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power variation.

JEL Classifications: C01, C14, C32, G1.

Corresponding Author: George Tauchen, Box 90097, Duke University, Durham,
NC, 27708 USA. george.tauchen@duke.edu

∗We thank Cecilia Mancini, Per Mykland, Neil Shephard, Jeannette Woerner as well as seminar partic-
ipants at Duke University, University of Chicago workshop on finance and statistics, Imperial College 2008
Financial Econometrics Conference and Purdue University Financial Mathematics seminar for many helpful
comments.

†Northwestern University, e-mail: v-todorov@kellogg.northwestern.edu
‡Duke University, e-mail: george.tauchen@duke.edu

1



1 Introduction

We consider measuring and estimating the activity level of an Itô semimartingale,

which is an analytically convenient probability model for many stochastic processes

evolving in continuous time. The index of activity of an Itô semimartingale is an

extension of the classical Blumenthal-Getoor index (and its generalization proposed in

Ait-Sahalia and Jacod (2009a)) of a pure-jump process, where the leading example is

a stable process. The (generalized) Blumenthal-Getoor index for a jump process lies

in the interval [0, 2], and it indicates whether the jumps are relatively quiescent or

highly vibrant. For example, when the jump process is finitely active, i.e. with only

a finite number of jumps in any finite time interval, the Blumenthal-Getoor index is

zero. Jump processes with Blumenthal-Getoor indices above zero are infinitely active,

with paths of finite variation or infinite variation depending upon where the index lies

relative to unity. The extension of the (generalized) Blumenthal-Getoor index to Itô

semimartingales considered in this paper also lies in the interval [0, 2], and it is also

a measure for the vibrancy of the process. Furthermore, it applies also to continuous

path processes. The activity index of a continuous (local) martingale is always 2, i.e.

the highest possible value, and thus it dominates that of all jump processes. The index

allows us to classify the different processes used in continuous-time modeling in the

following order from low to high activity: finite activity jumps, finite variation (but

infinite activity) jumps, absolutely continuous processes, jumps of infinite variation

and continuous martingales. If the underlying process is the superposition of several

different processes from the above list, then the measure will equal that of the most

active component. Thus, for example if the activity index takes a value of 2, the process

contains a continuous martingale, while otherwise it is of pure-jump type.

The focus of the paper is on the activity signature function, defined below, that
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proves useful for making non-parametric inference about the generalized activity index

from a finite sample. The estimation strategy is simple. We first compute for an

arbitrary interval of time the realized power variation over two different time scales,

a strategy derived from Ait-Sahalia and Jacod (2009b) and Ait-Sahalia and Jacod

(2009a) (see also Zhang et al. (2005)). The realized power variation is just the sum of

the absolute values of the increments of the process within the interval raised to some

power p. We then compute a non-linear transformation of the ratio of realized power

variations (over the two time scales) and plot it as a function of the exponent over the

range p ∈ (0, 4]. This function is the activity signature function.

The rate at which the realized power variation converges, as we sample more fre-

quently, depends solely on the activity of the process. Therefore, the ratio of the

realized power variations computed over different scales, and hence the activity sig-

nature function, identifies the activity of the observed process. Asymptotically, the

activity signature function stays flat at the activity level until the power reaches it.

For powers above the activity level, the activity signature function will either increase

linearly or will continue to stay flat, depending on whether the process contains jumps

or not. Thus, the overall behavior of the activity signature function reveals the appro-

priate model for both the “small” and “big” moves in the discretely-observed process.

We synthesize the information in the activity signature function in a point estimator

for the activity level and a formal test for the presence of continuous martingale, both

of which are tested on simulated data.

There are several antecedents in the literature pertaining to the results in this

paper. Woerner (2006) initially had the insight of examination of plots of a different

function of the level of realized power variation in order to make inference about the

Blumenthal-Getoor index of a jump process; but this approach entails a significant
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bias, as documented in a supplementary appendix. The two-scale approach removes

this bias as seen below. Also, the underlying results of Woerner (2006) are derived

under the assumption that the driving jump measure is independent from the time-

varying intensity or jump size, and this rules out some interesting models, in particular

many of the stochastic volatility models used in finance. Second, for the case of p = 4

our statistic is a nonlinear transformation of the test statistic for jumps proposed by

Ait-Sahalia and Jacod (2009b). Finally, our focus on the activity level of the entire

process differs from that of Ait-Sahalia and Jacod (2009a), who consider the challenging

problem of estimating the generalized Blumenthal-Getoor index of the jumps in the

presence of a continuous martingale. Intuitively, while our estimation strategy identifies

the most active part of the discretely observed process, the estimator of Ait-Sahalia

and Jacod (2009a) recovers the least active component of the sum of two processes,

given that the index of the dominant component equals 2.

Our estimation strategy can be useful for discriminating nonparametrically across

classes of models of stochastic processes. For instance, in financial economics one

needs to model both the asset price and the stochastic volatility. An alternative to

the classical model, which has a continuous martingale component, is a pure-jump

model for which the price or volatility is comprised solely of jumps. The idea behind

the pure-jump modeling is that small jumps can eliminate the need for a continuous

martingale. The class of pure-jump models is extremely wide. It includes the normal

inverse Gaussian (Rydberg, 1997; Barndorff-Nielsen, 1997, 1998), the variance gamma

(Madan et al., 1998), the CGMY model of Carr et al. (2002), the time-changed Lévy

models of Carr et al. (2003), the COGARCH model of Klüppelberg et al. (2004) for

the financial prices as well as the non-Gaussian Ornstein–Uhlenbeck-based models of

Barndorff-Nielsen and Shephard (2001) and the Lévy-driven continuous-time moving
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average (CARMA) models of Brockwell (2001) for the stochastic volatility. Pure-

jump models have been extensively considered and used for general options pricing

(Huang and Wu, 2004; Broadie and Detemple, 2004; Levendorskii, 2004; Schoutens,

2006; Ivanov, 2007), and for foreign exchange options pricing (Huang and Hung, 2005;

Daal and Madan, 2005; Carr and Wu, 2007). Other applications of pure-jump models

include reliability theory (Drosen, 1986), insurance valuation (Ballotta, 2005), and

financial equilibrium analysis (Madan, 2005).

The generalized index of activity of a pure-jump model is strictly less than 2, while

the index of the classical jump-diffusion model of finance equals 2. The two classes of

models are disjoint, and one does not know a priori which is empirically more plausible.

The non-parametric evidence in Section 6 below comes down on the side of the classical

model for the spot $/DM exchange rate over 1986–1999.

A second application uses high-frequency internet traffic data on downloads from

NASA servers. The outcome is quite different. We find evidence that these data are

best described by a model with jumps, no continuous component, and paths of infinite

variation. The sharp contrasts between the outcomes obtained by using high-frequency

financial data or internet traffic data illustrate the capability of the estimation strategy

to differentiate across the classes of models.

The remainder of the paper is organized as follows. Sections 2 and 3 are theoretical,

and a reader only interested in understanding the computations and how to apply them

can skip immediately to Section 4. In the theoretical sections we introduce the different

types of continuous-time models that our analysis encompasses and the assumptions

needed for the main results in the paper. We also define an activity index for a

continuous-time process and introduce the activity signature function and characterize

its asymptotic behavior using fill-in asymptotics. In the more practical Section 4, we
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describe the basics of the computations and illustrate how to apply them graphically.

In Section 5 we propose a very simple point estimator of the activity index, and we

summarize an extensive Monte Carlo study of this estimator and a statistical test for

the presence of a continuous component. In Section 6 we undertake two empirical

applications, and in Section 7 we summarize with concluding remarks.

2 Setup

Our goal in this paper is to measure the “activity” (defined formally in the next section)

of a continuous-time one-dimensional stochastic process from discrete observations.

We start our analysis with introducing the different models for the discretely-observed

process, whose activity we investigate, and stating the assumptions needed for our

asymptotic results. Throughout, we always assume implicitly that each of the processes

given below is defined on some probability space (Ω,F ,P). Further, we equip this

probability space with some filtration F, with respect to which all the processes used

in the definitions of the different models below are adapted.

In all models the underlying process is an Itô semimartingale, i.e., a semimartingale

whose characteristics, drift, diffusion and jump compensator, are absolutely continuous

with respect to time (Jacod and Shiryaev, 2003). The different models differ in whether

the stochastic process contains continuous martingale and/or jumps. In what follows

we will always assume that the processes in each of the models are well defined, for

“classical” conditions (Cont and Tankov, 2003; Jacod and Shiryaev, 2003).

Continuous Model:

Yt =
∫ t

0
b1sds +

∫ t

0
σ1sdWs, (1)

and Wt is a standard Brownian motion.
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Pure-Jump Model:

Xt =
∫ t

0
b2sds +

∫ t

0

∫

R
σ2s−κ(x)µ̃(ds, dx) +

∫ t

0

∫

R
σ2s−κ′(x)µ(ds, dx), (2)

where µ is a jump measure on R+ × R with compensator asds⊗ ν(x)dx, µ̃(ds, dx) :=

µ(ds, dx)−as−dsν(x)dx; κ′(x) = x−κ(x) and κ(x) is a continuous truncation function,

i.e. a continuous function with bounded support and which coincides with the identity

around the origin; at is some non-negative process. The two processes σ2t and at in

equation (2) generate stochastic volatility in Xt, but in two different ways. σ2t gener-

ates stochastic volatility through time-varying jump size, while at generates stochastic

volatility through time-varying the intensity of the jumps. We refer to the absolutely

continuous processes
∫ t
0 b1sds and

∫ t
0 b2sds in (1) and (2) as the drift terms in Y and

X respectively.

Continuous plus Jumps Model:

Zt = Xt + Yt. (3)

We next state the assumptions needed for the asymptotic results in the paper.

Assumption A1.

(a) The processes σ1s and b1s have càdlàg paths; the process σ1s is everywhere different

from zero.

(b) The processes σ2s, as and b2s have càdlàg paths; at least one of the processes σ2s

and as is everywhere different from zero.

Assumption A2. The Lévy density ν(x) can be decomposed as

ν(x) = ν1(x) + ν2(x), (4)

ν1(x) =
A

xβ+1
1{x>0} +

B

|x|β+1
1{x<0}, |ν2(x)| ≤ φ(x)

|x|β′+1
, (5)
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where A and B are some non-negative constants with A + B > 0; 0 ≤ β
′
< β < 2; and

φ(x) is some nonnegative, slowly-varying at zero function which is bounded at zero.

Assumption A3. In addition to Assumption A2, assume that

(a) If β < 1, then

∫ t

0
b2sds−

∫ t

0

∫

R
asσ2sκ(x)dsν(x)dx ≡ 0, for every t > 0. (6)

(b) If β = 1, then ν(x) and κ(x) are symmetric and b2t ≡ 0 for every t > 0.

Assumption A1 is a very mild regularity assumption and it is satisfied by most

parametric applications. On the other hand assumption A2 is a non-trivial assumption

that we impose on the behavior of ν(x) around the origin. In the Lévy case it essentially

amounts to restricting the Lévy density to be a power function around zero like in the

(tempered) stable processes. In other words we control the way in which ν(x) increases

to infinity as x approaches zero. This is closely related with the Blumenthal-Getoor

index which we explain in the next section. An assumption similar to A2 has been

made also in Jacod (2004), Woerner (2006) and Ait-Sahalia and Jacod (2009a). Finally,

assumption A3 guarantees that when the jumps are not very active (in a sense defined

in the next section), the drift term resulting from the compensation of the small jumps

and/or the process b2s is not dominating the activity in the pure-jump model. Under

assumption A3, the process Xt is a sum of its jumps. We will need A3 in order to

discriminate the activity behavior of the different pure-jump processes.

3 Asymptotic Results

For all our theoretical results we will fix the time interval to be [0, T ] and we will

suppose that we observe the process Υ (where Υ ≡ X, Y or Z) at the equidistant times

0, ∆n, 2∆n, ..., [T/∆n]∆n within this interval. We will think of ∆n as being “small”, i.e.
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our asymptotic results will be for ∆n → 0, and in this section we will derive statistics

for the activity of the discretely-observed process, which we now formally define. We

first introduce the realized power variation constructed from the discrete observations

of the process in the following way

V (p,Υ,∆n)t =
[t/∆n]∑

i=1

|∆n
i Υ|p, p > 0, t ∈ (0, T ], (7)

where ∆n
i Υ := Υi∆n−Υ(i−1)∆n

. Then we associate (index) the activity of the observed

path of Υ with

βΥ,T := inf
{
r > 0 : plim∆n→0V (r,Υ, ∆n)T < ∞}

. (8)

There are few things to note about this index of the activity. First, it is defined

pathwise. Second, it is always in the interval [0, 2]. When Υ ≡ Y , it is well known

that the activity index equals 2 on every path (up to paths with measure zero), see

e.g. Revuz and Yor (1999). For an absolutely continuous process the index is always

1. When Υ is the pure-jump process X, things are more complicated. As a simple

example we can consider the case when Υ is a pure-jump Lévy process. Then the index

in (8) will be the same on every observed path (up to paths with measure 0) and it will

coincide with the Blumenthal-Getoor index of the Lévy measure, see (10) below. Thus

for a stable process with index α, our activity index in (8) will coincide with α and

therefore can take all the values in the range [0, 2]. Another example is the compound

Poisson process often used in empirical applications; its activity index is 0. Finally,

the process Z defined in equation (3) is a sum of continuous martingale (driven by

Brownian motion) and jumps, therefore its activity is determined by the most “active”

part of it which is the continuous martingale part.

Our goal will be to measure nonparametrically the activity of the discretely-observed

continuous time process. It is evident from the discussion above that the activity in-

9



dex will allow us to discriminate between the different classes of models defined in the

previous section. For example, if the estimated activity index is in the interval (0, 1),

that means that the observed process is from a pure-jump model with no drift and

with jumps having finite variation. If the estimated index is in the interval (1, 2), then

the appropriate model for the observed process is again a pure-jump model, but now

with jumps exhibiting infinite variation. Finally, if the estimated activity is 2, then to

model appropriately the very small moves in the discretely-observed process, we need

a continuous martingale.

3.1 Asymptotics of Realized Power Variation

To determine the activity index and develop a strategy for its estimation from discrete

observations of the process Υ, we need first to know the asymptotic behavior of the

realized power variation for the different models and different powers. In what follows

u.c.p.−→ denotes convergence in probability, locally uniformly in time.

3.1.1 When Υ ≡ Y

When the (partially) observed process is a continuous martingale (plus a drift), then

it follows from Barndorff-Nielsen et al. (2005) that under assumption A1(a) and for

p > 0

∆1−p/2
n V (p, Y,∆n)t

u.c.p.−→ Ap

∫ t

0
|σ1u|pdu, (9)

where Ap is some constant depending only on p.

3.1.2 When Υ ≡ X

To avoid trivial situations we will assume that on the observed path X contains at

least one jump. When jumps dominate the activity of the discretely-observed process,

our activity index can be expressed directly as a function of the jumps on the (par-

tially) observed path. In other words, when Υ ≡ X (and assumption A3 holds in the
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case of finite variation jumps), the activity index in (8) coincides with the following

generalization of the Blumenthal-Getoor index due to Ait-Sahalia and Jacod (2009a)

BG(X)T := inf



r > 0 :

∑

0≤s≤T

|∆Xs|r < ∞


 , (10)

where ∆Xs := Xs − Xs−. The Blumenthal-Getoor index was originally defined in

Blumenthal and Getoor (1961) only for pure-jump Lévy processes. The definition

in (10) extends it to an arbitrary jump semimartingale and was proposed in Ait-

Sahalia and Jacod (2009a). It is implicit in the definition that BGT (X) depends on

the time interval [0, T ] and also on the particular realization of the process, i.e. the

index is defined pathwise. The behavior of the index is determined by the behavior

of the small jumps (jumps bigger than any fixed size are always finite on a finite

time interval and therefore are absolutely summable for any power r). So, what is

important for our determination of the activity is essentially the very small increments

∆n
i X. This is unlike the problem of detecting jumps in discretely-sampled process,

where we look to discriminate the very “small” moves (associated with the continuous

part of the process) from the very “big” ones (associated with the discontinuous part of

the process). Finally, under assumption A2, the generalized Blumenthal-Getoor index

BGT (X) will coincide with β in equation (5). Therefore, under our assumption A2,

the generalized Blumethal-Getoor index will be constant for each different realization

of the process.

Turning to the behavior of the realized power variation, we can summarize it as

follows. First, if BG(X)T > 1, then on the interval [0, T ] we have

{
∆1−p/β

n V (p,X, ∆n)t
u.c.p.−→ ∫ t

0
|σ2u|pgp(as)du, if p < BG(X)T , under A1(b) and A2

V (p,X, ∆n)t
u.c.p.−→ ∑

s≤t |∆Xs|p, if p > BG(X)T , under A1(b),
(11)

where gp(·) is a known function related with the absolute moments of the stable process,

defined in the Appendix. When BG(X)T < 1, we have to discriminate between the
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case when a drift term (or compensator for the jumps) is present or not. Thus, when

BG(X)T < 1 on the interval [0, T ] we have





∆1−p
n V (p,X, ∆n)t

u.c.p.−→ ∫ t

0

∣∣b2s − asσ2s

∫
R κ(x)ν(x)dx

∣∣p ds, if p < 1, under A1(b) and A2
V (p,X, ∆n)t

u.c.p.−→ ∫ t

0

∣∣b2s − asσ2s

∫
R κ(x)ν(x)dx

∣∣ ds +
∑

s≤t |∆Xs|, if p = 1, under A1(b)
V (p,X, ∆n)t

u.c.p.−→ ∑
s≤t |∆Xs|p, if p > 1, under A1(b),

(12)

and{
∆1−p/β

n V (p,X, ∆n)t
u.c.p.−→ ∫ t

0
|σ2u|pgp(as)du, if p < BG(X)T , under A1(b), A2 and A3

V (p,X, ∆n)t
u.c.p.−→ ∑

s≤t |∆Xs|p, if p > BG(X)T , under A1(b), A2 and A3,
(13)

That is, when jumps are of finite variation and a drift term is present, the latter will

“dominate” the jumps and will determine the activity of X. The limiting behavior

for the realized power variation when p > BG(X)T was derived in Jacod (2008), see

also Lepingle (1976). It holds under fairly weak conditions. The case p < BG(X)T is

more complicated and we need to assume the stronger assumption A2 (under which

BGT (X) ≡ β and is therefore nonrandom). The limiting behavior of the realized power

variation in this case follows from Theorem 1 in the Appendix. A precursor special case

of this theorem has been proved in Woerner (2003), but only for the case when as ≡ 1

and σ2s is independent from the jump measure µ (and more restrictive specification

for ν(x)). Also related is a result in Ait-Sahalia and Jacod (2009a) on the asymptotic

behavior of the count of the increments bigger than a decreasing threshold.

3.1.3 When Υ ≡ Z

We are finally left with the case when the observed process is a superposition of a

continuous martingale, jumps and drift. We will assume that Z contains at least one

jump on the observed path, otherwise the behavior of the realized power variation is as

in the pure-continuous model. When p < 2, the limiting behavior of the realized power

variation is determined by the most active component in Z, which is the continuous

martingale. When p = 2, then both the jumps and the continuous martingale determine

the behavior of the realized power variation. Finally, when p > 2, the limiting behavior
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of the realized power variation is governed by the jumps. The precise results are as

follows. Under assumption A1 we have



∆1−p/2
n V (p, Z, ∆n)t

u.c.p.−→ Ap

∫ t
0 |σ1u|pdu, if 0 < p < 2

V (2, Z, ∆n)t
u.c.p.−→ ∫ t

0 σ2
1udu +

∑
s≤t |∆Zs|2, if p = 2

V (p, Z, ∆n)t
u.c.p.−→ ∑

s≤t |∆Zs|p, if p > 2,

(14)

where Ap is the same constant that appears in equation (9). These results are trivial

consequences of (or follow directly from) the results in Barndorff-Nielsen et al. (2005),

Jacod (2008) and Barndorff-Nielsen et al. (2006).

3.2 Measuring Activity via the Activity Signature Func-
tion

Having characterized the asymptotic behavior of the realized power variation for the

different models, we are now ready to develop strategy for inferring the activity index

from the discrete observations of the process. The idea is to compute the realized power

variation at two different frequencies and use the fact that the scaling factors at the

two different frequencies will differ, provided the activity index is above the power that

is used. This two-scale approach was first proposed in Ait-Sahalia and Jacod (2009b)

for designing tests for presence of jumps and further used in Ait-Sahalia and Jacod

(2009a) for estimation of the generalized Blumenthal-Getoor index of the jumps. To

this end set 0 < p < βΥ,T , then for arbitrary integer k ≥ 1 and under A1-A3 we have

k1−p/βΥ,T ∆1−p/βΥ,T
n V (p, Υ, k∆n)T

P−→ CT (p),

where Ct(p) is some stochastic process, depending on Υ. This suggests that if we fix

p sufficiently low and compute the p-th realized power variation over different sam-

pling frequencies we can recover βΥ,T from the slope coefficient in a regression of

{ln (V (p, Υ, ∆n)T )}k on a constant and {ln (k∆n)}k. For example, in the case when

we use only the two sampling frequencies ∆n and k∆n we can determine βΥ,T using

β̂(0,T ](Υ, p) =
ln (k) p

ln (k) + ln (V (p, Υ, k∆n)T )− ln (V (p,Υ,∆n)T )
. (15)
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We note that our sample function β̂(0,T ](Υ, p) makes use of all increments of the process

Υ. In fact the small increments carry the most important information about the

activity index. Our measure is thus different from the statistic proposed in Ait-Sahalia

and Jacod (2009a), which is essentially based on the count of the increments of the

discretely-observed process that are bigger than a threshold level (the threshold level

decreases to zero at a given rate). While (15) is estimating the activity index in

(8), their estimator is designed to infer the generalized Blumenthal-Getoor index of

the jumps in the (possible) presence of a continuous component (i.e. they estimate

(10) when Υ ≡ Z). Thus, since the continuous martingale dominates the activity

of the process Z = X + Y , Ait-Sahalia and Jacod (2009a) need to discard the very

small increments which are dominated by the continuous martingale. In contrast,

when Υ ≡ Z (15) uses the very small increments and estimates the activity of the

dominating component in the observed process, i.e. that of the continuous martingale.

Of course, our estimator and the one in Ait-Sahalia and Jacod (2009a) will have the

same asymptotic limit only in the pure-jump case, i.e. when Υ ≡ X.

We can look at β̂(0,T ](·, p) as a function of p and analyze the behavior of this function

under the three different models introduced in Section 2. In the following theorem by

local uniform convergence on a given (open) set we mean convergence that is uniform

on each compact subset of that set.

Theorem 1 (a) Continuous Semimartingale: Suppose Υ ≡ Y and assumption

A1(a) holds. Then for fixed T > 0 we have

β̂(0,T ](Υ, p) P−→
{

2 if p ≤ 2
2 if p > 2,

(16)

where the convergence is locally uniform in p on (0,∞).

(b) Pure-Jump Semimartingale: Suppose Υ ≡ X and assumptions A1(b), A2
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and A3 hold. Then for fixed T > 0 we have

β̂(0,T ](Υ, p) P−→
{

β if p < β
p if p > β,

(17)

where the convergence is locally uniform in p on (0, β) ∪ (β,∞).

(c) Continuous plus Jumps Semimartingale: Suppose Υ ≡ Z, assumption A1

holds and there is at least one jump on the observed path. Then for fixed T > 0

we have

β̂(0,T ](Υ, p) P−→
{

2 if p ≤ 2
p if p > 2,

(18)

where the convergence is locally uniform in p on (0, 2) ∪ (2,∞).

From this theorem it follows that the activity of the discretely-observed process can be

inferred from the overall behavior of β̂(0,T ](·, p). We therefore refer to β̂(0,T ](·, p) as the

activity signature function. The function identifies the activity through: (1) its level in

the flat part and (2) the range of powers p ∈ (0, 2] for which it stays flat. On the other

hand, higher values of p can allow us to determine whether there is a kink at 2 in the

activity signature function β̂(0,T ](·, p) or its stays flat, which in turn determines whether

the process contains jumps in addition to the continuous martingale (the test for jumps

of Ait-Sahalia and Jacod (2009b) is a monotone transformation of β̂(0,T ](·, p) for p = 4).

This means that using the activity signature function we can discriminate between the

three types of models defined in Section 2 for the discretely-observed process.

The asymptotic behavior of the activity signature function can be used to derive

point estimators of the unknown activity level of the discretely-observed process. Such

estimators will rely on the flat part of the function, which in turn can be determined

in some adaptive way. Key for that is that the convergence of the activity signature

function in Theorem 1 is (locally) uniform (in p). In Section 5.1 we will illustrate with

a particular activity estimator.
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3.3 Testing Jump Diffusions Versus Pure-Jump Models
using the Activity Signature Function

An activity level of 2 has a special meaning since it separates pure-jump models (part

(b) of Theorem 1) from models containing continuous martingale (parts (a) and (c)

of Theorem 1). As noted in the Introduction, pure-jump models have been proposed

as an alternative to standard jump-diffusions in fields such as finance and insurance.

Thus, it is useful to have a formal test for the presence of a continuous component

against the alternative of a pure-jump process. We construct such a test using the

activity signature function evaluated at a fixed power. The next theorem gives the

relevant null distribution for this test. In the theorem, L−s−→ denotes stable convergence

in law.

Theorem 2 Set Υ ≡ Y or Υ ≡ Z. Assume that A1 holds and that BGT (X) < 1 and

p ∈
(

BGT (X)
2−BGT (X) , 1

)
, where BGT (X) is the Blumenthal-Getoor index of the jumps in Z

defined in (10) (which can be random). Then, if the process σ1 is an Itô semimartingale

with locally bounded coefficients, we have

(a)

∆−1/2
n

(
log(β̂(0,T ](Υ, p))− log(2)

) L−s−→ Kp × ε, (19)

Kp =
2

pµp ln k

√∫ T
0 |σ1u|2pdu

∫ T
0 |σ1u|pdu

√
(k + 1)µ2p − 2k1−p/2µp(k) + (k − 1)µ2

p, (20)

where ε is standard normal defined on an extension of the original probability

space; for the definition of µp and µp(k) introduce u1 and u2 two independent stan-

dard normal variables, then we set µp = E|u1|p and µp(k) = E
(|u1|p|u1 +

√
k − 1u2|p

)
.

(b) A consistent estimator for Kp in (20) under the conditions of the Theorem is
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given by

K̂p =
2∆−1/2

n

pµp ln k

√∑[T/∆n]
i=4 |∆n

i Υ|p/2|∆n
i−1Υ|p/2|∆n

i−2Υ|p/2|∆n
i−3Υ|p/2

∑[T/∆n]
i=2 |∆n

i Υ|p/2|∆n
i−1Υ|p/2

×
√

(k + 1)µ2p − 2k1−p/2µp(k) + (k − 1)µ2
p. (21)

The above theorem can be used to conduct a one-sided test of the statistical significance

of the discrepancy between log[β̂(0,T ](Υ, p)] and the null value of log(2); negative values

of the studentized left-hand side of (19) discredit the null hypothesis of the presence of

a continuous component. For practical purposes a value of p very close to 1 is desirable,

so that the requirement for p in the theorem is satisfied, when Z contains jumps of

finite variation. When Z contains jumps of infinite variation (19) does not hold, since

the jumps slow down the rate of convergence. Therefore in this case the one-sided test

based on Theorem 2 will be rather conservative. In Section 5.2 we provide Monte Carlo

evidence on the performance of the test.

4 Computations and Illustrations

4.1 Practical Aspects

We turn now to the practical application of our theoretical results stated in the previous

sections. We start by explaining the basic mechanics of the computations involved in

the analysis. Suppose we have equi-spaced data for a single unit interval, typically

a day in financial econometrics or an hour in our internet example below. Let xi,

i = 1, 2, . . . , n, denote the ith increment in the process over the period, which would

be the log-return, or geometric return, in financial econometrics. Define the realized

power variation

V (p) =
n∑

i=1

|xi|p (22)
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and think of it as function of p ≥ 0. We always find in practice that the using domain

p ∈ (0, 4] exhausts the relevant information in the observed xi. Now define

Ṽ (p) =
[n/2]∑

i=1

|x2i−1 + x2i|p (23)

which is the realized power using a sampling frequency half that of the original data.

The activity signature function is

b(p) =
ln(2)p

ln(2) + ln[Ṽ (p)]− ln[V (p)]
(24)

viewed as a function p on the domain (0, 4].1

In practice, we have high-frequency data for N intervals, where N can be very

large, e.g., 3,000 trading days. We can compute for each of the N intervals the signa-

ture function (24) (over a fine grid of p), yielding {{bs(p)}p∈(0,4]}N
s=1, where s indexes

intervals. It is impossible to report all N signature functions, so we look for measures

of central tendency and dispersion of the signature functions. Since we are handling

data with jumps and outliers, we use a statistically robust approach. For this purpose,

define the Quantile Activity Signature Function (QASF):

bα(p) = Quantileα

[{bs(p)}N
s=1

]
, for each p ∈ (0, 4] (25)

where, in a self-evident notation, Quantileα selects the αth quantile of a sequence of

numbers.2 In practice we find the quartiles, 0.25, 0.50, 0.75, which are commonly used

in statistics, to be very informative.

1In terms of the theory in Section 3, xi = ∆n
i Υ in equation (7), and the activity signature function shown

in (24) is (15) with k = 2, implying a sampling frequency half that of the original data.
2The subscript α in (25) should not be confused with the time index s (which takes integer values). We

make this slight abuse of notation in an effort to keep the notation as simple as possible. For the same
reason, from now on we use β as a short for the activity index βΥ,T (with β = 2 indicating presence of
continuous martingale).
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4.2 Signature Functions on Simulated Data

We now show the general methodology by computing signature functions on simulated

data using the following model for the discretely-observed process Υ:

dΥt = ρΥt + σ1 dWt + σ2 dLt (26)

where the first term represents the drift, which is absent if ρ = 0, the second is the

Brownian component, absent if σ1 = 0, and the third represents the increment of a

pure-jump Lévy process L, which is absent if σ2 = 0. The process L has a zero drift,

a zero truncation function, and its compensator for the jumps is either of these two:

A
e−λx

|x|β+1
dxds, β ∈ [0, 2) or, λJδ{x=±τ}dxds, (27)

where δε denotes the Dirac point mass.3 The left compensator in (27) corresponds

to a symmetric tempered stable process (Rosiński, 2007; Carr et al., 2002, 2003), also

called the CGMY process, and β is the Blumenthal-Getoor index. The right-hand

compensator in (27) corresponds to a compound Poisson process with intensity λJ and

jumps τ or −τ with equal probability, frequently termed “rare-jumps.” If jumps and

a continuous component are present, we fix the proportion of the jumps in the total

variance of Υ to be 20 percent, an upper limit found empirically in finance. If ρ < 0,

the process Υ is an Ornstein-Uhlenbeck (OU) process driven by Brownian motion or

jumps. We use ρ = −0.0693 corresponding to half-life of 10 units of time; the results

are insensitive to the value of ρ.

Table 1 contains full details on the simulations. In each scenario we simulate a

realization of N = 3000 units of time and 288 increments within each unit of time,

which correspond to 5-min sampling over a 24-hour day. In the first three scenarios the

3Note that because of the symmetry of the jump compensator, we do not need to compensate the small
jumps, i.e. we use zero truncation function, even in the infinite variation case when β > 1.
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simulated process is the infinitely active tempered stable distribution with parameter

β = 0.50, 1.0, 1.50 for the stable part.4 The parameter β must be between 0.00 and

2.00. For small values of β the process is infinitely active but relatively quiescent,

while for larger values above unity it is infinitely active and very vibrant. In the fourth

scenario, labeled C, the process is Brownian motion and β = 2. In the next three it

is a classical jump diffusion, without drift, and rare jumps that follow a compound

Poisson process with three values for the intensity parameter λJ corresponding to low,

medium, and high intensity. For the last four cases in Table 1, the prefix OU means

the process contains a drift, with the background driving Lévy process being the first

four Lévy processes of the table. Only in the last of these four cases, labeled OU-C,

is the process continuous (σ1 > 0, σ2 = 0), and it is otherwise purely discontinuous.5

Figure 1 shows the QASFs for a symmetric tempered stable process with activity

levels 0.50 and 1.00. The two left-hand panels pertain to the tempered stable only,

while in the right-hand panels the tempered stable is the background driving Lévy

processes for an OU process, so the increments exhibit temporal dependence, and the

drift promotes the activity level to at least unity. (See Table 1.) From Theorem 1, the

activity signature function of (24) satisfies b(p) P→ max{β, p} as the sampling frequency

increases, uniformly in p, for ∀t. As one expects from the asymptotic theory, in Figure 1

the ordinates of the median QASFs about equal the true (population) β for abscissa

p < β, and the ordinates equal p for abscissa above β. Not surprisingly, the QASFs are

curvilinear at abscissa p close to β, since the plots are based on simulations of finite

length and the asymptotic limit has not been reached.

In Figure 2, the simulation settings correspond to a symmetric tempered stable

4The tempered stable is simply the classical stable distribution with the tails of the Lévy density “tem-
pered” to attenuate the impact of large jumps and thereby make all moments exist, regardless of the value of
β ∈ [0, 2]. The tempering function is e−λ|x| and λ = 0.05 (very gentle tempering) in all scenarios in Table 1.

5See Todorov and Tauchen (2006) and references therein for details on discontinuous processes with drift
in continuous time.
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process with activity 1.50 and Brownian motion, which is of activity level 2.00. The

two left-hand panels pertain directly to these two processes, while in the right-hand

panel these processes are the background driving Lévy processes for an OU process.

Again, as expected from the asymptotic theory, the median QASFs appear generally

flat with ordinates about the level of β for the lower values of the abscissa p and, if there

are jumps as in the top two panels, the functions are near p for larger values, especially

for abscissa above 2.00, where only jumps matter asymptotically. In the upper two

panels the functions are curvilinear around the actual value of β, since the asymptotic

limit is not reached with a finite stretch of simulated data. Interestingly, in the lower

two panels the functions appear generally flat over the entire domain p ∈ (0, 4] because

the underlying process is continuous. The contrast between the top and bottom two

panels of Figure 2 reveals the impact of jumps.

The important implication of Figures 1 and 2 is that the behavior of the entire

signature function over the domain p ∈ (0, 4] conveys information about the level of

activity and the presence of jumps. We can expect to see a flat function about equal

to the level of activity β for the smaller values of abscissa, and, if there are jumps,

a rising value of p close to a 45 degree line for higher values of p. Also, if there are

jumps, the function is curvilinear around the actual value of β, and the sharpness of

the curvature is less at higher levels of β. In practice, then, the flat region on the left,

the region of curvature, and the increase on the right, all taken together guide inference

about β and jumps. The sharpness of the region of curvature and the gaps between

inter-quartile functions provides insight into the extent to which the particular data

set is informative about the activity level. Of course, in the absence of jumps, one can

expect a flat line around 2.00 over the entire domain p ∈ (0, 4].

We now consider the standard model consisting a Brownian motion plus rare jumps.
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For the three cases shown in Figure 3 we add to Brownian motion “rare” jumps, the

cases C-RJL, C-RJM, and C-RJH of Table 1. The intensities correspond to a jump

every 25, 3, and 0.5 units of time respectively, on average. Now the Brownian motion

is the most active component. For the sake of reference, the bottom right panel shows

the asymptotic limit of the signature function. For a time interval on which there is

a jump b(p) P→ max{2, p}, while if no jump b(p) P→ 2.00, a flat line at 2.00. For the

low intensity jump case in the top left panel of Figure 3, the three QASF functions

are nearly flat because the jumps are so rare. For the medium intensity case in the

top right panel of Figure 3, we see that for α = 0.75 the function bα(p) increases after

p = 2, but for the other two quantiles it stays flat, again due to the relative infrequency

of the jumps. In the high intensity case in the bottom left panel of Figure 3, the three

QASFs increase after p = 2, reflecting the high intensity of the jumps. Overall, the

figure suggests that unless the jumps are of moderate to high intensity, the QASFs can

be expected to be flat at a level of around 2.00 for p < 2 and to increase at best gently

for p ≥ 2, reflecting the very rare nature of the jumps.

Another gauge of the sampling variability of the activity signature function is seen

in Figure 4, which shows 1, 000 replicates of the median signature function for the first

four cases of Table 1. The up-down spread in the simulated functions is not large,

although the bias, i.e., the location of the bend in the curve relative to the population

value, is larger. We return to this in Section 5 below, which summarizes an extensive

Monte Carlo study of point estimates based on the signature function.
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5 Estimating the Activity Level

5.1 Point Estimator Based on the Activity Signature Func-
tion

In the above, the approach is graphical but based on rigorous theory; there are many

reasons, however, why one would seek a point estimate to succinctly summarize em-

pirical findings. Towards this end, note that there is information about the activity

level embedded in the entire signature function, especially for ordinates (heights) of

b(p) evaluated at the lower values of p. This observation suggests generating a consis-

tent estimator of activity β by averaging via integration the signature function over a

suitable domain. From the asymptotic theory, this domain would be some interval in

(0, β], but of course β is the unknown parameter to be estimated. Thus, we have to use

a domain of integration with an upper limit given by some initial consistent estimator

of β, which is available by evaluating signature function at a small positive value τ ,

yielding b(τ). The proposed estimator of β is

β̂ =
1

b(τ)− τ

∫ p=b(τ)

p=τ
b(p) dp, (28)

where simple Rieman sums over a fine grid can be used to compute the integral in (28).6

The right side of (28) is clearly a statistic — a function only of the data — along with

the user-selected tuning parameter τ , and such tuning parameters are ubiquitous in

nonparametric estimation. We suggest using τ = 0.10.7

There are several comments regarding our proposed estimator. First, provided

β > τ , the estimator β̂ is consistent and this is a simple consequence of the uniform

convergence in Theorem 1. When β < τ , the estimator will be asymptptoically upward

6Computing β̂ for each of large number of data intervals conveys bootstrap-type information on sampling
fluctuations.

7As later illustrated in the Monte Carlo, for the frequencies that we use here, β is estimated with a
precision level of about 0.10.
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biased with a bias of at most τ . From a theoretical point of view the researcher has often

prior information that restricts β from below. This will be the case for example when

the discretely-observed process is modeling a process with high temporal dependence.

In this case, a drift term will be typically needed to capture the mean reversion, and

its presence will guarantee that β ≥ 1. Similarly, the presence of risk premia in traded

assets would guarantee a drift term and thus again β ≥ 1. Therefore, from a theoretical

point of view, having a prior information that restricts β > τ for some small value of

τ is not uncommon. Indeed, in practice the data sets that we have worked with have

activity well above 1.8

Second, from a practical point of view starting the integration in (28) from some

τ away from zero is very important if the data are grainy, say reported to four or five

digits. The effect of rounding causes a sharp drop of the activity signature function

near the origin, as seen from Figure 5 for our empirical application, and this limits the

usefulness of the function for those very small values of the power. An extremely simple

technique to eliminate the drop is to jitter the data by adding a very slight amount of

random noise small enough to be of no practical significance but large enough to knock

the data off the grid, and the drop-off problem goes away.

Finally, in designing β̂ we used the activity signature function for all powers that

carry information about the object of estimation β. It is clear though that the different

powers will differ in their efficiency in estimating β - for example powers that are

relatively close to the true value of β will be relatively noisier estimates of the activity.

Thus, a refinement of the current estimator β̂ would be to weigh appropriately the

different powers used in the estimation. We are currently developing such an estimator.

8An alternative simple strategy that will turn β̂ consistent even when β < τ is the following. Starting
from τ , we move it to the left till the slope b′(p) is “sufficiently” different from 1 which can be determined
by an additional tuning parameter. Then our estimator is (28) for this (potentially) shifted to the left level
of τ .
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5.2 Monte Carlo Assessment

We next conduct an extensive Monte Carlo analysis of β̂ in (28) and the statistical

test for β =2 given in Theorem 2. The study covers a much wider range of scenarios

than Table 1 above along with a broad range of sampling frequencies and spans of

the data set. The voluminous Monte Carlo output is relegated to a supplementary

web-available appendix, and here we report a subset of the Monte Carlo analysis that

is quite representative of the full analysis.

Table 2 shows the Monte Carlo evidence on the accuracy of β̂ in (28) as an estimator

of β for the first four scenarios of Table 1 in a financial econometrics setting. The

spans of the data are either one year (N = 250) or twelve years (N = 3, 000), and

the sampling frequencies are 1-minute, 5-minute, or 10-minute over a 24 hour day. As

seen from the table, the key determinant of accuracy is the sampling frequency, since

it controls the bias.9 At 1-minute sampling, the mean absolute deviations and error

rates indicate that the estimator β̂ is very accurate, but this needs to be qualified since

microstructure noise is ignored. At 5-minute sampling, which is generally robust to

microstructure noise, β̂ always estimates β to within 0.10. At 10-minute sampling,

however, the estimator can be well off the mark relative to the 5-minute sampling case,

especially with a short span of one year’s worth of data. Interestingly, the contrast

between the rightmost two columns of Table 2 suggests the bias of the estimator is

between 0.05 and 0.10. As the span (N) increases with the sampling frequency held

fixed, the estimator concentrates around a biased value, but if that bias is less than

0.10, then the error rate (for precision of up to 0.10) will be smaller with a longer

span, which is evident in the table. On the other hand, if the bias is less than 0.10 but

exceeds 0.05, then a longer span can be expected to provide no help in reducing the

9This of course is not surprising as our asymptotic theory is of fill-in type, while keeping the time-span
fixed.
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error rate (for precision of up to 0.05), which is also evident in the table. Overall, the

estimator appears to be reasonably accurate using the large dense data sets typical in

financial econometrics.

Next, Table 3 shows the rejection probabilities under six scenarios of the test based

on Theorem 2 above of the null hypothesis that a continuous martingale component is

present in the process, i.e. that its activity index equals 2. In the first three blocks,

the null hypothesis is true and the test is generally slightly undersized and thereby

conservative. An exception is the case C-RJH, which is Brownian motion plus rare

jumps at high intensity, where the test is oversized, but only seriously so at the 10

percent significance level, which is not commonly used in practice. In the lower three

blocks the null hypothesis is false, and the process is pure-jump. The test appears

reasonably powerful, with the exception of very course sampling, 10-minute, for the case

TS1.5 where the rejection rates are rather low. Taken together, the Monte Carlo results

in Table 3 indicate that the test for presence of a continuous component, which we apply

later in our empirical application, is well behaved without serious size distortions and

reasonably high power.

6 Empirical Applications

6.1 Exchange Rates

In the first application we use high-frequency data on the log of the spot $/DM ex-

change rate for the period 1986:12–1999:06, 3045 trading days. Each trading day is

24 hours and sampling every five-minutes gives 288 log-returns (increments). For each

day we calculate the activity signature function bs(p) where s = 1, ..., 3045 and then

evaluate the quantile activity function QASF as bα(p) defined in (25). The top left

panel of Figure 5 shows the QASFs for α = 0.25, 0.50, 0.75 computed on the observed
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data; the sharp drop near the origin is due to the effects of rounding, since the exchange

rate is quoted to five digits, whereas simulations are computed to machine precision.10

The top right panel of Figure 5 shows an asymptotic reference signature function, while

the bottom two panels show the QASFs computed on the first and second halfs of the

sample, respectively.

From Figure 5, the evidence suggests that the exchange rate process contains a

continuous martingale component, which has activity level of 2.00. The bottom two

panels of Figure 5 indicate that the empirical finding is robust to using either the first

or second half of the sample. Additional support comes also from our point estimator

of the activity given in (28) - its median value over the entire sample equals 2.12.

To test formally for the presence of a continuous martingale in the spot $/DM

exchange rate, we implement the test given in Theorem 2. Figure 6 is a plot of the day-

by-day values of log(bs(p)) for p = 0.90 along with a 95 percent lower confidence bound

based on the null of a continuous martingale being present. Only 1.5 percent of the

point estimates lie below their corresponding 95 percent confidence bound and thereby

are statistically significantly different from the null value of log(2). Consistent with

contemporaneous evidence obtained using a different test (Cont and Mancini, 2007),

Figure 6 indicates very little statistical evidence against a model with a continuous

component.

Overall, the non-parametric analysis of the activity level of the exchange rate data

shows that pure-jump models for asset prices as proposed in Carr et al. (2002, 2003)

and elsewhere are probably not good descriptions of the high-frequency exchange rate

data. Instead, an appropriate model for the exchange rate (at least for the time period

used in this study) is of the form of a continuous semimartingale plus jumps as in (3),

10Rounding simulated data has exactly same effect near the origin on activity signature plots as that seen
in Figure 5.
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which has many small diffusive moves along with jumps.

The quantile activity signature plots also provide evidence on the intensity of the

jumps present in the discretely-observed process in addition to the continuous martin-

gale. As seen in Figure 5, only the 75-th quantile of QASFs computed on observed data

increases for p > 2. By way of comparison, the cases C-RJL, C-RJM, and C-RJH

in Table 1 are realistically calibrated so that the jump part accounts for 20 percent

of the total variance of the process. Only with intensities of one jump every three

days, or two jumps every day, can activity signature plots computed from simulations

as in Figure 3 be consistent with the signature plots computed from observed data in

Figures 5. However, all empirical evidence we know of reports a very low intensity

level of between five to twenty jumps per year, if the data are presumed to follow a

(time-changed) Brownian motion plus a compound Poisson process. As seen in the top

left panel of Figure 3, at such low intensity levels the process would generate quantile

activity signature plots very much unlike those of Figure 5 computed on the data. Our

evidence thus suggest that a model of a time-changed Brownian motion and rare jumps

is misspecified.11

6.2 Internet Traffic

Under a so-called “slow-growth” condition, processes related to the classical α-stable

process are important for modeling internet traffic (Mikosch et al., 2002, Theorem 1,

p. 33). Parameter estimates of the index obtained on the maintained hypothesis of

a classical α-stable model can range from 0.70 to 1.67 depending upon the data set

(Xiaohu et al., 2004, Table 1, p. 450).

11Note that our estimation is not designed to infer the Blumenthal-Getoor of the jumps when a continuous-
martingale is known to be present. To assess formally the activity of the jumps in the exchange rate series,
in the presence of a continuous martingale, we need much higher frequencies than the ones used here and the
formal tools developed in Ait-Sahalia and Jacod (2009a,c). Such analysis is beyond the scope of the current
paper.
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Figure 7 shows the number of megabytes downloaded from NASA servers over

ten second intervals for the period August 4–31, 1995. Raw data are from the file

NASA_access_log_Aug95 in the public domain. NASA servers experience heavy de-

mand, sometimes between two to three large requests per second at peak periods. The

time stamps show the hour, minute, and second of the data-request, with multiple

records per second in the data file. We aggregated to ten second intervals as is com-

mon practice. We exclude August 1–3, 1995, because of various anomalies and we

use segments of length one hour, reflecting the slowly varying overall level of traffic

revealed in initial analysis. There are 360 observations per segment, and 24 (hours) ×

28 (days) = 672 segments. The data are centered using the full sample mean.

The top left panel of Figure 8 shows the quantile signature functions for these NASA

internet traffic data; the top right panel shows, for sake of reference, what would be the

asymptotic limit of the signature function if it were a continuous process plus jumps.

The contrast between the top left and right panels suggests that the process generating

the internet traffic data lacks a continuous component. This is further confirmed from

the bottom panel of Figure 8, which shows the results from the test for presence of

continuous martingale component. For almost all periods in the sample (constituting

97% of the sample) this null hypothesis can be easily rejected. Finally, the median

estimate of the activity level based on (28) equals 1.30. This nonparametric evidence

suggests that the activity index of this NASA internet traffic series is in the range

of 1.10–1.50, which is slightly more active than the Cauchy process and of infinite

variation.

The analysis here provides a useful starting point for building a fully parametric

pure jump model of the time series. The close resemblance between the signature

plots from the NASA series in Figure 8 and those obtained from the tempered stable
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process in Figure 2 is interesting, and suggests the tempered stable appears an excellent

candidate for an initial parametric model that could be refined under the guidance of

various specification tests. This task is beyond the scope of this paper.

7 Conclusion

Our non-parametric strategy for inference about the activity level of a discretely-

observed semimartingale is intuitive and graphical, and it gives a non-parametric test

for presence of continuous martingale. In a finance application to the $/DM exchange

rate, the findings indicate that pure-jump models are empirically less plausible than the

classical model of Brownian Motion plus jumps. In the second application, the findings

suggest that NASA internet traffic follows a pure-jump model without a continuous

component and of infinite variation. The two disparate findings indicate the range of

applicability of the methods.
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8 Tables

Table 1: Parameter Setting for the Various Scenarios

Case ρ σ2
1 σ2

2 Jump Specification

TS0.5 0.00 0.0 1.0 tempered stable, A = 1, β = 0.5 and λ = 0.05

TS1.0 0.00 0.0 1.0 tempered stable, A = 1, β = 1.0 and λ = 0.05

TS1.5 0.00 0.0 1.0 tempered stable, A = 1, β = 1.5 and λ = 0.05

C 0.00 0.8 0.0 none
C-RJL 0.00 0.8 1.0 rare-jump, λJ = 0.0400, τ = 2.2361

C-RJM 0.00 0.8 1.0 rare-jump, λJ = 0.3333, τ = 0.7746

C-RJH 0.00 0.8 1.0 rare-jump, λJ = 2.0000, τ = 0.3162

OU-TS0.5 -0.0693 0.0 1.0 tempered stable, A = 1, β = 0.5 and λ = 0.05

OU-TS1.0 -0.0693 0.0 1.0 tempered stable, A = 1, β = 1.0 and λ = 0.05

OU-TS1.5 -0.0693 0.0 1.0 tempered stable, A = 1, β = 1.5 and λ = 0.05

OU-C -0.0693 0.8 0.0 none
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Table 2: Monte Carlo Results for β̂

Error rates
N M β0 MED IQR MAD η = 0.15 η = 0.10 η = 0.05

Case TS0.5

250 1440 0.50 0.54 0.002 0.038 0.00 0.00 0.00

250 288 0.50 0.57 0.005 0.071 0.00 0.00 1.00

250 144 0.50 0.60 0.006 0.095 0.00 0.17 1.00

3000 1440 0.50 0.54 0.001 0.038 0.00 0.00 0.00

3000 288 0.50 0.57 0.001 0.071 0.00 0.00 1.00

3000 144 0.50 0.60 0.001 0.095 0.00 0.00 1.00

Case TS1.0

250 1440 1.00 1.04 0.005 0.040 0.00 0.00 0.00

250 288 1.00 1.07 0.012 0.071 0.00 0.00 0.99

250 144 1.00 1.09 0.018 0.092 0.00 0.27 1.00

3000 1440 1.00 1.04 0.001 0.040 0.00 0.00 0.00

3000 288 1.00 1.07 0.003 0.071 0.00 0.00 1.00

3000 144 1.00 1.09 0.004 0.092 0.00 0.00 1.00

Case TS1.5

250 1440 1.50 1.49 0.009 0.009 0.00 0.00 0.00

250 288 1.50 1.53 0.021 0.031 0.00 0.00 0.10

250 144 1.50 1.56 0.034 0.057 0.00 0.02 0.60

3000 1440 1.50 1.49 0.002 0.009 0.00 0.00 0.00

3000 288 1.50 1.53 0.005 0.031 0.00 0.00 0.00

3000 144 1.50 1.55 0.011 0.054 0.00 0.00 0.71

Case C

250 1440 2.00 2.00 0.014 0.007 0.00 0.00 0.00

250 288 2.00 2.00 0.032 0.016 0.00 0.00 0.03

250 144 2.00 1.99 0.045 0.025 0.00 0.01 0.16

3000 1440 2.00 2.00 0.004 0.002 0.00 0.00 0.00

3000 288 2.00 2.00 0.009 0.006 0.00 0.00 0.00

3000 144 2.00 1.99 0.012 0.013 0.00 0.00 0.00

The estimator β̂ is defined in (28) of Section 5. The parameter settings for the cases above
are given in Table 1, and the number of replicates is 1,000. N is the number of units of
time in a simulation; M is the number of high-frequency observations per unit of time. β0 is
the population value. MED is the median, IQR the inter-quartile range, MAD the median
absolute deviation, each computed over the 1000 replications. Error rates are the proportion
of replicates where |β̂ − β0| > η.
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Table 3: Size and Power of Test for Presence of Continuous Martingale

Sampling Frequency Proportion of Rejections of the Null Hypothesis
at Conventional Significance Levels

0.01 0.05 0.10

Case C (H0 true)

M = 1440 ( 1 min) 0.0052 0.0407 0.0913
M = 288 ( 5 min) 0.0012 0.0248 0.0743
M = 144 (10 min) 0.0002 0.0185 0.0623

Case C-RJH (H0 true)

M = 1440 ( 1 min) 0.0132 0.0820 0.1596
M = 288 ( 5 min) 0.0029 0.0497 0.1227
M = 144 (10 min) 0.0005 0.0274 0.0919

Case OU-C (H0 true)

M = 1440 ( 1 min) 0.0050 0.0406 0.0912
M = 288 ( 5 min) 0.0020 0.0258 0.0735
M = 144 (10 min) 0.0006 0.0193 0.0640

Case TS0.5 (H0 false)

M = 1440 ( 1 min) 0.9998 0.9998 0.9998
M = 288 ( 5 min) 0.9942 0.9981 0.9990
M = 144 (10 min) 0.9735 0.9914 0.9942

Case TS1.0 (H0 false)

M = 1440 ( 1 min) 0.9999 0.9999 0.9999
M = 288 ( 5 min) 0.9823 0.9964 0.9977
M = 144 (10 min) 0.7121 0.9321 0.9700

Case TS1.5 (H0 false)

M = 1440 ( 1 min) 0.9967 0.9995 0.9998
M = 288 ( 5 min) 0.2634 0.6207 0.7736
M = 144 (10 min) 0.0428 0.2942 0.4920

The test is one-sided and is based on asymptotic distribution under the null using p = 0.9
in Theorem 2 in Section 3. The parameter settings for the cases above are given in Table 1,
and the number of replicates is 10, 000 units of time.
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Figure 1: Quantile activity signature plots for processes driven by the symmetric tempered
stable process of activity less than or equal to unity. The figures show the QASFs bα(p)
defined in (25) as a function of p for the quantiles α = 0.25, α = 0.50, and α = 0.75. The
left-side panels correspond to values of β and other parameters given by Cases TS0.5 and
TS1.0 of Table 1; right-side panels pertain to Cases OU-TS0.5 and OU-TS1.0 of Table 1.
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Figure 2: Quantile activity signature plots for processes driven by Lévy processes of infinite
variation: the symmetric tempered stable process of activity 1.50 and Brownian motion. The
figures show the QASFs bα(p) defined in (25) as a function of p for the quantiles α = 0.25,
α = 0.50, and α = 0.75. The left-side panels correspond to values of β and other parameters
given by Cases TS1.5 and C of Table 1; the right-side panels pertain to Cases OU-TS1.5
and C of Table 1.
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Figure 3: Quantile activity signature plots for Brownian Motion plus rare jumps. The rare
jumps are a compound Poisson of three different intensity levels and parameters given by
Cases C-RJL (top left panel), C-RJM (top right panel), and C-RJH (lower left panel),
where the parameter settings are given in Table 1; these panels show the QASFs bα(p) defined
in (25) as a function of p for the quantiles α = 0.25, α = 0.50, and α = 0.75. The lower
right panel, shown for purpose of reference, is the asymptotic limit as the sampling interval
goes to zero.
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Figure 4: Over-plots of 1000 Monte Carlo Replicates of the Median Activity Signature
Function for Cases TS0.5, TS1.0, TS1.5, and C of Table 1 with 5-min sampling and 1500
periods (days) of data.
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Figure 5: Quantile Activity Signature Functions for the $/DM exchange rate, 1986–1999.
The top left panel shows the QASF bα(p) defined in (25) as a function of p for the quantiles
α = 0.25, α = 0.50, and α = 0.75, using the full sample, while the top right shows a
theoretical reference for a continuous plus jumps process. The bottom two panels show the
QASFs using evenly split (first half, second half) sample subperiods to compute the QASFs.
The→ in the top left and bottom two panels points to 2.0; the value of β itself is an unknown
parameter.
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Figure 6: Daily point estimates log(bs(p)) marked by • for p = 0.90 and 95 percent lower
confidence bounds. A point estimate below its corresponding confidence bound would be
considered statistically significantly different from the null value of log(2) = 0.69.
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Figure 7: Raw data: The number of megabytes downloaded from NASA servers over ten
second intervals for the period August 4–31, 1995.
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Figure 8: Top left: Quantile Activity Signature Functions computed from the NASA down-
load data shown in Figure 7. Top right: Asymptotic function if the process were a continuous
plus jumps. Bottom panel: Formal test for the presence of a continuous component, point
estimates log(bs(p)) marked by • for p = 0.90 and 95 percent lower confidence bounds; a
point estimate below its corresponding confidence bound would be considered statistically
significantly different from the null value of log(2) = 0.69.
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Computational And Applied Mathematics 189, 526–538.

Todorov, V. and G. Tauchen (2006). Simulation Methods for Lévy -Driven CARMA
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