
Smooth Ambiguity Aversion Toward Small Risks

and Continuous-Time Recursive Utility

Costis Skiadas∗

Journal of Political Economy, forthcoming

Abstract

Assuming Brownian/Poisson uncertainty, a certainty equivalent (CE) based on the smooth

second-order expected utility of Klibanoff, Marinacci, and Mukerji (Econometrica, 2005) is

shown to be approximately equal to an expected-utility CE. As a consequence, the correspond-

ing continuous-time recursive utility form is the same as for Kreps-Porteus utility. The analo-

gous conclusions are drawn for a smooth divergence CE, based on a formulation of Maccheroni,

Marinacci, and Rustichini (Econometrica, 2006), but only under Brownian uncertainty. Under

Poisson uncertainty, a smooth divergence CE can be approximated with an expected-utility

CE if and only if it is of the entropic type. A non-entropic divergence CE results in a new class

of continuous-time recursive utilities that price Brownian and Poissonian risks differently.
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1 Introduction

The distinction between risk and uncertainty or ambiguity (terms we use as synonyms) dates back

to Knight (1921) and Keynes (1937) and continues to be the subject of great research interest to

this day. The concept is colorfully explained by Silver (2012) in his popular account of statistical

ideas: “Say that you’ll win a poker hand unless your opponent draws to an inside straight: the

chances of that happening are exactly 1 chance in 11. This is risk. It is not pleasant when you

take a “bad beat” in poker, but at least you know the odds of it and can account for it ahead of

time. ... Uncertainty, on the other hand, is risk that is hard to measure. You might have some

vague awareness of the demons lurking out there. You might even be acutely concerned about

them. But you have no real idea how many of them there are or when they might strike. Your

back-of-the-envelope estimate might be offby a factor of 100 or by a factor of 1,000; there is no good

way to know. This is uncertainty. Risk greases the wheels of a free-market economy; uncertainty

grinds them to a halt.”

The last sentence is a caricature of the old loose idea that aversion to Knightian uncertainty,

as famously exhibited in the Ellsberg (1961) experiments, can act as a type of market friction,

inhibiting trade or giving rise to higher risk premia than could reasonably be expected if risk

estimates were taken at face value. This intuition has motivated a growing literature that employs

various formalizations of ambiguity aversion to model economic phenomena that have so far proved

a challenge to the neoclassical approach. The most prominent formalization of ambiguity aversion

is the nonsmooth maxmin expected utility1 of Gilboa and Schmeidler (1989). As an example,

among many, Caballero and Krishnamurthy (2008) use maxmin expected utility to formulate a

model of crises and central bank policy driven by Knightian uncertainty. Another early proposed

representation of ambiguity aversion, due to Bewley (1986), is also nonsmooth.

The last decade saw a resurgence of interest in formalizations of ambiguity aversion, with em-

phasis on smooth utility representations. In this paper, we focus on two smooth representations

of ambiguity aversion that have received some attention in the literature: Second-order expected

utility, proposed by Klibanoff, Marinacci, and Mukerji (2005) and Nau (2006), and the smooth

case of divergence preferences, proposed by Maccheroni, Marinacci, and Rustichini (2006a) as an

extension of the entropic variational preferences of Hansen and Sargent (2001). From an applied

theorist’s perspective, a main question is, do these preferences have quantitative implications that

can not be obtained more parsimoniously within the Bayesian, expected-utility framework? This

paper’s conclusions give a mostly negative answer for a broad class of potential applications.

To take an example application area, Ju and Miao (2012) and Collard, Mukerji, Sheppard, and

Tallon (2011) use second-order expected utility to tackle the challenge of explaining the historically

high average premium that investors require for bearing aggregate market risk, given that aggregate

1Gilboa (2009) offers a readable introduction to maxmin expected utility and its relationship to the Choquet
expected utility of Schmeidler (1989). Dynamic extensions of maxmin expected utility were formulated by Epstein
and Schneider (2003) in discrete time, and Chen and Epstein (2002) in continuous time.
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consumption varies apparently too little to justify such a high premium. This so-called equity

premium puzzle has been one of the central themes of asset pricing since it was posed by Mehra and

Prescott (1985). It would certainly be interesting if ambiguity aversion in the form of smooth second-

order expected utility resolved the matter. This paper’s first main conclusion, however, raises the

following diffi culty. While Ju and Miao (2012) and Collard et. al. (2011) use annual data, in practice

agents receive information at a much higher frequency. Given the type of information structures

commonly assumed in macroeconomics and finance, the utility penalty due to ambiguity aversion

modeled through smooth second-order expected utility decreases as the frequency increases and

disappears entirely in the continuous-time limit. Over short time intervals, only small incremental

risks are resolved, and for such small risks, second-order expected utility is well-approximated by

the corresponding expected utility obtained by eliminating ambiguity aversion.

An essential assumption underlying this paper’s arguments is that the information stream is

well-approximated by a continuous-time model in which all uncertainty is driven by a fixed finite

number of Brownian motions and Poisson processes. This assumption is consistent with almost

all continuous-time or high-frequency models in macroeconomics and finance for well-understood

probabilistic reasons.2 Over a short time interval, a Brownian shock represents a small change with

high probability, just like a stock price is expected to vary by some small amount on any given day.

A Poissonian shock represents a large change with a small probability that comes as a surprise, just

like a stock price can occasionally surprise with a “multiple-sigma”drop. The fact that the drift

and volatility of various processes can depend on the entire history of Brownian and Poisson shocks

makes this a very rich modeling framework.

The distinction between Brownian and Poissonian uncertainty is important in explaining this

paper’s insights with regard to smooth divergence preferences. It is well-known (see Example 3)

that over a single period, entropic variational utility can be equivalently expressed as expected

utility. Ambiguity aversion in this case is an argument for greater risk aversion, but does not

take us outside the realm of expected utility. (A continuous-time dynamic version of this fact

is shown in Skiadas 2003.) This paper’s second main conclusion is that in high frequency with

Brownian information, smooth divergence preferences can be approximated by entropic variational

preferences and hence by preferences admitting an expected utility representation. Once again,

the incorporation of smooth ambiguity aversion does not take us beyond the realm of expected

utility. Under Poisson information, however, the analogous conclusion is valid if and only if the

divergence preferences are of the entropic type. This dichotomy presents the interesting possibility

that in a mixed Brownian/Poisson model, ambiguity aversion modeled through smooth divergence

preferences can be calibrated to affect the pricing of Brownian and Poissonian uncertainty differently.

While the paper’s conclusions have so far been described entirely in terms of single-period pref-

erences, it is important to note that these preferences are taken to a dynamic setting by embedding

2Brownian motions and Poisson processes are the building blocks of all processes with stationary and independent
increments that are continuous in probability. (See, for example, Chapter I of Protter (2004).) By bounding and
discretizing the possible jump sizes, a finite number of Poisson processes are enough in terms of practical modeling.
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them in a smooth recursive utility function. The approach is consistent with the way Klibanoff,

Marinacci, and Mukerji (2009) and Maccheroni, Marinacci, and Rustichini (2006b) extend their

respective static formulations to dynamic settings. Chapter 6 of Skiadas (2009) discusses a related

literature and provides a simple axiomatic foundation for recursive utility with an arbitrary cer-

tainty equivalent (CE), which can be specialized to the CEs of interest in this paper. In the case

of an expected-utility (EU) CE, the resulting recursive utility is Kreps and Porteus (1978) utility,

whose continuous-time version, assuming smoothness, is given by Duffi e and Epstein (1992). The

present paper’s CE approximations suggest the modifications to Duffi e-Epstein utility that are re-

quired if one is to replace the EU CE with a smooth second-order EU CE or a smooth divergence

CE. Under Brownian uncertainty, no modifications are required. The same is true under Poissonian

uncertainty and a smooth second-order EU CE. Only in the case of Poissonian uncertainty and a

non-entropic divergence CE we obtain a genuinely new continuous-time utility functional form.

Citing earlier versions of the present paper, Hansen and Sargent (2011), Gindrat and Lefoll

(2010) and Maccheroni, Marinacci, and Ruffi no (forthcoming) offered some suggestions for breaking

the approximate equivalence of smooth second-order expected utility and expected utility for small

risks. The first paper effectively takes the ambiguity aversion coeffi cient to infinity as the frequency

increases to infinity, the second paper blows up the drift of the risk source as the frequency increases

to infinity, while the third paper is a one-shot model and does not address at all how a small risk

should be calibrated to correspond to a sampled stochastic process at increasingly higher frequencies.

None of these papers negate any of the present paper’s conclusions.

The remainder of the paper is organized in five sections. Section 2 gives a numerical illustration

of the irrelevance of ambiguity aversion under a smooth second-order expected-utility CE in a

Brownian setting. Section 3 presents the uncertainty model over each step of the information tree.

Section 4 presents the CE approximations. Section 5 discusses implications for continuous-time

recursive utility. Section 6 concludes with clarifying remarks and further discussion of some related

work. An online Appendix contains proofs and additional results and details.

2 A Numerical Example

A central conclusion of this paper is the irrelevance of ambiguity aversion modeled through smooth

second-order expected utility in a high-frequency Brownian-information setting. This section presents

a simple numerical illustration of this point, using off-the-shelf components: The discrete tree rep-

resenting Brownian information is the same as in textbook accounts of binomial option pricing

theory, and the single-period preferences are taken to a dynamic setting by modifying the widely

used parameterization of Kreps and Porteus (1978) utility due to Epstein and Zin (1991) and Weil

(1989). The example also helps frame the ensuing analysis more generally by clarifying the sense

in which small-risk CE approximations relate to a dynamic setting.

Time is discrete and indexed by t = 0, h, 2h, 3h, . . . , where h denotes the time length of each
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period in years. A consumption plan c specifies, for each time t, a consumption amount ct that

is contingent on the resolution of time-t information. With c we associate a utility process U,

where Ut represents the time-t utility of the consumption stream (ct, ct+h, ct+2h, . . . ) . We select

utility units to correspond to equivalent consumption perpetuities, meaning that at time t the

agent is indifferent between receiving the constant perpetuity (Ut, Ut, Ut, . . . ) and the remaining

plan (ct, ct+h, ct+2h, . . . ) . In order to truncate the infinite horizon, we freeze all information from

time T onward, which implies that cT = cT+h = cT+2h = . . . and therefore UT = cT .

For each time t < T, a (conditional) CE υt is a function that reduces the random variable Ut+h
to a random variable υt (Ut+h) whose value is resolved at time t. We assume, for now, that υt is

the CE implied by expected utility with a constant coeffi cient of relative risk aversion γ; that is,

υt = u−1
γ Etuγ , where Et denotes a conditional expectation operator given time-t information, and

uγ (x) =
(
x1−γ − 1

)
/ (1− γ) (with u1 (x) = log x). The Epstein-Zin-Weil specification recursively

computes the process U in terms of c, starting with the terminal value UT = cT , and proceeding

backward in time according to the recursion:

Ut = u−1
δ

((
1− e−βh

)
uδ (ct) + e−βhuδ (υt (Ut+h))

)
, (1)

where δ is the inverse of the elasticity of intertemporal substitution (EIS) and β is the rate of

impatience.3

Let us now modify the CE υt to correspond to a simple instance of second-order expected utility,

resulting in a recursive utility of the type adopted by Ju and Miao (2012). An agent considers priors

Q1 and Q2 as equally plausible but choosing one or the other entails ambiguity. Prior Qi defines

the EU CE υit = u−1
γ Eituγ , where Ei denotes expectation under Qi. The agent’s CE is

υt (Ut+h) = u−1
α

(
1

2
uα
(
υ1
t (Ut+h)

)
+

1

2
uα
(
υ2
t (Ut+h)

))
,

where α ≥ γ, reflecting higher aversion to uncertainty associated with the choice of a prior than

to risk given a prior. Let E denote expectation under the compound prior 0.5Q1 + 0.5Q2. The

preceding CE reduces to υt = u−1
γ Etuγ if and only if α = γ. We are interested in the quantitative

significance of the ambiguity-aversion parameter α.

Towards a numerical example, suppose that log-consumption follows a binomial-tree approx-

imation of the process log ct = log 100 + µt + 0.03Bt, where B is a standard Brownian motion.

The drift parameter µ is 0 under prior Q1 and 0.05 per year under prior Q2; ambiguity is about

the expected consumption growth rate, while consumption volatility is perfectly observable. Let

also β = 0.03 per year (e−β ≈ 0.97), γ = 2, EIS = 1/δ = 1.5 and T = 10 years. The familiar

discretization of log c on a binomial tree is spelled out in Section 2.B of Dixit and Pindyck (1994)

and is consistent with the Brownian uncertainty model introduced later in Section 3. Based on

3Time-additive expected discounted power or logarithmic utility results if and only if γ = δ. Allowing γ and δ
to differ partially disentangles preferences for smoothing across time and states of the world, resulting in a richer
framework for modeling equilibrium interest rates and risk premia.

5



the latter, we compute4 the following time-zero utility values, where the frequencies correspond to

h = 1/4, 1/12, 1/52 and 1/365 :

frequency: quarterly monthly weekly daily

α = γ = 2 U0 = 123.70 123.71 123.72 123.72

α = 20, γ = 2 U0 = 122.19 123.21 123.60 123.70

α = 40, γ = 2 U0 = 120.56 122.65 123.47 123.68

α = γ = 40 U0 = 107.84 107.03 106.74 106.67

Note that in the first three rows, the sensitivity of the utility value on the ambiguity aversion

parameter α evaporates as we increase the frequency (across columns). In contrast, the first and

last rows show that Epstein-Zin-Weil utility (corresponding to α = γ) remains sensitive to the

coeffi cient of relative risk aversion γ at all frequencies. To get an idea of why this is happening, let’s

say h = 10−4. Over a single period, log-consumption can vary plus-minus one standard deviation,

whose size is 0.03 ×
√
h = 3 × 10−4. Recall that ambiguity is entirely about the expected growth

rate µ. In this case, µ can be one of two values, whose difference is 0.05×h = 5×10−6, a number that

is dwarfed by the standard deviation. In fact, the ratio of the standard deviation to the expected

growth range goes to infinity as h goes to zero, for any fixed range of µ values. In the following

sections, these ideas are formalized and extended through CE approximations.

3 Single-Period Uncertainty

In a dynamic setting, this paper’s CE approximations apply conditionally at each node of a binomial

tree that in a continuous-time limit converges to either a Brownian motion or a Poisson process.

Eliminating notation that is irrelevant for the argument, we focus on the single-period uncertainty

from the perspective of any node on the binomial tree. This means there are only two states to

consider, comprising the underlying state space {0, 1} .
We introduce two uncertainty models, corresponding to Brownian and Poissonian risks, para-

meterized by the time-period length h ∈ (0, 1) , which should be thought of as being small but

not negligible. Terms of higher order than h are negligible. To express approximation errors that

are negligible relative to h, we use the familiar little-oh notation: o (h) represents some function

f : (0, 1) → R such that f (h) /h → 0 as h → 0. (Every instance of little oh can represent a

potentially different function f.)

Each model is specified by a probability P and a random variable B, normalized so that

EB = 0 and E
[
B2
]

= h, (2)

where E denotes expectation under P. More concretely, we consider the following specifications:
4The computer code is available at the author’s web page:

http://www.kellogg.northwestern.edu/faculty/skiadas/research/research.htm.
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• Brownian Uncertainty:{
B (1) = +

√
h with probability P (1) = 1/2,

B (0) = −
√
h with probability P (0) = 1/2.

(3)

• Poissonian Uncertainty: For some function5 ε (h) = o (h) ,{
B (1) = 1− h− ε (h) with probability P (1) = h+ ε (h) ,

B (0) = 0− h− ε (h) with probability P (0) = 1− h− ε (h) .
(4)

Note that (P,B) is parameterized by h, even though the dependence on h is notationally suppressed.

In a continuous-time limit, h corresponds to a time infinitesimal dt and B corresponds to the

infinitesimal increment dB of either a standard Brownian motion or a compensated Poisson process

with unit arrival rate. Billingsley (1999) (Theorem 14.1 and Example 12.3) can be consulted for the

rigorous statement and proof of the facts that, as h goes to zero, a random walk whose increments

are i.i.d. copies of B converges to a standard Brownian motion in the case of specification (3) and

a compensated Poisson process with unit arrival rate in the case of specification (4) . We proceed

under the assumption that (P,B) is specified by either (3) or (4) .

Taken as given is a random variable U : {0, 1} → R that is also parameterized by h and converges
to the scalar U0 as h goes to zero. We think of U0 as the utility level of a given consumption plan

at a given reference node of a binomial tree and U as the uncertain utility value one period ahead.

In a recursive utility specification, U0 is computed as a function of consumption at the reference

node and a CE value of U. Our focus will be on approximations of the CE of U.

Since there are only two states, for any given h, we have the following canonical decomposition:

U = U0 + µh+ ΣB, where µ =
EU − U0

h
and Σ =

E [BU ]

E [B2]
=
E [BU ]

h
. (5)

(Adding an o (h) term to U does not affect the results.) We assume that µ and Σ do not vary
with h, and we refer to them, respectively, as the drift and volatility of U. (The continuous-time

counterpart of (5) is the Ito decomposition dU = µdt+ ΣdB.)

The ambiguity-averse CEs of interest involve multiple priors. In the Brownian model, a change

of prior corresponds to a change of the drift of B, while keeping the volatility of B approximately

the same. In the Poissonian model, a change of prior corresponds to a change in the arrival rate

associated with B. Let us now look at these ideas more formally, paying special attention to the

dependence of priors on h.

For any probability Q other than P, we write EQ for the expectation operator under Q, and

dQ/dP for the density of Q with respect to P, defined as the random variable that takes the

5While any such choice of ε (h) yields the same results, if (2) is to hold exactly, it must be the case that ε (h) =

0.5−h−
√

0.25− h.We make this choice of ε (h) for exposition economy. Alternatively, one can carry out the analysis
under the weaker restriction E

[
B2
]

= h+ o (h) without any change of substance.
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value Q (ω) /P (ω) at state ω ∈ {0, 1}. A probability Q defines the scalar ρ through the canonical

decomposition of dQ/dP, which is computed analogously to (5) :

dQ

dP
= 1 + ρB, where ρh = E

[
B
dQ

dP

]
= EQB. (6)

Definition 1 A prior is a probability Q on {0, 1} that assigns positive mass to each state and is
indexed by h so that ρ ≡ EQB/h does not vary with h (and therefore ρ is the drift of B under Q).

The requirement that EQB = ρh implies the concrete expressions:

Q (1) = 1−Q (0) =

{
(1 + ρ

√
h)/2 in the case of Brownian uncertainty,

(1 + ρ)h+ o (h) in the case of Poissonian uncertainty.

Under the prior Q, a properly normalized random walk whose increments are i.i.d. copies of

BQ ≡ B − ρh = B −EQB converges, as h goes to zero, to a standard Brownian motion in the case

of Brownian uncertainty, and to a compensated Poisson process with arrival rate 1 + ρ in the case

of Poissonian uncertainty. A canonical decomposition with respect to B can always be transformed

to one with respect to BQ, for example, (5) becomes

U = U0 + (µ+ ρΣ)h+ ΣBQ. (7)

The first two moments of BQ under Q can be computed using only (2) and (6) as

EQBQ = 0 and EQ
[
(BQ)2

]
= h+ ρE

[
B3
]
− (ρh)

2
. (8)

In the Brownian model, E
[
B3
]

= 0 and therefore the second moment of BQ under Q is h+ o (h) ,

reflecting the fact that the drift but not the volatility of B or U are affected by a change of prior. In

the Poissonian model, E
[
B3
]

= h+o (h) and the second moment of BQ under Q is (1 + ρ)h+o (h) ,

reflecting the fact that the arrival rate under Q is 1 + ρ.

4 Certainty-Equivalent Approximations

This section defines the smooth ambiguity-averse CEs of interest and presents the main CE-

approximation results. Some requisite terminology and notation are first introduced.

Fixed throughout is a constant ` ∈ [−∞, 1) serving as a lower bound on consumption (possibly

equal to −∞). A certainty equivalent (CE) is an increasing and continuous function of the form

υ : (`,∞)
2 → (`,∞) with the property υ (x, x) = x for all x ∈ (`,∞). For each CE υ of interest, we

will approximate υ (U) , where U is specified in (5) . We think of υ (U) as a conditional CE of the

one-period-ahead continuation utility from the perspective of a reference node on a binomial tree.

We use the term von Neumann-Morgenstern (vNM) index to mean any strictly increasing,

continuous function of the form u : (`,∞) → ∞. Differentiability assumptions are key for our
approximations. For n = 1, 2, we use the notation

CnvNM = set of n times continuously differentiable vNM indices. (9)
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A pair of a prior Q and a vNM index u defines the expected-utility (EU) CE υ = u−1EQu.
Our main focus will be the extent to which smooth ambiguity averse CEs can be approximated,

up to an error term o (h) , by EU CEs. To correctly read this section’s approximations as h goes to

zero, it is important to keep in mind what quantities vary with h, as summarized in the following

table, which includes preference parameters introduced below.

quantities that do not vary with h can vary with h

uncertainty model states 0, 1 P,B

priors drift ρ, arrival rate 1 + ρ corresponding probability Q on {0, 1}
payoff structure U0, µ,Σ U

certainty equivalents u, ϕ, π1, . . . , πS Q1, . . . , QS , minimizing probability Q

4.1 Second-Order Expected-Utility CE

Consider an agent contemplating (so to speak) an EU CE with a given vNM index u, under each

one of the priors Q1, . . . , QS . By Definition 1, for each s ∈ {1, . . . , S} , there exists a constant ρs

that is the drift of B under Qs. The agent is uncertain about this drift. In this sense, there is now

a new source of uncertainty, represented by the new state-space {1, . . . , S} , on which we postulate
a probability represented by the weights π1, . . . , πS ∈ (0, 1) , where

∑
s π

s = 1. The second-order

EU CE υ is defined in terms of a second vNM index ϕ by

υ (U) = ϕ−1

(
S∑
s=1

ϕ
(
u−1EQ

s

u (U)
)
πs

)
, U ∈ (`,∞)

2
. (10)

The utility function ϕ ◦ υ is of the type formulated by Klibanoff, Marinacci, and Mukerji (2005).
If u = ϕ, then υ = u−1EQu, where Q is the compound prior: Q =

∑
sQ

sπs. For u 6= ϕ, priors

cannot be exactly compounded, but we have the following approximation result.

Theorem 2 (EU Approximation of Second-Order EU CE) Suppose that (P,B) is given by

either the Brownian specification (3) or the Poisson specification (4), and that υ is the second-order

EU CE (10), for some6 u ∈ C2
vNM and ϕ ∈ C1

vNM and priors Q1, . . . , QS (see Definition 1). Then

υ (U) = u−1EQu (U) + o (h) , where Q =
∑

s
Qsπs.

A rigorous proof can be found in Section A.1.2 of the online Appendix, along with more detailed

small-risk approximations of an EU CE. The basic ideas can be outlined as follows. For each prior

Qs, the corresponding EU CE appearing as an argument of ϕ in (10) can be approximated, up

to o (h) , by the expectation of U under Qs minus a risk adjustment term that is proportional

to h. (This is the familiar Arrow-Pratt approximation in the Brownian case. The approximation is

extended to the Poissonian case in the Appendix.) It follows that in approximating υ with error

6 In the Poisson case, it is enough to assume that u ∈ C1
vNM .
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o (h) , it is suffi cient to take a linear approximation of ϕ. This gets to the heart of the argument. In

computing each EU CE inside ϕ in (10) , we are facing a payoff U whose variance is of order h. In

computing the outer CE in (10) we are facing a range of CE values whose variance is order o (h) ,

allowing the linearization of ϕ. Given the latter, the terms ϕ−1 and ϕ in the CE definition cancel

out. Since ϕ becomes irrelevant as h goes to zero, we may as well set it equal to u, which is exactly

the case that allows the compounding of priors.

4.2 Divergence CE

The second extension of an EU CE we consider corresponds to smooth divergence preferences,

which are within the axiomatic setting of Maccheroni et. al. (2006a). We use the term divergence

index to mean any strictly convex differentiable function of the form ϕ : (0,∞)→ R such that

ϕ (1) = ϕ′ (1) = 0 and lim
x→∞

ϕ′ (x) =∞. (11)

A divergence CE is defined in terms of a vNM index u and a divergence index ϕ by

υ (U) = inf
Q∈Π

u−1

(
EQu (U) + Eϕ

(
dQ

dP

))
, (12)

where Π denotes the set of all probabilities on {0, 1} that place a nonzero mass to each state. (Recall
that E denotes expectation relative to P, which is also an element of Π.)

As shown in the online Appendix, in the Brownian model, the infimum in (12) is achieved as a

minimum for all suffi ciently small h > 0, while in the Poissonian model, a minimum is achieved by

some Q in Π if and only if (U0,Σ) belongs to the set7

D = {(U0,Σ) ∈ (`,∞)× R : U0 + Σ > ` and u (U0 + Σ)− u (U0) < −ϕ′ (0+)} . (13)

If either Σ ≤ 0 or ϕ′ (0+) = −∞ (as in the entropic case below) then (U0,Σ) ∈ D for all U0 > `−Σ.

Example 3 (Entropic CE) The CE (12) is defined to be entropic if ϕ (y) = θ (y log y − y + 1) .

In this case, a well-known identity states that υ = (ψ ◦ u)
−1 E (ψ ◦ u) , where

ψ (x) = θ
(

1− exp
(
−x
θ

))
. (14)

Remark 9 of the online Appendix further elaborates on this case.

We just saw that an entropic CE is an EU CE. The following result investigates the extent to

which a nonentropic smooth divergence CE is an EU CE. Analogously to (9) , we write Cndiv for the

set of n times continuously differentiable divergence indices.

7 If ϕ′ (0+) > −∞ and the jump size Σ is positive and suffi ciently high, a minimizing probability assigns zero
probability to the positive jump.
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Theorem 4 (EU Approximation of Divergence CE) Suppose that υ is the divergence CE (12) ,

for some8 u ∈ C2
vNM and ϕ ∈ C2

div .

(a) If (P,B) is given by the Brownian specification (3), then

υ (U) = (ψ ◦ u)
−1 E (ψ ◦ u) (U) + o (h) , (15)

where ψ is defined by (14) with θ = ϕ′′ (1) .

(b) Suppose (P,B) is given by the Poisson specification (4) . There exist prior Q and ũ ∈ C1
vNM

such that υ (U) = ũ−1EQũ (U) + o (h) for all (U0,Σ) ∈ D if and only if Q = P and the CE υ

is entropic in the sense of Example 3.

The theorem is proved in Sections A.1.4 and A.1.6 of the online Appendix. In the Brownian

case, the basic idea is that it is suffi cient to take a quadratic approximation of ϕ near unity,

which is determined by θ = ϕ′′ (1) , since ϕ (1) = ϕ′ (1) = 0. The quadratic approximation of ϕ

is therefore the same for the original ϕ as for the entropic ϕ of Example 3, leading to the claim

of part (a). Example 3 states that every entropic CE is an EU CE. Part (b) of the preceding

theorem provides a strong converse: In the presence of Poisson uncertainty, if a smooth divergence

CE can be approximated by any smooth expected-utility CE, then it must be entropic. The argument

in this case is too technical to grasp intuitively in simple terms but it is spelled out in the online

Appendix. Also given in Theorem 11 of the Appendix is an explicit approximation of a non-entropic

divergence CE under Poisson uncertainty, which is important in determining the functional form of

continuous-time recursive utility with a divergence CE, a topic we turn to next.

5 Continuous-Time Recursive Utility

This paper’s CE approximations map to functional forms of continuous-time recursive utility. Ide-

ally, this should be demonstrated as the convergence of recursive utility along sequences of binomial

trees, but such an approach is highly technical and currently incomplete even for the case of an

EU CE.9 Applied theory papers using continuous-time recursive utility take as a starting point

the continuous-time version of Kreps and Porteus (1978) utility formulated by Duffi e and Epstein

(1992) using a compelling but heuristic argument. In this section, we take a similar approach to

establish continuous-time recursive utility forms corresponding to the smooth ambiguity-averse CEs

of interest. Section A.2 of the online Appendix provides additional details and generality.

We put the Brownian and Poisson cases together in one model. We assume that the information

tree (defined on some underlying state space) is generated over the time set [0, T ] by two stochastic

processes,10 forming the column vector B =
(
B1, B2

)′
. Taken as given is an underlying probability

8 In the Poisson case of part (b) it is enough to assume that u ∈ C1
vNM and ϕ ∈ C1

div , with the same proof.
9The recent working paper by Kraft and Seifried (2011) is a first step in addressing this gap in the literature.
10The expanded presentation in the online Appendix allows for more than two sources of risk.
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P on the set of time-T events, with corresponding expectation operator E. Relative to P, the
processes B1 and B2 are stochastically independent, B1 is a standard Brownian motion and B2 is

a compensated Poisson process with unit arrival rate (which can be taken to be the definition of

the unit of time).

Let us fix a reference consumption plan c, with corresponding utility process U. (Naturally, c and

U are adapted to the given information tree.) For every t < T, ct represents a time-t consumption

rate. As in Section 2, we set UT = cT (allowing the measurement of utility in terms of equivalent

perpetuities). We assume the recursive-utility form (1) , but with uδ denoting a general smooth vNM

index (not necessarily a constant-EIS one). The continuous-time version of this utility recursion

can be heuristically stated as11

uδ (Ut−) =
(
1− e−βdt

)
uδ (ct) + e−βdtuδ (υt (Ut+dt)) , (16)

where Ut− denotes the time-t utility value just prior to any time-t jump, and dt is a time infinites-

imal, analogous to the quantity h of the discrete-time analysis.

Analogously to the canonical decomposition (5) , suppose the utility dynamics are

dUt = µtdt+ ΣtdBt. (17)

Here Σt =
(
Σ1
t ,Σ

2
t

)
, where Σ1

t is the volatility of Brownian component and Σ2
t is the time-t jump

size, conditionally on there being a time-t jump. Terms that are order o (dt) are treated as zero

(for example, e−βdt = 1− βdt). The CE approximations of interest can all be stated as

υt (Ut+dt) = Et− [Ut+dt]−A (Ut,Σt) dt = Ut− + (µt −A (Ut,Σt)) dt, (18)

where the A (Ut,Σt) dt term represents a risk/ambiguity-aversion adjustment to the risk-neutral

CE under prior P. Now substitute (18) into (16) , take a first-order Taylor expansion of uδ around

Ut−, solve for µt and insert the resulting expression back into the utility dynamics (17) to find

dUt = − (f (ct, Ut)−A(Ut,Σt)) dt+ ΣtdBt, UT = cT , (19)

where, as in equation (27) of Duffi e and Epstein (1992), f (c, υ) = β (uδ (c)− uδ (υ)) /u′δ (υ) .

Equation (19) is a so-called backward stochastic differential equation to be solved jointly in

(U,Σ) . This is a fixed-point problem, whose solution requires regularity conditions12 on (f,A) and

the consumption plan c. Since f is entirely unrelated to the CE specification, equations (18) and

(19) make transparent how a small-risk CE approximation maps to a corresponding continuous-time

11The additive structure in (16) is not important– a more general intertemporal aggregator is assumed in the
Appendix.
12Corresponding existence and uniqueness results were obtained by Pardoux and Peng (1990), Duffi e and Epstein

(1992), and many others since, albeit under assumptions that are violated in common homothetic applications,
including the continuous-time version of Epstein-Zin-Weil utility (unless log-consumption is assumed to be bounded).
Existence and uniqueness results on the latter were developed by Duffi e and Lions (1996) and Schroder and Skiadas
(1999), results that still require generalization, for example, to include jumps.
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recursive utility. We conclude by specifying the functional form of A corresponding to the smooth
CEs of interest, referring to the online Appendix for detailed derivations.

Suppose first that υ is the smooth second-order EU CE of Theorem 2, with the underlying

probability selected to be the compound prior: P =
∑
s π

sQs. Approximation (18) in this case is

the same as for the EU CE υt = u−1Etu. The corresponding risk-adjustment term is

A (Ut,Σt) =
au (Ut)

2

(
Σ1
t

)2
+ Σ2

t −
u
(
U0 + Σ2

t

)
− u (U0)

u′ (U0)
, (20)

where au = −u′′/u′ denotes the coeffi cient of absolute risk aversion of u. The corresponding
continuous-time utility (19) is Duffi e-Epstein utility, extended to include Poisson jumps.

Finally, suppose that υ is the smooth divergence CE of Theorem 4. The corresponding risk-

adjustment term is

A (Ut,Σt) =
aψ◦u (Ut)

2

(
Σ1
t

)2
+ Σ2

t −
ϕ∗
(
u
(
U0 + Σ2

t

)
− u (U0)

)
u′ (U0)

, (21)

where ϕ∗ (x) = miny∈(0,∞) {ϕ (y) + xy} and ψ is the exponential form (14) with θ = ϕ′′ (1) .

Note that ϕ is entropic if and only if ϕ∗ = ψ, in which case expression (21) can be obtained

from (20) after replacing u with ψ ◦u, as it should, according to Example 3. A nonentropic ϕ enters
the first (Brownian) term of (21) only through the local variable θ = ϕ′′ (1) , while the second

(Poissonian) term depends on the global structure of ϕ, thus providing some flexibility to adjust

aversion toward Brownian and Poisson risks separately. Skiadas (forthcoming) gives an example of

how this can be accomplished with a concrete parameterization of ϕ.

6 Concluding Remarks

This paper’s arguments hinge on the assumption that the parameter α of Section 2 and more

generally the function ϕ representing ambiguity aversion remain constant as the frequency is taken

to infinity, similarly to the way the risk aversion parameter for Epstein-Zin-Weil utility and more

generally the vNM index u of Kreps-Porteus utility remain constant as one transitions from discrete

time to the Duffi e-Epstein continuous-time limit. (Discrete-time recursive utility with a second-

order EU CE reduces to Kreps-Porteus utility exactly when ϕ = u.) The general idea is that ϕ

should capture ambiguity aversion as a fixed aspect of preferences that applies in every uncertainty

environment, just as u captures risk aversion in the Kreps-Porteus specification. Recall that we

have normalized utility to correspond to the payment rate of an equivalent perpetuity. This device

allows us to think of the continuation utility one period ahead as a state-contingent perpetuity that

can be embedded in the same static setting, no matter what the frequency, thus anchoring risk

aversion and ambiguity aversion.

Responding to an earlier version of this paper, Hansen and Sargent (2011) verified the irrelevance

of a fixed ϕ in a specific continuous-time context and proposed an alternative frequency-dependent
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parameterization of ϕ, finely tuned to preserve the effect of ambiguity aversion in the Brownian

limit of recursive utility with a second-order EU CE. Their parameterization implies that ambiguity

aversion goes to infinity as the frequency goes to infinity, thus resulting in a different continuous-

time limit, which, as the authors point out, is not smooth in the level of the continuation utility. In

other words, the limiting conditional CE over infinitesimal Brownian risks implied by the Hansen-

Sargent formulation is a very different CE type than the smooth second-order EU CE that has

been analyzed in this paper. Moreover, since the Hansen-Sargent CE is effectively defined only over

infinitesimal risks (defined in the limit), it is not clear how it can be related to preferences over

larger risks.

Another modification of second-order expected utility motivated by an early version of the

present paper was proposed by Gindrat and Lefoll (2010). Their proposal can be thought of as

amplifying the order of magnitude of the instantaneous drift to account for ambiguity.

In their current form, these alternative formulations seem driven by the desire to preserve a

specific formalization of smooth ambiguity aversion in the continuous-time limit, rather than any

compelling decision-theoretic foundations. The fact remains that the most direct continuous-time

interpretation of a smooth CE derived from a static model of second-order expected utility or diver-

gence preferences is not distinguishable from an expected-utility CE under Brownian uncertainty

(as well as under Poissonian uncertainty in the case of second-order expected utility).
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A Online Appendix

This Appendix proves and extends results presented in the main paper. There are two main sections.

The first section covers the theory of single-period CE approximations. The second section presents

a corresponding theory of continuous-time recursive utility. References that are not part of the

main paper can be found at the back of this Appendix.

A.1 Single-Period CE Approximations

Throughout this section, we adopt the single-period stochastic setting of Section 3. In particular,

recall Definition 1 of a prior Q, whose parameterization by h implies a constant drift ρ of B under

Q. Recall also that, independently of the choice of a prior, the risk source B takes the values +
√
h

or −
√
h in the Brownian case, and 1 − h − ε (h) or 0 − h − ε (h) in the Poissonian case (where

ε (h) = o (h)). If ρ is the drift of B under prior Q, then a properly normalized random walk

whose increments are given by B converges, as h ↓ 0, to either Brownian motion with drift ρ or a

compensated Poisson process with arrival rate 1 + ρ.

We derive smooth CE approximations of the form

υ (U) = U0 + (µ+ ρΣ−A (U0,Σ, ρ))h+ o (h) = EQU −A (U0,Σ, ρ)h+ o (h) , (22)

where U0, µ and Σ refer to the canonical representation (5) . (The second equation in (22) follows

by applying EQ to equation (7) .) If Q is given the interpretation of beliefs, then A (U0,Σ, ρ)h

represents an approximate adjustment to the risk-neutral CE due to risk/ambiguity aversion. This

section’s approximation results specify the function A for the CEs of interest, starting with the

benchmark case of a smooth EU CE in subsection A.1.1. The latter is used in subsection A.1.2 to

prove the irrelevance of ambiguity aversion as h goes to zero for a smooth second-order EU CE.

The remaining subsections develop approximations for the case of a smooth divergence CE, which

are again compared to the EU case.

The essential tool in all approximations that follow is Taylor’s theorem. For easy reference, we

quickly review13 here the approximation error estimates we will be using. The reader may wish to

skip the following paragraph and refer back to it as necessary.

13This material is of course standard and can be found, for example, in Apostol, Calculus, 2nd ed., Wiley 1967.
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Consider any positive integer n (we’ll only need n = 1 or 2), any interval [−ε, ε] ⊆ R, where
ε > 0, and any n times continuously differentiable real-valued function f on an open interval that

includes [−ε, ε] . Let f (i) denote the ith derivative of f , with f (0) = f. Let also fn be the n-degree

polynomial such that f (i) (0) = f
(i)
n (0) for i = 0, . . . , n. (We will only need f1 (x) = f (0) + f ′ (0)x

and f2 (x) = f1 (x) + f ′′ (0)x2/2.) Then

f = fn +Rn, where Rn (x) =

∫ x

0

(
f (n) (t)− f (n) (0)

) (x− t)n−1

(n− 1)!
dt. (23)

(This is easily shown by induction in n, using the identity Rn−1 (x) = f (n) (0)xn/n! + Rn (x) ,

obtained by applying integration by parts.) It follows that there exists a continuous function

rn : [−ε, ε]→ [0,∞) such that14

rn (0) = 0 and |Rn (x)| ≤ rn (x) |x|n for all x ∈ [−ε, ε] . (24)

A.1.1 EU Approximations

We begin with approximation (22) for the case of a smooth EU CE υ = u−1EQu, both as a
benchmark to which other CE approximations are compared and as an intermediate case used in

later proofs.

For Brownian small risks, the approximation is a variant to the classic results of Arrow (1965,

1970) and Pratt (1964) applied to the payoff (5), with attention to how the approximation error

depends on a change of prior. Brownian approximations are expressed in terms of the Arrow-Pratt

coeffi cient of absolute risk aversion associated with the vNM index u, which we denote

au = −u
′′

u′
. (25)

An Arrow-Pratt approximation is not valid for small Poissonian risks, however, because third

and higher moments of such risks are not negligible. We establish an analogous approximation for

Poissonian small risks, in which the role of au is assumed by the function

Au (U0,Σ) = Σ− u (U0 + Σ)− u (U0)

u′ (U0)
. (26)

Whereas au (U0) is a local measure of risk aversion toward risks taking values near U0, A
u (U0,Σ)

is a measure of risk aversion toward risks that take the value U0 + Σ with a small probability,

14Note that under the stronger assumption that f is n + 1 times differentiable, integration by parts allows us to
restate the expression for Rn (x) in (23) in the more familiar form

Rn (x) =

∫ x

0
f (n+1) (t)

(x− t)n

n!
dt.

If f (n+1) is bounded on [−ε, ε] (for example, if it is continuous), then there exists a constant K such that |Rn (x)| ≤
Kxn+1 for all x ∈ [−ε, ε] . In other words, we can set rn (x) = Kx in (24) .
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and the value U0 otherwise.15 Like au, the function Au is a measure of the curvature of u. The

inequality Au ≥ 0 is equivalent to the gradient inequality for u and therefore the concavity of u. It

is also worth noting that if u ∈ C2
vNM , then A

u (U0,Σ) = au (U0) Σ2/2 + o
(
Σ2
)
, as can be seen by

taking a second-order Taylor series expansion of u in (26) . This gives a sense of consistency of the

approximations that follow, but here Σ is not required to be small and u need not have a second

derivative when only Poissonian risk is involved.

The general form of the smooth EU approximations of interest is given in the following result.

Theorem 5 (EU Approximations) Suppose Q is a prior and ρ is the drift of B under Q.

(a) (Brownian risk) If (P,B) is defined by (3) , then for all u ∈ C2
vNM ,

u−1EQu (U) = U0 +

(
µ+ ρΣ− 1

2
au (U0) Σ2

)
h+ o (h) . (27)

(b) (Poissonian risk) If (P,B) is defined by (4) , then for all u ∈ C1
vNM ,

u−1EQu (U) = U0 + (µ+ ρΣ−Au (U0,Σ) (1 + ρ))h+ o (h) .

The preceding approximations are suffi cient for the proof of Theorem 2 in the following subsec-

tion. For the analysis of a smooth divergence CE, however, we need more refined estimates of the

approximation error. These are provided by two lemmas below, covering the Brownian case and

the Poissonian case, respectively. Theorem 5 is a corollary of these two lemmas.

From here on, we impose a normalization that entails no loss of generality and simplifies the

exposition. Suppose that u and ũ are two vNM indices related by a positive affi ne transformation,

meaning that ũ = αu+ β for some α ∈ (0,∞) and β ∈ R. Then u−1EQu = ũ−1EQũ, au = aũ and

Au = Aũ. It is then clear that to prove Theorem 5, it is suffi cient to prove the result after replacing

u (·) with (u (·)− u (U0)) /u′ (U0) . We therefore proceed under the simplifying normalization:

u (U0) = 0 and u′ (U0) = 1. (28)

Let us also express the canonical decomposition of U as U = U0 + ∆ (h) , where

∆ (h) = µh+ ΣB = (µ+ ρΣ)h+ ΣBQ, (29)

for any prior Q and corresponding drift ρ of B. Fixing an ε ∈ (0, 1) such that U0−ε > `, throughout

the rest of the single-period analysis, we assume that h ∈
(
0, h̄
)
, where h̄ > 0 is small enough so

that h ∈
(
0, h̄
)
implies ∆ (h) ∈ (−ε,+ε) . Note that ∆ (h) , ε and h̄ do not depend on Q or ρ.

A more detailed error bound for a Brownian EU CE approximation follows. Note that the

parameters K0, K1 and b apply uniformly across priors.
15The reader interested in a graphical representation of Au can proceed as follows. On the plane, draw the graph

of the concave function u and consider the points p0 = (U0, u (U0)) and pΣ = (U0 + Σ, u (U0 + Σ)) . Let p be the
point where the horizontal line through pΣ meets the line that is tangent to the graph of u at p0. Then Au (U0,Σ)

is the distance between pΣ and p.
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Lemma 6 (Brownian EU Approximation) Suppose (P,B) is defined by (3) and u ∈ C2
vNM

satisfies the normalization (28) . Then there exist constants K0,K1 ∈ R and a continuous function
b :
[
0, h̄
]
→ R that vanishes at zero such that for every prior Q, if ρ is the drift of B under Q, then

we can write

EQu (U) =

(
µ+ ρΣ− 1

2
au (U0) Σ2

)
h+ δ (ρ, h)h, (30)

with

|δ (ρ, h)| ≤ |K0 +K1ρ|h+ b (h) , h ∈
(
0, h̄
)
. (31)

Proof. Applying the Taylor approximation (23) with f (x) = u (U0 + x) and n = 2, we have

u (U) = ∆ (h)− 1

2
au (U0) ∆ (h)

2
+R2 (∆ (h)) . (32)

Recall that EQBQ = 0 and EQ
[
(BQ)2

]
= h − (ρh)

2 by (8) . Using these facts and the second

expression for ∆ (h) in (29) , we compute

EQ∆ (h) = (µ+ ρΣ)h and EQ[∆ (h)
2
] = Σ2h+

(
µ2 + 2µΣρ

)
h2. (33)

Therefore, applying EQ to both sides of (32) , we obtain expression (30) , where

δ (ρ, h) = −1

2
au (U0)

(
µ2 + 2µΣρ

)
h+

1

h
EQR2 (∆ (h)) . (34)

We apply the bound (24) to the last term. Since the possible values of ∆ (h) are µh± Σ
√
h,

r2 (∆ (h)) ≤ r (h) ≡ max
{
r2

(
µh+ Σ

√
h
)
, r2

(
µh− Σ

√
h
)}

,

resulting in the bound EQ |R2 (∆ (h))| ≤ r (h)EQ[∆ (h)
2
]. Using this bound and (33) in (34), we

obtain

|δ (ρ, h)| ≤
∣∣µ2 + (2µΣ) ρ

∣∣ (1

2
|au (U0)|+ r (h)

)
h+ Σ2r (h) .

Note that r is continuous (and therefore bounded), vanishes at zero and does not depend on ρ.

The analogous result for the Poissonian model (4) is given below. While in Section 3 the

function ε (h) is restricted as discussed in footnote 5, the only assumption on ε (h) used here is that

for h̄ > 0 small enough, ε (h) /h is a continuous function on
[
0, h̄
]
that vanishes at zero. Note also

that δ0 and δ1 do not depend on the choice of ρ.

Lemma 7 (Poissonian EU Approximation) Suppose (P,B) is defined by (4) and u ∈ C1
vNM

satisfies the normalization (28) . For h̄ > 0 small enough, there exist continuous functions δ0, δ1 :[
0, h̄
]
→ R that vanish at zero such that for every prior Q, if ρ is the drift of B under Q, then

EQu (U) = (µ+ ρΣ−Au (U0,Σ) (1 + ρ))h+ (δ0 (h) + δ1 (h) (1 + ρ))h, h ∈
(
0, h̄
)
. (35)
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Proof. Given the normalization (28) , Au (U0,Σ) = Σ− u (U0 + Σ) . Let

α (h) = (µ− Σ)h− Σε (h) . (36)

The distribution of U under Q is

U =

{
U0 + Σ + α (h) , with Q-probability (1 + ρ)h+ ε (h) ,

U0 + α (h) , with Q-probability 1− (1 + ρ)h− ε (h) ,
(37)

We compute the expectation EQu (U) , using the first-order Taylor expansions

u (U0 + Σ + α (h)) = u (U0 + Σ) + u′ (U0 + Σ)α (h) +R1 (α (h)) ,

u (U0 + α (h)) = α (h) +R0 (α (h)) ,

where |Rω (α)| ≤ rω (α) |α| , ω ∈ {0, 1} , for continuous functions rω that vanish at zero (as in (24)

with n = 1). Note that neither α (h) nor rω (α) depend on the choice of ρ. The rest of the proof

is just a matter of explicitly computing EQu (U) using the distribution (37) , applying the above

first-order approximation to each term and reorganizing the resulting expression to bring it the

form of equation (35).

Proof of Theorem 5. As already noted, it is suffi cient to prove the result under the normal-
ization (28) , which implies that u−1 (0) = U0 and u−1′ (0) = 1. Part (a) follows from Lemma 6 by

applying u−1 on both sides of expression (30), followed by a first-order Taylor series expansion of

u−1 around zero. The analogous argument proves part (b) using Lemma 7.

A.1.2 Proof of Theorem 2

Theorem 2 on the EU approximation of a second-order EU CE is essentially a corollary of Theorem 5.

Equation (27) applied to each Qs implies that we can approximate the second-order EU CE, up to

o (h) , by using a linear approximation of ϕ, leading to the cancellation of the terms ϕ−1 and ϕ in

the CE definition. For more detail, let us first consider the Brownian case. Equation (27) and a

first-order Taylor series expansion of ϕ around U0 imply that

ϕ (υs (U)) = ϕ (U0) + ϕ′ (U0)

(
µ+ ρsΣ− 1

2
au (U0) Σ2

)
h+ o (h) , s ∈ {1, . . . , S} .

Therefore,

υ (U) = ϕ−1

(
ϕ (U0) + ϕ′ (U0)

(
µ+ ρΣ− 1

2
au (U0) Σ2

)
h+ o (h)

)
, ρ =

∑
s
ρsπs.

Note that ρ = EQB/h, where Q =
∑
sQ

sπs. Taking a first-order Taylor approximation of ϕ−1

around ϕ (U0) and using Theorem 5 once again, we conclude:

υ (U) = U0 +

(
µ+ ρΣ− 1

2
au (U0) Σ2

)
h+ o (h) = u−1EQu (U) + o (h) .

The proof for the Poissonian case is essentially the same, replacing the risk-adjustment term

au (U0) Σ2/2 with Au (U0,Σ) (1 + ρs) , for each prior Qs.
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A.1.3 Divergence CE: A Preliminary Lemma and Examples

Recall that a divergence CE is defined in terms of a vNM index u, a reference prior Q and a

divergence index ϕ by (12) , where Π denotes the set of all probabilities that assign a positive mass

to each state. We focus on the case in which the infimum is achieved by some Q ∈ Π, a case that

is fully characterized in Lemma 8 below. We will see later that the infimum is always achieved

as a minimum for suffi ciently small Brownian risks, and it is always achieved for Poissonian risks

with negative jumps. We let Ω = {0, 1} denote the state space needed for the current application.
It’s worth noting, however, that the following lemma remains true for any finite Ω and underlying

probability P ∈ Π, with a straightforward extension of the given proof (where terms involving state

one become summations over all states other than state zero).

Lemma 8 Let Umax = maxω∈Ω Uω. The infimum in (12) is achieved as a minimum by some Q ∈ Π

if and only if

Eϕ′−1 (ϕ′ (0+) + u (Umax)− u (U)) < 1, (38)

in which case the minimizing Q is given by dQ/dP = ϕ′−1 (α− u (U)) , where the scalar α uniquely

solves

Eϕ′−1 (α− u (U)) = 1 and α > ϕ′ (0+) + u (Umax) . (39)

Proof. We relabel the states if necessary so that U (0) = Umax. A probability Q ∈ Π is identified

with a q ∈ (0, 1) , where Q (0) = 1− q and Q (1) = q. In particular, P is identified with p ∈ (0, 1) .

Then V (q) ≡ EQu (U) + Eϕ (dQ/dP ) can be written as

V (q) = u (Umax) + q {u (U (1))− u (Umax)}+ pϕ

(
q

p

)
+ (1− p)ϕ

(
1− q
1− p

)
.

The strictly convex function V is minimized at q ∈ (0, 1) if and only if its derivative a q vanishes,

a condition that is easily shown to be equivalent to

q = pϕ′−1 (α− u (U (1))) , where α = u (Umax) + ϕ′
(

1− q
1− p

)
. (40)

Since ϕ′ ((1− q) / (1− p)) > ϕ′ (0+) , condition (40) is easily seen to imply (39) and therefore (38) ,

which proves the “only if”part.

Conversely, suppose that condition (38) is satisfied and define the function

f (α) = Eϕ′−1 (α− u (U)) , α > ϕ′ (0+) + u (Umax) .

Clearly, f is strictly increasing and continuous. Because of condition (38), f (α) takes values below

one as α approaches ϕ′ (0+)+u (Umax) . On the other hand, by the definition of a divergence index,

φ′ (∞) =∞, and therefore f (α) takes values greater than one for suffi ciently large α. This proves

the existence of a unique value of α > ϕ′ (0+) + u (Umax) such that f (α) = 1, which is exactly

condition (39) . By construction, α−u (U) > ϕ′ (0+) and therefore the vector q is well-defined by the
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first equation of condition (40) . This definition of q and the identities f (α) = 1 and Umax = U (0)

can be easily shown to imply the last equation of condition (40) . This proves condition (40) , which,

as we have seen, is suffi cient for the optimality of the prior defined by q.

Remark 9 (Entropic CE) The entropic CE was defined in Example 3 as a divergence CE with
divergence index ϕ (y) = θ (y log y − y + 1) (where, necessarily, θ = ϕ′′ (1)). This divergence index

is related to the function ψ defined in (14) by the convex duality: ϕ (y) = maxx{ψ (x) − xy} and
ψ (x) = miny{ϕ (y) + xy}. In this case, ϕ′ (0+) = −∞ and therefore condition (38) is satisfied

for any U . The corresponding minimizing probability Q is given by Lemma 8 through the density

dQ/dP = exp (−u (U) /θ) /E exp (−u (U) /θ) . Computing the corresponding minimum proves that

an entropic divergence CE coincides with the EU CE υ = (ψ ◦ u)
−1 E (ψ ◦ u) , which is the claim of

Example 3. This is an well-known identity, appearing in Donsker and Varadhan (1975).

Example 10 (Quadratic Divergence) Suppose that ϕ (y) = (θ/2) (y − 1)
2 for some θ ∈ (0,∞) .

This case is covered by Theorem 24 of Maccheroni, Marinacci, and Rustichini (2006a). We briefly

review the main conclusion as a corollary of Lemma 8. Assume the validity of Condition (38), which

in this context reduces to u (U)− Eu (U) < θ. Equation (39) results in α = E [u (U)], and therefore

the minimizing prior Q is given by dQ/dP = 1 − (u (U) − Eu (U))/θ. Calculating the minimum

using the preceding expression results in

υ (U) = u−1

(
Eu (U)− 1

2θ
Var [u (U)]

)
.

The same condition u (U) − Eu (U) < θ guarantees that U is valued within the range where the

right-hand side defines a strictly increasing function.

A.1.4 Proof of Theorem 4(a)

In this subsection, we prove part (a) of Theorem 4, providing an EU approximation of a smooth

divergence CE for Brownian small risks. For a preliminary informal indication as to why the result

holds, we use restrictions (11) on a divergence index ϕ in a second-order Taylor expansion to

compute

Eϕ
(
dQ

dP

)
= Eϕ (1 + ρB) =

θ

2
ρ2h+ o (h) . (41)

To first order, therefore, it does not matter whether we use the smooth divergence index ϕ or

a corresponding entropic divergence index, as given in Example 3, with θ = ϕ′′ (1) . Example 3

expresses the entropic divergence CE as an EU CE, implying that the original CE with divergence

index ϕ can be approximated by an EU CE. The rigorous proof that follows is quite a bit more

elaborate than this heuristic argument suggests, because we have to justify the interchange of the

operations of minimization and approximation.

In order to avoid redundant notation, we adopt the vNM index normalization (28) throughout.

If u and ũ are two vNM indices such that that ũ = αu+ β for some α ∈ (0,∞) and β ∈ R, and ϕ
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and ϕ̃ are divergence indices related by ϕ̃ = αϕ, then the pair (u, ϕ) defines the same divergence

CE as the pair (ũ, ϕ̃) . It is then easy to see that to prove Theorem 4(a), it is suffi cient to prove it

after replacing u (·) with (u (·)− u (U0)) /u′ (U0) and ϕ (·) with ϕ (·) /u′ (U0) This shows that our

adoption of normalization (28) entails no loss in generality.

As in subsection A.1.1, we adopt the notation (29), we fix an ε ∈ (0, 1) such that U0 − ε > `,

and we choose h̄ > 0 small enough so that h ∈
(
0, h̄
)
implies ∆ (h) ∈ (−ε,+ε) . It is straightforward

to check that in the Brownian context, condition (38) is satisfied for all suffi ciently small h. We

further decrease h̄ if necessary so that, by Lemma 8, a minimizing prior exists for every h ∈
(
0, h̄
)
.

Let us fix any prior Q and corresponding drift ρ = h−1EQB. In the Brownian model assumed
here, Q (1) = 1−Q (0) =

(
1 + ρ

√
h
)
/2. Therefore,

Vh (ρ) ≡ EQu (U) + Eϕ (dQ/dP ) (42)

= u
(
U0 + µh− Σ

√
h
)

+
1

2

[(
1 + ρ

√
h
)
Hh + ϕ

(
1 + ρ

√
h
)

+ ϕ
(

1− ρ
√
h
)]
,

where

Hh = u
(
U0 + µh+ Σ

√
h
)
− u

(
U0 + µh− Σ

√
h
)
.

Let ρh be the value of ρ that minimizes Vh (ρ) . Setting the derivative of Vh at ρh to zero, we find

Hh + ϕ′
(

1 + ρh
√
h
)
− ϕ′

(
1− ρh

√
h
)

= 0. (43)

Since limh↓0Hh = 0, it follows that

lim
h↓0

ρh
√
h = 0. (44)

We now feed this limit back into the optimality condition to prove that in fact ρh converges.

Equation (43) can be rearranged to read

ρh = −Σ

(
u
(
U0 + µh+ Σ

√
h
)
− u

(
U0 + µh− Σ

√
h
))

/2Σ
√
h(

ϕ′
(

1 + ρh
√
h
)
− ϕ′

(
1− ρh

√
h
))

/2ρh
√
h

.

As h ↓ 0, the numerator converges to u′ (U0) , which we normalized to one, and the denominator

converges to ϕ′′ (1) = θ. Therefore, as h ↓ 0, ρh converges to ρ0 ≡ −Σ/θ, which is the value of ρ

that minimizes the quadratic

G (ρ) ≡ µ+ ρΣ− 1

2
au (U0) Σ2 +

θ

2
ρ2. (45)

Summarizing,

Vh (ρh) = min
ρ
Vh (ρ) , G (ρ0) = min

ρ
G (ρ) , lim

h↓0
ρh = ρ0. (46)

In the next stage of the proof, we approximate Vh. A suitable approximation for the first term,

EQu (U) , of Vh (ρ) is given by Lemma 6. We now derive an analogous approximation for the second

term, Eϕ (1 + ρB) . (This is essentially a special case of the argument of Lemma 6, but it is simpler
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to argue from first principles.) Given any ε ∈ (0, 1) , further reduce the value of h̄ if necessary so

that ρ
√
h, ρh

√
h ∈ (−ε, ε) for all h ∈

(
0, h̄
)
and ρ ∈ (ρ0 − 1, ρ0 + 1) . In the remainder of this proof,

we assume that every instance of the pair (ρ, h) lies in (ρ0 − 1, ρ0 + 1) ×
(
0, h̄
)
, and therefore ρB

is valued in (−ε, ε) . We approximate the term Eϕ (1 + ρB) in the definition of Vh (ρ) by applying

the second-order Taylor approximation (23) with f (x) = ϕ (1 + x) and n = 2. Since B takes the

values ±
√
h, ϕ (1) = ϕ′ (1) = 0 and ϕ′′ (1) = θ, the error bound (24) applied to this context gives∣∣∣∣Eϕ (1 + ρB)− θ

2
ρ2h

∣∣∣∣ ≤ ρ2hc
(
ρ
√
h
)
,

for a function c : [−ε, ε] → R+ that is continuous and vanishes at zero. Combining this with

approximation (30) and bound (31) of Lemma 6, we obtain

Vh (ρ) = G (ρ)h+ χ (ρ, h)h, (47)

where the continuous function χ satisfies the bound

|χ (ρ, h)| ≤ |K0 +K1ρ|h+ b (h) + ρ2c
(
ρ
√
h
)
,

where b and c are continuous and vanish at zero, and the parameters K0, K1, b and c do not vary

with ρ. Since ρh converges, we have the key facts

lim
h↓0

χ (ρ0, h) = 0 and lim
h↓0

χ (ρh, h) = 0. (48)

On the other hand, (46) and (47) imply the string of inequalities

G (ρ0)h+ χ (ρ0, h)h = Vh (ρ0) ≥ Vh (ρh) = G (ρh)h+ χ (ρh, h)h ≥ G (ρ0)h+ χ (ρh, h)h.

The last two displays prove that

u (υ (U)) = Vh (ρh) = G (ρ0)h+ o (h) .

Given the normalization (28), a first-order Taylor expansion of u−1 around zero yields the conclusion

υ (U) = U0 + G (ρ0)h+ o (h) , ρ0 = −Σ

θ
. (49)

Computing the value G (ρ0) and using the identity aψ◦u = au +
(
aψ ◦ u

)
(u′) with the normaliza-

tion (28), we also have

G (ρ0) = µ− 1

2

(
au (U0) +

1

θ

)
Σ2 = µ− 1

2
aψ◦u (U0) Σ2.

Therefore, by part Theorem 5(a),

(ψ ◦ u)
−1 E (ψ ◦ u) (U) = U0 + G (ρ0)h+ o (h) . (50)

The combination of equations (49) and (50) completes the proof.
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A.1.5 Divergence CE: Poissonian Approximation

The purpose of this subsection is to derive the exact form of CE approximation (22) for a smooth

divergence CE and Poisson uncertainty. The approximation is used in the following subsection to

prove Theorem 4(b).

We proceed under the assumption that (P,B) is the Poissonian model (4) and υ is the divergence

CE (12) for some u ∈ C1
vNM and ϕ ∈ C1

div . For simplicity, we focus on the case in which the infimum

defining the divergence CE is achieved as a minimum within Π for all suffi ciently small h. Lemma 8

(or a direct calculation) implies that the latter condition is equivalent to the membership of (U0,Σ)

to the set D defined in (13) . If either Σ ≤ 0 or ϕ′ (0+) = −∞ (as in the entropic case), then

(U0,Σ) ∈ D for all U0 > ` − Σ. If ϕ′ (0+) > −∞ and Σ is positive and suffi ciently high, a

minimizing probability does assign zero probability to the positive jump, which is the case being

excluded here.

Given any function ζ : (−∞,−ϕ′ (0+))→ R, we define the notation

Auζ (U0,Σ) = Σ− ζ (u (U0 + Σ)− u (U0))

u′ (U0)
, (51)

which extends the notation in (26) , since Au = Auidentity . In fact, the last identity can be viewed as

a limiting case (for θ =∞) of the more interesting identity

Aψ◦u = Auψ, where ψ (u) = θ
(

1− exp
(
−u
θ

))
. (52)

The following result fleshes out the CE approximation (22) in the current context. Note that in

the entropic case, the function ζ defined in (53) is given as ζ = ψ, which, in light of Example 3 and

identity (52) , makes approximation (53) consistent with the EU approximation of Theorem 5(b).

Theorem 11 (Divergence CE Poissonian Approximation) Suppose (P,B) is given by the

Poisson specification (4), and υ is the divergence CE (12) for some u ∈ C1
vNM and ϕ ∈ C1

div .

Then for all (U0,Σ) ∈ D,

υ (U) = U0 +
(
µ−Auζ (U0,Σ)

)
h+ o (h) , where ζ (x) = min

y∈(0,∞)
{ϕ (y) + xy} , (53)

and Auζ is defined in (51) .

Proof. As in the proof of Theorem 4(a), we assume the vNM index normalization (28) . Again

this entails no loss of generality: If u and ũ are vNM indices such that ũ = αu + β, where α ∈
(0,∞) and β ∈ R, and ϕ and ϕ̃ are divergence indices such that ϕ̃ = αϕ, then (u, ϕ) defines the same

divergence CE as (ũ, ϕ̃) , and Auζ = Aũ
ζ̃
, where ζ̃ (x) = miny>0 {ϕ̃ (y) + xy} . It is therefore clear

that to prove the theorem, it is suffi cient to do so after replacing u (·) with (u (·)− u (U0)) /u′ (U0)

and ϕ (·) with ϕ (·) /u′ (U0) .

In addition to normalization (28) , we adopt the notation (29) and we assume h ∈
(
0, h̄
)
, where

h̄ is defined just as in the discussion immediately following equation (29) .
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Given the Poisson specification (4) , Lemma 8 implies the existence of a minimizing probability

in Π, for all (U0,Σ) ∈ D. Given any prior Q, let ρ = EQB/h and recall that dQ/dP = 1 + ρB.

Using the notation in (36) and (37) , we define

Vh (ρ) ≡ EQu (U) + Eϕ (dQ/dP )

= u (U0 + α (h)) + ((1 + ρ)h+ ε (h))Hh

+ (h+ ε (h))ϕ (1 + ρ (1− h− ε (h))) + (1− h− ε (h))ϕ (1 + ρ (−h− ε (h))) ,

where Hh = u (U0 + Σ + α (h))− u (U0 + α (h)) . Let ρh be the value of ρ that minimizes Vh (ρ) .

Setting the derivative of Vh at ρh to zero, we find

Hh +

(
1 +

ε (h)

h

)
(1− h− ε (h))Gh = 0, (54)

where

Gh = ϕ′ (1 + ρh (1− h− ε (h)))− ϕ′ (1− ρh (h+ ε (h))) . (55)

As h goes to zero, Hh converges to u (U0 + Σ) and ε (h) /h converges to zero. From equation (54),

it follows that

lim
h↓0

Gh = −u (U0 + Σ) . (56)

We show that ρh must then also converge. Since 1+ρB is strictly positive, 1+ρh (1− h− ε (h)) > 0,

which implies that ρh > −2 for all h ∈
(
0, h̄
)
, provided h̄ is suffi ciently small. Since ϕ′ is increasing,

the quantity ϕ′ (1− ρh (h+ ε (h))) in (55) is bounded above by a constant for all h ∈
(
0, h̄
)
. Because

of (56) , it must then be the case that the first term in (55) is also bounded above by a constant for

suffi ciently small h, and therefore ρh must also be bounded above for all suffi ciently small h. Since

ρh is bounded both below and above as h goes to zero,

lim
h↓0

ρh (h+ ε (h)) = 0. (57)

Finally, equation (55) can be rearranged to

ρh = −1 + ρh (h+ ε (h)) + ϕ′−1 (Gh + ϕ′ (1− ρh (h+ ε (h)))) ,

which combined with (56) and (57) implies that

lim
h↓0

ρh = ρ0 ≡ −1 + ϕ′−1 (−u (U0 + Σ)) .

Note that ρ0 is the value of ρ that minimizes

G (ρ) ≡ µ+ ρΣ−Au (U0,Σ) (1 + ρ) + ϕ (1 + ρ) .

Summarizing, condition (46) of the proof of Theorem 4(a) holds in the current context, too.
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In the next stage of the proof, we approximate Vh. A suitable approximation for the first term,

EQu (U) , of Vh (ρ) is given by Lemma 7. The analogous computation for Eϕ (1 + ρB) yields an

approximation of the form

|Eϕ (1 + ρB)− ϕ (1 + ρ)h| ≤ δ (ρ, h)h,

where δ (ρ0, h) and δ (ρh, h) converge to zero as h goes to zero. Adding up the two approximations

results in expression (47) for a function χ such that the limits (48) hold. In the proof of Theo-

rem 4(a), these conditions together with (46) were used to prove equation (49) . The exact same

argument in the current context yields

υ (U) = U0 + G (ρ0)h+ o (h) , 1 + ρ0 = ϕ′−1 (−u (U0 + Σ)) .

Equation (53) follows from the identity

G (ρ0) = µ−Auζ (U0,Σ) , where ζ (x) = min
y∈(0,∞)

{ϕ (y) + xy} ,

which can be shown easily using the definitions and the observation that for x = u (U0 + Σ) , the

minimum value ζ (x) is achieved by y = ϕ′−1 (−x) = 1 + ρ0.

A.1.6 Proof of Theorem 4(b)

By Example 3 (which was proved in Remark 9), if ϕ is entropic, then the CE υ can be expressed

(exactly) as an EU CE. This proves the theorem’s “if”part. To show the converse, suppose that

there exist a prior Q and some ũ ∈ C1
vNM such that υ (U) = ũ−1EQũ (U) +o (h) for all (U0,Σ) ∈ D,

and let ρ̃ be the drift of B under Q. Combining Theorems 5(b) and 11, it follows that

−Auζ (U0,Σ) = ρ̃Σ−Aũ (U0,Σ) (1 + ρ̃) , (U0,Σ) ∈ D.

The following lemma proves, in particular, that this assumption implies that ρ̃ = 0 (and therefore

Q = P ) and ϕ is entropic (and therefore ζ = ψ). This completes the theorem’s proof.

We conclude with the key lemma, which is stated here slightly more generally than needed

above, since we are going to use it again in the continuous-time analysis to follow.

Lemma 12 Given any ϕ ∈ C1
div , define the set D by (13) , the notation Auζ by (51) , and let

θ = ϕ′′ (1) , ψ (u) = θ
(

1− exp
(
−u
θ

))
and ζ (x) = min

y∈(0,∞)
{ϕ (y) + xy} . (58)

Then the following two statements are equivalent, for any ũ ∈ C1
vNM , Σ ∈ R and ρ, ρ̃ ∈ (−1,∞) .

1. ρΣ−Auζ (U0,Σ) (1 + ρ) = ρ̃Σ−Aũ (U0,Σ) (1 + ρ̃) for all (U0,Σ) ∈ D.

2. ρ = ρ̃ and ϕ (y) = θ (y log y − y + 1) for all y > 0.
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Proof. We only show the implication (1 =⇒ 2), since the converse is a matter of simple

computation. We assume that

ũ′ (1) = u′ (1) and ũ (1) = u (1) = 0,

which entails no loss of generality since Aũ is invariant to a positive affi ne transformation of ũ, and

Auζ is invariant to adding a constant to u.

Suppose the Lemma’s condition 1 is true and define

f (x) =
1 + ρ

1 + ρ̃
ζ (x) .

The assumed condition is equivalent to

f (u (U0 + Σ)− u (U0))

u′ (U0)
=
ũ (U0 + Σ)− ũ (U0)

ũ′ (U0)
, (59)

for all (U0,Σ) ∈ D. Letting U0 = 1 and z = 1 + Σ it follows that if u (z) < −ϕ′ (0+) ,

f (u (z)) = ũ (z) and therefore f ′ (u (z))u′ (z) = ũ′ (z) .

Assuming

x = u (U0) < −ϕ′ (0+) and y = u (U0 + Σ)− u (U0) < −ϕ′ (0+) ,

condition (59) becomes

f ′ (x) f (y) = f (x+ y)− f (x) .

Differentiating with respect to y and taking logarithms results in

log f ′ (x) + log f ′ (y) = log f ′ (x+ y) .

Since f ′ is continuous, there exists a scalar a such that

log f ′ (x) = ax. (60)

Since ζ (x) = miny>0 {ϕ (y) + xy} , if x = −ϕ′ (y) , then ζ (x) = ϕ (y) + xy and ζ ′ (x) = y (by the

envelope theorem). Using this fact in identity (60) with x = −ϕ′ (y), we obtain

log

(
1 + ρ

1 + ρ̃

)
+ log y = −aϕ′ (y) , y > 0.

Since ϕ′ (1) = 0, it follows that ρ̃ = ρ. Since ϕ′′ (1) = θ, it follows that aθ = −1. Therefore, ϕ solves

the ODE

ϕ (1) = 0, ϕ′ (y) = θ log (y) , y > 0,

whose unique solution is ϕ (y) = θ (y log y − y + 1) .
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A.2 Continuous-Time Recursive Utility

This section shows and elaborates on the claims of Section 5. As outlined there, the main objective

is to establish the appropriate modifications to Duffi e and Epstein (1992) utility, if any, for the

smooth ambiguity averse CEs of interest, under Brownian and Poisson uncertainty. This section’s

analysis follows more closely the approach in Skiadas (2008), which is extended here to include

Poisson jumps. The setting also extends that of the main paper in that we allow for multiple

Brownian/Poissonian sources of risk and a more general intertemporal aggregator. The arguments

can be followed with only an intuitive grasp of elements of the stochastic calculus, which are outlined

in the first subsection. The advanced theory can be found in Jacod and Shiryaev (2003).

A.2.1 Stochastic Setting

Given is a probability space (Ω,F , P ) on which are defined d mutually stochastically independent

processes forming the column vector B = (B1, . . . , Bk, Bk+1, . . . , Bd)′, where

• Bi is a standard Brownian motion for i = 1, . . . , k, and

• Bi is a compensated Poisson process with unit arrival rate for i = k + 1, . . . , d.

The last statement means that there exist independent Poisson processes Nk+1, . . . , Nd such that

EN i
t = t and Bit = N i

t − t for every time t and process i ∈ {k + 1, . . . , d} .
The underlying filtration {Ft : t ∈ [0, T ]} , where T > 0 is a given finite time horizon, is defined

as the smallest filtration such that Bt is Ft-measurable for every time t (and each Ft contains the P -
null events, a technicality that can be ignored). We assume that F = FT , without loss of generality.
Intuitively, uncertainty is represented by the possible paths of B. Time-t information results from

observing the realized path of B up to time t. Given this information, conditional uncertainty re-

solved by time t+dt is spanned by the stochastically and linearly independent factors dB1
t , . . . , dB

d
t ,

representing infinitesimal risks, some of which are Brownian and some Poissonian. For d = 1, one

can think of last section’s CE approximations, which become exact relationships in the continuous-

time limit, as applying over each interval [t, t+ dt] , conditionally on time-t information, with dt in

place of h and dB in place of B.

A process X is adapted if Xt is Ft-measurable for every time t. We will not enter into the
technical definition of a predictable process X, but we think of the concept heuristically as the

condition that Xt is Ft−-measurable. For any process X whose paths have left limits, we use the

heuristic notation dXt = Xt+dt −Xt−, where Xt− denotes the left limit of X at t.

Conditional expectation given time-t information Ft (resp. Ft−) is denoted Et (resp. Et−).
A volatility process is any d-dimensional predictable process σ such that

∫ T
0
σ′tσtdt < ∞ with

probability one. A local martingale M can be heuristically thought of as an adapted process

whose instantaneous increments have conditionally zero mean: Et−dMt = 0. Given an integrability

condition, such an increment dMt can be expressed as a linear combination of the instantaneous
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linear factors dB1
t , . . . , dB

d
t . This intuition is formalized by a martingale representation theorem,

which in the current context states that a process M is a locally square-integrable martingale if

and only if there exists some volatility process σ such that

Mt = M0 +

∫ t

0

σ′udBu, or equivalently dMt = σ′tdBt. (61)

A prior is any probability on F that is equivalent to P (meaning that it defines the same null

events as P ). Associated with a prior Q are a martingale ξQ, a d-dimensional predictable process

ρQ and a d-dimensional adapted process BQ, defined by

ξQt = Et
[
dQ

dP

]
,

dξQt

ξQt−
= ρQ′t dBt and BQt = Bt −

∫ t

0

ρQt dt. (62)

(Note that the ratio ξQt+dt/ξ
Q
t− = 1+ρQ′t dBt is the analog of the ratio dQ/dP = 1+ρB in the single

period model, where Q and P represent transition probabilities over a single binomial step. Here

Q and P represent probabilities over entire paths.) We let Π denote the set of every prior Q such

that ρQ is a volatility process.16 Girsanov’s theorem implies that for any Q ∈ Π,

BQ is a local martingale under Q. (63)

Expectation relative to a prior Q is denoted EQ. Heuristically, we have EQt−dB
Q
t = 0.

Priors in this setting correspond to beliefs about the drift process of each Brownian motion

and the arrival rate process of each Poisson process, all of which can be path dependent. For

the Brownian factors, Lévy’s characterization of Brownian motion implies that BQ1, . . . , BQk are

independent standard Brownian motions under the probability Q, and therefore ρQi is the drift of

Brownian motion BQi under Q. For the Poissonian factors, we note that

BQit = N i
t −

∫ t

0

(
1 + ρQis

)
ds, i = k + 1, . . . , d, (64)

which in combination with (63) implies that 1 + ρQi is the arrival rate process of the point process

N i under the probability Q.

We will derive utility dynamics through a formal application of Ito’s rule, which we now review.

Consider any process of the form

dXt = µQt dt+ σ′tdB
Q
t ,

where σ is a volatility process and µQ is a drift process, meaning that it is predictable and∫ t
0

∣∣µQu ∣∣ du <∞ with probability one. For any twice continuously differentiable function f : R→ R,
16The conditional density process ξQ can be recovered from ρQ by the formula

log ξQt =
k∑
i=1

∫ t

0

(
ρQ′s dBis −

1

2

(
ρQis

)2
ds

)
+

d∑
i=k+1

∫ t

0

(
log
(

1 + ρQis

)
dBis +

(
log
(

1 + ρQis

)
− ρQis

)
ds
)
,

as can be verified by an application of Ito’s lemma.
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Ito’s rule states that

df (Xt) = αQt dt+ β′tdB
Q
t . (65)

where

αQt = f ′ (Xt)µ
Q
t +

f ′′ (Xt)

2

k∑
i=1

(
σit
)2

+

d∑
i=k+1

(
f
(
Xt− + σit

)
− f (Xt−)− f ′ (Xt−)σit

) (
1 + ρQit

)
,

βit = f ′ (Xt−)σit, i = 1, . . . , k; βit = f
(
Xt− + σit

)
− f (Xt−) , i = k + 1, . . . , d.

Since BQ is a local martingale under Q, we have the heuristic expression

EQt− [f (Xt+dt)] = f (Xt−) + αQt dt. (66)

A.2.2 Recursive Utility as a BSDE

As in the single-period analysis, we assume consumption is valued in the interval (`,∞), for some

` ∈ [−∞, 1) . Ignoring technical integrability conditions, a consumption plan is any (`,∞)-valued

adapted (progressively measurable) process c, where ct represents a consumption rate for t < T ,

and cT represents terminal consumption (which can be thought of as a constant perpetuity paying

out at the rate cT at all times after T ). The consumption plan that is identically equal to one

(including unit terminal consumption) is denoted 1. For each consumption plan c, we will define a

corresponding utility process U (c) , which is normalized so that U (s1) = s1 for any s ∈ (`,∞) .

The interpretation is that at time t, conditionally on time-t information, the agent is indifferent

between the plans c and Ut (c)1.

We henceforth fix a reference consumption plan c and we simplify the notation for the corre-

sponding utility process by writing U instead of U (c) . Heuristically, we assume that the process U

is computed by a backward-in-time recursion of the form17

Ut− = Φ (dt, ct, υt (Ut+dt)) , UT = cT , (67)

where υt (Ut+dt) is a time-t conditional CE of Ut+dt, to be specified later on, and Φ is an intertem-

poral aggregator. We assume throughout that Φ has continuous partial derivatives, denoted Φdt,

Φc and Φυ, with Φc and Φυ taking values in (0,∞) , reflecting preference monotonicity. Moreover,

we assume that Φ satisfies the consistency condition Φ (0, c, υ) = υ. Most common in applications

is the specification

Φ (dt, c, υ) = u−1
δ

((
1− e−βdt

)
uδ (c) + e−βdtuδ (υ)

)
, (68)

for some vNM index uδ and impatience rate β. This includes Epstein-Zin-Weil utility and the

example of Section 2, where uδ is parameterized to imply a constant EIS.

17Simple behavioral axioms that lead to recursive utility with an arbitrary conditional CE can be found in Chapter 6
of Skiadas (2009), whose end-notes give further background on the foundations of recursive utility.
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To make mathematical sense of the heuristic recursion (67) , suppose the processes µ and Σ

represent, respectively, the drift and volatility of U :

dUt = µtdt+ Σ′tdBt =
(
µt + ρQt · Σt

)
dt+ Σ′tdB

Q
t , (69)

for any prior Q, with BQ defined in (62) . Note that dUt = Ut+dt − Ut− includes any time-t jump.
Since EQt−dB

Q
t = 0, the second equation in (69) implies that the risk-neutral conditional CE of

Ut+dt under the prior Q is

EQt−Ut+dt = Ut− +
(
µt + ρQt · Σt

)
dt. (70)

Reflecting the single-period CE approximation form (22), the continuous-time conditional CEs of

interest in this paper can be expressed as

υt (Ut+dt) = Ut− +
(
µt + ρQt · Σt −A

(
Ut−,Σt, ρ

Q
t

))
dt. (71)

This claim is verified in the following subsection, where explicit expressions for A are given.
Let us now expand the right-hand side of the heuristic recursion (67) in a first-order Taylor

approximation with respect to the arguments dt and υt (Ut+dt) , using expression (71) , to obtain

Ut− = Φ (0, ct, Ut−) + Φdt (0, ct, Ut−) dt+ Φυ (0, ct, Ut−)
(
µt + ρQt · Σt −A

(
Ut−,Σt, ρ

Q
t

))
dt.

Given the normalization Ut− = Φ (0, ct, Ut−) , the preceding equation can be rearranged to

−µt = f (ct, Ut−) + ρQt · Σt −A(Ut−,Σt, ρ
Q
t ), where f (c, υ) =

Φdt (0, c, υ)

Φυ (0, c, υ)
. (72)

For example, if Φ is given by (68), then f (c, υ) = β (uδ (c)− uδ (υ)) /u′δ (υ) .

Combining (69) and (72) , we have transformed the heuristic recursive specification (67) of the

utility process U to the backward stochastic differential equation (BSDE):

dUt = −
(
f (ct, Ut) + ρQt · Σt −A(Ut−,Σt, ρ

Q
t )
)
dt+ Σ′tdBt, UT = cT . (73)

Given the terminal value UT , a solution to the BSDE consists of an adapted pair (U,Σ) such

that (73) holds. We also refer to the process U as a solution to the BSDE if (U,Σ) is a BSDE

solution for some Σ. The fixed-point nature of BSDE (73) means that special restrictions must

be imposed on the primitives (including integrability restrictions on c and ρQ) to guarantee the

existence and uniqueness of a solution (see footnote 12 and Skiadas (2008) for relevant references).

A.2.3 Smooth Ambiguity Aversion in Continuous Time

A general form of continuous-time recursive utility has been expressed as BSDE (73), with the

function A defined heuristically in the CE expression (71) . This section specifies the function A for
smooth conditional CEs corresponding to second-order expected utility and divergence preferences,

and characterizes the instances in which the resulting specification is equivalent to one with an EU

CE. The claimed expressions, which are analogous to last section’s single-period CE approximations,

are based on formal applications of Ito’s lemma, although the irrelevance of the function ϕ for a

smooth second-order EU CE will be seen to be even simpler than that.
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Expected Utility CE We first establish the continuous-time version of the recursive utility of

Kreps and Porteus (1978) in what amounts to a variant of the argument of Duffi e and Epstein

(1992), extended to include Poisson jumps. We assume that

υt (Ut+dt) = u−1EQt−u (Ut+dt) , (74)

for some Q ∈ Π and u ∈ C2
vNM (or just C1

vNM if there is no Brownian risk). Recall that the risk-

aversion functions au and Au are defined in (25) and (26) , respectively. Theorem 5 suggests that

the CE expression (71) , and therefore BSDE (73) , is satisfied with

A (Ut−,Σt, ρt) =
au (Ut−)

2

k∑
i=1

(
Σit
)2

+

d∑
i=k+1

Au
(
Ut−,Σ

i
t

) (
1 + ρit

)
. (75)

This claim follows by a formal application of Ito’s lemma similarly to (66) :

EQt−u (Ut+dt) = u (Ut−) + u′ (Ut−)
(
µt + ρQt · Σt −A(Ut−,Σt, ρ

Q
t )
)
dt, (76)

where A is defined by (75) . Further applying u−1 on both sides of equation (76) and using Ito’s

lemma (in a trivial sense) confirms (71) the current context.

Second-Order Expected-Utility CE In Theorem 2, we saw that a smooth second-order EU

CE over small Brownian or Poissonian risks is approximately equal to an EU CE with the compound

prior. This relationship should be exact in the continuous time limit, meaning that the utility BSDE

for a smooth second-order EU CE should be specified as in the last subsection, with Q being the

compound prior. There are two parts to this claim: The function ϕ does not appear in the utility

BSDE, and the prior Q is the compound prior. Let us now clarify these two parts.

The irrelevance of the function ϕ can be made in greater generality than the second-order EU

formulation, as follows. Suppose that for some ϕ ∈ C1
vNM ,

υt (Ut+dt) = ϕ−1

(∑S

s=1
ϕ (υst (Ut+dt))π

s
t

)
, (77)

where π1, . . . , πS are (0, 1)-valued predictable processes such that
∑
s π

s = 1, and υ1, . . . , υS are

conditional CEs that can be expressed as

υst (Ut+dt) = Ut− + (µt +Dst (Ut−,Σt)) dt, s = 1, . . . , S. (78)

(As always, µ and Σ refer to the dynamics (69) of U.) A first-order Taylor expansion gives

ϕ (υst (Ut+dt)) = ϕ (Ut−) + ϕ′ (U−) (µt +Dst (Ut−,Σt)) dt.

Multiplying the last equation by πst , adding up over s, applying ϕ
−1 on both sides and taking

another first-order expansion results in

υt (Ut+dt) = Ut− + (µt +Dt (Ut−,Σt)) dt, where Dt =
∑S

s=1
Dstπst . (79)
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A corresponding BSDE can be established as in Section A.2.2. The function ϕ is not part of

equation (79) or the corresponding BSDE and is therefore irrelevant.

The second-order EU CE definition specializes the preceding formulation by postulating priors

Q1, . . . , QS and a u ∈ C2
vNM such that

υst (Ut+dt) = u−1EQ
s

t−u (Ut+dt) , s = 1, . . . , S,

and by requiring that the weights πst are updated using Bayes’rule:

πst =
ξst−π

s
0∑S

i=1 ξ
i
t−π

i
0

, where ξst = Et
[
dQs

dP

]
.

By the EU CE analysis of the last subsection, equations (78) are satisfied with

Dst (Ut−,Σt) = ρQ
s

t · Σt −A(Ut−,Σt, ρ
Qs

t ), s = 1, . . . , S, (80)

where the function A is defined in equation (75) . The compound prior is defined by

Q =
∑S

s=1
Qsπs0 and therefore ξQ =

∑S

s=1
ξsπs0. (81)

In addition to the irrelevance of ϕ, we can now claim that υ is an EU CE with prior Q and vNM

index u. To verify this claim, we first note that the second equation in (81) together with the Bayes

formula defining πst results in

dξQt

ξQt−
=
∑S

s=1

dξst
ξst−

πst and therefore ρQt =
∑S

s=1
ρQ

s

t πst .

Since in equation (80) the dependence of A(Ut−,Σt, ρ
Qs

t ) on ρQ
s

is linear (as stated in (75)), we

conclude that

Dt (Ut−,Σt) =
∑S

s=1
Dst (Ut−,Σt)π

s
t = ρQt · Σt −A(Ut−,Σt, ρ

Q
t ).

Using this in CE expression (79) and comparing to the corresponding EU expression in Section A.2.3,

we conclude that

υt (Ut+dt) = u−1EQt−u (Ut+dt) .

Divergence CE Finally, we formulate the continuous-time version of the divergence CE of Sec-

tion 4.2, extended to include any finite number of Brownian and Poissonian risk sources.

We postulate a reference priorR. For each Brownian risk source i ∈ {1, . . . , k} , the corresponding
reference drift term is ρRi, and for each Poissonian risk source i ∈ {k + 1, . . . , d} , the corresponding
reference arrival rate is 1 + ρRi. For any other prior Q, let the positive R-martingale ξQ/R and the
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predictable process ρQ/R be defined by18

ξ
Q/R
t = ERt

[
dQ

dR

]
and

dξ
Q/R
t

ξ
Q/R
t−

= ρ
Q/R′
t dBRt .

The other primitives needed to define the conditional CE are u ∈ C2
vNM and ϕ ∈ C2

div (see sec-

tion 4.2). If there is no Brownian risk, it is suffi cient to assume that u ∈ C1
vNM and ϕ ∈ C1

div .

The continuous-time divergence CE in this context is heuristically defined by

υt (Ut+dt) = inf
Q∈Π

u−1

(
EQt−u (Ut+dt) + ERt−ϕ

(
ξ
Q/R
t+dt

ξ
Q/R
t−

))
. (82)

The interior-solution condition

u
(
Ut− + Σit

)
− u (Ut−) < −ϕ′ (0+) , i = k + 1, . . . , d, (83)

is assumed throughout. Of course the condition is automatically satisfied if there are no Poisson

terms (k = d) .

As in the single-period analysis, we define θ, ψ and ζ by (58) and Auζ by (51) . Theorems 4(a)

and 11 suggest that the conditional CE expression (71) and corresponding utility BSDE (73) hold

with

A(Ut−,Σt, ρt) =
aψ◦u (Ut−)

2

k∑
i=1

(
Σit
)2

+

d∑
i=k+1

Auζ
(
Ut−,Σ

i
t

) (
1 + ρit

)
. (84)

This is confirmed at the end of this section as a formal application of Ito’s lemma, along with the

following claims:

• If there is no Poisson risk (k = d) , then the above divergence utility specification is equiva-

lent to one with an expected-utility CE, and is therefore within the Duffi e-Epstein class of

continuous-time Kreps-Porteus utility.

• If there is Poisson risk (k < d), then the above divergence utility specification is equivalent

to one with an expected-utility CE if and only if the divergence is of the entropic type:

ϕ (y) = θ (y log y − y + 1) , in which case ζ = ψ and Auζ = Aψ◦u.

The first claim follows by comparing (84) to (75) and the second claim follows from Lemma 12.

18The change-of-measure formula for conditional expectations and the integration-by-parts formula for semimartin-
gales can be used to show the relationships:

ξQ/R =
ξQ

ξR
; ρQ/Ri = ρQi − ρRi, i = 1, . . . , k; 1 + ρ

Q/Ri
t =

1 + ρQi

1 + ρRi
, i = k + 1, . . . , d.
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Example 13 (Quadratic Divergence) Suppose u is the identity function and, as in Example 10,
ϕ (y) = θ (y − 1)

2
/2 and therefore ζ (x) = x − x2/ (2θ). Assuming the validity of condition (83),

which in this case states that Σit < θ for i > k, expression (84) reduces to

A(Ut−,Σt, ρt) =
1

2θ

(
k∑
i=1

(
Σit
)2

+

d∑
i=k+1

(
Σit
)2 (

1 + ρit
))

.

Schroder and Skiadas (2008) show the tractability advantages of this specification in the presence of

Poisson jumps.

We conclude with the formal derivation of the preceding claims. Analogously to the derivation

of equation (76) , Ito’s lemma implies that

ERt−ϕ
(

1 + ρ
Q/R′
t dBRt

)
=

k∑
i=1

θ

2

(
ρQi − ρRi

)2
dt+

d∑
i=k+1

ϕ

(
1 + ρQi

1 + ρRi

)(
1 + ρRit

)
dt.

Combining the preceding expression with (76) results in

u−1

(
EQt−u (Ut+dt) + ERt−ϕ

(
ξ
Q/R
t+dt

ξ
Q/R
t−

))
= Ut− + µtdt (85)

+

k∑
i=1

Ct
(
ρQit

)
dt+

d∑
i=k+1

Jt
(
ρQit

)
dt,

where

Ct
(
ρit
)

= ρitΣ
i
t −

au (Ut−)

2

(
Σit
)2

+
θ

2u′ (Ut−)

(
ρit − ρRit

)2
,

Jt
(
ρit
)

= ρitΣ
i
t −Au

(
Ut−,Σ

i
t

) (
1 + ρit

)
+

1

u′ (Ut−)
ϕ

(
1 + ρit

1 + ρRit

)(
1 + ρRit

)
.

The last two terms are minimized separately, noting that Ct is quadratic and Jt is strictly convex.
The assumed inequality (83) is equivalent to the condition J ′t (−1 + ε) < 0 for some suffi ciently

small ε > 0, which is necessary and suffi cient for Jt to be minimized by some ρi such that 1 + ρi

is strictly positive. It follows that the right-hand side of (85) is minimized by the value ρQ, where

the Brownian terms are given by

ρQit = ρRit −
u′ (Ut−)

θ
Σit, i = 1, . . . , k,

and the Poissonian terms are given by

1 + ρQit =
(
1 + ρRit

)
ϕ′−1

(
u (Ut−)− u

(
Ut− + Σit

))
, i = k + 1, . . . , d.
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Substituting the minimizing value of ρQ in (85) results in

υt (Ut+dt) = Ut−+

(
µt + ρRt · Σt −

aψ◦u (Ut−)

2

k∑
i=1

(
Σit
)2 − d∑

i=k+1

Auζ
(
Ut−,Σ

i
t

) (
1 + ρRit

))
dt, (86)

where ψ and ζ are defined in (58) . Expression (86) is the same as (71) with Q = R and the function

A given by equation (84) , as claimed.

If there is no Poissonian risk (k = d) , then expression (86) reduces to an EU CE with prior

R and vNM index ψ ◦ u, and therefore the corresponding recursive utility is within the class of
continuous-time Kreps-Porteus utilities.

Finally, suppose there is Poissonian risk (0 ≤ k < d) . The question is, can the divergence CE (86)

be expressed as an EU CE relative to some prior and smooth vNM index? We argue that there

exists some Q ∈ Π and ũ ∈ C2
vNM such that the CE (86) takes the expected utility form

υt (Ut+dt) = Ut− +

(
µt + ρQt · Σt −

aũ (Ut−)

2

k∑
i=1

(
Σit
)2 − d∑

i=k+1

Aũ
(
Ut−,Σ

i
t

) (
1 + ρQit

))
dt (87)

for all values of (Ut−,Σt) satisfying condition (83) if and only if

Q = R and ϕ (x) = θ (x log x+ x− 1) (where θ = ϕ′′ (1) ). (88)

The “if”part is immediate, since (88) implies that ζ = ψ and Auζ = Aψ◦u. Conversely, suppose

that for some prior Q and ũ ∈ C2
vNM , equation (87) is true for all values of (Ut−,Σt) satisfying (83) ,

that is, for all values of (Ut−,Σt) such that
(
Ut−,Σ

i
t

)
∈ D for every Poissonian factor i, where

D is defined in (13) . Isolating any such factor i ∈ {k + 1, . . . , d} , the equality of the conditional
CEs (86) and (87) implies that

ρRit Σit −Auζ
(
Ut−,Σ

i
t

) (
1 + ρRit

)
= ρQit Σit −Aũ

(
Ut−,Σ

i
t

)
(1 + ρQit ),

for all values of
(
Ut−,Σ

i
t

)
in D. An application of Lemma 12 shows that then (88) must hold.
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