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1 The Effects of Measurement Error

We analyze the effect of measurement error on our activity signature function. We will suppose
that instead of the true process we observe the process with some error. For example, it is well
known that at very high-frequency, financial data can be contaminated by microstructure noise;
the literature on microstructure noise is vast, see Barndorff-Nielsen and Shephard (2007) for a
timely and extensive review. We will focus only on the i.i.d. case. The following theorem gives
the behavior of the realized power variation in this situation.

Theorem 1 Let (εi)i be an i.i.d. sequence of random variables with finite moments and set
Υ̃t = Υt + εt where Υ is one of the processes X, Y or Z defined in the paper. Then, if
assumption A1 holds, we have

∆nV (p, Υ̃, ∆n)t
u.c.p.−→ Kpt,

where Kp is some constant depending on p.

As we can see from the theorem, the asymptotic behavior of the realized power variation is
completely determined by the noise in the price process. Therefore, it is easy to see that for any
p and Υ = Y, X or Z, β̂(0,T ](Υ, p) will diverge to infinity as we start sampling more frequently.
Intuitively, the measurement error becomes the “most active” part of the observed process, since
its magnitude does not decrease as we start sampling more frequently.
Proof of Theorem 1: First, using a localization argument we can (and will) assume the
stronger assumption A1′. Second, by a standard LLN we have

∆n

[t/∆n]∑

i=1

|εi∆n − ε(i−1)∆n
|p P−→ tE |εu − εs|p ,

for u 6= s. Thus, to prove Theorem 1 it suffices to show

∆n

∣∣∣∣∣∣
V (p, Υ̃,∆n)t −

[t/∆n]∑

i=1

|εi∆n − ε(i−1)∆n
|p

∣∣∣∣∣∣
u.c.p.−→ 0.

This follows from

1. the elementary inequality
∣∣∣∣|x + y|p − |x|p

∣∣∣∣ ≤ Kp

(|x|p−1∨0 + |y|p−1
) |y|,

for arbitrary x and y and Kp being some constant that depends on p.

2. the following well-known result (see Jacod (2008))

En
i−1|∆n

i Z|p ≤ K∆p/2∧1
n .

3. application of Hölder inequality.

¤

2 Scaled log-Power Variation

An alternative to using differences across time scales to determine the activity level is, from
Woerner (2006), to compute a direct scaled log-power variation measure

β∗(0,T ](X, p) = p ln (∆n) / ln (∆nV (p,X, k∆n)T ) .
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 β →

Scaled Log Power Variation, Tempered Stable, β=1.00

Figure 1: Scaled log power variation for the symmetric tempered stable process with
β = 1.00 and other parameters given by Case TS1.0 of Table 1; the figures show
B∗(Υ, p, α) as a function of p for the quantiles α = 0.25, α = 0.50, and α = 0.75,
reading bottom up.

This measure asymptotically behaves as β̂(0,T ](X, p) in Section 4 of the text; however, Theorem
1 suggests a bias which is apparent in Figure 1. The figure shows three quantile plots of the
function

B∗(Υ, p, α) := β∗[αN ](p),

which is defined analogously to the quantile function in Section 4 of the paper. For the figure, Υ
is simulated from case TS1.0. Evidentally, B∗(Υ, p, α) is off center and the interquantile range
is quite large. The bias evident in Figure 1 is canceled out using the the two-scale approach.
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3 Monte Carlo

3.1 Monte Carlo Scenarios

As noted in the paper, some readers, particularly in econometrics, prefer point estimates and
formal test statistics to graphically-based interval estimates. Therefore, this appendix examines
in detail via Monte Carlo the properties of the point estimator of the activity index presented
in Section 4.3 of the paper. The estimator is an equi-weighted average of the activity signature
function over a data-dependent interval. Clearly there are many other weighting schemes that
could be used to develop estimators of activity, and exploring all of their properties is far beyond
the scope of the paper and this appendix. Rather, our aim is to check if this particular easily-
computed estimator performs reasonably well over a wide variety of estimation contexts. We
also examine the properties of the formal test of a jump diffusion against the alternative of a
pure jump model developed in Subsection 3.3 of the paper.

The various scenarios governing the dynamics of the process Z are shown in Table 1. The
table shows the parameter settings and the implied population value of the activity index, de-
noted β0, which is always determined by the dominant component of the Z process. Cases A–I
and N are Lévy processes. In A–C the Lévy process is pure jump while in D it is a continu-
ous/Brownian martingale. In cases E–G rare jumps, i.e. compound Poisson jumps, are added
to a continuous martingale. Case H represents a particular challenge where the activity index
is zero, as does I where the estimator faces the superposition of two Lévy processes with indices
1.00 and 1.50, respectively, with dominant component 1.50. Cases J–M are Lévy-driven OU
or CARMA(1, 0), with strong persistence and very little mean reversion, where the background
driving Lévy processes are Cases A–D, respectively. Case N is a continuous/Brownian martin-
gale plus an infinitely active pure jump process. The values of the tuning parameters are set to
be realistic for high-frequency financial data and were determined by knowledge gleamed from
earlier studies, so the findings below need to be interpreted and qualified accordingly.

A very intuitive way to set up the sampling scheme is to think of the basic time unit, or
time period, as one 24-hour day with observations taken at sampling intervals of 1-min, 5-min,
10-min, and 30-min intervals. The first two are typical of many financial applications while the
latter two are relatively coarse. These values correspond to M = 1440, 250, 144, 72 observations
per time period, respectively, or sampling intervals of width ∆ = 0.0007, 0.0035, 0.0069, 0.02089,
which ranges over three orders of magnitude. Each Monte Carlo pseudo data set is comprised
of multiple days worth of data, which we take as N = 250, 1500, 3000, or 1-year, 5-years, and
10-years worth of data. Thus M determines the sampling frequency and N the span of the data
set, and the values here are typical of high frequency financial data sets. Of course for a given
scenario in Table 1 the outcome only depends upon the width ∆ of the sampling interval and
the notions of “days” and “years” are simple labels to guide intuition.
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Table 1: Monte Carlo Scenarios: Dynamics for Z = Y + X

Case β0 ρ σ2
1 σ2

2 Jump Specification (X)

A 0.50 0.00 0.0 1.0 tempered stable with A = 1, β = 0.5 and λ = 0.05
B 1.00 0.00 0.0 1.0 tempered stable with A = 1, β = 1.0 and λ = 0.05
C 1.50 0.00 0.0 1.0 tempered stable with A = 1, β = 1.5 and λ = 0.05

D 2.00 0.00 0.8 0.0 none

E 2.00 0.00 0.8 1.0 rare-jump with λJ = 0.0400, τ = 2.2361
F 2.00 0.00 0.8 1.0 rare-jump with λJ = 0.3333, τ = 0.7746
G 2.00 0.00 0.8 1.0 rare-jump with λJ = 2.0000, τ = 0.3162

H 0.00 0.00 0.0 1.0 variance gamma: tempered stable with A = 1, β =
0.0 and λ = 0.05

I 1.50 0.00 0.0 1.0 superposition of two independent tempered stables:
one with A = 1, β = 1.5 and λ = 0.05 and the other
with A = 1, β = 1.0 and λ = 0.05

J 1.00 -0.0693 0.0 1.0 tempered stable with A = 1, β = 0.5 and λ = 0.05
K 1.00 -0.0693 0.0 1.0 tempered stable with A = 1, β = 1.0 and λ = 0.05
L 1.50 -0.0693 0.0 1.0 tempered stable with A = 1, β = 1.5 and λ = 0.05

M 1.50 -0.0693 0.8 0.0 none

N 2.00 0.00 0.8 0.2 tempered stable with A = 1, β = 1.5 and λ = 0.05

Note: With Z = Y + X the continuous component Y is nontrivial if σ2
1 > 0, and the jump

component X is nontrivial if σ2
2 > 0.
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3.2 Precision of the Point Estimator of Activity

For each scenerio and (M, N) pair we generated 1000 Monte Carlo replicates, computed the point
estimate of β0 on a period-by-period basis, i.e., day-by-day, and took the median of the N values
as the overall estimate for that replicate. This entails some loss in efficiency because it does
not impose equality of β0 across time time periods, but it mimics actual practice where things
are done day-by-day to provide some robustness. Across the 1000 Monte Carlo replications we
compute the usual robust summary statistics given by the median, inter-quartile range, and
median-absolute-deviation about the the population value β0.

In order to assess the practical accuracy of the estimator, we also computed error rates as
the proportion of the 1000 replicates that the absolute deviation of the overall estimator from
the population value β0 is no more than the pre-specified value α = 0.15, 0.10, 0.05. For the
activity parameter β0 ∈ [0, 2], estimating it to within 0.10 of the true value seems sufficiently
accurate for many applications, while to within 0.15 is a little loose and 0.05 very precise.

Tables 2–8 displays the summary measures from this Monte Carlo experiment. One imme-
diately sees from the inter-quartile ranges and median absolute deviations that the estimator
is very tightly concentrated around a value that is generally, but not always close to the true
population variable. In other words, the sampling variance is nearly always very small and the
bias generally small, or modest, but the bias can be quite large in certain extreme circumstances.
The sampling distribution concentrates around a value that is usually close to the correct value
β0, but in some circumstances it concentrates around a value somewhat distant from the correct
value.

The conclusions from Tables 2–8 are readily summarized. The key control parameter is the
sampling frequency, M , or equivalently the sampling interval ∆ = 1/M . For sampling corre-
sponding to 1-min and 5-min, the point estimator is generally quite accurate across essentially
all scenarios and data spans N . On the other hand, for sampling at 10-min and coarser the
estimator can sometimes be quite off the mark as in Cases E, F, G, and H, for example. The
fact that reducing ∆ sharply decreases the bias while increasing the span N only moderately
reduces variance is not surprising because the asymptotic theory is always of the fill-in type
where ∆ → 0. A reasonable level of accuracy requires a large, dense, data set of the type that
is commonly used in financial econometrics and presumably other applications as well.

Another point of note is that for values of the index β0 at or above 0.50 the estimator is
generally quite accurate at the higher sampling frequencies, while smaller values could require
other approaches. Note that in case H β0 = 0 the estimator concentrates at the value τ = 0.10,
which is the lower bound of the of interval used to average the activity signature function. Keep
in mind, however, that if β0 = 0, or is close to zero, then the plot of the activity signature
function will reveal just that.
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3.3 Size and Power of the Test for Continuous Martingale

Tables 9–11 summarize the size and power properties of the test for a continuous martingale
proposed in Section 3.3 of the paper. The scenarios are as in Table 1 above and the sampling
rate M as per Tables 2–8. For each scenario–M pair, the test is conducted on each of 10000
replicated periods — i.e., “days” — mimicking how such tests are conducted in actual practice.

The conclusions from these three tables accord well with those of the preceding Section 3.2.
For the highest sampling frequency (1-min) the size and power properties are excellent, and with
5-min sampling the test is only slightly undersized but with still quite good power properties.
On the other hand, at the courser sampling intervals there can be large size distortions and the
test thereby unreliable. The size and power appear appropriate, at least for sampling frequencies
commonly used in finance. These findings very likely carry over to other disciplines where large
dense data sets are also available.
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Table 9: Size and Power of Test for Presence of Continuous Martingale

Sampling Frequency Percentage of Rejection of Null Hypothesis
α = 0.01 α = 0.05 α = 0.10

Case A (H0 false)
M = 1440 ( 1 min) 0.9998 0.9998 0.9998
M = 288 ( 5 min) 0.9942 0.9981 0.9990
M = 144 (10 min) 0.9735 0.9914 0.9942
M = 48 (30 min) 0.5143 0.8721 0.9464

Case B (H0 false)
M = 1440 ( 1 min) 0.9999 0.9999 0.9999
M = 288 ( 5 min) 0.9823 0.9964 0.9977
M = 144 (10 min) 0.7121 0.9321 0.9700
M = 48 (30 min) 0.0274 0.3490 0.6229

Case C (H0 false)
M = 1440 ( 1 min) 0.9967 0.9995 0.9998
M = 288 ( 5 min) 0.2634 0.6207 0.7736
M = 144 (10 min) 0.0428 0.2942 0.4920
M = 48 (30 min) 0.0021 0.0374 0.1682

Case D (H0 true)
M = 1440 ( 1 min) 0.0052 0.0407 0.0913
M = 288 ( 5 min) 0.0012 0.0248 0.0743
M = 144 (10 min) 0.0002 0.0185 0.0623
M = 48 (30 min) 0.0086 0.0134 0.0480

Note: The test is one-sided and is based on asymptotic distribution under the null of log(β̂t(Υ, p))
for p = 0.9, given in Theorem 3 in the paper. The number of Monte Carlo replications is 10, 000
units of time and α denotes the (asymptotic) size of the test.
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Table 10: Size and Power of Test for Presence of Continuous Martingale

Sampling Frequency Percentage of Rejection of Null Hypothesis
α = 0.01 α = 0.05 α = 0.10

Case E (H0 true)
M = 1440 ( 1 min) 0.0052 0.0407 0.0913
M = 288 ( 5 min) 0.0012 0.0248 0.0743
M = 144 (10 min) 0.0002 0.0185 0.0623
M = 48 (30 min) 0.0086 0.0134 0.0480

Case F (H0 true)
M = 1440 ( 1 min) 0.0052 0.0407 0.0913
M = 288 ( 5 min) 0.0012 0.0248 0.0743
M = 144 (10 min) 0.0002 0.0185 0.0623
M = 48 (30 min) 0.0086 0.0134 0.0480

Case G (H0 true)
M = 1440 ( 1 min) 0.0052 0.0407 0.0913
M = 288 ( 5 min) 0.0012 0.0248 0.0743
M = 144 (10 min) 0.0002 0.0185 0.0623
M = 48 (30 min) 0.0086 0.0134 0.0480

Case H (H0 false)
M = 1440 ( 1 min) 0.9992 0.9993 0.9994
M = 288 ( 5 min) 0.9909 0.9940 0.9957
M = 144 (10 min) 0.9780 0.9860 0.9898
M = 48 (30 min) 0.8831 0.9307 0.9583

Case I (H0 false)
M = 1440 ( 1 min) 0.9997 0.9999 1.0000
M = 288 ( 5 min) 0.4653 0.7842 0.8887
M = 144 (10 min) 0.0999 0.4401 0.6379
M = 48 (30 min) 0.0012 0.062 0.2392

Note: The test is one-sided and is based on asymptotic distribution under the null of log(β̂t(Υ, p))
for p = 0.9, given in Theorem 3 in the paper. The number of Monte Carlo replications is 10, 000
units of time and α denotes the (asymptotic) size of the test.
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Table 11: Size and Power of Test for Presence of Continuous Martingale

Sampling Frequency Percentage of Rejection of Null Hypothesis
α = 0.01 α = 0.05 α = 0.10

Case J (H0 false)
M = 1440 ( 1 min) 0.9997 0.9997 0.9997
M = 288 ( 5 min) 0.9967 0.9981 0.9987
M = 144 (10 min) 0.9815 0.9937 0.9959
M = 48 (30 min) 0.2714 0.8325 0.9326

Case K (H0 false)
M = 1440 ( 1 min) 1.0000 1.0000 1.0000
M = 288 ( 5 min) 0.9824 0.9960 0.9977
M = 144 (10 min) 0.6940 0.9318 0.9706
M = 48 (30 min) 0.0115 0.3094 0.5969

Case L (H0 false)
M = 1440 ( 1 min) 0.9953 0.9994 0.9998
M = 288 ( 5 min) 0.2216 0.5802 0.7462
M = 144 (10 min) 0.0259 0.2608 0.4640
M = 48 (30 min) 0.0021 0.0251 0.1429

Case M (H0 true)
M = 1440 ( 1 min) 0.0050 0.0406 0.0912
M = 288 ( 5 min) 0.0020 0.0258 0.0735
M = 144 (10 min) 0.0006 0.0193 0.0640
M = 48 (30 min) 0.0103 0.0148 0.0486

Case N (H0 true)
M = 1440 ( 1 min) 0.0083 0.0600 0.1308
M = 288 ( 5 min) 0.0021 0.0343 0.0913
M = 144 (10 min) 0.0006 0.0219 0.0758
M = 48 (30 min) 0.0084 0.0131 0.0471

Note: The test is one-sided and is based on asymptotic distribution under the null of log(β̂t(Υ, p))
for p = 0.9, given in Theorem 3 in the paper. The number of Monte Carlo replications is 10, 000
units of time and α denotes the (asymptotic) size of the test.
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4 Proofs of Theoretical Results

4.1 Preliminary Results

First, it is easy to see that the law of the pure-jump model Xt, given with equation (2.2), can
be generated with the following process defined on some different probability space (we will still
call it Xt)

Xt =
∫ t

0

b2sds +
∫ t

0

∫

R

∫

R+

σ2s−κ(x)1{y<as}µ̃(ds, dx, dy)

+
∫ t

0

∫

R

∫

R+

σ2s−κ′(x)1{y<as}µ(ds, dx, dy), (4.1)

where now µ is a Poisson measure but on R+×R×R+ and with compensator ds⊗ν(x)dx⊗dy;
µ̃(ds, dx, dy) is the compensated version of µ. The process Xt in (4.1) is written as a (stochastic)
integral with respect to a time-homogenous Poisson random measure, but we note that µ is
defined on a three dimensional space. Intuitively, the first dimension is the time, the second
one is the size of the jumps (but note that the jumps are multiplied by σ2t−). The role of the
third dimension is to generate thinning of the jumps according to the process at and thus create
time-varying intensity of the jumps in the process Xt.

In all of the proofs in this section we will assume the representation in (4.1) for Xt, and
we will work with the corresponding probability space and filtration which support it. This is
convenient as when ∆n changes we do not need to make a change of the probability space in
our proofs. We start with showing some preliminary results. Denote with L−→ convergence in
law on the space D(R) of one-dimensional càdlàg functions: R+ → R, which is equipped with
the Skorokhod topology. We have the following two Lemmas.

Lemma 1 Let Ψt denote a Lévy process with characteristic triplet (b, 0, F ) with respect to
some truncation function κ(x), where F is a Lévy measure with F (dx) = ν(x)1{|x|≤ε}dx and
ν(x) is the density defined in (2.4), while ε is an arbitrary positive number. Further, let
b =

∫
R κ(x)1{|x|≤ε}ν(x)dx if β < 1 and b = 0 if β ≥ 1. Finally, assume that ν is symmetric when

β = 1. Denote with Lt another Lévy process with characteristic triplet (b1, 0, F1) (with respect
to the same truncation function). b1 = − ∫

R κ′(x)ν1(x)dx if β ≥ 1 and b1 =
∫
R κ(x)ν1(x)dx for

β < 1. F1 is a Lévy measure with F1(dx) = ν1(x)dx where ν1(x) is defined in (2.5). Finally,
assume κ(x) is F1-a.s. continuous and in addition that it is symmetric when β = 1. Then as
∆n → 0 we have:

(a)
∆−1/β

n Ψ∆nt
L−→ Lt, (4.2)

(b)
∆−p/β

n E (|Ψ∆nt|p) −→ E (|Lt|p) , locally uniformly in t for some p < β. (4.3)

Proof:
Part (a). Since ∆−1/β

n Ψ∆nt is a Lévy process to prove the convergence of the sequence we need
to show the convergence of its characteristics, see e.g. Jacod and Shiryaev (2003), Corollary
III.3.6. The case β < 1 is straightforward, we show the case β ≥ 1. We need to establish the
following for ∆n → 0

∆n

∫

R

(
κ(∆−1/β

n x)−∆−1/β
n κ(x)

)
ν(x)1{|x|≤ε}dx −→ −

∫

R
κ′(x)ν1(x)dx, (4.4)

∆n

∫

R
κ2(∆−1/β

n x)ν(x)1{|x|≤ε}dx −→
∫

R
κ2(x)ν1(x)dx, (4.5)
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∆n

∫

R
g(∆−1/β

n x)ν(x)1{|x|≤ε}dx −→
∫

R
g(x)ν1(x)dx, (4.6)

where g is an arbitrary continuous and bounded function on R, which is 0 around 0.
First, the convergence in (4.5) and (4.6) trivially follow from a change of variable in the

integration and the fact that the function φ in (2.5) is bounded around the origin.
Therefore, we are left with showing (4.4). For β = 1 this follows from the symmetry of the

truncation function and ν. We show (4.4) therefore only in the case β > 1. First, we have

∆n

∫

R

(
κ(∆−1/β

n x)−∆−1/β
n κ(x)

)
ν1(x)1{|x|≤ε}dx

= ∆n

∫

R

(
κ(∆−1/β

n x)−∆−1/β
n x

)
ν1(x)1{|x|≤ε}dx + ∆1−1/β

n

∫

R
(x− κ(x)) ν1(x)1{|x|≤ε}dx

−→ −
∫

R
κ′(x)ν1(x)dx. (4.7)

Thus we will prove (4.4) if we can show

∆n

∫

R

(
κ(∆−1/β

n x)−∆−1/β
n κ(x)

)
ν2(x)dx −→ 0. (4.8)

It suffices to show (4.4) for κ(x) = x1{|x| ≤ 1}. For ∆n small enough we have

∆n

∫

R

(
∆−1/β

n κ(x)− κ(∆−1/β
n x)

)
ν2(x)dx

= ∆1−1/β
n

∫ 1

∆
1/β
n

xν2(x)dx + ∆1−1/β
n

∫ ∆1/β
n

−1

xν2(x)dx

≤ ∆1−1/β
n

∫ 1

∆
1/β
n

x−β′φ(x)dx + ∆1−1/β
n

∫ −∆1/β
n

−1

|x|−β′φ(x)dx. (4.9)

For sufficiently small ∆n, using the fact that φ(x) slowly varies around zero, has a finite limit
at 0 and is integrable around 0, we have

∫ 1

∆
1/β
n

x−β′φ(x)dx ≤ K + Kφ(∆1/β
n )∆1/β−β′/β

n , (4.10)

for some constant K. The same result obviously holds for
∫ −∆1/β

n

−1
|x|−β′φ(x)dx, and from here

(recall we are looking at the case β > 1) we have the result in (4.8). Thus, combining (4.7) and
(4.8), we have the result in (4.4) and therefore (4.2) is established.
Part (b). First we establish the pointwise convergence for arbitrary t > 0. Given the result in
Part (a), we need only show that for some p′ such that p < p′ < β we have

sup
∆n

E
(
∆−p′/β

n |Ψ∆nt|p
′)

< ∞. (4.11)

In order to consider the cases β ≥ 1 and β < 1 together we make a slight abuse of notation. In
what follows we assume that κ(x) ≡ 0 and “turn off” the drift b when β < 1, while when β ≥ 1
we make no change and κ(x) continues to be a true truncation function (i.e. it has bounded
support and coincides with the identity around the origin). With this assumption on κ(x),
denoting with µ the jump measure associated with the process Ψt and with µ̃ its compensated

version, we can write ∆−1/β
n Ψ∆nt (in all cases of β) as

∆−1/β
n Ψ∆nt = ∆−1/β

n

∫ ∆nt

0

∫

R
κ(x)µ̃(ds, dx) + ∆−1/β

n

∫ ∆nt

0

∫

R
κ′(x)µ(ds, dx). (4.12)
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Then, we can proceed with the following decomposition

∣∣∣∆−1/β
n Ψ∆nt

∣∣∣
p′

≤ K

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|>s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

p′

+K

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|≤s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

p′

+K

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

R
κ′(x)µ(ds, dx)

∣∣∣∣∣

p′

, (4.13)

where K is some constant. Obviously, given the fact that κ(x) ≡ 0 if β < 1, for the first two
terms on the right hand side of (4.13) we look only at the case β ≥ 1. For the second integral
on the right-hand side of (4.11) for some 1 ≤ q ≤ 2 such that q > β we have

E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|≤s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

p′

≤
(
E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|≤s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

q)p′/q

≤ K

(
∆−q/β

n E

(∫ ∆nt

0

∫

|x|≤s1/β

|κ(x)|qdsν(x)dx

))p′/q

≤ K, (4.14)

where the first inequality follows from the fact that p′ < q; the second one is an application of
Burkholder-Davis-Gundy inequality (see e.g. Protter (2004)); and the third one uses the fact
that q ≤ 2, the properties of the function φ(x) and a similar argument as in (4.10).

For the first integral on the right-hand side of (4.13) if β > 1 we can pick some q such that
max{p′, 1} ≤ q < β and make exactly the same steps as in (4.14) to get

E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|>s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

p′

≤ K. (4.15)

When β = 1, ν is symmetric so the integration with respect to µ is the same as the integration
with respect to the compensated measure µ̃ around the origin. Thus, when β = 1, for the first
integral on the right-hand side of (4.13) we can write

E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

|x|>s1/β

κ(x)µ̃(ds, dx)

∣∣∣∣∣

p′

= ∆−p′/β
n E

∣∣∣∣∣
∫ ∆nt

0

∫

|x|>s1/β

κ(x)µ(ds, dx)−
∫ ∆nt

0

∫

|x|>s1/β

κ(x)dsν(dx)

∣∣∣∣∣

p′

≤ ∆−p′/β
n E

(∫ ∆nt

0

∫

|x|>s1/β

|κ(x)|p′ν(ds, dx)

)
+ K ≤ K, (4.16)

where for the first inequality we made use of the fact that p′ ≤ 1. Finally, for the last integral on
the right-hand side of (4.13), since the jump measure has a bounded support (i.e. there are no
jumps higher than ε in absolute value) the expectation exists and for the case β ≥ 1 we trivially
have

E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

R
κ′(x)µ(ds, dx)

∣∣∣∣∣

p′

≤ K∆1−p′/β
n . (4.17)
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When β < 1 (recall κ(x) = 0 in this case) we split

∫ ∆nt

0

∫

R
κ′(x)µ(ds, dx) =

∫ ∆nt

0

∫

|x|≤s1/β

xµ(ds, dx) +
∫ ∆nt

0

∫

|x|>s1/β

xµ(ds, dx),

and use the fact that for arbitrary 0 < m ≤ 1 and some a and b we have |a + b|m ≤ |a|m + |b|m,
to prove

E

∣∣∣∣∣∆
−1/β
n

∫ ∆nt

0

∫

R
κ′(x)µ(ds, dx)

∣∣∣∣∣

p′

≤ K. (4.18)

Combining (4.14)-(4.18) we get (4.13), and thus the pointwise convergence.
To prove the convergence of ∆−p/β

n E (|Ψ∆nt|p) for the local uniform topology on t we need
only show that this sequence is relatively compact. For this we use the Ascoli-Arzela’s The-
orem (see e.g. Jacod and Shiryaev (2003), Theorem VI.1.5). The relative compactness of
∆−p/β

n E (|Ψ∆nt|p) follows from the fact that the bounds in (4.14)-(4.17) are continuous in t.
This proves part (b) of the Lemma. ¤

Lemma 2 Consider the probability space (Ω,F ,P) on which the process Xt is defined via (4.1).
Let us, ls and hs be some processes on this probability space which are adapted, bounded, and
have càdlàg paths. Assume that A2 holds for ν(x) and that ν(x) is symmetric when β = 1.
Finally, if β < 1 set κ(x) ≡ 0 and when β ≥ 1 let κ(x) be a truncation function, which is
symmetric in the case β = 1. Then, for arbitrary ε > 0 and some q1 > β and p ≤ q2 < β we
have

E

∣∣∣∣∣
∫ ∆n

0

∫

|x|≤ε

∫

R+
us−κ(x)1{ls−<y<hs−}µ̃(ds, dx, dy) +

∫ ∆n

0

∫

|x|≤ε

∫

R+
us−κ′(x)1{ls−<y<hs−}µ(ds, dx, dy)

∣∣∣∣∣

p

≤ K∆p/β
n

(
E

(
sup

0≤s≤∆n

{|us|q1 |hs − ls|}
))p/q1

+ K∆p/β
n

(
E

(
sup

0≤s≤∆n

{|us|q2 |hs − ls|}
))p/q2

,

(4.19)

where the constant K does not depend on ∆n.

Proof: The proof of the Lemma is very similar to the proof of Lemma 1, part (b). First we
make the decomposition

∫ ∆n

0

∫

|x|≤ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy)

=
∫ ∆n

0

∫

s1/β<|x|≤ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy)

+
∫ ∆n

0

∫

|x|≤s1/β∧ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy). (4.20)

We proceed with bounding the p-th absolute moment of the two integrals on the right hand side
of the above equation for the case β ≥ 1. For the last one we choose some 1 ≤ q ≤ 2, such that
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q > β and apply the Burkholder-Davis-Gundy inequality to get

E

∣∣∣∣∣
∫ ∆n

0

∫

|x|≤s1/β∧ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy)

∣∣∣∣∣

p

≤
(
E

∣∣∣∣∣
∫ ∆n

0

∫

|x|≤s1/β∧ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy)

∣∣∣∣∣

q)p/q

≤ K

(
E

(∫ ∆n

0

∫

|x|≤s1/β

∫

R+

|us−|q|κ(x)|q1{ls−<y<hs−}ν(x)dsdxdy

))p/q

≤ K∆p/β
n

(
E sup

0≤s≤∆n

{|us|q|hs − ls|}
)p/q

, (4.21)

where the constant K is changing from line to line. For the second integral in (4.20) we proceed
similar to (4.15) and (4.16) to get

E

∣∣∣∣∣
∫ ∆n

0

∫

s1/β<|x|≤ε

∫

R+

us−1{ls−<y<hs−}κ(x)µ̃(ds, dx, dy)

∣∣∣∣∣

p

≤ K∆p/β
n

(
E

(
sup

0≤s≤∆n

{|us|q|hs − ls|}
))p/q

, (4.22)

for some q such that max{p, 1} ≤ q < β if β > 1 and q = p if β = 1.
Similar transformations as in (4.17)-(4.18) and using the fact that we integrate over the

bounded region |x| ≤ ε give

E

∣∣∣∣∣
∫ ∆n

0

∫

|x|≤ε

∫

R+

us−1{ls−<y<hs−}κ
′(x)µ(ds, dx, dy)

∣∣∣∣∣

p

≤ K∆p/β
n E

(
sup

0≤s≤∆n

{|us|p|hs − ls|}
)

+ K∆p/β
n

(
E

(
sup

0≤s≤∆n

{|us|q|hs − ls|}
))p/q

,

(4.23)

where β < q < 1. Combining inequalities (4.21)-(4.23) we prove the Lemma. ¤

4.2 Limit theorems for realized power variation in pure-jump case

Using the preliminary results we now prove the following theorem.

Theorem 2 For the process Xt defined in (2.2) assume that A1(b), A2 and A3 hold. Denote
with Ls a pure-jump Lévy process (defined on some probability space) which has Lévy measure
ds⊗ ν1(x)dx and drift

b =
{ − ∫

R κ′(x)ν1(x)dx if β ≥ 1∫
R κ(x)ν1(x)dx if β < 1,

with respect to the truncation function κ used in the definition of Xt. If gp(s) = E (|Ls|p), then
for p < β we have

∆1−p/β
n V (p,X, ∆n)t

u.c.p.−→
∫ t

0

gp(as)|σ2s|pds. (4.1)

Proof: We prove the theorem under the following stronger assumption A1′:

Assumption A1′. In addition to assumption A1 assume that the processes as, b2s and σ2s are
bounded.
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To prove that if the claim in the theorem is true under the stronger assumption A1′, it
holds also under assumption A1, we can use exactly the same localization argument as in the
proof of Lemma 4.6 in Jacod (2008). Therefore we omit this part of the proof and proceed with
proving Theorem 1 under the stronger assumption A1′. Also as for the lemmas in the previous
subsection we will use the equivalent (in probability) representation of X given in (4.1).

First, we need some notation. Recall that for Xt we work with its representation in (4.1).
For arbitrary ε > 0 we set

X(ε)t = Xt −
∫ t

0

∫

|x|>ε

∫

R+

σ2s−x1{y<as−}µ(ds, dx, dy), X ′(ε)t = Xt −X(ε)t. (4.2)

Further, denote with S1, S2, ..., Sm, ... the sequence of successive jump times of X ′(ε) (i.e. the
jumps of the process Xt which after scaling by σ2Sm− are higher than ε in absolute value).
Furthermore, if Ωn(T ) denotes the set of ω-s for which each interval [0, T ] ∩ ((i − 1)∆n, i∆n]
contains at most one Sm and in addition |∆n

i X(ε)| ≤ Kε for some constant K (recall the
process σ2t is bounded pathwise), then Ωn(T ) → Ω as ∆n → 0. Finally, for each Sm, we set
Rm = ∆n

i X(ε), where ((i− 1)∆n, i∆n] is the interval containing Sm. With this notation on the
set Ωn(T ) we have

V (p,X, ∆n)t − V (p,X(ε), ∆n)t =
∑

0<Sm≤t

{|Rm + ∆XSm
|p − |Rm|p}

≤ K
∑

0≤Sm≤t

|∆XSm
|p + K, t ≤ T, (4.3)

where K is some constant and the sum in (4.3) is of course well defined and almost surely finite
(the inequality is trivial for p ≤ 1 and for p > 1 it from a Taylor expansion). Therefore, since
Ωn(T ) → Ω we have

∆1−p/β
n {V (p, X, ∆n)t − V (p,X(ε), ∆n)t} u.c.p.−→ 0.

Thus, to finish the proof we need only show

∆1−p/β
n V (p,X(ε), ∆n)t

u.c.p.−→
∫ t

0

gp(as)|σ2s|pds. (4.4)

We make a slight abuse of notation for κ(x), as in the proof of Lemma 2 part (b), in order to
analyze the different cases for β together. In particular, we set κ(x) ≡ 0 when β < 1, which
corresponds to no compensation of the small jumps, and set b2t ≡ 0 (see assumption A3). We
start the proof of (4.4) by making the following decomposition.

∆1−p/β
n V (p,X(ε),∆n)t −

∫ t

0

gp(as)|σ2s|pds = A1 + A2 + A3, (4.5)

A1 = ∆1−p/β
n

[t/∆n]∑

i=1

ξn
i ,

ξn
i = {|ξn

i1|p − |ξn
i2|p}, ξn

i1 = ∆n
i X(ε),

ξn
i2 =

∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

σ2(i−1)∆n−1{y<a(i−1)∆n−}κ(x)µ̃(ds, dx, dy)

+
∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

σ2(i−1)∆n−1{y<a(i−1)∆n−}κ
′(x)µ(ds, dx, dy)
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A2 = ∆n

[t/∆n]∑

i=1

gp(a(i−1)∆n−)|σ2(i−1)∆n−|p −
∫ t

0

gp(as)|σ2s|pds,

A3 = ∆n

[t/∆n]∑

i=1

|σ2(i−1)∆n−|p
{

∆−p/β
n

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

1{y<a(i−1)∆n−}κ(x)µ̃(ds, dx, dy)

+
∫ ∆n

0

∫

|x|≤ε

∫

R+

1{y<a(i−1)∆n−}κ
′(x)µ(ds, dx, dy)

∣∣∣∣
p

− gp(a(i−1)∆n−)
}

.

We will show that each of the three terms on the right-hand side of (4.5) converges in prob-
ability, uniformly in time, to 0. We start with A1. In what follows En

i−1 (·) is shorthand for
E

(·|F(i−1)∆n

)
. We want to derive bound for En

i−1|ξn
i |. If p ≤ 1 we can make use of the basic

inequality |a + b|p ≤ |a|p + |b|p for arbitrary a and b. If p > 1, we can use first-order Taylor
expansion and then apply the Hölder’s inequality. Both cases lead to

En
i−1|ξi| ≤ K

(
En

i−1|ζn
i |p

) 1
p∧1 (

En
i−1|ξn

i1|p
) p−1

p ∨0 + K
(
En

i−1|ζn
i |p

) 1
p∧1 (

En
i−1|ξn

i2|p
) p−1

p ∨0
,

where

ζn
i =

∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

(σ2s−1{y<as−} − σ2(i−1)∆n−1{y<a(i−1)∆n−})κ(x)µ̃(ds, dx, dy)

+
∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

(σ2s−1{y<as−} − σ2(i−1)∆n−1{y<a(i−1)∆n−})κ
′(x)µ(ds, dx, dy).

Using Lemma 2 and the fact that the processes σ2s and as are bounded, we have

En
i−1|ξi| ≤ K∆

p−1
β ∨0

n

(
En

i−1|ζn
i |p

) 1
p∧1

. (4.6)

To bound En
i−1|ζn

i |p we first use the following decomposition

σ2s1{y<as}−σ2(i−1)∆n
1{y<a(i−1)∆n} = σ2s(1{y<as}−1{y<a(i−1)∆n})+(σ2s−σ2(i−1)∆n

)1{y<a(i−1)∆n},

and then apply Lemma 2 to get

En
i−1|ζi|p ≤ K∆p/β

n En
i−1 sup

(i−1)∆n≤s≤i∆n

|σ2s− − σ2(i−1)∆n−|p

+K∆p/β
n En

i−1 sup
(i−1)∆n≤s≤i∆n

|as− − a(i−1)∆n−|

+K∆p/β
n

(
En

i−1 sup
(i−1)∆n≤s≤i∆n

|σ2s− − σ2(i−1)∆n−|q
)p/q

+K∆p/β
n

(
En

i−1 sup
(i−1)∆n≤s≤i∆n

|as− − a(i−1)∆n−|
)p/q

,

where q is some number higher or at most equal to p. But

∆nE




[t/∆n]∑

i=1

(
sup

(i−1)∆n≤s≤i∆n

|σ2s − σ2(i−1)∆n−|r
)



=
∫ t

0

E

(
sup

[u/∆n]∆n≤u≤[u/∆n]∆n+∆n

|σ2u − σ2[u/∆n]∆n
|r

)
du,
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for some arbitrary r. Then for arbitrary u > 0 we have

0 ≤ lim
∆n→0

E

(
sup

[u/∆n]∆n≤u≤[u/∆n]∆n+∆n

|σ2u − σ2[u/∆n]∆n
|r

)
≤ CE (|∆σu|r) .

Therefore, using the Lebesque’s convergence theorem and the fact that σ2s is a bounded càdlàg
process (under A1′), we have

∆nE




[t/∆n]∑

i=1

(
sup

(i−1)∆n≤s≤i∆n

|σ2s − σ2(i−1)∆n−|r
)

 → 0.

Similar result holds for as. Therefore we have

[t/∆n]∑

i=1

En
i−1|ξn

i | −→ 0,

and thus A1
u.c.p.−→ 0.

For A2 using Riemann integrability we have that A2 converges pointwise in ω and locally
uniformly in time to 0. Finally, for A3 first note that

∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+
1{y<a(i−1)∆n−}κ(x)µ̃(ds, dx, dy)+

∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+
1{y<a(i−1)∆n−}κ

′(x)µ(ds, dx, dy),

is equal in distribution to L∆na(i−1)∆n− , where L is the Lévy process defined in Lemma 1 (it
is defined on some (possibly) different probability space from the original one on which Xt is
defined, but the choice of the constant ε is of course the same). Then we can use the convergence
result in (4.3), which recall is locally uniform in time. Therefore, since as is bounded, we have

En
i−1

∣∣∣∣∆−p/β
n

∣∣∣∣
∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

1{y<a(i−1)∆n−}κ(x)µ̃(ds, dx, dy)

+
∫ i∆n

(i−1)∆n

∫

|x|≤ε

∫

R+

1{y<a(i−1)∆n−}κ
′(x)µ(ds, dx, dy)

∣∣∣∣
p

− gp(a(i−1)∆n−)
∣∣∣∣

≤ f(∆n),

where f(·) is some function such that lim∆n→0 f(∆n) = 0 and therefore A3
u.c.p.−→ 0. ¤

4.3 Proof of Theorem 1 in the paper

We prove all three parts together. On a set Ωn ↑ Ω, β̂(0,T ](Υ, p) is a continuous transformation
of V (p, Υ, k∆n)T and V (p, Υ,∆n)T . Therefore we will be done if we can show that for a fixed
T > 0 and some pl < pu (which for part (b) and (c) of the Theorem are such that β is outside
[pl, pu]) we have

Πn(p) :=

(
∆1−p/βΥ,T

n V (p,Υ, k∆n)T

∆1−p/βΥ,T
n V (p,Υ, ∆n)T

)
−

(
kp/βΥ,T−1CT (p)

CT (p)

)
P−→

(
0
0

)
uniformly on [pl, pu],

(4.1)
where CT (p) is one of the limits in (3.3) and (3.5) depending on whether Υ ≡ Y, Z or Υ ≡ X
respectively and the convergence in (4.1) is in C([pl, pu],R2

+) (the space of R2
+-valued continuous

functions on [pl, pu]) equipped with the uniform metric. The proof of (4.1) consists of establishing
finite-dimensional convergence and tightness of the sequence on the left-hand side of (4.1). The
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finite-dimensional convergence is trivial. It follows from the pointwise (in p) convergence results
of Section 3.1 in the paper. Therefore we need only prove tightness. To this end, denote the
modulus of continuity on C([pl, pu],R2

+) (see e.g. Jacod and Shiryaev (2003), VI.1)

w(Πn, θ) := sup{ sup
u,v∈[p,p+θ]

|Πn(u)−Πn(v)| : pl ≤ p ≤ p + θ ≤ pu}.

Set

U(Υ, p, q,∆n)T = ∆n

[T/∆n]∑

i=1

||∆−1/βΥ,T
n ∆n

i Υ|p − |∆−1/βΥ,T
n ∆n

i Υ|q|. (4.2)

With this notation for sufficiently small θ we have

w(Πn, θ) ≤ U(Υ, pl + θ, pl, ∆n)T + U(Υ, pu, pu − θ, ∆n)T

+U(Υ, pl + θ, pl, k∆n)T + U(Υ, pu, pu − θ, k∆n)T . (4.3)

Then we can use the inequality

U(Υ, p, q, ∆n)T ≤ K|p− q|∆n

[T/∆n]∑

i=1

(
|∆−1/βΥ,T

n ∆n
i Υ|p∧q−ε + |∆−1/βΥ,T

n ∆n
i Υ|p∨q+ε

)
, (4.4)

for arbitrary small ε and a constant K. Therefore the Ascoli-Arzela’s criteria for tightness is
satisfied (see Jacod and Shiryaev (2003), VI.3.26(ii)) and together with the finite-dimensional
convergence, this implies (4.1) and hence the result of the Theorem.

4.4 Proof of Theorem 2 in the paper

Part (b) of the theorem follows from Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-
Nielsen et al. (2006), hence we show only part (a). We proof the result in (3.13) under the
stronger assumption A1′, the extension to the weaker assumption A1 follows by a localisation
argument. Using the fact that p ≤ 1 we have trivially

|V (p, Z, ∆n)t − V (p, Y, ∆n)t| ≤ V (p,X, ∆n)t. (4.1)

At the same time a straightforward application of Jensen’s inequality yields

En
i−1|∆n

i X|p ≤ K∆

(
p

BGT (X)−ε
)
∧1

n for any ε > 0. (4.2)

Combining (4.1) and (4.2) we have

∆1/2−p/2
n |V (p, Z, ∆n)t − V (p, Y, ∆n)t| u.c.p.−→ 0, (4.3)

under the conditions of the theorem. Therefore it is enough to prove (3.13) for Υ ≡ Y . But this
trivially follows from the following application of Theorem 7.3 in Jacod (2007)

1√
∆n

(
(k∆n)1−p/2V (p, Y, k∆n)t − µp

∫ t

0
|σ1u|pdu

∆1−p/2
n V (p, Y, ∆n)t − µp

∫ t

0
|σ1u|pdu

)
L−s−→ Ξt, (4.4)

where the process Ξt is defined on an extension of the original probability space, is continuous,
and conditionally on the σ-field F is centered Gaussian with variance-covariance matrix given
by

∫ t

0

|σ1u|2pdu

(
k(µ2p − µ2

p) k1−p/2µp(k)− kµ2
p

k1−p/2µ(k, p)− kµ2
p µ2p − µ2

p

)
.

Then the convergence in (3.13) follows trivially from the result in (4.4) and a Delta method
(note that the convergence in (4.3) is stable).
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