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Summary. In this paper we present a model of the term structure of interest
rates with imperfect information and stochastic differential utility, a form of
non-additive recursive utility. A principal feature of recursive utility, that
distinguishes it from time-separable expected utility, is its dependence on the
timing of resolution of uncertainty. In our model, we parametrize the non-
linearity of recursive utility in a way that corresponds to preferences for the
timing of resolution. This way we show explicitly the dependence of prices on
the rate of information, as a consequence of the nature of utilities. State prices
and the term structure of interest rates are obtained in closed form, and are
shown to have a form in which derivative asset pricing is tractable. Compara-
tive statics relating to the dependence of the term structure on the rate of
information are also discussed.

JEL Classification Numbers: G12, D89, D99.

1 Introduction

In this paper, we consider a parametric model of a single, or homogeneous,
agent equilibrium, much in the spirit of Lucas (1978), but with imperfect
information and stochastic differential utility. This type of utility was intro-
duced by Duffie and Epstein (1992), and can be thought of as a continuous-
time version of the recursive utility of Kreps and Porteus (1978) or Epstein and
Zin (1989). State prices and the term structure of interest rates are obtained in
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support from the National Science Foundation under NSF SBR-9409567. This paper presents the
first model of an earlier, preliminary working paper titled: "Two models of price dependence on
the timing of resolution of uncertainty."
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closed form in terms of parameters that correspond to the rate of information,
and the curvature of the intertemporal aggregator in its utility argument,
which is known to characterize preferences for the timing of resolution of
uncertainty. This way, we obtain a characterization and interpretation of the
role of non-linear intertemporal aggregation in asset pricing, in terms of the
dependence of prices on the timing of resolution of uncertainty. Comparative
statics show the dependence of the term structure on the rate of information,
a phenomenon that is not present, under separable preferences.

Time-separable expected utility is known to place overly severe indepen-
dence restrictions across time and states of nature. A simple example, that is
part of the folklore of the field, consists of two bets A and B. Bet A involves the
repeated toss of a coin over a number of periods resulting in payoffs of, say,
$1000 or nothing, depending on the outcome in every period. On the other
hand, B involves the toss of a single coin, resulting in a payoff of $ 1000 in every
period, or nothing. While bet A is clearly less risky, in some sense, any
time-separable expected utility (even with time or state dependence) must
assign the same utility to both A and B. Considerations such as this have led to
an extensive literature on utility forms that involve some sort of non-additive
intertemporal aggregation. Recursive utility is prominent in this literature,
mainly due to the fact that, although recursive utility accommodates non-
linear temporal aggregation, it retains a strong notion of dynamic consistency
that allows much of the optimization technology for time-additive utilities to
be still applicable. For further background and discussion of recursive utility
the reader can consult the survey of Epstein (1992).

An important property of recursive utility, that has been studied by Kreps
and Porteus (1978) and others, is that utility depends on the timing of
resolution of uncertainty. Moreover, the functional form of the intertemporal
aggregator is directly linked to preferences for the timing of resolution, with
a convex aggregator favoring early resolution, and a concave aggregator
favoring late resolution. An additive temporal aggregator then corresponds to
indifference towards the timing of resolution. As an illustration, consider
a third bet, C, that differs from bet A described above only in that all the coins
are tossed at once in the first period, the timing of the payoffs being the same in
both bets. Time-additivity implies indifference towards A and C, a convex
temporal aggregator implies that C is preferred to A, while a concave temporal
aggregator implies that A is preferred to C.

The role of the timing of resolution of uncertainty for the stochastic
differential utility of Duffie and Epstein (1992) is analogous to that for the
Kreps-Porteus utility, and is analyzed in Skiadas (1995). There preferences are
defined over pairs of contingent consumption plans and information filtra-
tions, and preferences for the timing of resolution are defined in terms of the
monotonicity of the utility relative to the information filtration component.
Monotonicity in the filtration is then characterized in terms of the curvature of
.the temporal aggregator in its utility argument. The main advantage of this
approach over that of Kreps and Porteus is that it separates the role of
information from that of an agent's beliefs as expressed by the distribution of
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consumption plans that Kreps and Porteus take as the primitive choice
objects.

While we refer to Skiadas (1995) for more discussion of preferences for the
timing of resolution, it is instructive to review here a main intuition that gives
rise to such preferences, even when the agent's utility is ultimately derived
purely out of state and time contingent consumption. With time-additive
utility, today's felicity from consumption depends on today's consumption
alone. With recursive utility, however, today's felicity from consumption
depends on today's consumption, but also on the expected utility of future
consumption. For example, one can feel elated at the prospect of high future
consumption, without any present consumption, while the prospect of low
future consumption may decrease the enjoyment of present consumption. The
curvature of the intertemporal aggregator can then be thought of as represent-
ing the agent's risk attitude towards the impact of the expected utihty of future
consumption. For example, a risk-averse attitude implies that the agent would
rather form a less informed expectation of the utility of future consumption,
because of the "risk" of receiving bad news, thus reducing the enjoyment of
present consumption. Not surprisingly, this type of "risk-aversion" corre-
sponds to the concavity of the intertemporal aggregator in its utility argument.
Conversely, convexity of the aggregator in its utility argument leads to
preferences for early resolution.

The question of the impact of the timing of resolution of uncertainty on
prices has been discussed in a variety of contexts. Steve Ross (1989) argued that
the timing of resolution of uncertainty should not affect prices. The essence of
his argument can be explained in terms of a complete-markets Arrow-Debreu
equilibrium, with no production, where agents' preferences are described by
increasing and concave Von Neumann-Morgenstern utility functions. For
simplicity, assume that there is a terminal date T when all state-contingent
payoffs and consumption occur. Also assume there is no information today,
and there is perfect information at time T. The equilibrium price of a contin-
gent claim making payment X at time T is given by E(nX), where n represents
the state-price density. The random variable n is given as the marginal utility
of the representative agent (in the sense of Constantinides (1982) and Huang
(1987)) at the aggregate endowment. It is clear then that the quantity E{nX)
does not depend on the manner in which information is revealed between
times zero and T. In this sense, prices are independent of the timing of
resolution of uncertainty. The case in which consumption and dividend
payouts occur continuously over time is analogous, and the same conclusion
can be drawn.

Ross also presented an anecdote involving the price reaction of a New
York City bond issue to the news of a rescheduling of an audit describing the
state of revenue collection. The issue rallied on the announcement that the
news would be released earlier than originally planned. Ross pointed out that
such a story is not compatible with his indifference result. There can be many
reasons why the information structure may have a price impact. In the
presence of some production technology, early resolution of uncertainty may
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lead to planning benefits (see Robichek and Myers (1966) and Epstein and
Turnbull (1980)). The announcement of the rescheduling of the timing of the
news release may be perceived in itself as an informative signal (see, for
example. Chambers and Penman (1984) for a related discussion). In the
presence of default, the payoff structure of a security may depend on the timing
of resolution (see Duffie, Schroder, and Skiadas (1995)). A new information
structure may have an effect because of market incompleteness, as in Berk and
Uhlig (1993).

In the model of this paper, state prices depend on the timing of resolution
because of the nature of the agents' utility function. For example, we find that
when there are preferences for early resolution, discount-bond yields and
forward rates are increasing with the quality and timeliness of the information
in the economy. The opposite relationships hold with preferences for late
resolution, while the effect disappears under resolution indifference, corre-
sponding to standard additive-separable utilities. The sensitivity of forward
rates to changes in the rate of information is shown to be increasing with
maturity for "very short" maturities, and decreasing with maturity for maturi-
ties that are near the time of complete resolution of uncertainty. Moreover, the
pricing framework of the paper is shown to be of a type that is analytically
tractable for derivative asset pricing, and it can therefore be used to investigate
the dependence on the rate of information of prices of options and other
derivative securities. A number of authors have considered similar models,
involving imperfect information, but time and state additive preferences:
Dothan and Feldman (1986), Detemple (1986, 1987), Gennotte (1986), Feld-
man (1989), Apelfeld and Conze (1990), Karatzas and Xue (1991), and Kuwana
(1993). In these models the rate of information has no price impact.

The remainder of the paper is organized in four sections. Section 2 de-
scribes the structure of the endowment, state, and signal processes, as well as
the information observed by the agent. The dynamics of the three processes are
recast in terms of the conditional mean (or "filter") and the conditional
variance, using standard filtering theory. In Section 3 we introduce the agent's
utility function and discuss its properties. We compute the utility in closed
form for the endowment process and information structure of Section 2. The
state prices and term structure of interest rates are computed explicitly in
Section 4. The dependence of the term structure on the timing of the resolution
of uncertainty is discussed in Section 5. An appendix contains the proofs not
presented in the main paper.

2 Consumption and information structure

We begin with a filtered probability space (/3,J^, F, P) over a finite time-
horizon, [0, T], that supports' a three-dimensional Brownian motion B.
There is also a subfiltration of F = {^,:t > 0}, denoted I = {j^,:l > 0}, that is

' In the sense that F contains the augmented filtration generated by B. The process of filtration
augmentation is described, for example, by Karatzas and Shreve (1988).
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Stochastically independent of the Brownian motion B. The filtration I should
be thought of as available information that is irrelevant to consumption. On
the other hand, B reveals information that is all relevant to consumption, but is
not directly observable. The reason for introducing I at this point is that it will
later serve as a source of "noise" with which the agent's signal can be con-
taminated, thus altering the rate at which information is revealed over time.

There is a single agent in the economy who consumes an endowment e,
adapted to F, that satisfies^

de
—̂  = (â  + b^x,)dt + v'JB,, 0<t<T.

^t

Here a^ and b^ are (real) constants, v̂  is a given (column) vector^ in IR̂ , and x is
a state variable process not observed by the agent. The initial value e^ is
assumed to be a given constant. The unobservable state process x evolves
according to

dx, = (a^ + b^x,)dt + v'^dB,, 0 < t < T,

where a^,b^eR, v^eU^, and the initial value XQ is a constant. We assume that
b^ < 0, so that the state process exhibits mean reversion. In addition to the
endowment process e, the agent observes a signal process s that is governed by
the equation

ds, = (a^ + b,x,)dt + v'^dB,, 0<t<T,

v/here a^,b^eU, v^eU^, and SQ = XQ.
Let F""'' = {J^f'':O < f < T} be the filtration generated by the endowment

process e and the signal process s. The total information observed by the agent
is given by the filtration F" = {J^°:0 <t<T}, where J^° = Ĵ f-̂  v J,. That is,
the agent observes e, s, as well as the "irrelevant" information stream I.

To analyze the agent's state-estimation problem, we need an additional
assumption and some notation. We define the matrix v = [v ,̂ v̂ , vj , and we
assume throughout that v'v is positive definite. We also define the matrix

which is necessarily also positive definite. Finally, we introduce the notation

and

f - m f ] ^ r i 0<t<T,
to denote the conditional mean and variance of the state process x,
respectively.

^ Standard theory guarantees the existence and uniqueness of strong solutions to all of the
stochastic differential equations of this section (see, for example, Karatzas and Shreve (1988)).
' For any matrix z, z' denotes the transpose of z.
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As is well known from filtering theory (see Lipster and Shiryayev (1978)
and the Appendix), the conditional distribution of the state process x up to any
time t, given the agent's information J^°, is Gaussian, and is therefore
completely determined by the conditional mean and variance of x:

Proposition 1. (a) The conditional variance y is a deterministic function of time
that is given explicitly in the Appendix, (b) There exists a process W such that
{W, F"''^) is a standard Brownian motion in IR̂ , and the following dynamics hold
forte[0,Ty.

dm, — {a^ + bjn,)dt + [fc j , + v̂ v̂ , bj, +

'deje,^
ds,

(c) The filtration generated by W is F̂ '̂

This result essentially reduces the dynamics of the problem to one of complete
information, and has been utilized by Dothan and Feldman (1986) and
related papers in order to apply standard asset pricing methodology in
settings of incomplete information. In our setting, however, the signal
process will continue to play an active role, since it will directly affect the
agent's utility.

The setup of this section was deliberately kept simple for purposes of
exposition. Similar results are true in greater generality. The coefficients of
the stochastic differential equations of e, x, and s, can, subject to restrictions
in Section 12.3 of Lipster and Shiryayev (1978), depend on time as well as
the history of the observed processes e and s. In the case in which the
coefficients are deterministic functions of time only, the joint process
{(x,,log(e,),s,):te[O, T]} is Gaussian, and the conditional variance, y, is
a deterministic function of time. The initial conditions of the processes can be
made stochastic. Increasing the dimensionality of the processes, or introduc-
ing an infinite horizon, presents no complications.

3 The agent's utility process

As discussed in the Introduction, the agent derives utility both from consump-
tion and from the information filtration. That is, the agent cares not only about
the distribution of the sample path for consumption, but also about the
manner in which the conditional distribution of the consumption path evolves
over time. For example, conditions given below imply preferences for early
resolution of information, or for late resolution of information, just two of
many possibilities. A special case is additive utility, under which an agent has
no preferences over the information structure.

Given any sub-filtration G = {^,:t6[0, T]} of F, and any measurable
consumption process c= {c,:t6[0, T]} adapted to G, the agent's utility
process, F(c, G), is defined (under technical conditions) as the unique solution
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of the backward integral equation:

rr
V,(c, G) = £ j /(c„, F„(c, G))du 0<t<T, (1)

where /:[R x IR-»[R is the primitive function determining preferences. The
agent's utility at time zero is defined as U(c, G) = VQ(C, G) , while F,(c, G)
should be thought of as the time-t utility of the remaining consumption and
filtration, conditional on the information available at time t. The existence of
a unique integrable solution to equation (1), under appropriate assumptions
on / , is discussed by Duffie and Epstein (1992a), Duffie and Lions (1992), and
Antonelli (1993). Here we will assume a specific parametric form of / and
obtain an expression for the utility process V{e,F'') in closed form. For
simplicity, we write V instead of V(e, F°).

Duffie and Epstein (1992a) first defined the utility process of a consump-
tion plan as the unique solution to equation (1), for a given fixed filtration G,
and called it stochastic differential utility. They motivated this definition as
a limiting case ofthe discrete-time recursive utility of Epstein and Zin (1989),
and they showed some basic properties ofthe utility. Skiadas (1995) extended
and axiomatized stochastic differential utility to spaces of consumption
processes and filtrations, and defined preferences for the timing of resolution of
uncertainty in this context. The result most relevant here is the monotonicity
of the utility process in the filtration argument, that we now briefly review.

An information stream (filtration) is "smaller" than another information
stream, if at any given moment in time the former reveals no more information
than the latter. This definition does not rule out the possibility of identical final
information in both information streams, in which case the ranking ofthe two
streams is simply in terms of the timing of the resolution of uncertainty.
Formally, given filtrations G = {^,:t6[0, T]} and H = {je,:te[O,r]}, we
define G < H to denote that ^, s J^,, for all t in [0, T]. The utility U is
increasing in information if for any filtrations G and H, and any consumption
plan c (measurable with respect to G and H), G < H implies U{c, G) < U(c, H).
The utility U is decreasing in information if — 1/ is increasing in information.
Clearly, an agent whose preferences are described by a utility increasing
(decreasing) in information has preferences for early (late) resolution of
uncertainty. It is shown in Skiadas (1995) that if/(c, •) is convex (concave) for
any value of c, then U is increasing (decreasing) in information. In the special
case where /(c, •) is linear for every c, U reduces to the standard form of a time
and state additive utility, and U does not depend at all on the filtration
argument. In the context of this paper we will see in Section 5 that the observed
filtration can be made smaller or larger essentially by varying the parameter v̂ .
The explicit formula for V will then make clear the dependence ofthe utility on
information.

Another nice property of the agent's utility is that, although in general it
depends on the underlying filtration, it does not depend on the "irrelevant"
filtration I. The agent's utility depends only on information that reveals
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something about the distribution of future consumption. To see the result
formally, notice that if V is the unique solution to (1) with c = e and G = F'''^
then it is also a solution to (1) with c = e and G = F'', since I is jointly
stochastically independent of (e, s) and the integral in the conditional expecta-
tion. Assuming that (1) always has a unique solution, it follows that
V = ViF") =¥{¥"•').

The particular parametric form of / we adopt in this model is a special case
of that considered by Duffie and Epstein (1992b):

for some constants a and J? satisfying jS > 0 and 0 # a < 1. Notice that as a -> 0,
/(c, v) -> /°(c, v) = j3(log(c) — v). For a = 0, we therefore define / = f , and the
resulting utility process takes the familiar additive form:

The utility process V can be computed in closed form, after characterizing
it as a solution to a partial differential equation:

Proposition 2. The process V = V{e, F°) is given by

y,=- (exp[a(g, loge, + h,m, + /c,)] - 1),
a

where q, h, and k are deterministic processes, given by

r - 0

T

/c,= j e - " '

where

( v'v

The proof in the Appendix also shows that F as a function of e is monotoni-
cally increasing, and F as a function of m is increasing if fe^ > 0, and decreasing
if bg < 0. In Section 5 we show that, within the class of filtrations that can be
observed by the agent of our model, U is increasing in information for negative
a, and decreasing in information for positive a. For a = 0, the utility does not
depend on the filtration argument. Finally, notice that the expression for the
utility confirms that V does not depend on the extraneous information I.
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4 Equilibrium security prices

Equilibrium prices in our setting can be described in terms of a state-price
process n, a strictly positive Ito process with the property that the price process
of any security with cumulative dividend process D (adapted and of integrable
variation) is given by

A complete description of the equilibrium notion, and the relationship be-
tween n and the utility gradient can be found in Duffie and Skiadas (1994).
Alternatively, the Markovian approach of Duffie and Epstein (1992a, b) can be
employed. The fact that the agent in our setting receives incomplete informa-
tion does not present any problem, since we have already shown how to reduce
the agent's problem to an equivalent one with complete information. For our
purposes, we only need the state-pricing formula:

where /^ and /„ denote the two partial derivatives of / .
An application of Ito's lemma implies the following characterization of 7r:

Proposition 3. The state-price process n satisfies

^=-r,dt + a^{t)dW,, t€ [O, r | ,

where

and

a^it) = (aq, -

The process r is the short rate process, defined as the dividend rate of a security
whose equilibrium price is always equal to one.

The formula for r shows that the short rate contains all the information
relevant to estimating the state variable, that is, m, is determined uniquely
given r,. Also, the instantaneous variance of r is proportional to the instan-
taneous variance of m,. (Analogous results were derived in related papers cited
in the Introduction.)

Since r can be expressed as an Ornstein-Uhlenbeck (O-U) process, it is
Gaussian, and the same is true under the equivalent martingale measure.*

* The equivalent martingale measure, Q, is defined by its Radon-Nikodym derivative,
dQ/dP = exp{-{l/2)ll(T^{ufdu + ll(T^{u)dW,). By Girsanov's theorem, the process W,=
W, — JJi oj^u]du is standard Brownian motion under g. It is then clear that the SDE for r is of the
O-U type when expressed in terms of W if and only if the same is true of the SDE for r when
expressed in terms of W.
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Asset pricing in this setting is tractable because of the Gaussian property of
r under the equivalent martingale measure, and because r does not depend on
the endowment process. Vasicek (1977), Jamshidian (1989), El Karoui and
Rochet (1989), and Hull and White (1990) have examined bond and option
pricing when the short-rate process is O-U under the equivalent martingale
measure.

In order to examine the role of the filtration on the term structure of
interest rates, we now give explicit expressions for discount bond prices.
According to the state-pricing formula, the price process of a discount bond
that matures at time t is given by P,(T) = £[7cJJ*'°]/7r,,t < T . A calculation
provided in the Appendix, using only simple properties of the normal distribu-
tion, shows the following result:

Proposition 4. Let K{t) = - ( 1 — exp(bj))/b^ and

m=Mx - Me - i^K+v>.(fc.

Then

\ogP,{T)=-rit)K{x-t)-

+ \blK\x - t)y, - aPb,} K{x - u)y{u)h{u)du.

5 The effect of a change in the filtration

Inspection of the formula for the state-price process shows that a shift in F°
will, in general, change state prices, since F is a function of the observed
filtration. In this section we show how a change in the filtration observed by
the agent can be accomplished within our parametric setup, essentially by
varying the variance of the signal. The pricing formulas of the last section can
then be interpreted in terms of the timing and amount of the observed
information.

For the purposes of this section, we assume that the "irrelevant" informa-
tion I is generated by a three-dimensional standard Brownian motion Z, that
is necessarily independent of B. Let AE R̂  be orthogonal to both v̂  and v̂ , and
define the "contaminated" signal s = s + XZ. (The reader may choose to
consider only the special case in which the third component of v̂  and v̂ ,
and the first two components of X are all zero.) So far we have assumed that
the agent observes the filtration I, but finds it irrelevant to consumption, and
hence I does not affect prices in equilibrium. Consider now an economy that is
identical to the one described so far, except that the agent does not observe
I and s. Instead, the agent observes the "contaminated" signal s. We refer to
this economy as the high-noise economy. The total information observed by
the agent of the high-noise economy is represented by the filtration
pe,s _ ijj-e.̂ if > 0], generated by the endowment process e and the signal s.
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Clearly,

That is, the agent of the high-noise economy receives coarser, or less timely,
information. The inclusion relationship is strict, except for the special case
/I = 0. In fact, the set of high-noise economies is ordered in this way by X.

Solving for the prices in the high-noise economy amounts to simply
adjusting the parameter v, in the original economy to v̂  + X. This is because
(e,x,s) and (e,x,s + XB) are Gaussian with the same variance-covariance
matrix, and therefore are identically distributed. Formally, we can treat
a = VjVj as a parameter representing the timing and quality of the information
available to the agent. The parameter a can be varied independently of all
other parameters in the model, without changing the covariance terms v̂ v̂  and
v'^v^, by varying v̂  along a direction orthogonal to v̂  and v .̂

Given the exphcit utility formula of Proposition 2, it is not too hard to
confirm that V is decreasing (increasing) in a for a < 0 (a > 0). For a = 0, F does
not depend on a. All this is consistent with the more general discussion of
Section 3, since the second derivative of/ with respect to the utility argument
is given by f^^c, v)= - aP/(l + av). It follows from the proof of Proposition 2
that 1 -f a F, is always positive, and therefore / is convex in utility for a < 0, and
concave for a > 0.

The dependence of discount-bond prices and instantaneous variances* on
(T is summarized in the following result. In part (c) we refer to an infinite-
horizon economy, where T = co. Although we have not presented the details,
the above framework extends readily to the infinite-horizon case (see Duffie
and Epstein (1992b) and the proof in the Appendix).

Proposition 5. (a) The time-zero discount bond prices, {PO(T):T€ [0, T] }, are: (i)
nondecreasing in a,ifa< 0; (ii) nonincreasing in a,if a> 0; (iii) not dependent on
G,if a = 0.
(b) Let V stand for the instantaneous variance of any of m,r, or {P,(T):t<T},
T < r. Then (i) v, is nonincreasing in a if either t, or max{|v!^Vg|, |v^vj, |v^vj} is
sufficiently small; and (ii) in the infinite horizon case, lim,^^!;, exists and is
nonincreasing in a.
(c) In the infinite-horizon case, the asymptotic yield at t is well defined by

t-oo T — t

and is increasing in oc if b^v'^v^ > 0.

The proof in the Appendix also discusses weak conditions under which the
terms "nonincreasing" and "nondecreasing" in Proposition 5 can be replaced
by "decreasing" and "increasing," respectively.

If y is an Ito process with dY, = Hy(t)dt + ay(t)dW,, the instantaneous variance of Y is the process
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Finally, we consider the dependence of forward rates on a. The time-zero
(instantaneous) forward rate for maturity t is defined by

L
Proposition6. Suppose that (v'^v^)(v'^v^)¥=(v'^v^)(v'^v^) or that b^^v^^by^v^.
Then the following strict monotonicity relationships hold:
(a) The time-zero forward rates are decreasing (respectively, increasing) in a if
a < 0 (respectively, a. > 0).
(b) The time-zero forward rates become decreasingly sensitive to changes in a as
their maturities approach the terminal date T. That is.

for all t sufficiently close to T.
(c) In the infinite-horizon case, the sensitivity of the time-zero forward rate for
maturity t to changes in a increases with t, if (i) t is sufficiently small, or (ii)
max{|v!̂ Vg|, \v'^vj, Iv^vJ} is sufficiently small. That is, either (i) or (ii) imply that

>0.

Appendix: Proofs

Proof of Proposition 1

(a) The conditional variance expression derived below is more general than
needed in the paper. Allow XQ,SQ, and e^ to be random variables with X-Q,

conditional on SQ and e^, to be Gaussian with variance yg- Then it is shown
below that the conditional variance at time t is given by

yo-y

1+e-

where

and
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u — \/ K-i 4KQK2.

By Theorem 12.7 in Lipster and Shiryayev (1978), the conditional variance
y satisfies the ordinary differential equation

y, = 2by,y. + v'v^ — {b„y, + v'v,, by, + v'v,"] Z ' 1
x i t X X V . e n x e' s i t x s J \ J, .M i y ' ,

= Kg + Kjy, + KJV,^.

The assumption that v'v is positive definite ensures that KQ > 0 and KJ < 0,
which imply that the roots are real and that y~ < 0 < y"*". The solution to the
differential equation is well-known, but is derived below for completeness.
Factoring the polynomial and rearranging:

1=— 'h-. -=--A\c

The second equality it obtained by using a partial fraction expansion. Integra-
ting and rearranging gives the expression for y. Note that ^ > 0 implies that

When yQ = 0, the formula for y, simplifies to

1 _ „ - ' ' '

(b) By Theorem 12.7 in Lipster and Shiryayev (1978), W is the innovation
process given by

(c) This result follows from Lemma 11.3 in Lipster and Shiryayev (1978). •

Proof of Proposition 2

An application of Ito's lemma to the expression for V gives the following
partial differential equation (PDE) for V, = J(t, m,, e,):

0 = J, + J Jfix + bjn) + J J^a^ + bjri)e

where.
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A trial solution for J is

log(l+aJ)
—5^^ = q, log e + h,m + k,.

Note that as a -»0, the left hand side converges to J. The terminal condition
J(T, m, e) = 0 implies that q-j-= hj-= kj. = 0. Substituting the trial solution into
the PDE gives

0 = log(e)[4, + p(l - q,n + m(h,b, + q,b, + h,- ph,) + k,- fik, + ajh,

+ K - ivlvjq, + {a.ir}[E -'>i,hf + v'^v.qf + 2{b,y, + v'^v,)q,h,l

The candidate solution solves the PDE if and only if

= k,-^k, + a,h, + (a, -^vX)qt

j^H^ ' 'ri,hf + v'^v^qf + 2{bj, + v'^v,)q,h,l

In general, if g is a continuous function, there is a unique function / that
satisfies the differential equation/, — Xf, + 3, = 0, with f-j- = 0. The solution is

The formulas for q and h follow directly by applying this result. An application
to k gives

+ ^K^ ~ 'nuK + v.v^ql + 2{bj, + vXKK'

Differentiating with respect to, say, v̂ v̂  gives a formula that is difficult to sign.
To derive a formula which makes the dependence of fe on y clearer, first
rearrange the differential equation foiy asr]',Z''^r],= —y, + 2b^y, + v!̂ v̂ , and
substitute into the formula for k
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The second integral can be written as

yJu = - hfy,

where the first equality is obtained using integration by parts and the second
by substituting the differential equation for h. Substituting into the formula for
k and simplifying gives the result.

The uniqueness of the above solution to the partial differential equation
satisfied by J can be addressed using the techniques of Duffie and Lions
(1992). •

Proof of Proposition 3

Applying Ito's lemma to the formula for 7r,, we obtain

fjt

^{dV-D Vdt),

J
where D denotes the infinitesimal drift operator. Substituting DV = —f,

dedV = dedJ = JJcdm + JJidef

and simplifying gives the formula for the state-price process. The short rate is
defined as the dividend rate on a security whose price is identically equal to
one. It follows that n, + ^'^r^n^ds must be a martingale, and therefore,
r,= - Dn,/n,. •

Proof of Proposition 4

The stochastic differential equation for the short rate can be written as

dr, = b,r, + ^, + y,

where rj is defined in the proof of Proposition 2, and the process W, is standard
Brownian motion under the equivalent martingale measure Q (see footnote 4).
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The equation has the explicit solution

The integral of the interest rate is given by

j rju = K(T - t)r, i

Using standard results on normal random variables, the price of a discount
bond can be expressed as

The variance term can be written as

where the second equahty is obtained by substituting for the differential
equation satisfied by y. The term involving y can be simplified using integra-
tion by parts:

]KHT - u)yju = - y,K\x - t) + 2]K(x - u)ll + bM^ - M)]?^^"-

Substituting into the variance expression yields

Varf[]rju\ = blK\x - t)y, + b^] K(x - u)(K(x - M)VX - 2yJdM.

Substituting into the discount bond price expression gives the result. •

Proof of Proposition 5

(a) The comparative statics for discount bond prices follow directly from the
explicit formulas, the fact that b^h, > 0 for any t < T, and the property that y, is
nondecreasing in a for any t > 0. The latter can be shown by an application of
Jensen's inequality, or by the proof in part (b) below.
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Remark: If (v>J(v;vJ # (v;vJ(v>J, or fo^v^v, # i^v>,, then time-zero discount
prices are increasing (decreasing) in a for a < 0 (a > 0). This follows from the
proof in part (b), which shows that under either condition, y, is increasing in
a for all t > 0, except possibly at one point in time.

(b) Since (drf = bl(dm,)\ and (dP,(i)f = V,(T)\dr,f, it suffices to consider
the case in which v, = (dm,)^ = r][E~\,, where ri is defined in the proof of
Proposition 2.
(i) From the proof of Proposition 1, the conditional variance y satisfies
the ordinary differential equation y, = 2b^y, + v'^v^-r]',Z~'^r},, with 7o = 0-
Differentiating both sides with respect to a implies / , = X,f, + n,, with /Q = 0,
where

da'

Since /z, > 0, for all f > 0, it follows that / , > 0, for all t > 0, and / , > 0 at least
for small t.

Rearranging the differential equation for y and differentiating, we have

Since b^ < 0, the above derivative must be nonpositive for small t > 0.
If ^x^e — ^'x^s — ĉ̂ s = 0, the instantaneous variance of m, is given by:

v'v (5^ — Ab^)(\ —e~^'V

where.

Some tedious computations show that the partial derivative of (dm,)^ with
respect to S is strictly positive for t>0. By continuity, the same holds for
sufficiently small | v^vj, |v^vj, and |v^vj. Since S is decreasing in a, the result is
shown.

Remark: If (v>J(v;vJ # (v>J(v>J, or b^v^^ # b/^v^, the variance of m, is
decreasing in a for small t > 0. This follows because under either condition,
/ , > 0 and / , > 0, at least for small f > 0. If both conditions are violated, it is
easy to contruct an example in which y, does not depend on a, for any t, even
though v'v is positive definite.
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(ii) The stationary variance, y"" satisfies Ib^y^ -\-v'^v^ — {r}*)'2^~^r]^ =0,
where

Rearranging and differentiating the limiting instantaneous variance of m, with
respect to a, we obtain

l((,*rr-',*) = 2t.^^

The assumption that b^<0 ensures that the right hand side is nonpositive.

Remark: Under the assumption that

the limiting variance of m, is decreasing in a. Under this assumption, ^,
converges to some positive constant as t-> oo. Furthermore, the convergence
of 7, to 7 "̂  implies that X, converges to some finite (negative) constant. If follows
that dy'^/da > 0. Note that the above condition is both necessary and sufficient
for 8y+/8a >0.
(c) As in Duffie and Epstein (1992), the infinite horizon utihty is defined as the
limit as T ^ o o of the finite horizon utihty. It is easy to show that q(t)-fl,
h(t) ^ bM - bj, and ^ ^ *̂> for all t, where

i* = b,a^ - b^a, - Pb, + v;v,fo,(l - a) + v'^v^a-^ +

The asymptotic yield is given by

—a 1 v'v + fiv'^ — v'v I?— I

Noting again that b^ < 0, a sufficient (but not necessary) condition for the yield
to be increasing in a is b^V^v^ > 0. •

Proof of Proposition 6

(a) From the discount bond price formula of Proposition 4, we obtain:

Given our assumption, the proof of part (b) of Proposition 5 shows that y, is
(strictly) increasing in a for all t > 0, and part (a) follows.
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(b) Differentiating the above expression with respect to the maturity date, we
obtain

Noting that b^h(t)iO as tf T, and recalling that b^ < 0, the result follows.

(c) Given an infinite horizon, we substitute h(t) = bJ(P - bj in the last
expression, and we integrate by parts, using the fact that dy(O)/d(T = 0, to obtain

^, P-b,l duda
The proof of part (b) of Proposition 5 shows that

for all sufficiently small t. This proves the result under assumption (i). To show
the result under assumption (ii) one could confirm the above inequality for all
t by differentiating the exphcit formula for 7,. This avenue is exceedingly
tedious, however. Instead, we define /, = dyjda, which satisfies /, = A,/, + /«,,
with /o = 0. The function / is given explicitly by / , = fg exp( \[XJs)nJu, and
therefore

0

Integration by parts implies that

0 "" \^u/

When the covariances are sufficiently small, i, < 0 for t > 0, and a straightfor-
ward calculation shows that

everywhere on (0, co). Combining these facts with yUg > 0 implies that / , > 0 for
all £ > 0, proving the desired result.
Remark: If (v>J(v>J = (v;vJ(v>,) and b/^v^ = b/^v^, then

^ =0, f>0. •
oa I

_IT — I
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