 ≤ Kkn,

where

r̃4
i =
|σ(i−2)∆n−|p − |σ|

p
i

|σ(i−kn−3)∆n−|p
.

Using (9.5), we have

(9.31) E

∣∣∣∣∣∣
n∑

i=kn+3

Eni−kn−3(r̃4
i )

∣∣∣∣∣∣ ≤ Kkn.
Further, without loss of generality (because kn∆n → 0) we assume n ≥
2kn + 3. Using the shorthand χi = r̃4

i − Eni−kn−3(r̃4
i ), we then decompose

n∑
i=kn+3

χi =

kn+1∑
j=1

Aj +
n∑

i=2kn+4+
(
bn−kn−2

kn+1
c−1

)
(kn+1)

χi,

Aj =

bn−kn−2
kn+1

c∑
i=1

χkn+3+(j−1)+(i−1)(kn+1), j = 1, ..., kn + 1.

Applying Burkholder-Davis-Gundy inequality for discrete martingales and
making use of (9.6), we have

(9.32) E|Aj | ≤ K(kn∆n)−ι, j = 1, ..., kn + 1.

Combining (9.30) and (9.32), we get the bound in (9.21).
We are left with (9.20). The case β/p ≤ 2 follows from

E|r3
i (u)| ≤ Ka,b

∣∣∣∆−p/βn V̂ n
i (p)− µp/βp,β V

n
i (p)

∣∣∣ ,
and applying the bounds in (9.8)-(9.9). We now show (9.20) for the case
β/p > 2. We first decompose r3

i (u) =
∑3

j=1 %
j
i (u), where

%1
i (u) = f ′i,u

(
∆−p/βn V

n
i (p)|σ|pi

)
∆−p/βn

(
µ
−p/β
p,β V̂ n

i (p)− |σ|piV
n
i (p)− µ−p/βp,β V̇ n

i (p)
)
,

%2
i (u) = f ′i,u (x̃) ∆−p/βn µ

−p/β
p,β V̇ n

i (p),
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%3
i (u) =

(
f ′i,u (x̃)− f ′i,u

(
∆−p/βn V

n
i (p)|σ|pi

))
×∆−p/βn

(
µ
−p/β
p,β V̂ n

i (p)− |σ|piV
n
i (p)− µ−p/βp,β V̇ n

i (p)
)
,

and x̃ is a random number between ∆
−p/β
n µ

−p/β
p,β V̂ n

i (p) and ∆
−p/β
n |σ|piV

n
i (p).

We further introduce

%̃1
i (u) =

G(p, u, β)

|σ(i−kn−3)∆n−|p
∆−p/βn

(
µ
−p/β
p,β V̂ n

i (p)− |σ|piV
n
i (p)− µ−p/βp,β V̇ n

i (p)
)
,

and note G(p, u, β) = |σ(i−2)∆n−|pf ′i,u
(
|σ(i−2)∆n−|p

)
. Then direct calculation

for the function xf ′i,u(x) and the boundedness of the process |σ| yields

|%1
i (u)− %̃1

i (u)| ≤ Ka,b(d
(1)
i + d

(2)
i )ei,

where
d

(1)
i = |∆−p/βn V

n
i (p)− 1|,

d
(2)
i = ||σ|pi − |σ(i−2)∆n−|p|+ ||σ(i−2)∆n−|p − |σ(i−kn−3)∆n−|p|,
ei = ∆

−p/β
n

∣∣∣µ−p/βp,β V̂ n
i (p)− |σ|piV

n
i (p)− µ−p/βp,β V̇ n

i (p)
∣∣∣ .

From here, we use Hölder inequality and (9.4), (9.6) and (9.8), to get

(9.33)


E|d(1)

i ei| ≤ K
(
E
[(
d

(1)
i

) β
p+βι

]) p
β+ι(

E
(
e

β
β−p−βι
i

)) β−p
β −ι

≤ Kk−1/2
n (kn∆n)

1
r∧

β−p
β −2ι,

E|d(2)
i ei| ≤

√
E(d

(2)
i )2E(ei)2 ≤ K(kn∆n)1−ι.

For the sum
∑n

i=kn+3 %̃
1
i (u), using the bounds in (9.7) and (9.8), we can

proceed exactly as for the analysis of
∑n

i=kn+3 χi above and split it into
kn + 1 terms which are the terminal values of discrete martingales. This
altogether yields

(9.34) E

 sup
u∈[a,b]

∣∣∣∣∣∣
n∑

i=kn+3

%̃1
i (u)

∣∣∣∣∣∣
 ≤ Ka,bkn(kn∆n)−ι.

Next, using the bound in (9.9) as well as the boundedness of the derivative
f ′i,u(x) (for u ∈ [a, b]), we have

(9.35) E

(
sup
u∈[a,b]

|%2
i (u)|

)
≤ Ka,b∆

β−p
β

∧ 1
r
−ι

n .
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We continue with the term %3
i (u). We first introduce the set

Eni =
{∣∣∣µ−p/βp,β V̂ n

i (p)− |σ|piV
n
i (p)− µ−p/βp,β V̇ n

i (p)
∣∣∣ > 1

}
, i = kn + 3, ..., n.

With this notation, using (9.8) and the boundedness of the derivative f ′i,u(x)
(for u ∈ [a, b]), we have

(9.36) E

(
sup
u∈[a,b]

|%3
i (u)|1{Eni }

)
≤ Ka,b(kn∆n)1−ι.

Next using the boundedness of the second derivative f
′′
i,u(x), as well as the

bounds in (9.8) and (9.9), we get

(9.37) E

(
sup
u∈[a,b]

|%3
i (u)|1{(Eni )c}

)
≤ Ka,b

(
(kn∆n)1−ι ∨∆

β−p
β

∧ 1
r
−ι

n

)
.

Combining (9.33)-(9.37), we get the result in (9.20). 2

Lemma 3. Under Assumptions A and SB and kn � n$ for $ ∈ (0, 1),
we have for 0 < p < β, ι > 0 arbitrary small, and every 0 < a < b <∞:
(9.38)

1

n− kn − 2
sup
u∈[a,b]

|Ẑn1 (u)− Zn1 (u)| = op

(
αn ∨ k

−
(
β
2p
∧β−p

p

)
+ι

n ∨
√

∆n

)
,

and further if p < β/2

1

n− kn − 2
sup
u∈[a,b]

|Ẑn2 (u)− Z(a,n)
2 (u)− Z(b,n)

2 (u)|

= op

(
k
− 1

2

(
β
p
∧3
)

+ι

n ∨ k−1/2
n (kn∆n)

1
r
∧β−p

β
−ι
)
.

(9.39)

Proof of Lemma 3. We start with (9.38). We split Ẑn1 (u) − Z
n
1 (u) =

En1 (u) + En2 (u) with En1 (u) =
∑n

i=kn+3(z1
i (u) − z1

i (u))1{Cni } and En2 (u) =∑n
i=kn+3(z1

i (u)− z1
i (u))1{(Cni )c}. For En1 (u), using Lemma 1, we easily have

(9.40)
1

n− kn − 2
E

(
sup
u∈[a,b]

|En1 (u)|

)
≤ Ka,b

(
αn ∨ k

−
(
β
2p
∧β−p

p

)
+ι

n

)
.

We proceed with En2 (u). We first note that

(9.41) Eni−2

[
(z1
i (u)− z1

i (u))1{(Cni )c}

]
= 0.
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Further, using the algebraic inequalities | cos(x) − cos(y)|2 ≤ 2|x − y| for
x, y ∈ R and |e−x − e−y|2 ≤ 2|x− y| for x, y ∈ R+, as well as the definition
of the set Cni , we get

Eni−2

∣∣∣(z1
i (u)− z1

i (u))1{(Cni )c}

∣∣∣2 ≤ Ka,b

∣∣∣∆−p/βn V n
i (p)− µp/βp,β |σ(i−2)∆n−|

p
∣∣∣ .

Applying the above two inequalities, the bounds in (9.3), (9.4) and (9.6), as
well as the algebraic inequality 2xy ≤ x2 + y2 for x, y ∈ R, we have

E (En2 (u))
2

= E

(
n∑

i=kn+3

(z1
i (u)− z1

i (u))21{(Cni )c}

)

+ E

 ∑
i,j:|i−j|=1

(z1
i (u)− z1

i (u))1{(Cni )c}(z
1
j (u)− z1

j (u))1{(Cnj )c}


≤ Ka,b

n∑
i=kn+3

E
∣∣∣∆−p/βn V ni (p)− µp/βp,β |σ(i−2)∆n−|

p
∣∣∣

≤ Ka,b∆
−1
n

(
αn ∨ k

−( β
2p∧

β−p
p )+ι

n ∨ (kn∆n)
1
r∧1−ι

)
.

As a result, 1√
n−kn−2

En2 (u)
P−→ 0 finite-dimensionally in u. We are left

with showing that the convergence holds uniformly in u ∈ [a, b]. For this we
apply a criteria for tightness on the space of continuous functions equipped
with the uniform topology, see e.g., Theorem 12.3 of [7]. Using again (9.41),
we have

E (En2 (u)− En2 (v))2

≤ KE

 n∑
i=kn+3

(z1
i (u)− z1

i (u)− z1
i (v) + z1

i (v))21{(Cni )c}

 ,

hence for arbitrary small ι > 0

1

n− kn − 2
E

(
n∑

i=kn+3

(z1
i (u)− z1

i (u)− z1
i (v) + z1

i (v))21{(Cni )c}

)
≤ K

{
|uβ − vβ |2 ∨ |u− v|β−ι

}
,

and since β > 1, we have 1√
n−kn−2

supu∈[a,b] |En2 (u)| P−→ 0. We turn next

to (9.39). We first introduce some additional notation. Based on a second-
order Taylor expansion of the function fi,u(x), we can further decompose
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Ẑn2 (u) = Ẑ
(a,n)
2 (u)+ Ẑ

(b,n)
2 (u)+ Ẑ

(c,n)
2 (u), with Ẑ

(k,n)
2 (u) =

∑n
i=kn+3 z

(k,2)
i (u)

for k = a, b, c, where z
(c,2)
i (u) = z2

i (u)− z(a,2)
i (u)− z(b,2)

i (u) and

z
(a,2)
i (u) = f ′i,u (|σ|pi ) |σ|

p
i

(
∆−p/βn V

n
i (p)− 1

)
,

z
(b,2)
i (u) =

1

2
f
′′
i,u (|σ|pi ) (|σ|pi )

2
(

∆−p/βn V
n
i (p)− 1

)2
,

Note further that{
|σ(i−2)∆n−|pf ′i,u

(
|σ(i−2)∆n−|p

)
= G(p, u, β),

|σ(i−2)∆n−|2pf
′′
i,u

(
|σ(i−2)∆n−|p

)
= H(p, u, β).

Direct calculation, and using the boundedness of the process σ by Assump-
tion SB, shows∣∣|σ|pi f ′i,u (|σ|pi )−G(p, u, β)

∣∣+
∣∣∣(|σ|pi )2f

′′
i,u (|σ|pi )−H(p, u, β)

∣∣∣
≤ Ka,b

∣∣|σ|pi − |σ(i−2)∆n−|
p
∣∣ , u ∈ [a, b], i = kn + 3, ..., n,

for some finite-valued constant Ka,b which depends only a and b. From here,
using the bounds in (9.4) and (9.6), we have

E

(
sup
u∈[a,b]

|z(a,2)
i (u)− z(a,2)

i (u)|

)
≤ Ka,b

(
k−1/2
n (kn∆n)

1
r
∧β−p

β
−ι
)
,

and similarly

E

(
sup
u∈[a,b]

|z(b,2)
i (u)− z(b,2)

i (u)|

)
≤ Ka,b

(
k
− β

2p
+ι

n ∨ k−1/2
n (kn∆n)

1
r
∧β−p

β
−ι
)
.

Therefore,

1

n− kn − 2
sup
u∈[a,b]

∣∣∣Ẑ(a,n)
2 (u)− Z(a,n)

2 (u) + Ẑ
(b,n)
2 (u)− Z(b,n)

2 (u)
∣∣∣

= op

(
k
− β

2p
+ι

n ∨ k−1/2
n (kn∆n)

1
r
∧β−p

β
−ι
)
.

(9.42)

We are left with Ẑ
(c,n)
2 (u). Using the boundedness of the derivatives in (9.2),

we have ∣∣∣z(c,2)
i (u)

∣∣∣ ≤ Ka,b

∣∣∣∆−p/βn V
n
i (p)− 1

∣∣∣x , 2 < x < β/p ∧ 3.
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From here, applying (9.19), we have

(9.43)
1

n− kn − 2
sup
u∈[a,b]

∣∣∣Ẑ(c,n)
2 (u)

∣∣∣ = op

(
k
− 1

2

(
β
p
∧3
)

+ι

n

)
.

Combining the results in (9.42) and (9.43), we get (9.39). 2

Lemma 4. Let p ∈ (0, β/2). If kn � n$ for $ ∈ (0, 1), we have

(9.44)
1√

n− kn − 2

(
Z
n
1 (u)

Z
(a,n)
2 (u)

)
L−→ ζ(u),

where ζ(u) is a Gaussian process with covariance function given by

(9.45)

(
1

G(p, u, β)

)′
Ξ(p, u, v, β)

(
1

G(p, v, β)

)
, u, v ∈ R+,

for Ξ(p, u, v, β) = Ξ0(p, u, v, β) + 2Ξ1(p, u, v, β). The convergence in (9.44)
is in the space of continuous functions R+ → R2 equipped with the local
uniform topology. The convergence result for Z

n
1 (u) in (9.44) continues to

hold for p ∈ [β/2, β).
Further, for some ι > 0,

kn
n− kn − 2

Z
(b,n)

2 (u)− 1

2
H(p, u, β)

(
Ξ

(2,2)
0 (p, u, u, β) + 2Ξ

(2,2)
1 (p, u, u, β)

)
= op

(
(kn∆n)1− 2p

β

∨
1
2−ι
)
,

(9.46)

locally uniformly in u ∈ R+.

Proof of Lemma 4. We can write

(9.47)

(
Z
n
1 (u)

Z
(a,n)
2 (u)

)
=

n−kn−1∑
i=kn+1

ζi(u) + El(u) + Er(u),

where

ζi(u) =

 cos
(
u∆
−1/β
n µ

−1/β
p,β (∆n

i S −∆n
i−1S)

)
− L(p, u, β)

G(p, u, β)
[
∆
−p/β
n µ

−p/β
p,β |∆

n
i S −∆n

i−1S|p − 1
]  ,

El(u) =

kn∑
i=2

i− 1

kn

(
0

ζ
(2)
i (u)

)
−

kn+2∑
i=kn+1

(
ζ

(1)
i (u)

0

)
,
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Er(u) =

n−2∑
i=n−kn

n− 1− i
kn

(
0

ζ
(2)
i (u)

)
+

n∑
i=n−kn

(
ζ

(1)
i (u)

0

)
.

We note that for u ∈ R+

(9.48) Eni−2 (ζi(u)) = 0, i = 2, ..., n.

Further, making using of the inequality | cos(x) − cos(y)| ≤ 2|x − y|p for
every p ∈ (0, 1] and x, y ∈ R, we have for u, v ∈ R+

(9.49) Eni−2

(
ζ

(1)
i (u)− ζ(1)

i (v)
)2
≤ K|u− v|p ∨ |uβ − vβ|2, 1 < p < β.

Making use of (9.48) and the fact that ζ
(2)
i (u) depends on u only through

H(p, u, β) and supu∈R+ |H(p, u, β)| is a finite constant, we have

(9.50)
1

kn
E

(
sup
u∈R+

|El(u)|2
)
≤ K.

Making use of (9.49) and the differentiability of G(p, u, β) in u, we also have

1

kn
E (Er(u)− Er(v))2 ≤ |F (u)− F (v)|p,

for some increasing function F (·) and some p > 1. Applying then a criteria
for tightness on the space of continuous functions equipped with the uniform
topology, see e.g., Theorem 12.3 in [7], as well as making use of the fact that
kn∆n → 0, we have locally uniformly in u

(9.51)
1√

n− kn − 2
Er(u)

P−→ 0.

We are left with the first term on the right hand side of (9.47). First, we
establish convergence for this term finite-dimensionally in u. We have the
decomposition

n−kn−1∑
i=kn+1

ζi(u) =

n−kn−1∑
i=kn+1

(ζi(u)− Eni−1(ζi(u))) +

n−kn−2∑
i=kn

Eni (ζi+1(u)).

From here, we can apply a clt for triangular arrays, see e.g., Theorem
2.2.13 of [12], to establish that 1√

n−2kn−1

∑n−kn−1
i=kn+1 ζi(u) converges finite-

dimensionally in u to ζ(u). This convergence holds also locally uniformly
in u using the bound in (9.49) and Theorem VI.4.1 in [14]. Combining the
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latter with the asymptotic negligibility results in (9.50) and (9.51), together
with the fact that kn/n→ 0, we have the result in (9.44). Furthermore, since
Z
n
1 (u) depends on p only through µp,β, the marginal convergence in (9.44)

involving Z
n
1 (u) holds for any p ∈ (0, β).

We turn next to (9.46). We denote

χi = kn

(
∆−p/βn V

n
i (p)− 1

)2
−
(

Ξ
(2,2)
0 (p, u, u, β) + 2Ξ

(2,2)
1 (p, u, u, β)

)
,

and we note that Ξ
(2,2)
0 (p, u, u, β) and Ξ

(2,2)
1 (p, u, u, β) do not depend on u.

Without loss of generality we can assume n ≥ 2kn + 3, and then we set

Aj =

bn−kn−2
kn+1

c∑
i=1

χkn+3+(j−1)+(i−1)(kn+1), j = 1, ..., kn + 1.

Since E|χi| < K,

(9.52)

∣∣∣∣∣∣
n∑

i=kn+3

χi −
kn+1∑
j=1

Aj

∣∣∣∣∣∣ = Op(kn).

Further, direct computation shows

Eni−kn−3 (χi) = 0, i = kn + 3, ..., n,

and applying Burkholder-Davis-Gundy inequality for discrete martingales,
we have

(9.53) E|Aj |x ≤ K(kn∆n)−(x2
∨

1), 1 ≤ x < β

2p
.

Using inequality in means we further have∣∣∣∣∣∣ 1

kn + 1

kn+1∑
j=1

Aj

∣∣∣∣∣∣
x

≤ 1

kn + 1

kn+1∑
j=1

|Aj |x, 1 ≤ x < β

2p
.

Applying the above inequality with x sufficiently close to β/(2p) and the

bound in (9.53), we have ∆n(kn∆n)
2p
β

∧ 1
2
−1+ι∑kn+1

j=1 Aj
P−→ 0, and to-

gether with the result in (9.52), this implies (9.46). 2
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9.4. Proof of Theorems 1 and 2. Theorem 1 and (4.5) of Theorem 2
follow readily by combining Lemmas 1-4 (and using (9.4) for bounding Ẑn2 (u)
in the proof of Theorem 1). To show (4.7), we note first that H(p, u, β) and
Ξi(p, u, u, β), for i = 0, 1, are continuously differentiable in β. For H(p, u, β)
this is directly verifiable and for Ξi(p, u, u, β) with i = 0, 1, this follows from

the continuous differentiability of the characteristic function β → e−Aβu
β

for u ∈ R+. Moreover, the derivative ∇βH(p, u, β) is bounded in u. From
here, (4.7) follows from an application of the continuous mapping theorem.

9.5. Proof of Theorem 3. We denote the true value of the parameter β
with β0. Then the claim in (5.7) will follow if we can show the following:

(9.54) m̂(p, û, β̂fs,u, β)
P−→ m(p,u, β), uniformly in β ∈ [1, 2],

where m(p,u, β) is defined via

m(p,u, β)i =

∫ uih

uil

(log(L(p, u, β0)− log(L(p, u, β))) du,

(9.55)
√
n m̂(p, û, β̂fs,u, β0)

L−→ W1/2(p,u, β0)×N,

where N is K × 1 standard normal vector and

(9.56) M(p, û, β)
P−→ M(p,u, β), uniformly in a neighborhood of β0.

This is because m(p,u, β) = 0 iff β = β0 and W (p,u, β0) is positive definite.

We start with (9.54). We have
∫ ûih
ûil

log(L(p, u, β))du
P−→

∫ uih
uil

log(L(p, u, β))du

uniformly in β ∈ [1, 2] for i = 1, ...,K because of ûl
P−→ ul and ûh

P−→ uh
as well as the continuity of the function uβ in β for every u ∈ R+. Exactly
the same argument can be used to show (9.56). To show (9.54) it remains to

show
∫ ûih
ûil

log(L̂n(p, u, β̂fs)′)du
P−→

∫ uih
uil

log(L(p, u, β0))du for i = 1, ...,K.

Due the continuous differentiability of the de-biasing term in β, β̂fs
P−→ β0

and the asymptotic boundedness of ûl and ûh and of L̂n(p, u, β̂fs)′ from

below, we have
∫ ûih
ûil

[log(L̂n(p, u, β̂fs)′) − log(L̂n(p, u, β0))]du
P−→ 0. From

here (9.54) follows by applying Theorem 1.
We are left with (9.55). This result follows from applying the uniform

convergence of L̂n(p, u, β̂fs)′ in Theorem 2.
Finally, (5.8) follows from the continuity of G(p,u, β) and W−1(p,u, β)

in u and β.
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9.6. Proof of Theorem 4. We will use the shorthand notation vn = ρun.
We start with the following lemma.

Lemma 5. Under the conditions of Theorem 4 we have

(9.57) L̂n(p, un, β̂
fs)′ − L(p, un, β̂

fs) = Op(
√

∆nu
2
n),

√
n

u2
n − v2

n

Ẑn
L−→ 1

24Cp,2
Z1 −

2

p
Cp,2Z2,(9.58)

where

Ẑn =
1

Cp,2u2
n

(
L̂n(p, un, β̂

fs)′ − L(p, un, β̂
fs)
)
− 1

Cp,2v2
n

(
L̂n(p, vn, β̂

fs)′ − L(p, vn, β̂
fs)
)
.

Proof of Lemma 5. We use exactly the same decomposition of L̂n(p, u, β)−
L(p, u, β) as for the proofs of Theorems 1 and 2. We start with the leading

terms Z
n
1 (un), Z

(a,n)
2 (un) and Z

(b,n)
2 (un). Using Taylor series expansion, we

have for any u ∈ R+ and Z ∈ R

cos(uZ)− 1 = −u
2Z2

2
+
u4Z4

24
+R(uZ), |R(uZ)| ≤ K|uZ|6,

1− e−u2
= u2 − u4

2
+O(u6), as u→ 0.

Using this approximation we have (note that when Lt is a Brownian motion,
then Aβ = 1 and so Cp,β = 1/µp,β)

1

Cp,2u2
n

Z
n
1 (un)− 1

Cp,2v2
n

Z
n
1 (vn)

=
u2
n − v2

n

24Cp,2

n∑
i=kn+3

[
n2(∆n

i S −∆n
i−1S)4

µ2
p,2

− 12

µ2
p,2

]
+Op(u

4
n

√
n).

(9.59)

We similarly get

1

Cp,2u2
n

Z
(a,n)
2 (un)− 1

Cp,2v2
n

Z
(a,n)
2 (vn)

= (v2
n − u2

n)
2

p
Cp,2

n∑
i=kn+3

(
∆−p/2n V

n
i (p)− 1

)
+Op(u

4
n

√
n),

(9.60)
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and also

kn
n− kn − 2

n∑
i=kn+3

(
∆−p/2n V

n

i (p)− 1
)2

−
(

Ξ
(2,2)
0 (p, un, un, 2) + 2Ξ

(2,2)
1 (p, un, un, 2)

)
= Op

(√
kn∆n

)
.

(9.61)

As in Lemma 4, it is easy to show

(9.62)
1√

n− kn − 2

n∑
i=kn+3

 n2(∆n
i S−∆n

i−1S)4

µ2
p,2

− 12
µ2
p,2

∆
−p/2
n V

n
i (p)− 1

 L−→
(
Z1

Z2

)
.

Next, using Taylor expansion as well as β̂fs − 2 = op(knu
2
n

√
∆n), we have

(9.63)

√
n

u2
nkn

(
H(p, un, β̂

fs)−H(p, un, 2)
)

= op(1).

We proceed with the rest of the terms in the decomposition of L̂n(p, un, β)−
L(p, un, β) and L̂n(p, vn, β)− L(p, vnβ). We start with the term Rn1 (un). It
relies on the bound in (9.3), which in turn depends on the analysis of the
term A3 in Section 5.2.3 of [22]. When L is a Brownian motion, the bounds
for this term get slightly changed. In particular, the bound in equation (41)
of that paper becomes now K∆1−ι

n for q > r ∨ 1 (this follows from using
integration by parts and Burkholder-Davis-Gundy inequality) and arbitrary
small ι > 0. Using this, it is easy to show that, when L is a Brownian motion,
the bound in (9.3) holds with αn replaced by βn, where

βn =
∆

3
2

(1+(p−1/2)∧0−ι)
n √

kn

∨
∆

1
r∨1
−ι

n

∨
∆

p
β′ ∧1− p

2
−ι

n

∨
∆

p+1
r∨1+1

−ι
n .

With this the bound for Rn1 (un) becomes

(9.64) E
∣∣∣∣Rn1 (un)

nu2
n

∣∣∣∣ ≤ K
βn ∨ k− 1

p+ι
n

u2
n

 ,

Further, using exactly the same steps as in the proofs of Lemmas 1-3, as
well as

sup
u,x∈R+

(
|u|p|f ′i,u(x)|+ |u|2p|f ′′i,u(x)|

)
<∞,

we get

(9.65) E
∣∣∣∣Rn2 (un)

nu2
n

∣∣∣∣ ≤ Kβnu−2
n , E

∣∣∣∣Rn4 (un)

nu2
n

∣∣∣∣ ≤ K(kn∆n)1−ι,
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(9.66) E
∣∣∣∣Rn3 (un)

nu2
n

∣∣∣∣ ≤ Ku−2−2p
n

(
(kn∆n)1−ι ∨ k−1/2

n (kn∆n)
1
r∧

2−p
2 −ι

)
,

(9.67)
E
∣∣∣Ẑn1 (un)− Zn1 (un)

∣∣∣
nu2

n

≤ K

 (βn ∨ k
− 1
p+ι

n )

u2
n

∨
√

∆n(kn∆n)1/2−ι

 ,

E
∣∣∣Ẑn2 (un)− Z(a,n)

2 (un)− Z(b,n)

2 (un)
∣∣∣

nu2
n

≤ K

k− 1
p+ι

n

u2+2p
n

∨ k−3/2+ι
n ∨ k−1/2

n (kn∆n)
1
r∧

2−p
2 −ι

 .

(9.68)

Combining the bounds in (9.64)-(9.68), together with (9.59)-(9.61), the
result in (9.62) and (9.63), we establish Lemma 5. We further note that
when X is a Lévy process Rn3 (u) and Rn4 (u) are identically zero. 2

We proceed with the proof of Theorem 4. Using Taylor expansion and the

result in (9.57), Ẑn defined in the statement of Lemma 5, is asymptotically
equivalent to

1

Cp,2u2
n

(
− log(L̂n(p, un, β̂

fs)′)− Cp,2u2
n

)
− 1

Cp,2v2
n

(
− log(L̂n(p, vn, β̂

fs)′)− Cp,2v2
n

)
.

Using again Taylor series expansion, the result in (9.57) and that u−2
n

√
∆n →

0, we have that the above is asymptotically equivalent to(
log
(
− log(L̂n(p, un, β̂

fs)′)
)
− log(Cp,2u

2
n)
)

−
(

log
(
− log(L̂n(p, vn, β̂

fs)′)
)
− log(Cp,2v

2
n)
)
.

From here the result (6.4) in Theorem 4, both in the general and Lévy case,
follows from Lemma 5.
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