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Abstract
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1 Introduction

Jumps are intrinsically a continuous time concept that can be defined only relative to a theoretical

stochastic process satisfying mild regularity conditions. Models for such processes are convenient

paradigms that should, of course, provide close approximations to the dynamics of discretely

observed data. Models without jumps, i.e., models with continuous sample paths are especially

convenient because then asset prices respond in a locally linear manner, hedging arguments work,

and convenient, easy to manipulate closed-form expressions for the reduced forms of economic

models are available. In the presence of jumps, however, markets are fundamentally incomplete

and the analysis far less tractable. A fairly complete discussions of the complications induced

by jumps is (Cont and Tankov, 2004, Chapter 10, pp. 319–351). Technical issues aside, jumps

are important because they represent a significant source of non-diversifiable risk as discussed at

length in (Bollerslev et al., 2008) and the references therein. Policy makers must make decisions

in real time during times of jump-inducing chaotic conditions in financial markets, and it is

thereby economically important to develop a statistical understanding of the time series behavior

of jumps.

There is currently fairly compelling empirical evidence for jumps in the level of financial prices.

The most convincing evidence comes from recent nonparametric work using high-frequency data

as in Barndorff-Nielsen and Shephard (2007) and Ait-Sahalia and Jacod (2009a) among others.

Preceding that evidence are the findings from parametric studies using daily data such as Chernov

et al. (2003), Andersen et al. (2002), Eraker et al. (2003), which are strongly suggestive but

arguably not overwhelming evidence for price jumps in the daily record.

A very prominent model that underlies much empirical work for continuous time processes

with jumps is the setup of Duffie et al. (2000), which we call here the affine double-jump model.

Since the double-jump model is in the affine class, just as in Heston (1993), it admits reduced

form solutions for asset prices and derivatives that are closed form in the sense that they can be
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readily computed on modern computing equipment using straightforward numerical techniques for

Fourier series and ordinary differential equations. The double-jump model presumes rare jumps,

e.g., compound Poisson process, for both asset prices and their variances. It has been applied

empirically by Broadie et al. (2007), Chernov et al. (2003), Eraker et al. (2003), Eraker (2004)

among others (see also empirical work by Wu (2010) who allows for the jumps to be of infinite

activity). It is especially useful for specification and estimation of continuous time models that

use data on both the underlying security and derivatives written on it. These studies generally

find evidence for both jumps in the price level and its volatility.

In this paper we aim to understand better the nature of changes, both small and big, in the

market volatility, which have important implications for volatility modeling, developing hedging

strategies and specification of market risk premia. In particular we answer the following questions.

Is the market volatility moving through occasional and relatively infrequent changes like in a

model driven by a compound Poisson process, or it involves a lot of small moves, which over short

intervals look like Gaussian as in the Heston (1993) model? Are there “sufficiently big” moves in

the volatility to justify inclusion of jumps in its modeling? Are volatility and price jumps related?

To date, the answers to these questions come predominantly through estimation of parametric

models built around the affine double-jump model (the recent nonparametric results of Bandi and

Reno (2008, 2009) are an exception). However, these questions are intrinsically nonparametric

and importantly they are related with the properties of the observed paths of the volatility for

which we do not need long-span asymptotics. Therefore, the persistence in volatility, e.g. how

many autoregressive factors are needed for its modeling, is a completely separate issue from the

type of changes through which the volatility evolves over time. Here we are interested in the

latter. Goodness-of-fit type tests for parametric volatility models would inevitably be joint type

hypothesis and therefore they should always be interpreted with caution when making conclusions

about pathwise properties of volatility. Here, we separate the pathwise properties of volatility

from its long-span ones (like persistence) by using high-frequency data and resorting to fill-in
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asymptptoics. The analysis is fully nonparametric and thus the evidence we provide here is

robust.

Our estimation is based on inferring from the data the value of a generalized activity index

(Ait-Sahalia and Jacod (2009a) and Todorov and Tauchen (2010a)), which is a generalization

of the classical Blumenthal-Getoor index of Blumenthal and Getoor (1961). The generalized

activity index is defined for an arbitrary stochastic process unlike the Blumenthal-Getoor index

which is defined for jump processes only. It lies in the interval [0, 2] and measures the vibrancy

of the process. The index divides the stochastic processes used in the volatility modeling into

equivalence classes. For example the compound Poisson jump process, which is a building block

in the affine double-jump model has an activity level of 0. On the other extreme is the Brownian

motion (and any diffusion process), whose activity is 2. Values of the index in (0, 1) correspond

to jump processes of finite variation, i.e., processes whose trajectories over finite intervals are

finite. Values of the index in (1, 2) correspond to jump processes of infinite variation, i.e., their

trajectories over finite intervals have infinite length.

We estimate the activity index of high-frequency data on the VIX volatility index computed

by the Chicago Board of Options Exchange (CBOE), which is based on close-to-maturity S&P 500

index options, and then make inferences about activity level of the unobserved market volatility.

Our estimation of the activity is based on constructing from the high-frequency data an activity

signature function, a diagnostic tool proposed in Todorov and Tauchen (2010a). The latter

provides also evidence whether the “big” moves in volatility should be modeled as jumps. Finally,

to explore the link between the discontinuities on market level and market volatility we use co-

jumping statistics proposed in Jacod and Todorov (2009).

The nonparametric evidence regarding the types of moves in the market volatility provides

empirical information on the plausibility of the various parametric volatility models that have been

proposed in the literature. The set of parametric models includes the double-jump model discussed

above along with many others reviewed in Section 3 below. In some of these models volatility is
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continuous, and in others it is a pure jump process. Of course there are also models with both

continuous and jump components. The various parametric models have different implications for

the activity level of the VIX index, the presence of jumps in it and their relationship with the ones

in the price level. We find that our nonparametric evidence identifies with reasonable accuracy

the most plausible class of parametric models and rules out many others.

There are certain advantages and also some notable pitfalls entailed with using the VIX data.

High-frequency data, of course, provide far more information about jumps, both large and small,

than do daily data, which is a major plus. Furthermore, since the VIX index is computed from

quoted options prices, which are highly sensitive to volatility, it provides far more information

on volatility than does the financial price series itself. Some care is needed, however, because

the VIX index is not a direct measure of volatility, but rather it is actually the forward price,

and thus a risk-neutral expectation, of future variance. The issues are discussed in more detail

below. Finally, volatility is known to be a long memory process, and this interacts with the VIX

index in some subtle ways regarding traded securities, semimartingales, and lack of arbitrage. As

discussed below, it turns out that use of the general activity index permits us to separate jumps

from long memory, and therefore we can make statements about the characteristics of volatility

jumps without having to account for the long memory.

Turning to our main empirical findings, we can summarize them as follows. First, we find that

market volatility is a very vibrant process - it involves many small changes as well as occasional

big moves. The presence of big moves justifies the use of jumps in volatility modeling. In terms

of modeling the small moves in volatility we find some evidence against using Brownian motion

because it is somewhat more “active” than what the data implies for the volatility. On the other

hand, the “activity” of the small volatility changes cannot be captured by a compound Poisson

process or even a process of finite variation like a Lévy subordinator, (i.e. a jump process with

non-negative increments as in the non-Gaussian OU model of Barndorff-Nielsen and Shephard

(2001)). The reason for this is that a finite variation jump process would imply too “little” activity
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in volatility than what is observed. We conclude that a model for the volatility that can reconcile

the empirical evidence is a pure jump model, where the driving jump process is far more active

than a process of finite variation, but on the other hand not as active as a continuous martingale

(though the jump activity that we estimate from the data is nevertheless relatively close to that

of a continuous martingale). This is to be contrasted with our findings about the market level

where we find that we need a continuous martingale to capture the small changes and jumps to

capture the big ones.

Second, using both high-frequency data on the VIX index as well as the S&P 500 index, we

find strong evidence that the jumps in the volatility and the price level occur at the same time.

We also find that these jumps exhibit strong negative dependence. These findings suggest that the

underlying risks behind the occurrence of stock market discontinuities and the spikes in market

volatility (and the corresponding risk premia) are similar if not the same. Therefore plausible

equilibrium-based models for the market risk premia should be able to generate endogenously

such links between volatility and jump risk (and their compensation).

The paper is organized as follows. In Section 2 we define the measures of stochastic volatility

and in particular the VIX index, data on which is used in the empirical part. In Section 3 we

present some popular stochastic volatility models and analyze their implications for the VIX

index. Section 4 introduces our measure of activity of a continuous-time process and proposes

methods for its inference from discrete observations. Section 5 applies the estimation technique

to simulated data and Section 6 contains the empirical part. Finally Section 7 concludes.

2 The VIX Index

Let {St}t≥0 denote the log of a financial price evolving in continuous time. We are interested in

the high frequency dynamics of the so-called volatility index (VIX) pertaining to St. The VIX

index is computed by the CBOE for the S&P 500 index using written options on it, but the

methodology for its computation can be applied to other assets as well. Theoretically, the VIX
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index is based on a portfolio of out-of-the-money options written on St over a continuum of strike

prices whose value equals that of a variance swap, see e.g. Britten-Jones and Neuberger (2000),

Jiang and Tian (2005) and Carr and Wu (2009). The latter is defined as a forward contract on

the total quadratic variation of the log-price of the underlying asset over a fixed interval into the

future. Following (Protter, 2004, pp. 66–76), let [S, S] denote the quadratic variation process

associated with St. Hence the VIX index is given by

vt ≡ EQ ([S, S]t+N − [S, S]t | Ft) , (2.1)

where N > 0 is fixed, {Ft} is the filtration on the probability space on which {St}t≥0 is de-

fined, and the expectation is taken under the risk-neutral distribution Q. Note that in practice

the volatility index is typically quoted in terms of annualized volatility, which is easier to inter-

pret, but the form (2.1) is much simpler to work with theoretically so we stick with that. The

quadratic variation process [S, S] is adapted, increasing, càdlàg (i.e. with paths that are a.s. right

continuous with left limits), and it can be split into continuous and discontinuous components

[S, S]t = [S, S]ct + [S, S]dt , (2.2)

corresponding respectively to the quadratic variation of the continuous and discontinuous parts of

the price process St. We make a standard assumption in finance and impose absolute continuity

of [S, S]ct i.e.

[S, S]ct =
∫ t

0
σ2

s ds, (2.3)

where σ2
t is the spot variance of St, also referred to as the instantaneous variance by Andersen

et al. (2008). The spot variance σ2
t is the instantaneous increment to the quadratic variation of

the continuous martingale component of St. Thus the VIX can be written as

vt = EQ
(∫ t+N

t
σ2

s ds

∣∣∣∣ Ft

)
+ EQ

(
[S, S]dt+N − [S, S]dt | Ft

)
. (2.4)

The first term is the familiar risk-neutral expectation of the forward integrated variance while

the second is the risk-neutral expected contribution of the price jumps.
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In practice, to generate an empirical measure of vt in (2.4) the CBOE uses a portfolio of short-

maturity out-of-the-money options on the S&P 500 Index over a discrete grid of strike prices. The

details of the computation are available at http://www.cboe.com/micro/vix/vixwhite.pdf. In

practice, there are two very small errors in replicating the price of a variance swap, which is the

value on the right hand side of (2.4). The first comes from the fact that a finite number of options

is used in the calculation of the VIX index, while the theoretical variance swap rate is equal to the

price of continuum portfolio of options. The second error arises when there are jumps in St. It

is equal to −2
∫ t+N
t

∫
R0

(
ex − 1− x− x2/2

)
dtνQt (dx), where dtνQt (dx) is the risk-neutral measure

of the jumps. Nonetheless, the measurement is considered to be very accurate, as documented

by extensive theoretical and Monte Carlo analysis in Jiang and Tian (2005) and Carr and Wu

(2009), and the second error does not influence any of our subsequent results; see Theorem 1 and

its proof. Hence in what follows, we treat the CBOE measured VIX as coinciding directly to vt.

It is always important to keep in mind the distinction between the observed VIX and the un-

observed spot variance. The observed VIX is the CBOE measurement of vt in (2.4). We use these

observations to make inferences about important characteristics of the random process {σ2
t }t≥0

for the spot variance. The inference is complicated because the VIX is forward looking, and its

increments are generated by movements in variables that influence the conditional expectations

on the right hand side of (2.4). Furthermore, we only observe discretely-sampled observations on

the VIX index which also complicates estimation and inference.

To the extent possible, we follow the convention of using the term “variance” for quantities that

are squares and measures of variance and the term “volatility” to refer to measures of standard

deviation. Variance measures are easier to work with mathematically because they add, while

volatility measures are easier to interpret because they are expressed in the same units as the

data itself.

As indicated by the many papers reprinted in Shephard (2005b) and the references therein, the

dynamics of the spot variance σ2
t are extremely important for modeling financial series. However,
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the spot variance itself is not directly observed. Our plan here is to adduce nonparametric

evidence from high-frequency VIX data on the empirical plausibility of various models for the

spot variance. The spot variance itself can also be split into continuous and discontinuous parts

σ2
t = σ2

c,t + σ2
d,t. (2.5)

Note that a jump discontinuity σ2
d,t − σ2

d,t− influences the entire trajectory E
(
σ2

t+s | Ft

)
, s ≥ 0,

and thereby (in general) induces a jump discontinuity in vt.

Historically, stochastic volatility models have assumed that the spot variance is continuous,

i.e., σ2
t ≡ σ2

c,t. However, more recently there has been interest in pure jump stochastic volatility

models, σ2
t ≡ σ2

d,t; see, e.g., Barndorff-Nielsen and Shephard (2001). Of course, the models can be

combined, as in the double-jump model of Duffie et al. (2000). Two recent comprehensive reviews

of stochastic volatility are Shephard (2005a) and Andersen and Benzoni (2007). In the subsequent

section we highlight the more relevant models and their implications for the VIX index.

3 Parametric Models for the Spot Variance

Our objective is to use nonparametric-type evidence from high frequency VIX and returns data

to cast light on the empirical plausibility of the various parametric volatility models for the spot

variance σ2
t that have been proposed in the literature. We briefly review the extant parametric

models in this section and then proceed to the nonparametric analysis in the application section

farther below. We leave unspecified whether the model pertains to the risk-neutral distribution

or the objective distribution, because common practice is to assume a risk premium structure

that preserves the basic form of the model across the two distributions. We also suppress here for

simplicity the presence of price jumps, since we are considering parametric spot volatility models,

and, for example, allowing for price jumps with intensity that is linear in the spot volatility factors

will simply lead to affine transformations of the expressions for the VIX index below.

The most widely used model in finance is probably the affine jump diffusion model written in

its most general form as:
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Affine Jump Diffusion

dσ2
t = ρ

(
σ2

t − ψ0

)
dt + ψ1σtdBt + dLt, ρ < 0, ψ > 0, (3.1)

where Lt is a Lévy process of finite variation with non-negative jumps. The model has been

widely used in both equilibrium and reduced-form asset pricing modeling, important examples

include Merton (1976), Duffie et al. (2000), and Duffie et al. (2003). In this case VIX index vt is

simply an affine function of the volatility process.

In most applications of (3.1), e.g. the affine double-jump model of Duffie et al. (2000), Lt

is a compound Poisson process and Bt is present. More recently, an important special case of

the affine jump diffusion (3.1) is the non-Gaussian OU model of Barndorff-Nielsen and Shephard

(2001) in which the diffusive component is absent:

Non-Gaussian OU

dσ2
t = ρσ2

t dt + dLt, ρ < 0, (3.2)

where Lt is a pure jump Lévy process with non-negative increments, also called a subordinator.

As for (3.1), the VIX index vt is an affine function of the volatility process under this specification.

Exponential-type stochastic volatility models have been also widely used in financial econo-

metrics:

EXP-OU-Γ

σ2
t = exp(α0 + α1ft),

dft = ρftdt + dΓt, ρ < 0,

(3.3)

where Γt is a generic process. When Γt is a Brownian motion, the model is a continuous-time

limit of the discrete EGARCH model of Nelson (1991). Many papers relevant for this model are

conveniently reprinted in Shephard (2005b). Standard calculations imply that in this case (when

Γt is a Brownian motion), the VIX index is

vt =
∫ N

0
exp

(
α0 + α1e

ρuft + α2
1

1− e2ρu

4ρ

)
du. (3.4)
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Versions of the model (3.3) with Γt being a Lévy process with compound Poisson jumps are

estimated in Andersen et al. (2002) and Chernov et al. (2003).

More generally, when Γt is an arbitrary Lévy process, using (Sato, 1999, Theorem 25.17) the

formula for the VIX index generalizes to

vt =
∫ N

0
exp [α0 + α1e

ρuft + C(u)] du, (3.5)

where C(u) is some function of u determined by the characteristic exponent of the driving Lévy

process (and the constants α1, ρ and N). A very important feature of (3.3) is that the driving

Lévy process can be infinitely active and of infinite variation, see Haug and Czado (2007), which

is unlike (3.2) where the driving process must be of finite variation.

A common feature of the above models for the volatility ant their multi-factor extensions is

that they are Markovian (up to augmenting the state space). Given the well-documented long

range dependence in volatility (Baillie et al., 1996; Comte and Renault, 1998; Shephard, 2005a),

some researchers have alternatively applied models that are non-Markovian, e.g. a fractionally

integrated model such as that of Comte and Renault (1998). The latter is an exponential stochas-

tic volatility model with Γt = Bδ,t, where Bδ,t is fractionally integrated Brownian motion with

fractional integration parameter 0 < δ < 1
2 . The factor ft has the following stationary represen-

tation

ft =
∫ t

−∞
a(t− s) dBs, (3.6)

where Bt is standard Brownian motion, and the function a(·) is given by

a(u) =
1

Γ(1 + δ)
(uδ + ρeρu

∫ u

0
e−ρxxδdx). (3.7)

The VIX index for this model takes the following form

vt =
∫ N

0
exp

(
α0 + α1

∫ t

−∞
a(t + u− s) dBs +

α2
1

2

∫ u

0
a2(z)dz

)
du. (3.8)

As noted in Comte and Renault (1998), the spot variance σ2
t in this model is not a semimartingale.

Nevertheless there are no arbitrage opportunities of the type discussed in Rogers (1997) because
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the spot variance is not a traded security. The observed VIX index, however, is a portfolio of

traded securities and it should be a semimartingale to rule out arbitrage, and this indeed is the

case for the model-implied VIX index in (3.8); we illustrate the point below.

4 The Activity Level of Volatility

The volatility models in the previous section have been all used in various applications, and our

aim is to provide nonparametric evidence on their empirical plausibility using high-frequency ob-

servations on the VIX index. Towards this end, we now show in this section how to associate with

each continuous-time process an index of its so-called activity and present methods to estimate

the index. Since we actually estimate the activity index on VIX data, but we are interested in

the spot volatility σ2
t process, we end this section by deriving results linking the activity index

for the spot variance and the VIX index under mild regularity conditions.

4.1 Activity Index

We start with consideration of a measure of activity for an arbitrary continuous-time process.

Intuitively, by activity level we mean the “degree” of vibrancy of the process, i.e. the “roughness”

of its trajectories. Formally, the statistical setup is as follows. We observe a generic scalar process

X over a long span [0, T ]. During each subperiod (t − 1, t], where now t is an integer, we have

high-frequency observations on X with a sampling interval of length ∆n. That is, we observe X

at times t− 1, t− 1 + ∆n, ..., t− 1 + [1/∆n]∆n during the subperiod. Think of the subperiod as

being either a day, week, or month. Following Ait-Sahalia and Jacod (2009a) and Todorov and

Tauchen (2010a), we can define the activity of X during an arbitrary interval (t− 1, t] as

βX,t := inf
{
p > 0 : plim∆n→0Vt(X, p, ∆n) < ∞}

, (4.1)

where Vt(X, p, ∆n) is the power variation of X over the interval (t− 1, t] given by

Vt(X, p, ∆n) =





∑[1/∆n]
i=1 |xt,i|pI (|xt,i| ≤ c) , p < 2

∑[1/∆n]
i=1 |xt,i|p, p ≥ 2

(4.2)
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where xt,i = Xt−1+i∆n − Xt−1+(i−1)∆n
and I(·) is the 0 -1 indicator function. The importance

of the power variation (4.2) for financial econometrics was pointed out in Barndorff-Nielsen and

Shephard (2003, 2004) and follow-up papers.

The truncation at c > 0 in (4.2) for powers r less that 2 has no effect asymptotically, because

the value of the activity index βX,t in (4.1) is determined by the “small” price moves (the sample

functions of X are càdlàg, and therefore jumps bigger in absolute value than a fixed positive

number are always finite over a finite period of time). However, the truncation provides robustness

in finite samples of our estimator of the index, constructed from the power variation in the next

subsection, to very extreme price movements. For p > 2 the truncation is unnecessary because

in that region only the “large” moves matter for the asymptotic behavior of the power variation.

In practice, we use a very large value of c implying very mild truncation so that typically up to

two of the summands are truncated, and we check sensitivity of the findings to the choice of c.

We are extremely grateful to an anonymous referee who pointed out the potential lack of finite

sample robustness, which can be fixed by this simple expedient of truncation.

Our interest is mainly in the case when X is a semimartingale, because to avoid arbitrage, any

traded security, and thus the VIX index as well, needs to be a semimartingale, see Delbaen and

Schachermayer (1994). For a semimartingale the activity index takes values in the interval [0, 2].

Each semimartingale can be decomposed into drift term along with continuous and discontinuous

local martingale parts (Jacod and Shiryaev, 2003). These components of the semimartingale

process can be naturally ranked in terms of their activity in the following order from least to

most active: finite activity (e.g. compound Poisson) jumps (activity of 0), infinite activity but

finite variation jumps (activity in [0, 1]), drift (activity of 1), infinite variation jumps (activity of

(1, 2]), continuous martingales (activity of 2). The activity of the semimartingale is determined by

the activity of its most active component. Thus, for example, if X is driven by both a Brownian

motion and jumps, the continuous martingale dominates and the activity of X is equal to that of

its continuous martingale component, which is 2.
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Evidently, the jumps are the most interesting component of a semimartingale in terms of

their activity. Our measure of activity for pure jump Lévy processes coincides with their so-

called (generalized) Blumenthal-Getoor index (Blumenthal and Getoor (1961) and Ait-Sahalia

and Jacod (2009a)). This index is analogous to the parameter α of the α-stable distribution.

If X is not a semimartingale things are different. For example, when X is the OU process

driven by fractional Brownian motion given in (3.6), then its activity index is determined by its

degree of fractional integration, δ, and is equal to 1
δ+0.5 , see Corcuera et al. (2006).

Finally, note that activity index is defined over the subinterval (t− 1, t], instead of the whole

sample. This approach allows for the possibility that the process X can change its activity over

time. While the activity of most parametric continuous-time models, including those for the spot

variance of the previous section, is sometimes presumed constant over long segments of time, we

do not make this assumption apriori. Breaking the estimation up across a number of subintervals

provides some bootstrap-type indication on sampling fluctuations and more importantly provides

protection against parameter shifts.

4.2 Estimation of Activity Index

The estimators of the activity index are really quite simple to compute. The key results from

Todorov and Tauchen (2010a) that generate the estimators are as follows. With Vt(X, p, k∆n)

denoting the power variation as defined in (4.2) and βX,t the activity index in (4.1) to be estimated

for period t (think of t as a day or a month), then

(a) (k∆n)
1− p

βX,t Vt(X, p, k∆n) P−→ Φt(p), 0 < p < βX,t, for all k ≥ 1

(b) Vt(X, p, k∆n) P−→ ∑
t−1≤s<t |∆Xs|p1 ((|∆Xs| ≤ c ∩ p < 2) ∪ p ≥ 2) , p > βX,t,

(4.3)

as ∆n ↓ 0. In (a) the limit on the right depends only on the power p; the result in (a) holds for

any p in the case when X is continuous (i.e., it does not contain jumps); in (b) the limit on the

right is the sum of the absolute jumps raised to the pth power (and possibly truncated).

To get estimators of the activity index, evaluate (a) above at k = 1, 2, take the ratio, and
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note

(∆n)
1− p

βX,t Vt(X, p, ∆n)/ (2∆n)
1− p

βX,t Vt(X, p, 2∆n) P−→ 1, p < βX,t.

Now take the log of this ratio, set it equal to its asymptotic value of zero, and solve for the implied

“β” to get

bX,t(p) =
ln (2) p

ln (2) + ln [Vt(X, p, 2∆n)]− ln [Vt(X, p, ∆n)]
, p > 0. (4.4)

The expression bX,t(p) above is termed the activity signature function (ASF), and we find that

essentially all relevant information about the activity of the X process is contained in the ASF

for p ∈ (0, 4].

As shown in Todorov and Tauchen (2010a), as we sample more frequently, i.e. ∆n → 0 on

any fixed interval (t− 1, t], the activity signature function bX,t(p) behaves as follows

A. bX,t(p)−→ 2, ∀p > 0 if X contains continuous martingale,

B. bX,t(p) P−→ max(p, 2), ∀p > 0 if X contains continuous martingale plus jumps,

C. bX,t(p) P−→ max(p, βX,t), ∀p 6= βX,t if X is driven by a pure jump process,

where the convergence is locally uniform in p. The right-hand sides above describe the asymptotic

behavior of the ASF. Intuitively, to get the result in A for example, one can apply (4.3) to write

Vt(X, p, 2∆n) ≈ (2∆n)p/2−1Φt(p) and Vt(X, p, ∆n) ≈ (∆n)p/2−1Φt(p). Simple algebra then leads

to the flatness at 2 of the asymptotic limit of bX,t(p) in this case. Similar analysis leads to the

limits in the other two cases.

In finite samples the realization of bX,t(p) is a smooth infinitely differentiable function of p.

From the asymptotics, we can thus expect it to display a bend around p ≈ βX,t, the population

value, with the sharpness of the bend providing an indication of precision of estimation. On the

other hand, the behavior of the activity signature function for p > 2 can reveal us whether there

are jumps, large or small, in the process X in the interval (t − 1, t] even in the case when they

are dominated by a continuous semimartingale.
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Todorov and Tauchen (2010a) suggest a graphical method to use the ASF to get an indication

of the value of βX,t and the presence of jumps. Specifically, let

Bq(p) = qth quantile of {bX,t(p)}t=1,2,...,N , q ∈ (0, 1) (4.5)

denote the qth quantile of the bX,t for each power p. Bq(p) is called the quantile activity signature

function (QASF). The most informative plots are obtained from the lower and upper quartiles,

B0.25(p), B0.75(p), and the median B0.50(p) over the range 0 ≤ p ≤ 4. Robust methods such as

using quantiles are crucial because we are dealing with data sets containing extreme observations.

Inspecting graphs can be helpful for a rough indication, but we can directly estimate the

activity index over each subinterval (t− 1, t] as

β̂X,t = bX,t(p), for some fixed value of p. (4.6)

The estimator (4.6) is consistent for the activity index provided p < βX,t, and there are several

considerations that guide the choice of p. First, obviously we need to pick p lower than the lowest

possible activity βX,t for the process X. In our case, we can assume the activity level is at least

1, because the volatility process is mean-reverting and the drift term has an activity of 1. This

was also illustrated with the different parametric models of Section 3. Second, it can be shown

that for very small powers the estimator is relatively inefficient and thus higher values of p are

preferred. Based on this discussion, an appropriate choice for p in (4.6) is in the range 0.50 to

just under 1.00. Values in this range are nearly optimal for the levels of activity our data suggest,

but the formal optimality analysis is technically very demanding and well beyond the scope of

the present paper (Todorov and Tauchen, 2010b).

A significant issue is whether the process contains a Brownian component, and we therefore

conduct a test whether β̂X,t is statistically less than two. We do the test in logs and construct

a one-sided critical region for ln(bX,t(p)) using its asymptotic distribution under the null, which

is normal with estimated standard error of ÂsySE(ln(bX,t(p))). Details on the asymptotic result

and the calculation of the feasible standard error can be found in Todorov and Tauchen (2010a).
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4.3 Linking VIX and Spot Variance Activity Indexes

We undertake the estimation described above using the high-frequency VIX data but the interest

is on the unobserved spot variance process. Therefore, for the estimation to be meaningful it is

important to investigate the relationship between the activity level of the observed VIX index

to that of the spot variance, and it turns out they are the same under very weak regularity

conditions. Indeed, in a Markov setting, which is most often adopted in parametric volatility

modeling, the agreement is established by the following theorem:

Theorem 1 For the setting in (2.2)-(2.4) suppose in addition the following

A. σ2
t = G(c)(ft) for some twice differentiable function G(c) : Rk → R+ with non-vanishing first

derivatives on the support of ft,

B. the compensator of the jumps in {St} under the measure Q is of the form G(d)(ft)dt⊗ η(dx)

for some twice differentiable function G(d) : Rk → R+ and a measure η on R satisfying

∫
R(|x|2 ∧ 1)η(dx) < ∞,

C. ft is a vector with independent elements each of which solves under Q

df
(i)
t =

di∑

j=1

g
(i)
j (f (i)

t− )dZ(i)
tj , j = 1, ..., di, i = 1, ..., k, (4.7)

where the functions g
(i)
j (·) are twice differentiable and Z

(i)
tj are independent Lévy processes.

Assume further that the expectation vt = EQ ([S, S]t+N − [S, S]t|Ft) is well defined. Then, νt =

F (ft) for some continuously differentiable function F : Rk → R+. Furthermore, if ∂F
∂fi

(·) 6= 0 on

the support of ft for i = 1, ..., k, then we have for an arbitrary t > 0
(a)

βσ2,t ≡ βv,t a.s., (4.8)

where βX,t for an arbitrary semimartingale Xt is defined in (4.1).

(b) the set of jump times of {σ2
s}[0,t] coincides with the set of jump times of {νs}[0,t] almost

surely provided F is monotone in each of its arguments.
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The result of the theorem follows essentially from the fact that under its assumptions, both

the spot variance and the associated VIX index are continuously differentiable functions of the

volatility factors. Section 3 contains particular parametric examples of this. Such transforma-

tions preserve the activity index, and therefore to determine the volatility activity we need only

determine the activity of the most active volatility factor.

The theorem does not say that the VIX, which is a market-implied quantity, and the spot

variance are the same. Indeed, their dynamics, including persistence and level, might be quite

different as is often found in empirical work. The theorem does say, however, that key features

of the stochastic processes, i.e., their activity levels and sets of jump times, must agree.

Based on Theorem 1 and the discussion in the previous section (see Todorov and Tauchen

(2010a) for formal results), we have the following levels of volatility activity for the Markov models

of the previous section

(a) Affine Jump Diffusion and EXP-OU-Gaussian: βσ2,t = βv,t = 2.

(b) Non-Gaussian OU: βσ2,t = βv,t = 1.

(c) EXP-OU-Lévy: βσ2,t = βv,t = max{βL, 1}, where βL is the Blumenthal-Getoor index of the

driving Lévy process.

Note that for the non-Gaussian OU model the volatility activity is determined by the drift term

in (3.2), since the driving jump process is a Lévy subordinator and thus of finite variation. On

the other hand, for the affine jump diffusion model (and all models in which Brownian motion

is used in the specification of the stochastic volatility), the volatility activity is driven by the

continuous martingale part which “dominates” drift and arbitrary jump factors. Thus, the most

tractable (and hence most used) stochastic volatility specifications from the different classes of

models of the previous section, the affine jump diffusion model and the non-Gaussian model, have

very different implications for the activity level of the stochastic volatility.
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Finally, the relationship between the activity of the spot variance and the associated VIX

index is non-trivial outside of the Markov setting. For the EXP-OU-FI model, we have βσ2,t =

1
δ+0.5 while βv,t = 2. As already mentioned, the activity of the spot variance is driven by the

degree of the fractional integration. The transformation implied by the VIX index restores the

semimartingale property, and, since the model is driven by Brownian motion, we have that the

activity of the VIX index is 2.0 as determined by this most active component. Therefore for the

EXP-OU-FI model, the activity of the VIX index will not be informative about that of the spot

variance. However, this is not a drawback of our analysis. For this model it is the activity of the

VIX index that we are most interested in, since it tells us that the volatility process is modeled

via (fractionally-integrated) Brownian motion and not jumps, and this is exactly what we are

after.

5 Monte Carlo

We now consider the finite sample properties of the estimators and tests developed in the pre-

ceding Section 4. Table 1 contains a complete list of the various scenarios considered: affine

jump diffusions with a wide range of jump intensities (Case A), long memory volatility models

(Case B), non-Gaussian OU models (Case C), and Lévy-driven pure jump models (Case D).

The parameter values for the first two affine jump diffusion specifications were taken from the

estimation results of Eraker et al. (2003), while the other two cases are used as a check for the

robustness of the results against various “extreme” scenarios. In case AJD-HJ, we kept the mean

of the jumps the same but increased approximately ten times the jump intensity. In case AJD-E,

we further increased the mean jump size while keeping the high jump intensity of case AJD-HJ.

For each considered model we calculate the corresponding value of the VIX index using the

expressions in Section 3 and do all the calculations of Section 4 using the simulated high-frequency

data on it. For the same reasons as in Section 2, we ignore price jumps and risk premia. The

main question that we seek to answer is whether the transformations involved in the calculation
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Table 1: Parameter Setting for the Monte Carlo

Case Parameters βσ2 βν

A. Affine Jump Diffusion
ψ0 −ρ ψ1 λ µ

AJD-no jumps 0.8136 0.0128 0.0954 2.0 2.0
AJD-LJ 0.5585 0.0250 0.0896 0.0055 1.7980 2.0 2.0
AJD-HJ 0.5585 0.0250 0.0896 0.0500 0.1978 2.0 2.0
AJD-E 0.5585 0.0250 0.0896 0.0500 0.9889 2.0 2.0

B. EXP-OU-FI
α0 α1 δ −ρ

0.00 1.00 0.40 1.00 1.1 2.0

C. Non-Gaussian-OU
−ρ β λ c
0.03 0.50 5.00 0.05 1.0 1.0

D. EXP-OU-Lévy
α0 α1 −ρ β λ c

−0.70 1.00 0.07 1.50 2.50 0.10 1.5 1.5

Note: Affine Jump Diffusion model is given in (3.1) with Lévy density of the jump process equal to

λ e−x/µ

µ
1{x>0} (compound Poisson process with exponentially distributed jumps). EXP-OU-FI model

is given in (3.3) with driving process being the fractional Brownian motion Bδ,t. Non-Gaussian-OU

model is given in (3.2) with Lévy subordinator having Lévy density given by c e−λx

xβ+1 1{x>0} (tempered
stable process). EXP-OU-Lévy model is given in (3.3) with Lévy density of the pure-jump driving

Lévy process equal to c e−λ|x|
|x|β+1 (tempered stable process).
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of the VIX index have any finite sample effect on our inference for the spot variance activity. For

general assessment of finite sample properties of activity estimation and testing we refer to the

web-appendix to Todorov and Tauchen (2010a).

5.1 Illustrating the Basic Computations on Simulated Data

We start by summarizing the basic aspects of the computations associated with the theory of

Subsection 4.1 and display the outcome on a simulated realizations for a few representative

scenarios from Table 1. In this presentation we let β denote βX,t for simplicity. In each day

we sample 78 times, which corresponds to a 5-minute sampling frequency in a standard 6.5 hours

trading day, and this also is the frequency of our high-frequency data that we use in the empirical

analysis of the next section. The interval (t− 1, t] corresponds to 22 trading days, i.e., a calendar

month, so the unit of time is thereby 1 = one month in all calculations that follow. There are

78 × 22 = 1716 high-frequency intervals per month. The use of a month as the subinterval is

a compromise in the tradeoff between the presumption of constant activity over the subinterval

and the associated reduction in sampling error inference with more data points per interval.

To begin, compute the power variation Vt(X, p,∆n) in (4.2), where X is the process and the

power p ∈ (0, 4] ranges over a fine grid in the tth time interval, here a month, with ∆n = 1/(78×22).

Next compute Vt(X, p, 2∆n) using the coarser 10-minute sampling. When computing the power

variation over this coarser frequency and for powers p < 2, we first remove the 5-minute price

increments bigger in absolute value than the truncation level (c = 1.50), and then aggregate to

10-minutes and compute the power variation from them (without any further truncation). Finally,

using the power variations over the two frequencies, we compute the activity signature function

for interval t using (4.4). Since it is impossible to report in any sensible manner each of the

activity functions bX,t(p), a summary measure based on robust methods needs to bo computed:

the quantile activity signature function defined in (4.5) and the quartiles q = 0.25, 0.50, 0.75,

commonly used in statistics, prove informative.
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Recall in presence of jumps

bX,t(p) P−→ max(β, p),

from the asymptotic analysis. So, in finite samples we expect the median QASF, B0.50(p), to be

close to β for powers p < β, close to p for p > β, and curvilinear for p in a neighborhood of β.

The upper and lower QASFs B0.75(p) and B0.25(p) provide an indication of sampling dispersion.

As a check, we compute the QASFs on simulated realizations for a few well-known volatility

models where the value of β is given. These simulated realizations follow standard conventions

with annualized volatility based on 252 trading days per year. We simulate the different volatility

models over a total of 4400 days, which corresponds to 200 months. Of course the activity level,

which recall we just denote β here, is the same for all simulated months, but that need not be

the case with observed data.

We start with an affine jump diffusion where the QASFs are shown in the top left- and right-

hand rows of Figure 1. In the top left, jumps are suppressed (Case AJD-no-jumps), the process

is continuous, and the QASFs are flat around β = 2 as expected. In the top right (Case AJD-E)

large rare jumps are added in to the Brownian diffusion. Now the QASFs are flat around β = 2

for p ≤ 2, since the continuous component dominates here, while for p > 2 the curves slope

upwards to the asymptotic value p. The sharp break in slope at p = 2 in the top right plot in

Figure 1 is due to the dominance of the large jumps; this behavior might be unlikely in practice

where only few months can have such big jumps, and the plots therefore should be regarded as a

robustness check.

The plots in the second two rows in Figure 1 pertain to a Brownian long memory stochastic

volatility with parameter settings B in Table 1. To contrast the different activity of the spot

variance and the VIX index in this model, we calculate also the QASFs of the unobservable spot

variance. In the second row left-side are the QASFs for the simulated spot variance process,

which are flat, reflecting continuity of the process, but around a value well less than 2.0. The

reason is that the spot variance is not a semi-martingale so there is no constraint that its QASF
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asymptotically pass through the point (2,2). The height of the asymptotic value of the activity

signature function is determined by the fractional difference parameter d. Interestingly, for the

second row right-hand side the QASFs for the VIX index associated with this spot volatility

process are flat lines around 2.0, which has to be the case asymptotically because the VIX is a

portfolio of traded securities and thereby must be a semimartingale. Finally, the two plots in
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Figure 1: QASF -s for various stochastic volatility models. In each panel the three quantiles that are
displayed are the 25-th, 50-th and 75-th, and are computed on the basis of 200 months of simulated
data. The top left and right panels correspond to the AJD-no jumps and AJD-E respectively models.
The middle panels correspond to the EXP-OU-FI model. The bottom left and right panels correspond
to the Non-Gaussian-OU and EXP-OU-Lévy respectively specifications. All model specifications are
given in Table 1. In all cases but the middle right panel, the QASF s are based on the VIX index.
QASF s for the middle left panel are for the spot variance series. The truncation level in all cases is
c = 1.5.

the bottom row pertain to models where volatility is a pure jump process with no continuous

component. The plot in the lower left of third row, pertains to the non-Gaussian OU model Case

C in Table 1. The value of β of the driving Lévy process is 0.50, but the bend occurs around

p = 1.0. The reason is that the non-Gaussian OU model has a drift component, which must have
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an activity index of 1.0, and the approach taken here always reveals the index of the dominant

component. The plot in the lower right row pertains to the Lévy-driven OU process, Case D in

Table 1 where β = 1.50. There is a soft bend around the true value of p = 1.50 and the jumps are

quite apparent for p ≥ 2.00. The softness bend around p = 1.50 indicates that for higher values

of the index the plots are just indicative and will not reveal the actual value with high precision.

5.2 Assessment of the Activity Estimator

The Monte Carlo assessment of the accuracy of the estimator (4.6) for each of the cases is shown

in Table 2. We computed the estimator for 5-minute returns for a 6.5 hour day, pooled over

a period of a “month” (comprised of 22 trading days) and replicated 1, 000 times. The power

parameter is p = 0.95, but the results are quite insensitive to the choice of p of the range 0.50 to

1.00. Table 2 shows the median and the median absolute deviation about the median as measures

of central tendency and variability, respectively. The reported results include no truncation (NT)

and truncation (T) at level c in (4.1).

Table 2: Small Sample Behavior of β̂

med(β̂) MAD

Case β NT T NT T
AJD-no jumps 2.00 2.01 2.01 0.081 0.079
AJD-LJ 2.00 2.00 2.01 0.086 0.079
AJD-HJ 2.00 1.98 2.00 0.081 0.081
AJD-E 2.00 1.92 2.00 0.093 0.082
AJD-E-JS 2.00 1.91 2.00 0.080 0.076
EXP-OU-FI 2.00 1.99 1.99 0.088 0.088
NOU 1.00 1.06 1.06 0.010 0.010
EXP-OU-Lévy 1.50 1.69 1.71 0.052 0.052

Note: med is the median function; MAD = med|β̂−med(β̂)|; NT indicates no truncation; T indicates
truncation with c = 1.5; case AJD-E-JS is the same as AJD-E but we keep only simulations in which
the estimation period contains at least one jump. There are 1, 000 replications of one month’s worth
of 5-minute observations. The estimator β̂ is given in (4.6) for p = 0.95.

Results for the affine jump diffusion are in the first four rows of Table 2. The estimator
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without truncation (NT) is unbiased and reasonably accurate, except in the cases AJD-E and

AJD-E-JS, where rather large jumps have been added to the diffusion. The case AJD-E-JS

always contains at least one large jump in each simulated month. We are very grateful to a

referee for pointing out that such large jumps could impart a finite sample downward bias. The

truncation point c = 1.50 (recall VIX index is quoted in annualized percentage units) is very

mild, as it eliminates only one or two large moves per period, but as seen from the table in the

(T) column it properly corrects for the downward bias.

Overall, Table 2 suggests the estimator is quite well behaved, regardless of whether the jumps

are finitely or infinitely active and of bounded or unbounded variation. The truncation has no

essential effect in any of the infinite activity cases, and it is really needed only in finite samples

to guard against huge large rare jumps (which asymptotically do not matter). The dispersion

measure suggests the estimator is accurate to within a range between ±0.05 to ±0.10.

5.3 Assessment of the Test for a Brownian Component

We also evaluated the test for a Brownian component over the same set of replications and

summarize the findings in Table 3. For the first five cases of an affine jump diffusion, the null

hypothesis is true, so the rejection rates represent the size of the test. Now it is seen that the

truncation (T) is much more important for the actual size to agree closely with the nominal size.

In the long memory model, the null is also true but the truncation is irrelevant for this case. In

the last two cases of pure jump volatility models the test is seen to have very high power.

6 Empirical Application

We use high-frequency data on the VIX index computed by the CBOE along with S&P 500 Index

futures returns. The data set spans the period from September 22, 2003 until December 31, 2008,

for a total of 1, 212 trading days which corresponds to 64 calendar months. Within each day,

we use 5-minute records of the VIX index and the S&P 500 futures contract from 9.35 till 16.00
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Table 3: Size and Power of the Test for a Brownian Component

REJECTION RATES (Percent)
NT T

α = 5% α = 10% α = 5% α = 10%
SIZE
AJD-no jumps 3.6 8.1 3.6 8.1
AJD-LJ 8.8 13.1 4.0 7.9
AJD-HJ 7.4 12.9 4.5 9.2
AJD-E 20.8 29.4 3.7 9.6
AJD-E-JS 21.3 32.7 4.3 9.9
EXP-OU-FI 3.5 10.5 3.5 10.5
POWER
NOU 100.0 100.0 100.0 100.0
EXP-OU-Lévy 92.9 97.0 87.9 94.1

Note: case AJD-E-JS is the same as AJD-E but we keep only simulations in which each estimation
period contains at least one jump. The rejection rates are based on 1, 000 replications of one month’s
worth of 5-minute observations. In the construction of the test p = 0.95. NT indicates no truncation;
T indicates truncation with c = 1.5.

(EST) corresponding to 78 price observations per day.

Table 4 shows simple summary statistics and the top two panels of Figure 2 show plots of

the high-frequency series. The sample moments of the series as shown in Table 4 are not

surprising in view of the fact that the VIX is nonnegative, positively autocorrelated, and right-

skewed, together with the fact that the sample includes the very volatile year 2008. The statistics

on the ratio of the daily realized variance (RV) at the 5-minute and 10-minute levels are a check

on possible microstructure noise, since RV should be invariant to the sampling frequency in the

absence of noise. These statistics suggest that noise is unlikely to be much of a problem but we

need to be just a little guarded in interpreting the results for the S&P futures returns.

The paths of both VIX and S&P 500 index series exhibit discontinuities. We tested the null

hypothesis that in each month there is at least one jump using the test of Ait-Sahalia and Jacod

(2009b), where we stress our alternative is of no jumps. At the 5 percent level of significance we

can reject the null of the presence of jumps in only 14 and 23 months, respectively for the VIX

and the S&P 500 index.

26



Table 4: Summary Statistics for the Data

Statistics VIX Index S&P 500 Index

mean 18.26 −2.94
std 10.52 20.84
skewness 3.28 −0.89
kurtosis 15.02 28.47

5-min Autocorrelation 0.07 −0.03

quant.25(RV10/RV5) 0.87 0.82
quant.50(RV10/RV5) 1.00 0.94
quant.75(RV10/RV5) 1.13 1.04

Note: The mean and standard deviation of the S&P Index daily returns are annualized by multiplying
by 252, respectively

√
252, and are reported in percentage terms. The statistics on realized variation

(RV) are the quartiles of the ratios of daily RV at the 10- and 5-minute frequencies.

6.1 How Active are Stock Market Volatility and Returns?

To address these questions we start by displaying the Quantile Activity Signature Function

(QASF) for each series, computed as developed in Todorov and Tauchen (2010a) for the 25-

th, 50-th and 75-th quantiles. The unit interval used in the computation of the ASFs, as well as

the rest of the statistics based on them, is a calendar month. The QASFs for 5-minute sampling

are shown in the middle panels of Figure 2 with the VIX on the left and the S&P Futures Index

on the right.

The contrasts between the VIX and the S&P index QASFs are small but quite noteworthy.

The median and 75-th QASFs for the VIX series on the left are just below 2.00 for powers p up

to about 1.90, which would be expected for a pure jump process with a relatively high activity

level around in the range 1.60–1.90 or so. On the other hand, for the S&P Index the QASF is

centered right on 2.00 for powers up to 2.00, which would be expected of a process comprised of

a Bronian diffusion plus jumps. These indications appear to be consistent over sampling interval,

since the plots in the lower two panels of Figure 2 for the 10-minute frequency appear similar to
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Figure 2: Activity estimation results. The left panels correspond to the VIX index and the right ones
to the S&P 500 index. The top two panels plot the high-frequency data. The middle panels report
QASF s for 5-minute sampling frequency and the bottom panels for 10-minute sampling frequency.
The QASF s are computed using 64 monthly ASF estimates for the sample period September 2003 till
December 2008. The quantiles that are displayed are the 25-th, 50-th and 75-th. The truncation level
for both series is c = 1.5 The dashed lines in the two left bottom panels are straight lines at 2.
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the two middle panels.

Visual impressions notwithstand, we need to examine both the point estimates of the activity

levels and the formal test for the presence or absence of a continuous component. We do this

across the range of powers p = 0.50, 0.70, 0.95. On Figure 3 we also plot a scatter of the activity

estimates, corresponding to p = 0.95, for the two series and all months in the sample. The left-
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Figure 3: Scatter plot of the activity estimates. The estimates of the activity index correspond to
p = 0.95 and truncation c = 1.5.

hand sides of Table 5 show the medians of the monthly point estimates along with the median

absolute deviation about the median (MAD). The estimates indicate that the activity index for

the VIX is in the range 1.73–1.83 and essentially exactly 2.00 for the S&P index; interestingly, the

precision level of ±0.10 is consistent with that found in the Monte Carlo work for this sampling

frequency. The right-hand side of Table 5 shows the outcomes, i.e., the the rejection rates,

for the formal test for the absence of a continuous component, which is derived in Todorov and

Tauchen (2010a) and based on our estimator of the activity index. The rejection rates are for

three values of p between 0.50 and 1.00. The null hypothesis of the test is that the underlying

process contains continuous martingale plus possibly jumps, where perforce the index is 2.00. The

alternative is that the underlying process lacks a continuous martingale and the index is thereby

less than 2.00, so the test is one sided. Small values of the log of the estimator relative to log(2.00)
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Table 5: Estimates of βX and Tests for a Brownian Component

Statistics Rejections(%)

p med(β̂) MAD 5% 10%
VIX

0.50 1.73 0.112 57.8 62.5
0.70 1.77 0.105 50.0 60.9
0.95 1.83 0.107 45.3 51.6

S&P 500 Index
0.50 2.02 0.141 3.1 6.3
0.70 2.04 0.120 3.1 3.1
0.95 2.06 0.107 1.6 3.1

Note: The median, MAD = med|β̂ − med(β̂)|, and the rejection rates for the test are computed
using 64 monthly estimates and tests for the sample period September 2003 till December 2008. The
truncation used for both series is c = 1.5.

discredit the null hypothesis. In Table 5, for the VIX the test rejection indicates no continuous

component in half of the periods at p = 0.70 with similar rejection rates for the other values of

p, while for the S&P 500 Index the rejection rates always lie below the nominal significance level

of the test.

Since the truncation level c used in computing bX,t(p) is a tuning parameter, it is essential to

assess the sensitivity of our key finding regarding the activity level of the VIX index with respect

to the choice of the truncation point. Until now in the empirical analysis, as in the Monte Carlo

study, we have used very mild truncation corresponding to removing on average only one high-

frequency increment per month. In Table 6 we report also estimation results for other choices of

c that result in a much more severe truncation. As seen from the table, our findings regarding

the volatility activity seem reasonably insensitive to the choice of c.

To summarize, the evidence suggests that the VIX index is a pure jump process without a

continuous component and a relatively high activity index. The S&P 500 index itself, in contrast,

is clearly a continuous plus jump process, which is consistent with findings in other studies

regarding the characteristics of financial price indices (Todorov and Tauchen, 2010a, and the
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Table 6: Robustness of estimated βX for VIX index with respect to truncation level c.

Truncation c = 0.5 Truncation c = 1.0 Truncation c = 1.5

p med(β̂) MAD med(β̂) MAD med(β̂) MAD

0.50 1.76 0.111 1.75 0.115 1.73 0.112
0.70 1.81 0.107 1.79 0.113 1.77 0.105
0.95 1.84 0.099 1.84 0.111 1.83 0.107

Note: Notation as in Table 5. Truncation c = 0.5 corresponds to 3.57 standard deviations for a
5-minute intraday change in the VIX index in our sample.

references therein).

To the extent our evidence can be confirmed by future research, there would be important

implications for modeling of the spot stochastic volatility process {σ2
t }. First, the absence of a

continuous component suggests that models such as the CGMY model are potentially plausible

volatility models, and the pricing of volatility derivatives would be substantially model com-

plicated as noted in (Cont and Tankov, 2004, Section III, pp. 245–494). Second, affine jump

diffusions appear unlikely candidates for volatility, since the contrast between the top right panel

of Figure 1 and the middle-left and bottom-left panels of Figure 2, together with the results in

Table 5, suggest that this sort of model was unlikely to have generated the data. The same

contrast appears for the other affine jump diffusion specifications of Table 1, whose QASF plots

are not shown for reasons of space. Third, the pure jump models of Barndorff-Nielsen and Shep-

hard (2001) would also be unlikely candidates. The driving Lévy process for these models must

have an activity index less than unity, and the volatility series itself will have an activity index

of at most unity due to the drift, which dominates, and we estimate activity levels well above

unity. The most plausible class of models would seem to be the EXP-OU-Lévy discussed in

Section 3, since these models can ensure positivity and accommodate a pure jump model with

activity indices above unity, as we find in the data.

Finally, we should point out that our conclusions about the volatility modeling rely on an
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estimate for the VIX index activity, which although less than 2, is nevertheless still very close to

it. Therefore, our estimation results can potentially still be generated from a volatility process

with a continuous martingale in it. However for this to happen, given our robustness checks of the

estimation procedure, the continuous martingale should have a relatively small contribution in the

power variation at the five-minute frequency (asymptotically, i.e., as we sample more frequently,

the continuous martingale will eventually dominate the power variation). This is not the case

for most parametric jump-diffusion volatility models used to date as we illustrated in our Monte

Carlo. Thus, at the very least, our results indicate that jumps play a much more prominent role

in volatility modeling.

6.2 Are Market Volatility and Price Jumps related?

Having detected the presence of jumps both in the S&P 500 index and the VIX index, a natu-

ral question arises about their dependence. We address this question in this section using the

nonparametric tests developed in Jacod and Todorov (2009). Before presenting the tests and

applying them to our data set, we briefly summarize previous findings based on parametric or

semiparametric specifications. As mentioned in the introduction, the most commonly used model

in finance which allows for jumps both in the price and the stochastic volatility is the double-

jump model of Duffie et al. (2000). In their general specification, Duffie et al. (2000) allow for

independent as well as dependent jumps in the index and its stochastic volatility. The studies

that estimate double-jump models restrict them to arrive always together, see e.g. Chernov et al.

(2003), Eraker et al. (2003). These papers, however find that the correlation between the jump

sizes in the price and volatility is not statistically different from zero. On the other hand, using

high-frequency data and in the context of a pure jump model for the volatility, Todorov (2009)

finds strong semiparametric evidence for dependent price and volatility jumps although perfect

dependence is rejected.

Determining whether the jumps in the price and volatility arrive together and if so whether
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they are dependent is crucial from the perspective of successful risk management and consistent

derivative pricing, see e.g. Cont and Kokholm (2009), as well as for determining the volatility

and jump risk premia. Therefore, here we investigate this important question in a completely

non-parametric framework. In doing so we rely on the VIX data and Theorem 1(b) linking the

jump times of the VIX and the spot variance.

First, we investigate whether the jumps in the S&P 500 index and the VIX index arrive at

the same time. For this, following Jacod and Todorov (2009), we use the following test statistic

defined for two arbitrary processes X and Y observed over the time interval (t−1, t) at frequency

∆n

Tcj(t) =
Vt(X, Y, 2, 2∆n)
Vt(X,Y, 2, ∆n)

, (6.1)

where Vt(X,Y, r,∆n) is the following analogue of the realized power variation in a two-dimensional

context

Vt(X,Y, r,∆n) =
[1/∆n]∑

i=1

|Xt−1+i∆n −Xt−1+(i−1)∆n
|r|Yt−1+i∆n − Yt−1+(i−1)∆n

|r. (6.2)

If there is common arrival of jumps in X and Y over the interval (t − 1, t], then this statistic

converges to 1 (as ∆n → 0), while if the jumps in the two series never arrive together the limiting

value of Tcj(t) is “around” 2. The intuition for that is that when common jumps are present then

Vt(X,Y, 2, ∆n) and Vt(X,Y, 2, ∆n) converge to the same limit (which is
∑

s∈[t−1,t) |∆Xs|2|∆Ys|2).

Under the alternative of no common jumps, as for the univariate results in (4.3), we will need

rescaling of Vt(X, Y, 2, ∆n) (which will depend on ∆n) in order for it not to degenerate to zero

(or infinity). For more details we refer to Jacod and Todorov (2009).

We calculated Tcj for each day in our sample. The median value of Tcj is 1.389, which is

relatively close to the value of 1, corresponding to common arrival of jumps in the price and the

stochastic volatility. More formally, we also conducted a formal test using Tcj and the testing

procedure outlined in Jacod and Todorov (2009). For 5 percent significance we failed to reject

the null of common arrival of jumps in 838 out of the 1212 days in the sample.
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Another useful statistic that allows us to analyze cojumping in market volatility and market

price level is the “realized” correlation between the squared jumps in those two series. For two

arbitrary processes X and Y observed over the time interval (t−1, t) at frequency ∆n, the realized

correlation is defined as

Rcj(t) =
Vt(X, Y, 2,∆n)√

Vt(X, 4, ∆n)Vt(Y, 4, ∆n)
. (6.3)

A value of zero of this statistic means disjoint arrival of jumps, while value close to 1 is ev-

idence for a perfect dependence between the jumps in the two series over the given interval

of time. This comes from the fact that when jumps are present we have Vt(X, Y, 2, ∆n) ≈
∑

s∈[t−1,t) |∆Xs|2|∆Ys|2 and Vt(Z, 4, ∆n) ≈ ∑
s∈[t−1,t) |∆Zs|4 for Z = X, Y (see Jacod and Todorov

(2009) for more details).

The histogram of the (daily) realized correlation between the jumps in the S&P 500 index and

the VIX index is plotted on Figure 4. As seen from the histogram, there is not only overwhelming

evidence for common arrival of jumps, but also for a strong dependence between the realized

jumps in the two series. This suggests that the jumps in volatility and market level should be

modeled jointly. This result casts also doubt on the plausibility of empirical findings, based on

affine jump diffusion models, for statistically insignificant dependence between the jump size of

volatility and price jumps. Given the strong dependence between price and volatility jumps, we

next explore whether the common jumps in the two series happen in the same direction. We do

this by splitting Vt(X,Y, r,∆n) into cojump variation due to jumps in the same direction and

one due to jumps in the opposite direction which we denote respectively as V +
t (X,Y, 2, ∆n) and

V −
t (X, Y, 2, ∆n). The mean and the median of the ratio V −t (X,Y,2,∆n)

Vt(X,Y,2,∆n) in our sample are respectively

0.921 and 0.997. Thus, almost all of the common jump variation in price and volatility is due to

jumps in opposite directions. This is consistent with models generating dynamic leverage effect

through jumps, e.g. Barndorff-Nielsen and Shephard (2001) and Todorov and Tauchen (2006), in

which a negative price jump leads to an increase in the future volatility.
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Figure 4: Histogram of daily realized correlation between price and volatility jumps.

7 Concluding Remarks

This paper shows in practical terms how to use high frequency options data (the VIX index)

to make nonparametric inferences regarding the activity level of stock market volatility. The

empirical implementation examines volatility dynamics using 5-min and 10-min level data on

the VIX index and the S&P 500 index. The data are noisy and empirical conclusions are not

unambiguously clear-cut, but nonetheless we present initial evidence suggesting a good stochastic

volatility model could be one of the pure jump type whose driving jumps come from a very active

Lévy process. Also, the volatility jumps and market price jumps occur in most cases at the same

time and exhibit high negative dependence.

Our empirical findings, if futher confirmed, can lead to several economically important conclu-

sions. First, on an individual investor level, the pure jump dynamics of stochastic volatility would

imply that hedging is quite complicated. This is in contrast with diffusive volatility dynamics in

which a derivative instrument sensitive to the volatility suffices, see e.g. Liu and Pan (2003). A

very active pure jump nature of volatility would mean that the volatility risk cannot be spanned

with a handful of derivatives instruments. Also, the finding of strong dependence between the

price and volatility jumps additionally complicates hedging. If volatility and price jumps were
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independent, then the investor could use deep-out-of-the-money put options to hedge against the

price jump risk and at-the-money options to hedge the volatility risk. Our findings suggest that

volatility and jump risks share common origins and therefore such separate hedging cannot be

expected to work well. Furthermore the two jump risks cannot be spanned with commonly traded

derivative instruments, including variance swaps.

Second, on a macro level our empirical evidence has implications for the risk premia associated

with price jumps and volatility risk. Typically these risk premia are modeled separately, e.g.

price jump risk is modeled as a compensation for jump size risk only which is independent from

the stochastic volatility. However, our results suggest that (negative) jumps on the market are

associated with increase in the stochastic variance σ2
t and therefore at least part of the volatility

risk either coincides or is highly correlated with the price jump risk. Thus, volatility and price

jump risk premia share compensations for similar risks, and therefore should be modeled jointly.

8 Proof of Theorem 1

First, using e.g. Theorem V.32 in Protter (2004), we have that the vector ft is a strong Markov

process. Therefore, the probability of fs under Q conditioned on the filtration Ft for s > t is

a function only of ft. Also, using the differentiability assumption on the functions g
(i)
j (·), we

have that for s ∈ [t, t + N ], fs conditional on Ft is a random function of ft which by Theorem

V.40 in Protter (2004) is continuously differentiable. Therefore, EQ(σ2
s |Ft) is a continuously

differentiable function of ft for s ≥ t and from here we also have the continuous differentiability

of EQ([S, S]ct+N − [S, S]ct |Ft) in ft.

For the discontinuous part of the quadratic variation, using the definition of a jump compen-

sator (see Jacod and Shiryaev (2003), Theorem II.1.8), we have that

EQ([S, S]dt+N − [S, S]dt |Ft) =
∫

R
x2η(dx)EQ

(∫ t+N

t
G(d)(fs)

∣∣∣∣Ft

)
,

and from here repeating the analysis for the continuous quadratic variation above, we have the
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continuous differentiability of EQ([S, S]dt+N − [S, S]dt |Ft) in ft as well. Hence νt is continuously

differentiable in ft.

Part a. Given the continuous differentiability of νt (and the non-vanishing first derivatives of

F (·)) for an arbitrary ω in the probability space we have

k(ω)Vt(σ2, r,∆n) ≤ Vt(ν, r,∆n) ≤ K(ω)Vt(σ2, r,∆n), t > 1, r > 0, (8.1)

for some finite constants 0 < k(ω) ≤ K(ω), where we made use of the fact that the first derivatives

of G(c)(·), G(d)(·) and F (·) are continuous functions of càdlàg processes and hence are locally

bounded. From here, using the definition (4.1), we have the result in (4.8).

Part b. Given the monotonicity assumption on F and the fact that the sets of jump times of

f
(i)
t for i = 1, ..., k are almost surely disjoint (because of the independence of the driving Lévy

processes Z
(i)
tj ), we have for every x in the support of ft and y ∈ Rk/{0} that F (x + y) 6= F (x).
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