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OPTIMALITY AND STATE PRICING IN CONSTRAINED FINANCIAL
MARKETS WITH RECURSIVE UTILITY UNDER CONTINUOUS
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We study marginal pricing and optimality conditions for an agent maximizing gen-
eralized recursive utility in a financial market with information generated by Brownian
motion and marked point processes. The setting allows for convex trading constraints,
non-tradable income, and non-linear wealth dynamics. We show that the FBSDE sys-
tem of the general optimality conditions reduces to a single BSDE under translation or
scale invariance assumptions, and we identify tractable applications based on quadratic
BSDEs. An appendix relates the main optimality conditions to duality.
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1. INTRODUCTION

In this paper, we characterize marginal pricing and optimal consumption/portfolio choice
for an investor who trades in a financial market in which information is generated by
Brownian motion and marked point processes, and therefore prices can evolve continu-
ously but can also have totally inaccessible jumps. The investor maximizes recursive utility
given a possibly non-tradable income stream, and faces convex trading constraints such
as missing markets, short-sale constraints, margin requirements, and position limits. The
investor’s wealth dynamics allow for a non-linear drift term that can capture, for example,
market impact, or differential borrowing and lending rates. The paper is essentially an
extension of our earlier work on scale/translation invariant formulations (Schroder and
Skiadas 2003, 2005) to include jumps, non-linear wealth dynamics, as well as a unified
and simplified characterization of state price densities. In special cases, we investigate the
applicability of quadratic BSDE methodology in the presence of jumps. For example,
quadratic BSDEs and associated ODE-based solutions turn out to be applicable for a
class of translation-invariant formulations with a proposed type of non-additive recur-
sive utility that combines the advantages of exponential additive utility with quadratic
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representations of risk aversion. On the other hand, for scale-invariant (homothetic) for-
mulations, the quadratic BSDE methodology is of more limited applicability once jumps
are introduced.

Our use of recursive utility is mainly motivated by its well-known decision-theoretic
advantages over its additive special case (see, for example, Epstein 1992). As explained
in Skiadas (2008), any two agents with expected discounted utility that agree on their
preferences over deterministic consumption plans must be equally risk averse. Recursive
utility allows a partial separation of risk aversion from preferences over deterministic
plans. Moreover, we will see that certain non-additive recursive utility specifications
present tractability advantages in the presence of price jumps. The continuous-time
limit of stochastic recursive utility was introduced by Duffie and Epstein (1992), who
termed their utility “stochastic differential utility” (SDU). In an example, they computed
the continuous-time limit of Epstein and Zin (1989) utility,1 which provides a single-
parameter extension of expected discounted power utility, and preserves homotheticity.
While the power coefficient of the latter is determined by choice over deterministic plans,
the new parameter of Epstein–Zin utility adjusts risk aversion without affecting prefer-
ences over deterministic plans. In a Brownian setting, Lazrak and Quenez (2003) proposed
generalized SDU (GSDU) as a way of unifying SDU with various multiple-prior formu-
lations appearing in the literature. Skiadas (2008) argues that GSDU includes interesting
models of source-dependent risk aversion that are outside the SDU class. In this paper,
we introduce a natural extension of GSDU to our filtration structure, and we refer to it
simply as “recursive utility.”

This paper contributes to a large literature of dynamic portfolio theory that is rooted
in the seminal papers of Merton (1969, 1971), Karatzas et al. (1987), and Cox and Huang
(1989). Immediately related to this work are the papers by2 El Karoui et al. (2001) and
Schroder and Skiadas (1999, 2003, 2005), who assumed Brownian information and re-
cursive utility. The first two of these papers provided optimality conditions in complete
markets as a FBSDE system. Schroder and Skiadas (1999) assumed linear wealth dy-
namics and SDU, and emphasized the solution and existence theory for Epstein–Zin
utility. El Karoui et al. (2001) on the other hand developed optimality conditions with
GSDU and wealth dynamics that can be non-linear, and they proved existence based on
growth-Lipschitz conditions (that exclude Epstein–Zin utility). Assuming linear wealth
dynamics, Schroder and Skiadas (2003, 2005) emphasized the role of scale and translation
invariance, respectively, under recursive utility and convex trading constraints in incom-
plete markets, providing necessary and sufficient conditions for optimality, but leaving
aside issues of existence. The scale-invariant formulation is based on homothetic utility
(which includes the Epstein–Zin case), and tradable income. The translation-invariant
formulation is based on quasi-linear utility (which includes the recursive extension of ad-
ditive discounted exponential utility), and allows non-tradable income. In both cases, the
FBSDE system of the optimality conditions uncouples, and reduces to a single BSDE.

1 Epstein–Zin utility is a homothetic parametric example of Kreps and Porteus (1978) utility that is in-
creasingly replacing expected discounted power utility as a benchmark dynamic utility form in economic
theory. Based on a heuristic argument, Duffie and Epstein (1992) proposed a continuous-time version of
Epstein–Zin utility as a solution to a certain BSDE, which violates the Lipschitz-growth assumptions re-
quired by the BSDE theory of Pardoux and Peng (1990) and Duffie and Epstein (1992). For the Brownian
case, existence, uniqueness, and basic properties of the BSDE arising with continuous-time Epstein–Zin
utility was shown by Schroder and Skiadas (1999). BSDE theory has been extended in other directions by
Lepeltier and Martin (1997, 1998, 2002) and many others (see also El Karoui and Mazliak 1997).

2 See also Tang and Li (1994) for a stochastic maximum principle in a jump-diffusion setting.
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As noted earlier, the above papers are extended here by introducing dynamics that are
driven by marked point processes, as well as Brownian motion, thus accommodating price
jumps that are increasingly becoming central components in the modeling of stochas-
tic volatility and risk premia (see, for example, the book by Cont and Tankov [2004]).
Moreover, the paper provides a unified framework, extending El Karoui et al. (2001)
by the inclusion of trading constraints, and our earlier papers by allowing wealth non-
linearities,3 as in Cuoco and Cvitanić (1998), and more general trading constraints. The
paper’s main results are a set of sufficient conditions for state pricing and optimality in
the general formulation, followed by the simplification of these conditions and the proof
of their necessity (under regularity) in the translation/scale invariant cases, which are the
paper’s main focus. Necessity in the general case can be dealt with easily if one allows
unrestricted lump-sum consumption. As the scale/translation invariant cases illustrate,
however, the form of allowable plans, on which the necessity argument is sensitive, is
application-dependent. For this reason, the discussion of necessity in the general case is
left out of the paper. Finally, we give a set of tractable specifications based on quadratic
BSDEs and recursive utilities that are necessarily non-additive in the presence of jumps.

Questions of BSDE existence and computation will not be addressed. The definition of
recursive utility with marked point processes, and the associated optimality conditions,
require BSDE forms of the type that is discussed (for the case of Poisson measures) by
Tang and Li (1994), Barles et al. (1997), Pardoux (1997), Pardoux et al. (1997), Becherer
(2006), Royer (2006), and others, albeit, under Lipschitz restrictions on the BSDE driver
that rule out interesting representations of risk aversion. Analogous comments apply with
respect to numerical methods. The emphasis of this paper’s analysis is on the formulation
of broad conditions that uncouple the dependence of wealth, utility, and shadow price of
wealth in the forward–backward system of the optimality conditions, resulting in a single
BSDE, or corresponding PDE in a Markovian setting (see Ma et al. 1994). While this
uncoupling plays a significant role in simplifying the numerical solution of the optimality
conditions, we do not address computational issues, except for pointing out classes of
incomplete-market models for which the BSDEs reduce to ODE systems of the Riccati
type. The numerical solution of BSDEs has received considerable attention recently, with
contributions by Douglas et al. (1996), Chevance (1997), Bally and Pages (2002), Ma et al.
(2002), Zhang (2004), Bouchard and Touzi (2004), Bouchard and Elie (2005), Gobet et al.
(2005), Lemor et al. (2006), and others. We hope the type of applications discussed in this
paper helps motivate work on the theory and computations of BSDEs and FBSDEs in
interesting directions.

Several authors have considered unconstrained optimal portfolio choice with jump-
diffusion prices, additive utility, and linear wealth dynamics. Merton (1971) solved a
portfolio problem with power utility and a single stock with Poisson jump risk and i.i.d.
instantaneous returns. The Merton solution was extended by Framstad et al. (1998) to
Lévy-type price dynamics. Aase (1984, 1986) considered a general stochastic investment
opportunity set and logarithmic utility (implying myopic behavior). Solutions with a
stochastic investment opportunity set that maximize expected power utility of terminal
wealth have been obtained by Wu (2003), who assumed an Ornstein–Uhlenbeck instan-
taneous expected stock return, and Liu and Longstaff (2003), who assumed a jump-
diffusion process for the return diffusion coefficient. The monograph by Øksendal and

3 El Karoui et al. (2001) also allow the budget equation to be non-linear with respect to consumption.
While this type of generality does not present difficulties, it detracts from our modeling focus and we
therefore forgo it.
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Sulem (2005) reviews the application of the Hamilton–Jacobi–Bellman (HJB) approach
in jump-diffusion contexts. Existence of an optimal policy for an agent with time-additive
utility in complete markets and jump-diffusion returns was studied in Jeanblanc-Picqué
and Pontier (1990) and Bardhan and Chao (1995).

A number of papers, starting with He and Pearson (1991), Karatzas et al. (1991), and
Cvitanić, and Karatzas (1992), use a duality approach to optimal consumption/portfolio
choice and pricing under convex trading constraints in Brownian settings with addi-
tive utility. Notable examples with liquidity constraints include He and Pagés (1993), El
Karoui and Jeanblanc-Picqué (1998), and Detemple and Serrat (2003). While duality is
not our main focus, we relate our optimality conditions to duality in an Appendix. An-
other main approach to constrained dynamic portfolio theory relies on the HJB equation.
Notable examples with Brownian information, additive utility, and i.i.d. instantaneous
returns include Zariphopoulou (1994) and Vila and Zariphopoulou (1997), who deal
with borrowing constraints, and Duffie et al. (1997), who study non-tradable income.
Cuoco (1997) shows existence of an optimum with non-tradable income, convex trading
constraints, and additive utility in a general Brownian setting. Kramkov and Schacher-
meyer (1999, 2003) study duality and existence issues with non-tradable income assuming
expected utility for terminal wealth, and more general semi-martingale price processes.

More recently, Detemple and Rindisbacher (2005) provided a solution to a constrained
portfolio problem with Brownian information, a stochastic-volatility Vasicek short-rate
process, and power expected utility for terminal wealth. Their formulation is within the
scope of the models examined in Schroder and Skiadas (2003), which is in turn within the
scale-invariant formulation of this paper.4 In particular, the optimal trading strategy ex-
pression of Example 7.3 of Schroder and Skiadas (2003) applies,5 which used in conjunc-
tion with Proposition 31 of Schroder and Skiadas (2003) reduces the problem to a single
BSDE, the computation of which we have not addressed. The Detemple–Rindisbacher
analysis relies on backward equations involving Malliavin derivatives, including an ex-
plicitly solved parametric case, extending earlier contributions by Ocone and Karatzas
(1991), and Detemple et al. (2003).

The remainder of this paper is organized in seven sections and two appendices. Section
two sets up the problem primitives. Section three relates optimality to a notion of state
pricing, without yet introducing the specific recursive utility form, and gives sufficient
conditions for a given process to be a state price density. Section four begins the special-
ization of the theory to recursive utility, with the main result being sufficient optimality
conditions as a FBSDE system. The remaining sections present applications based on
translation or scale invariance, including necessity results for the state-pricing and opti-
mality conditions introduced earlier as sufficient conditions, and applications based on
quadratic BSDEs. Appendix A relates the main text’s optimality conditions to a dual

4 Detemple and Rindisbacher (2005), Section 6, suggest that our method does not uncouple the forward–
backward equations of the optimality conditions. The confusion arises because they use the condition that
value is proportional to wealth at the optimum without first normalizing the utility so that it is ordinally
equivalent and homogeneous of degree one. In Schroder and Skiadas (2003) and this paper we use such a
normalization. Alternatively, as in Merton (1971) and Schroder and Skiadas (1999), one can leave the utility
as an expected power, but then the value function must be expressed as a power of wealth. In either case, the
forward–backward equations of the optimality conditions uncouple due to the scale-invariant structure of
the problem.

5 While the trading constraints there are stated as being constant, the exact same expressions and arguments
apply if they are allowed to be stochastic. The same will true of the modeling of trading constraints in this
paper.
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characterization of the agent’s problem. Appendix B contains proofs omitted from the
main text.

2. STOCHASTIC SETTING AND NOTATION

We begin by defining the stochastic and informational setting, and by setting up some
notation. For background mathematical results we refer to Jacod and Shiryaev (2003),
which is hereafter abbreviated to JS. The stochastic setting is similar to that of Björk
et al. (1997). Vectors are always assumed to be column vectors, with a prime denoting
transposition.

Given is a probability space (�,F, P), with corresponding expectation operator E, and
a mark space (E,B(E)), where E is either Euclidean space, with B(E) denoting the Borel
σ -algebra, or a discrete space, with B(E) denoting the set of all subsets of E. Information
is revealed by:6

(i) A d-dimensional standard Brownian motion, B = (B1, . . . , Bd)′.
(ii) A sequence of random times {Tn}, such that Tn+1 > Tn a.s. and limn→∞Tn = ∞

a.s.
(iii) A sequence of E-valued random variables {Jn}.

The agent’s problem will be formulated over a finite time horizon [0, T ]. Associated
with the sequence {(Tn, Jn)} is the counting random measure p : � × B([0, T ]) ⊗ B(E) →
{1, 2, . . . }, where

p([0, t], S) =
∞∑

n=1

1{Tn ≤ t, Jn ∈ S}, t ≤ T, S ∈ B(E).

The random measure p is known as an E-marked point process, or E-valued multivariate
point process (JS, definition II.1.23).

The underlying filtration, {Ft : t ∈ [0, T ]}, relative to which all processes are assumed
to be adapted, is defined as the augmented filtration generated by (B, p), meaning that F0

is generated by the P-null events, and

Ft = F0 ∨ σ {B(s), p([0, s], S) : s ≤ t, S ∈ B(E)}, t ∈ [0, T ].

We also assume that F = FT throughout. The optional and predictable σ -algebras rela-
tive to this filtration are denoted O and P , respectively.

The compensator of p(ω, dt × dz) is assumed throughout to be of the form h(ω, t, dz) dt,
for an intensity kernel h. The corresponding compensated random measure is defined as

p̂(ω, dt × dz) = p(ω, dt × dz) − h(ω, t, dz) dt.

The intensity assumption implies that the stopping times {Tn} arrive as “surprises,” a
statement made precise in corollary II.1.19 of JS. The Brownian motion on the other hand
reveals information continuously in time, meaning that Bayesian estimates conditionally
on Brownian motion are updated continuously.

6 While our setting includes a quite general class of jump processes, for notational simplicity, we assume
that almost surely there is a finite number of jump events over finite time intervals. The extension to point
processes violating this condition (using the stochastic integral for point processes) is straightforward, as
long as the martingale representation property holds.
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We think of the Brownian motions dBi
t and the compensated point processes p̂(dt × dz)

as forming a set of (conditionally zero-mean) instantaneous linear factors. It will be
convenient to notationally unify the labeling of all factors by introducing the factor
index set

Z = {z1, . . . , zd} ∪ E.

The symbols z1, . . . , zd , which are assumed not to be members of E, label the respective
Brownian factors dB1

t , . . . , dBd
t . An element z ∈ E labels the point-process factor corre-

sponding to jumps of size z. A generic z ∈ Z can therefore label either a Brownian or
a point-process factor. The set Z is given a measurable structure by the σ -algebra B(Z)
generated by B(E) and all subsets of {z1, . . . , zd}.

Extending the interpretation of an instantaneous linear factor structure, we now wish
to define predictable instantaneous factor loadings for a local martingale. We define
the set V of volatility processes7 to consist of every Z-indexed process of the form σ:
� × [0, T ] × Z → R satisfying:

(i) σ is P ⊗ B(Z)-measurable.
(ii)

∫ T
0 (

∑d
i=1 σ (t, zi )2 + ∫

E |σ (t, z)|h(t, dz)) dt < ∞ a.s.

A process M in this context is a local martingale if and only if8 there exists some σ ∈ V
such that

dMt =
d∑

i=1

σ (t, zi ) dBi
t +

∫
E

σt(t, z) p̂(dt × dz).(2.1)

We interpret σ (t, z) as the time-t loading of dMt on factor z ∈ Z.
A key part of our analysis will be a notion of linear factor pricing. For this purpose, it

will be notationally convenient to define the kernel ν : � × [0, T ] × B(Z) → R+ by

ν(ω, t, {zi }) = 1 for i = 1, . . . , d, and ν(ω, t, S) = h(ω, t, S) for S ∈ B(E).

Therefore, for any (suitably measurable) function of the form b : � × [0, T ] × Z → R,

∫
Z

b(t, z)ν(t, dz) =
d∑

i=1

b(t, zi ) +
∫

E
b(t, z)h(t, dz),(2.2)

provided the last integral is well defined.
A cash flow is any optional process x such that E[

∫ T
0 x2

t dt + x2
T] < ∞. We interpret xt

as a time-t payment rate, and xt as a lump-sum terminal payment. The set of all cash
flows is denoted H, which we regard as a Hilbert space under the inner product

(x | y) = E

[∫ T

0
xt yt dt + xT yT

]
, x, y ∈ H.

We identify any two elements x, x̃ ∈ H such that (x − x̃ | x − x̃) = 0. A cash flow x is
strictly positive if the process 1{xt ≤ 0} is identified with the zero process in H. The set of
strictly positive cash flows is denoted H++. An element π ∈ H++ will also be interpreted

7 The set V should not be confused with the set of processes of finite variation in JS.
8 As explained in Björk et al. (1997), this claim follows from the Fundamental Representation Theorem

(JS, chapter III, 4d, theorem 4.29 and corollary 4.31).
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later on as a state price density, in which case (π | x) is interpreted as a present value9 of
the cash flow x.

The set of predictable process is denoted P (same as the predictable σ -algebra), and

P1 =
{

x ∈ P :
∫ T

0
|x(t)| dt < ∞ a.s.

}
.

The set of all (real-valued) semi-martingales is denoted S, while

Sα = {
X ∈ S : E

[
ess supt|Xt|α

]
< ∞}

, α = 1, 2.

Given any càdlàg (right-continuous with left limits) process X , we write

Xt− = lim
s↑t

Xs, Xt = Xt − Xt−, X0− = X0.

The semi-martingale X is strictly positive if Xt > 0 and Xt− > 0 a.s. for all t. The set of
strictly positive semi-martingales is denotedS++, whileS++

α = Sα ∩ S++. We recall that a
semi-martingale X is defined to be special if it can be uniquely decomposed as X = A+ X̂,

where A is of finite variation and predictable, and X̂ is a local martingale with X̂0 = 0.

Proposition 4.23 of JS shows that a semi-martingale X is special if X − X0 ∈ S1.

3. MARKET, OPTIMALITY, AND STATE PRICING

We consider an agent who is endowed with some initial wealth and income over time,
and can trade in a financial market, possibly under constraints. The formal primitives of
this set-up are introduced below, followed by sufficient conditions for state pricing and
optimality.

We assume that the agent’s preferences are dynamically consistent, and we therefore
formulate the optimization problem from the point of view of time zero (see, for example,
Skiadas [2008] for related discussion). Formally, the agent is characterized by

(i) A convex cone C ⊆ H whose elements are the consumption plans. Every element
of C is assumed to be valued in a given open interval Ic ⊆ R (typically equal
to R or R++).

(ii) A concave function U0 : C → R, representing the agent’s (time-zero) utility
function. We assume that U0 is (strictly) increasing, meaning that, for ev-
ery non-zero cash flow x taking non-negative values, c, c + x ∈ C implies
U(c + x) > U(c).

(iii) A pair (w0, e) ∈ R × C representing the agent’s endowment: an initial wealth
w0, followed by an endowed consumption plan e. For t < T, et represents an
endowment rate, while eT represents a lump-sum terminal endowment.

The financial market consists of trading in a default-free money-market account and
m risky assets. The agent’s financial wealth process will be denoted W , a càdlàg process,
with Wt representing total time-t financial wealth, not including the present value of the
future endowment. The agent’s risky-asset positions will be represented by a predictable
process φ = (φ1, . . . , φm)′ ∈ Pm. The agent’s pre-time-t market positions (that is, positions

9 The results of the following two sections extend to a setting with cumulative consumption plans, in which
case one must define (π | X) = E[

∫ T
0 πt−d Xt + [π, X]T ], where X is a special semi-martingale, with Xt − Xs

representing a cumulative payment over (s, t] ⊆ [0, T ]. In this paper, we assume we can write dXt = xtdt for
t < T .



206 M. SCHRODER AND C. SKIADAS

just prior to time-t lump-sum payments) are specified by the (1 + m)-dimensional random
vector (Wt−, φt), where φi

t and Wt− − ∑m
i=1 φi

t are the pre-time-t balances in asset i and the
money market, respectively. The time-t conditional expected instantaneous return of the
agent’s portfolio is f (t, Wt−, φt) dt. The money-market cumulative returns are predictable,
while the vector of the cumulative returns of the m assets is assumed to be a special
semi-martingale, whose local martingale part is denoted R̂. The vector (Wt−, φt) will be
constrained to lie in a convex set K ⊆ R

1+m at all times.
Given the above interpretations, we now formally define the financial market by the

following primitives:

(i) A closed convex set10 K ⊆ R
1+m.

(ii) A P ⊗ B(K)-measurable function f : � × [0, T ] × K → R such that, for every
(ω, t) ∈ � × [0, T ], f (ω, t, ·) is concave and satisfies the regularity condition

f (ω, t, w, α) ≤ f̄ w (ω, t)w + f̄ φ(ω, t)′α, (w, α) ∈ K,(3.1)

for some R+-valued f̄ w ∈ P1 and some f̄ φ ∈ Pm
1 .

(iii) An m-dimensional local martingale R̂ with predictable representation

dR̂t =
d∑

i=1

σ R(t, zi ) dBi
t +

∫
E

σ R(t, z) p̂(dt × dz), σ R ∈ Vm.

EXAMPLE 3.1 (linear budget equation). Suppose the money market’s instantaneous
return is rt dt for some R+-valued short-rate process r ∈ P1, and the risky assets’ in-
stantaneous excess returns relative to r are dRt = µR

t dt + dR̂t for some µR ∈ Pm
1 . In this

case,

f (ω, t, w, α) = r (ω, t)w + µR(ω, t)′α, (w, α) ∈ K .

EXAMPLE 3.2 (decreasing marginal returns). Marginal expected returns that decrease
with the size of the investment can be modeled by allowing µR in the last example to be
a function of α, provided µR(ω, t, α)′α is concave in α.

EXAMPLE 3.3 (different borrowing and lending rates). Extending Example 3.1, sup-
pose that the money-market rate rt applies only to positive balances, while borrowing
through the money market occurs at the rate rt + bt, for some b ∈ P1 valued in R+. In
this case,

f (ω, t, w, α) = r (ω, t)w + µR(ω, t)′α − b(ω, t)
(
1′α − w

)+
, (w, α) ∈ K .

For a related analysis see appendix B of Cvitani and Karatzas (1992).
A trading plan is any m-dimensional process φ ∈ Pm such that φ′

t f̄ φ ∈ P1 and φ′σ R ∈ V.

A wealth process is any semi-martingale W such that f̄ w W− ∈ P1 and W− ∈ S2. The last
restriction on W−

t = max{0, −Wt} can be thought of as a form of credit constraint that
rules out doubling-type strategies. A plan is a triple of a consumption plan c, a wealth

10 The analysis goes through if K is assumed to be a mapping from � × [0, T ] to closed convex subsets
of Rm. We forgo this generality for simplicity of exposition.
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process W , and a trading plan φ. The plan (c, W , φ) is feasible if it satisfies the trading
constraint

(Wt−, φt) ∈ K,

and the budget equation

Wt = w0 +
∫ t

0
( f (s, Ws−, φs) + es − cs) ds +

∫ t

0
φ′

sdR̂s, cT = WT + eT.(3.2)

As noted earlier, for t < T, ct and et represent consumption rates, while cT and eT rep-
resent terminal lump-sum consumption. The plan (c, W , φ) is optimal if it is feasible
and U(c) ≥ U(c̃) for any feasible plan (c̃, W̃, φ̃). A consumption plan c is feasible (resp.
optimal) if there exist a wealth process W and a trading plan φ such that (c, W , φ) is a
feasible (resp. optimal) plan. Clearly, a consumption plan c is optimal if and only if it is
feasible and U(c) ≥ U(c̃) for every feasible consumption plan c̃. Finally, a trading plan
is feasible (resp. optimal) if it is part of a feasible (resp. optimal) plan.

Given the feasible consumption plan c, the set of feasible incremental cash flows relative
to c is defined as

X (c) = {x ∈ H : c + x is a feasible consumption plan}.
The process π ∈ H is a state-price density at c if

(π | x) ≤ 0 for every x ∈ X (c).

Note that the state-price density property depends only on the market and reference
plan, and not on the agent’s preferences. The characterization of state-price densities is
of independent interest since they represent admissible pricing rules that are consistent
with the lack of incremental arbitrage opportunities at the reference plan.

The process π ∈ H is a utility super-gradient density of U0 at c if

U0(c + x) ≤ U0(c) + (π | x) for all x such that c + x ∈ C.(3.3)

The process π ∈ S2 is a utility gradient density of U0 at c if, for any x such that c + αx ∈ C
for some α > 0,

(π | x) = lim
α↓0

U0 (c + αx) − U0(c)
α

.

The following characterization of optimality in terms of state prices and a utility (super-)
gradient density is essentially the same as in Schroder and Skiadas (2003, 2005), and its
simple proof is therefore omitted.

PROPOSITION 3.1. Suppose (c, W , φ) is a feasible plan. If π ∈ H is both a super-gradient
density of U0 at c and a state-price density at c, then the plan (c, W , φ) is optimal. Con-
versely, if the plan (c, W , φ) is optimal and π ∈ H is a utility gradient density of U0 at c,
then π is a state-price density at c.

In the remainder of this section, we fix a reference feasible plan (c, W , φ) and a semi-
martingale π ∈ H++ with the predictable representation

dπt

πt−
= −ζ (t) dt −

d∑
i=1

η(t, zi ) dBi
t −

∫
E

η(t, z) p̂(dt × dz), ζ ∈ P1, η ∈ V.(3.4)
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Below, we formulate conditions on the coefficients (ζ , η) that are sufficient for π to be a
state-price density at c. In the following section, we will combine these conditions with the
dynamics of a utility super-gradient density, resulting in sufficient optimality conditions
as a consequence of Proposition 3.1. The necessity of the state pricing conditions that
follow will be shown in later sections (under regularity assumptions) for more special
translation/scale invariant formulations.

The process η, which can be thought of as a market-price-of-risk process, will enter
our conditions below only through the quantity

�(t) =
∫

Z
σ R(t, z)η(t, z)ν(t, dz) = − Covt−

(
dR̂t,

dπt

πt−

)
.(3.5)

The key to formulating a state pricing condition is the following duality result on the
present value of feasible incremental cash flows. (Part (b) will be of use in a later section.)

LEMMA 3.1. Suppose the plan (c + x, W + V , φ + δ) is feasible, π ∈ S++
2 , and the

process

Dt = f (t, Wt + Vt, φt + δt) − f (t, Wt, φt) − ζtVt − �′
tδt(3.6)

satisfies E[
∫ T

0 πt D+
t dt] < ∞.

(a) If πW ∈ S1, then (π | x) ≤ E[
∫ T

0 πt Dt dt].
(b) If πV ∈ S1, then (π | x) = E[

∫ T
0 πt Dt dt].

Proof . See Appendix B. �

We define and denote the super-differential of f (ω, t, ·) : K → R at (w̄, ᾱ) ∈ K by

∂ f (ω, t, w̄, ᾱ) =
{

(dw , dφ) ∈ R
1+m :

f (ω, t, w, α) ≤ f (ω, t, w̄, ᾱ)

+ dw (w − w̄) + d ′
φ(α − ᾱ), all (w, α) ∈ K

}
.

We write (ζ, �) ∈ ∂f (W−, φ) a.e. to mean that (ζ (ω, t), �(ω, t)) ∈ ∂f (ω, t,
W (ω, t−), φ(ω, t)) for almost every (ω, t) relative to dP × dt. It should be empha-
sized that, although notationally suppressed, the constraint set K is an integral part of
the definition of ∂f , as illustrated in the examples below.

PROPOSITION 3.2. Suppose that (c, W , φ) is a feasible plan, π ∈ S++
2 has the predictable

representation (3.4) for some (ζ, η) ∈ P × V, � is well-defined by (3.5), and πW ∈ S1. If

(ζ, �) ∈ ∂ f (W−, φ) a.e.,(3.7)

then π is a state-price density at c.

Proof . Suppose (c + x, W + V , φ + δ) is a feasible plan and D is defined in (3.6).
Condition (3.7) implies that D ≤ 0 a.e. Applying part (a) of the last lemma gives (π | x) ≤
0. �

EXAMPLE 3.4 (linear budget equation and no trading contraints). Consider the setting
of Example 3.1 with K = R

1+m. Then condition (3.7) is equivalent to (ζ, �) = (r, µR) a.e.

EXAMPLE 3.5 (collateral constraint). Suppose that there is a single risky asset (m = 1),
and, as in Example 3.1, f (ω, t, w, α) = r(ω, t)w + µR(ω, t)α. We consider an agent who
faces the collateral constraint:
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K = {(w, α) ∈ R
2 : w ≥ �|α|},

for some � ∈ (0, 1). Then condition (3.7) is equivalent to the a.e. validity of the following
restrictions:

δt = ζt − rt ≥ 0, εt = µR
t − �t ∈ [−�δt, �δt],

(φt > 0 =⇒ εt = �δt), (φt < 0 =⇒ εt = −�δt), (Wt > �|φt| =⇒ δt = 0).

Papers analyzing collateral constraints in a Brownian setting and additive utility include
Cuoco and Liu (2000) and Liu and Longstaff (2004).

The reader can work out examples of the form of condition (3.7) for cases of short-sale
constraints, incomplete markets, differential borrowing and lending rates, and so on.

4. OPTIMALITY UNDER RECURSIVE UTILITY

In the remainder of this paper we explore optimality for specifications with recursive
utility. We begin in this section with a formulation of sufficient optimality conditions
as a FBSDE system. The setting will be specialized in subsequent sections by imposing
translation or scale invariance assumptions that nest familiar formulations with expo-
nential or power additive utility. For these cases, we will see that the FBSDE system of
the optimality system reduces to a single BSDE, which, under regularity assumptions, is
also necessary for optimality.

We henceforth assume that there exist a finite measure h∗ on B(E) and some constant
M > 0 such that

h(ω, t, S) ≤ Mh∗(S) for every (ω, t, S) ∈ � × [0, T ] × B(E).(4.1)

Z denotes the set of every B(Z)-measurable function υ : Z → R such that∫
E |υ(z)|h∗(dz) < ∞. We endow Z with the norm ‖υ‖Z = ∑d

i=1 υ(zi )2 + ∫
E |υ(z)|h∗(dz),

relative to which the set B(Z) of Borel subsets of Z is defined.
Recursive utility is defined in terms of the following primitives:

(i) A set U ⊆ S2 of utility processes. Every utility process is assumed to be valued
in the interval IU ⊆ R (typically, IU = Ic).

(ii) A function F : � × [0, T ] × Ic × IU × Z → R, called the aggregator, such that
F(ω, T, c, U, �) does not depend on the arguments (U, �) ∈ IU × Z, and is
therefore denoted F(ω, T, c). The aggregator F is assumed to be O ⊗ B(Ic) ⊗
B(R) ⊗ B(Z)-measurable.

We will be using (c, U, �) to denote both a triple of processes and a dummy variable
in Ic × IU × Z, with the meaning being clear from the context.

The utility specification is based on the following condition, assumed throughout the
rest of this paper. Equation (4.2) below is the natural extension of the BSDE notion of
Pardoux and Peng (1990) and Pardoux (1997) to our filtration. Intuitively, we think of
a BSDE as a general backward recursion on the information tree. A heuristic decision-
theoretic motivation for defining utility as a BSDE solution can be found in Skiadas
(2008). (While the latter refers to a Brownian filtration, the discussion extends to any
setting with a locally linear factor structure, such as the present one.) General existence
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results for our applications do not yet exist, although several partial results are available
in the BSDE literature.11

CONDITION 4.1 (Standing Assumption).

(a) Given any c ∈ C, there exists a unique process pair (U, �) ∈ U × V such
that �(ω, t, ·) ∈ Z for a.e. (ω, t) and

dUt = −F(t, ct, Ut, �t) dt +
d∑

i=1

�t(zi ) dBi
t

+
∫

E
�t(z) p̂(dt × dz), UT = F(T, cT),

(4.2)

where F(T, cT ) denotes the terminal utility from lump-sum consumption cT . We
write (U(c), �(c)) when the dependence on c is to be emphasized. The utility
function U0 : C → R is specified by letting U0(c) be the initial value of the utility
process U(c).

(b) The aggregator F(ω, t, c, U, �) is concave in (c, U, �) and differentiable in c.
For any (ω, t, U, �) ∈ � × [0, T ] × IU × Z, the function Fc(ω, t, ·, U, �) maps
Ic onto (0, ∞), where Fc denotes the partial derivative of F with respect to c.

REMARK 4.1. If Ic = R++, the assumption on Fc of part (b) guarantees that a non-
negativity constraint on consumption is non-binding.

For any (ω, t) ∈ � × [0, T ], the super-differential of F(ω, t, ·) at (c, U, �) ∈ Ic × IU ×
Z, denoted ∂F(ω, t, c, U, �), is the set of all (dc, dU, d�) ∈ (0, ∞) × R × Z satisfying

F(ω, t, c + α, U + β, � + γ ) ≤ F(ω, t, c, U, �) + dcα + dUβ +
∫

Z
d�(z)γ (z)ν(ω, t, dz),

for all (α, β, γ ) ∈ R × R × Z such that (c + α) ∈ Ic, U + β ∈ IU , and γ is bounded. Since
F is assumed to be differentiable in the consumption argument, it will be convenient to
define the super-differential with respect to the arguments (U, �) :

∂U,� F(ω, t, c, U, �) = {(dU, d�) : (Fc(ω, t, c, U, �), dU, d�) ∈ ∂ F(ω, t, c, U, �)} .

EXAMPLE 4.1 (n-variate point process). Suppose there is no Brownian component in
the filtration, and the mark space is finite; that is,

d = 0 and E = {1, . . . , n} .

In this case, Z = R
n . If F(ω, t, c, U, �) is differentiable in (c, U, �) for every (ω, t), and

the kernel h is strictly positive, then the super-differential ∂FU,�(ω, t, c, U, �) consists of
the single element (dU , d�), where

dU = FU(ω, t, c, U, �) and d�(z) = F�(z)(ω, t, c, U, �)
h (ω, t, {z}) , z = 1, . . . , n,

11 For example, the argument of appendix A of Duffie and Epstein (1992) applies in a general filtration but
requires that there is an ordinally equivalent version in which the aggregator is not a function of the volatility
terms. Pardoux (1997) showed an existence result for the case of Poisson random measures and Lipschitz
restrictions on the aggregator.



OPTIMALITY AND STATE PRICING IN CONSTRAINED FINANCIAL MARKETS 211

where, in this context, FU and F�(z) represent partial derivatives with respect to the obvious
arguments. This completes the example.

In the remainder of this section, we fix a reference plan (c, W , φ), and we formulate
sufficient conditions for its optimality. The processes (U, �, λ) are defined by

Ut = Ut(c), �t = �t(c), and λt = Fc (t, ct, Ut, �t) .

Recalling part (b) of Condition 4.1, we can invert the equation defining λ to express the
consumption plan c as

ct = I (t, λt, Ut, �t) ,(4.3)

where the function I : � × [0, T ] × (0, ∞) × IU × Z → Ic is defined implicitly through
the equation

Fc (t, I (t, y, U, �) , U, �) = y, y ∈ (0, ∞).

We derive optimality conditions by computing a utility super-gradient density at c as
a stochastically discounted version of the process λ.

PROPOSITION 4.1. Suppose that (FU, F�) ∈ O × V is such that

(FU, F�) ∈ ∂U,� F (c, U, �) a.e.(4.4)

and the process E ∈ S++
2 solves the SDE

dEt

Et−
= FU(t) dt +

d∑
i=1

F�(t)(zi ) dBi
t +

∫
E

F�(z) p̂(dt × dz), E0 = 1.(4.5)

Assuming it is an element of H, the process π = Eλ is a super-gradient density of U0 at c.

Proof . See Appendix B. �

To derive optimality conditions, suppose that λ follows the dynamics

dλt

λt−
= µλ

t dt +
d∑

i=1

σλ
t (zi ) dBi

t +
∫

E
σλ

t (z) p̂(dt × dz).(4.6)

Applying integration by parts (JS I4.45,52) to π = Eλ, with E defined in (4.5), we find

dπ

π−
=

(
FU + µλ +

∫
Z

σλ(z)F�(z)ν(dz)
)

dt

+
d∑

i=1

(
F�(zi ) + σλ(zi )

)
dBi +

∫
E

(
F�(z) + σλ(z) + F�(z)σλ(z)

)
p̂(dt × dz).

Matching coefficients with the predictable representation (3.4), we obtain

−ζ = FU + µλ +
∫

Z
σλ(z)F�(z)ν(dz),

−η(z) = F�(z) + σλ(z) + F�(z)σλ(z)1{z∈E}.

Combining these restrictions with the utility BSDE (4.2), the definition of (µλ, σ λ), the
budget equation, the state-pricing restriction of Proposition 3.1, and the definition of
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(FU , F�), we obtain the following optimality conditions in the form of a constrained
FBSDE:

CONDITION 4.2 (optimality conditions). Suppose that the processes

(
U, �, λ, σ λ, W

) ∈ U × V × S++ × V × S

with the trading strategy φ solve the system:

dU = −F (I(λ, U, �), U, �) dt +
d∑

i=1

�(zi ) dBi +
∫

E
�(z) p̂(dt × dz),

dλ

λ−
= −

(
ζ + FU +

∫
Z

σλ(z)F�(z)ν(dz)
)

dt +
d∑

i=1

σλ(zi ) dBi +
∫

E
σλ(z) p̂(dt × dz),

UT = F(T, WT + eT), λT = Fc(T, WT + eT),

dW = ( f (W, φ) + e − I(λ, U, �)) dt + φ′dR̂, W0 = w0,

� = −
∫

Z
σ R(z)

(
F�(z) + σλ(z) + F�(z)σλ(z)1{z∈E}

)
ν(dz),

(ζ, �) ∈ ∂ f (W, φ), (FU, F�) ∈ ∂U,� F(I(λ, U, �), U, �), (φ, W) ∈ K .

The sufficiency of the above conditions for optimality, given some integrability assump-
tions, is shown in the following result, as a straightforward consequence of our earlier
arguments.

PROPOSITION 4.2. Suppose that Condition 4.2 holds, equation (4.3) defines a consump-
tion plan c ∈ C, E ∈ S++

2 solves SDE (4.5), π = λE ∈ S2, and πW ∈ S1. Then (c, φ, W )
is an optimal plan.

Proof . By construction, c is a feasible plan. By Proposition 3.2 and the above calcu-
lations, π is a state-price density at c. By Proposition 4.1, π is also a utility super-gradient
density at c. The optimality of c then follows from Proposition 3.1. �

In subsequent sections, we simplify the above optimality conditions based on trans-
lation or scale invariance assumptions that allow us to write simple expressions relating
the backward components (U, λ) to the forward component W , effectively reducing the
above FBSDE system to a single BSDE. In those cases, Condition 4.2 will be shown
(under some regularity) to also be necessary for optimality.

5. TRANSLATION-INVARIANT FORMULATION

We consider a first class of problems for which the FBSDE of the optimality conditions
uncouples, based on a notion of translation invariance (or quasi-linearity), which includes
familiar additive discounted exponential utility formulations. This section generalizes
Schroder and Skiadas (2005) by allowing jumps, a non-linear budget equation, and more
general trading constraints.
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Throughout this section and the next one, we specialize last section’s setting by imposing
the following restrictions on the consumption set, the trading constraint set K ⊆ R

1+m,

and the function f : � × [0, T ] × K → R defining the budget equation (3.2).

CONDITION 5.1.

(a) Consumption can take any value: Ic = R.

(b) For any c ∈ C and bounded b ∈ H, c + b ∈ C.
(c) The vector12 κ ∈ R

m and process µκ ∈ P1 are such that

(w, α) ∈ K =⇒ (w + v, α + vκ) ∈ K for all v ∈ R,(5.1)

(w, α) ∈ K =⇒ f (ω, t, w + v, α + vκ) = f (ω, t, w, α)

+ vµκ (ω, t) for all v ∈ R.

(5.2)

(d) The bounded consumption plan γ ∈ H and the semi-martingale � ∈ S++
2 are

related by

d�t = (
�tµ

κ
t − γt

)
dt + �t−κ ′dR̂t, �T = γT.(5.3)

We interpret κ = (κ1, . . . , κm) as a portfolio allocation, where κ i represents the value
proportion allocated to asset i ∈ {1, . . . , m}, with the remaining proportion allocated to
the money market. Conditions (5.1) and (5.2) state that, relative to the position (w, α) ∈ K,
the agent can invest any incremental amount of wealth v to a portfolio with value weights
κ whose instantaneous return µκ does not depend on the agent’s market positions. In
this interpretation, vκi is the amount invested in asset i ∈ {1, . . . , m}, and v(1 − ∑m

i=1 κi )
is the amount invested in the money market.

EXAMPLE 5.1. Assume, as in Example 3.1, that f (w, α) = wr + α′µR. Then equa-
tion (5.2) is satisfied with µκ = r + κ ′µR.

We interpret the consumption plan γ as a dividend process generated by a fund, that
we call the γ -fund, whose value allocation is κ at all times, and whose time-t value is �t.
The terminal value �T is paid off as a liquidating lump-sum dividend γT .

EXAMPLE 5.2. Let r ∈ P1 represent the rate process of the money market account,
which is assumed to not depend on the agent’s trading plan. Suppose that both γ and
r are deterministic processes. In this case the γ -fund is implemented by trading in the
money market alone; that is, equation (5.3) is satisfied with

κ = 0, µκ = r , and �t =
∫ T

t
e− ∫ s

t ru duγs ds + e− ∫ T
t ru duγT.

This completes the example.

Let the set K0 ⊆ R
m and the function f 0 : � × [0, T ] × K0 → R be defined by

K0 = {α : (0, α) ∈ K} and f 0(ω, t, α) = f (ω, t, 0, α).

12 In Schroder and Skiadas (2005) we assumed, for simplicity, that � = �−κ is constant. Here the exposition
is simpler taking κ to be constant instead. The analysis in both papers applies essentially with no change if
κ and � are allowed to be stochastic processes, although the resulting generality is not substantial, since one
can repackage the assets to make κ or � constant.
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Condition 5.1(c) is equivalent to the representations

K = {(w, α) ∈ R
1+m : α − wκ ∈ K0} and

f (ω, t, w, α) = f 0(ω, t, α − wκ) + wµκ (ω, t).

Defining the super-differential notation ∂f 0 analogously to ∂f , it is straightforward to
check that, under Condition 5.1, the key state-pricing restriction (ζ, �) ∈ ∂f (W , φ) a.e.
is equivalent to

µκ = ζ + κ ′� and � ∈ ∂ f 0(φ − Wκ), a.e.(5.4)

Based on this observation, in the following theorem we characterize the dynamics of a
state price density under Condition 5.1. The sufficiency proof, which specializes Proposi-
tion 3.2, only makes use of part (c) of Condition 5.1. The necessity proof on the other hand
requires some additional regularity, and uses all parts of Condition 5.1. We say that return
jumps are bounded above if σ R has an upper bound on � × [0, T ] × E, and bounded away
from zero if there exists ε > 0 such that σ R(ω, t, z) ≥ ε for all (ω, t, z) ∈ � × [0, T ] × E.

THEOREM 5.1. Suppose Condition 5.1 holds, (c, W , φ) is a feasible plan, π ∈ S++
2 has

the predictable representation (3.4) for some (ζ, η) ∈ P × V , and � is well-defined by (3.5).

(a) (Sufficiency) Suppose πW ∈ S1. If (5.4) holds, then π is a state-price density
at c.

(b) (Necessity) Suppose returns jumps are bounded above and away from zero. If π

is a state-price density at c, then (5.4) holds.

Proof . See Appendix B. �

Turning our attention to the preference side of the problem, we specialize the assumed
recursive utility Condition 4.1 by imposing a special aggregator structure:

CONDITION 5.2. IU = R and the aggregator F is of the form

F(ω, t, c, U, �) = G
(

ω, t,
c

γ (ω, t)
− U, �

)
, F(ω, T, c) = c

γ (ω, T)
,

for some strictly positive bounded cash flow γ , and some function G : � × [0, T ] × R ×
Z → R that we call an absolute aggregator.

The above condition implies that U is quasi-linear with respect to γ :

U(c + kγ ) = U(c) + k for all k ∈ R and c ∈ C.

EXAMPLE 5.3 (expected discounted exponential utility). Suppose that β is a given
optional process, and the utility process V (c) of the consumption plan c is well-defined
by

Vt = E

[∫ T

t
− exp

(
−

∫ s

t
βu du − 1

γs
cs

)
ds − exp

(
−

∫ T

t
βu du − 1

γT
cT

) ∣∣∣∣ Ft

]
.(5.5)
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The ordinally equivalent utility Ut(c) = −log (−Vt(c)) satisfies Condition 5.2 with

G(ω, t, x, �) = β(ω, t) − exp(−x) − 1
2

d∑
i=1

�(zi )2

−
∫

E
(exp(−�(z)) − 1 + �(z))h(ω, t, dz).

To show this claim, multiply (5.5) by exp(− ∫ t
0 βu du), and subtract

∫ t
0 exp(− ∫ t

0 βudu −
cs/γs) ds from both sides, resulting in a martingale on the right-hand side. Then com-
pute the expansion of dV using integration by parts and a martingale representation
of the right-hand-side, and finally expand U = −log (−V ) using Itô’s lemma for semi-
martingales (JS, theorem 4.57).

In the context of the agent’s optimization problem, we think of the process γ as part
of the preference specification. The argument that follows requires that there exists a
trading strategy that generates γ as a dividend stream. Example 5.2 provides a simple
case in which γ is generated by trading in the money-market account alone. If either the
instantaneous returns of the money market or γ is stochastic, then generally one must
trade in risky assets to generate γ . A trading strategy that generates γ can be packaged
as a single synthetic security, and be named, say, asset one in our formal setting. In this
case, the necessary financing condition (5.3) is satisfied with κ = (1, 0, . . . , 0), provided
that trading in asset one is unrestricted, and its instantaneous returns are independent of
the agent’s positions.

Fixing a candidate optimal plan (c, W , φ), let U = U(c), � = �(c), and λ =
Fc(c, U, �). This section’s conditions together imply that, at an optimum, and additional
pre-time-t dollar of financial wealth can be optimally invested in the γ -fund, followed
by consumption of the resulting incremental dividend stream. This observation and the
quasi-linearity of the utility function with respect to γ suggest the following relationships
at an optimum, whose validity will be verified formally later on:13

φt = φ0
t + Wt−κ, Ut = 1

�t
(Yt + Wt), λt = 1

�t
.(5.6)

The pair (Y , φ0) is determined by a BSDE, given below, that is independent of financial
wealth. The portfolio φ0

t is optimal at time t given zero time-t financial wealth. Relative
to this portfolio, φt is computed by investing all financial wealth in the γ -fund. Finally,
λt equals the coefficient of Wt in the expression relating optimal utility and wealth, and
represents the time-t shadow price of wealth.

We now put together the above insights to simplify the optimality conditions, starting
with some convenient notation. The dividend-yield process of the γ -fund is

δ = γ

�−
.(5.7)

The function J : � × [0, T ] × Z → (0, ∞) is defined by

J(ω, t, z) = 1 + 1{z∈E}κ ′σ R(ω, t, z), (ω, t, z) ∈ � × [0, T ] × Z.(5.8)

The functions X , G∗ : � × [0, T ] × R × Z → R are defined by

Gx(ω, t,X (ω, t, y, �), �) = y,(5.9)

13 The definition of φ0 here differs from than in Schroder and Skiadas (2005), where φ0 corresponds to the
optimal strategy that results in zero utility.
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G∗(ω, t, y, �) = sup
x∈R

{G(ω, t, x, �) − yx}

= G(ω, t,X (ω, t, y, �), �) − yX (ω, t, y, �).

(5.10)

The super-differential of G with respect to the last argument is denoted ∂�G, and is defined
analogously to ∂U,�F . Specializing the super-gradient density calculation in this context,
and using the conjectured relationships (5.6), one arrives to the following optimality
conditions:

CONDITION 5.3 (optimality conditions under translation-invariance with respect to γ ).
The processes (Y, σ Y, �, G�, φ0) ∈ O × V × V × V × Pm satisfy

dY = −
(

e − Yµκ + f 0(φ0) + �G∗(δ, �) − �

∫
Z

κ ′σ R(z)�(z)ν(dz)
)

dt

+
d∑

i=1

σ Y(zi ) dBi
t +

∫
E

σ Y(z) p̂(dt × dz), YT = eT,

� = σ Y + (φ0 − κY−)′σ R

J�−
, −

∫
Z

σ R(z)
J(z)

(
G�(z) − κ ′σ R(z)

)
ν(dz) ∈ ∂ f 0(φ0),

G� ∈ ∂�G(X (δ, �), �), φ0 ∈ K0.

The sufficiency of Condition 5.3 for optimality, given integrability assumptions, is
shown in the following result as an application of Proposition 4.2. The necessity of
Condition 5.3 for optimality is also shown for the case of a smooth aggregator and
integrability assumptions.

THEOREM 5.2. Suppose that Conditions 5.1 and 5.2 hold.

(a) (Sufficiency) Suppose Condition 5.3 is satisfied, the wealth process W solves the
SDE

dW = (e − δY + f 0(φ0) + W−(µκ − δ) − γX (δ, �)) dt

+ (φ0 + W−κ)′dR̂, W0 = w0,

(5.11)

and the process E ∈ S++
2 solves the SDE

dEt

Et−
= −δdt +

d∑
i=1

G�(t)(zi ) dBi
t +

∫
E

G�(z) p̂(dt × dz), E0 = 1.

With φ, U , and λ defined in (5.6), assume the regularity restrictions: U ∈
U, λE ∈ S2, and λEW ∈ S1. Finally, suppose the consumption plan c is speci-
fied by

ct = γt (Ut + X (t, δ, �t)) , t < T, and cT = WT + eT.

Then (c, φ, W ) is an optimal plan, U(c) = U, �(c) = �, and Fc(c, U, �) = λ.
(b) (Necessity) Suppose the plan (c, W , φ) is optimal, G(ω, t, ·) is differentiable

for every (ω, t), and return jumps are bounded above and away from zero. Let
U = U(c), � = �(c), x = c/γ − U, Gx = Gx(x, �), G� = G�(x, �), and let
Y and φ0 be defined by (5.6). Suppose E ∈ S++

2 solves the SDE
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dEt

Et−
= −Gx(t) dt +

d∑
i=1

G�(t)(zi ) dBi
t +

∫
E

G�(z) p̂(dt × dz), E0 = 1,

and λ, λE ∈ S2. Then Condition 5.3 is satisfied.

Proof . See Appendix B. �

6. SOLUTIONS BASED ON QUADRATIC BSDEs

In this section, we identify a subclass of the translation-invariant formulation for which
the BSDE characterizing optimality is quadratic. Further, we impose restrictions under
which the quadratic BSDE can be reduced to an ODE system of the Riccati form. The
technique is familiar in finance application involving linear BSDEs, as in affine term-
structure and credit-risk models (see, for example, Duffie 2005, Duffie et al. 2003, and
Piazzesi 2005). Here we extend the quadratic BSDE analysis of Schroder and Skiadas
(2005) by including jumps.

Throughout this section we adopt last section’s setting (Conditions 5.1 and 5.2), spe-
cialized by the following restrictions on the market and preferences:

(i) No trading constraints: K = R
1+m.

(ii) Linear wealth dynamics: f (W , φ) = rW + φ′µR and µκ = r + κ ′µR, for
some µR ∈ Pm.

(iii) The absolute aggregator takes the quasi-quadratic form

G(ω, t, x, �) = g(ω, t, x) −
∫

Z

(
q(ω, t, z)�(z) + 1

2
Q(ω, t, z)�(z)2

)
ν(ω, t, dz),

(6.1)

for some predictable functions g : � × [0, T ] × R → R, q : � × [0, T ] × Z →
R, and Q : � × [0, T ] × Z → R++. For simplicity, we assume that q and Q are
bounded.

Even though there are no trading constraints, the market can be incomplete, and in
particular the endowment e may not be tradable. The quasi-quadratic absolute aggregator
assumption imposes a preference structure that is inconsistent with time-additivity in the
presence of jumps, yet provides a more tractable class of problems than more conventional
additive utilities do.

We specialize the optimality conditions in this case after introducing some notation.
With J given in (5.8), we define

g∗(ω, t, y) = sup
x∈R

(g(ω, t, x) − yx) and µ̃R = µR −
∫

Z

σ R(z)
J(z)

(
q(z) + κ ′σ R(z)

)
ν(dz).

Also, for any σ1 ∈ V l×k and σ2 ∈ Vk×n , we use the notation

(σ1, σ2) =
∫

Z

Q(z)
�− J(z)2

σ1(z)σ2(z)ν(dz),

and we assume throughout that (σ R, σ R′
) is a.e. invertible.
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In this context, the BSDE satisfied by Y in optimality Condition 5.3 takes the quadratic
form

dY = −
(

α − βY − (b, σ Y) − 1
2

(σ Y, σ Y) + 1
2

(σ Y, σ R′)A−1(σ R, σ Y)
)

dt

+
d∑

i=1

σ Y(zi )(dBi + q(zi ) dt) +
∫

E
σ Y(z) p̂(dt × dz), YT = eT,

(6.2)

with coefficients

α = e + �g∗(δ) + 1
2
µ̃R′(σ R, σ R′)−1µ̃R, β = r ,

A = (σ R, σ R′), b(z) = �− J(z)
Q(z)

(
q(z)1{z∈E} + κ ′σ R(z)

) + µ̃R′(σ R, σ R′)−1σ R(z).

(The apparent redundancy in the above notation will be of use in the last section, where
the coefficients of the same BSDE receive new definitions.) The corresponding optimal
strategy is given as in Theorem 5.2, with

φ0 − κY− = (σ R, σ R′)−1(µ̃R − (σ R, σ Y)).

Next, we identify a class of problems for which the quadratic BSDE (6.2) can be solved
in terms of a solution to an ODE system. We introduce an n-dimensional state process
X with dynamics

dXt = µX
t dt +

d∑
i=1

σ X
t (zi ) dBi

t +
∫

E
σ X

t (z) p̂(dt × dz),(6.3)

where µX ∈ Pn
1 and σ X ∈ Vn, and we seek a solution to BSDE (6.2) of the form

Yt = Y0
t + Yl′

t Xt,(6.4)

for deterministic processes Y0 : [0, T ] → R and Yl : [0, T ] → R
n . This type of solution

is made possible by the following restrictions:

CONDITION 6.1. There exist deterministic processes α0 : [0, T ] → R; αl, C0, Dl[i , j ] :
[0, T ] → R

n ; and Cl, D0 : [0, T ] → R
n×n, such that

α = α0 + αl′ Xt, µX − (b, σ X) = C0 + Cl′ X,(
σ X

i , σ R′)A−1(σ R, σ X
j

) + a
(
σ X

i , σ X
j

) = D0
i j + Dl[i , j ]′ X, i , j = 1, . . . , n.

Finally, β is deterministic, and YT = Ȳ0 + Ȳl′ XT, where Ȳ0 ∈ R and Ȳl ∈ R
n .

REMARK 6.1. For each (i , j ) ∈ {1, . . . , n}2, D0
i j is the (i, j) entry of the n × n matrix D0,

while Dl[i , j ] is an n-dimensional column vector.

Suppose Condition 6.1 holds and the deterministic processes (Y0, Yl) solve the ODE
system (where the dots on the left-hand-side represent time-derivatives):

−Ẏ0
t = α0

t − βtY0
t + C 0′

t Yl
t + 1

2
Yl′

t D0
t Yl

t , Y0
T = Ȳ0,

−Ẏl
t = αl

t − (
βt − Cl

t

)
Yl

t + 1
2

k∑
i=1

k∑
j=1

Dl
t [i , j ]Yl

i (t)Yl
j (t), Yl

T = Ȳl.




(6.5)



OPTIMALITY AND STATE PRICING IN CONSTRAINED FINANCIAL MARKETS 219

(Note that the equation in Yl does not depend on Y0.) Direct computation using Itô ’s
lemma shows that if (Y0, Yl) solves (6.5), then equation (6.4) defines a solution to BSDE
(6.2), provided that the drift and diffusion terms of (6.2) are suitably integrable so that
the respective integrals are well-defined.

EXAMPLE 6.1. We assume that the aggregator parameters g and Q, the jump-rate
intensity kernel h, the short-rate process r, the asset volatility process σ R, and the cash flow
γ are all deterministic (that is, not dependent of the state variable ω ∈ �), and therefore
κ = 0 and the processes � and g∗(γ /�) are also deterministic. We postulate N ≥ m types
of shocks represented by the partition Z = Z1 ∪ · · · ∪ ZN (where Zi ∩ Zj = ∅ for i �= j).
We assume that the instantaneous returns of asset i are driven only by shocks in Zi; that
is, z /∈ Zi =⇒ σ R

i (z) = 0. Further, we assume

µX = µ0 + µlXt, e = e0 + el′ X, µR
i = si

√
υ0

i + υl′
i X, i = 1, . . . , m,

σ X
t (z) = σ̄ (z)

N∑
i=1

1{z∈Zi }
√

υ0
i + υl′

i X, q(z) = q̄(z)
N∑

i=1

1{z∈Zi }
√

υ0
i + υl′

i X, z ∈ Z,

where si , υ
0
i , e0 ∈ R; υl

i , µ0, el ∈ R
n ; µl ∈ R

n×n ; σ̄ : Z → R
n , and q̄ : Z → R. Direct

computation shows that Condition 6.1 is satisfied, implying a solution of the form (6.4),
provided the coefficients (Y0, Yl) solve the ODE system (6.5) with Ȳ0 = e0 and Ȳl = el.

In our second example of a problem class satisfying Condition 6.1, we obtain a BSDE
solution in which Y is a quadratic of a state process, with deterministic coefficients. We
embed this quadratic formulation in the above affine setting by a suitable expansion of
the state variables.14 Consider a new k-dimensional state process x with drift µx ∈ Pk

1
and volatility σ x ∈ Vk, meaning that equation (6.3) holds with x in place of X . We fix a
non-negative integer l ≤ k, and we use the matrix block notation

x =
[

x1

x2

]
, where x1(ω, t) ∈ R

l and x2(ω, t) ∈ R
k−l .(6.6)

We are interested in solutions to BSDE (6.2) of the form:

Yt = y0t + yl′t xt + x1′
t yqt x1

t(6.7)

where the deterministic coefficients y0 : [0, T ] → R, yl : [0, T ] → R
k, and yq : [0, T ] →

R
l×l solve an ODE system. Note that the linear term involves the entire process x, while

the quadratic term is on x1 only. We assume that yqt is a symmetric matrix for all t ∈ [0, T ].
For any symmetric matrix M, we let vec(M) denote the column vector that lists all the

lower triangular elements of M (the diagonal included) in some fixed order, say column-
by-column. We define the expanded state process

X =
[

x
vec(x1x1′

)

]
.(6.8)

Equations (6.4) and (6.7) are then equivalent if the deterministic coefficients (Y0, Yl)
and (y0, yl, yq) are related by

Y0 = y0 and Yl =
[

yl

vec (yq)

]
,

14 A similar reduction of a quadratic model to an affine one is given by Cheng and Scaillet (2005).
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in which case the ODE system for (Y0, Yl) is equivalent to an ODE system for (y0, yl, yq).
Given a solution to the latter and Condition 6.1, a solution to BSDE (6.2) of the form
(6.7) is obtained. An example of this type follows:

EXAMPLE 6.2. As in the last example, we assume that g, Q, h, r, σ R, and γ are de-
terministic. Given the state process x, with drift µx and volatility σ x, we use the block
notation (6.6), and analogously σ x = [σ 1′

, σ 2′
]′, where σ 1 is �-dimensional. We further

impose the restrictions:

µx = µ0 +
(

µ11 0

µ21 µ22

) (
x1

x2

)
,

σ 1 is deterministic, σ 2(z) = σ 20(z) + σ 2l(z)x1, z ∈ Z,

µR = υ0 + υlx1, e = e0 + el′x + 1
2

x1′eqx1, q(z) = q0(z) + ql(z)′x1, z ∈ Z,

where µ0 ∈ R
k, µ11 ∈ R

l×l , µ21 ∈ R
(k−l)×l , µ22 ∈ R

(k−l)×(k−l), υ0 ∈ R
m, υl ∈

R
m×l , e0 ∈ R, el ∈ R

k, eq ∈ R
l×l ; q0 : Z → R, ql : Z → R

l , σ 20 : Z → R
k−l , σ 2l :

Z → R
(k−l)×l . Defining the expanded state process X as above, Condition 6.1 can be veri-

fied by straight calculation, implying a solution of the form (6.7), provided the coefficients
solve an ODE system.

7. SCALE-INVARIANT FORMULATION

In the previous two sections we studied simplifications of the optimality conditions based
on translation invariance assumptions. In this section, and the following section, we
provide analogous arguments based on scale invariance with respect to wealth. The scale-
invariant formulation is consistent with constant relative risk aversion, and Epstein–
Zin utility (including additive power or logarithmic utility). On the other hand, scale
invariance precludes the possibility of a non-traded income stream, and we therefore set
e = 0 below. The analysis that follows extends Schroder and Skiadas (2003) by allowing
non-linear wealth dynamics and jumps.

The following condition is assumed throughout the rest of the main part of this paper.

CONDITION 7.1.

(a) Consumption is strictly positive: Ic = (0, ∞).
(b) For all c ∈ C, c̃ ∈ H++ and c̃ ≤ c implies c̃ ∈ C.
(c) A wealth process W is further restricted by requiring that Wt− > 0 a.s. for all t.
(d) The agent’s endowment consists of a positive initial financial wealth only: e = 0

and w0 > 0.
(e) The constraint set K is a cone (with origin at zero) and f (ω, t, ·) is homogeneous

of degree one.

Part (e) of the condition is equivalent to the representations

K = {(w, wα) : w ∈ (0, ∞), α ∈ K1} and

f (ω, t, w, α) = w f 1(ω, t, α/w), (w, α) ∈ K,
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where K1 ⊆ R
m and f 1 : � × [0, T ] × K1 → R are defined by

K1 = {α ∈ R
m : (1, α) ∈ K} and f 1(ω, t, α) = f (ω, t, 1, α).

The above condition implies that trading constraints and wealth dynamics depend on
trading plans only through the corresponding wealth allocations. The term “strategy”
will refer to a plan expressed in terms of proportions of pre-jump wealth. The strategy
corresponding to the plan (c, W , φ) is therefore the pair (ρ, ψ), where

ρt = ct

Wt−
and ψt = φt

Wt−
.

Formally, a consumption strategy is any process ρ ∈ P1 that is valued in (0, ∞), and a
trading strategy is any process ψ ∈ Pm such that the stochastic integral

∫
ψ ′dR̂ is well-

defined. A strategy is a pair (ρ, ψ) of a consumption strategy and a trading strategy. A
strategy (ρ, ψ) generates a wealth process W through the budget equation, which in this
context takes the form

W0 = w0,
dW t

Wt−
= ( f 1(t, ψt) − ρt) dt + ψ ′

tdR̂t.(7.1)

The strategy (ρ, ψ) finances the consumption plan c if it generates a wealth process W
such that ct = ρtWt− for t < T and cT = WT . The strategy (ρ, ψ) is feasible (respectively
optimal) if it finances a feasible (respectively optimal) consumption plan. We note that
the strategy (ρ, ψ) is feasible if and only if it finances a consumption plan and ψ ∈ K1

a.e.
Under Condition 7.1, the central condition (ζt, �t) ∈ ∂f (t, Wt, φt) a.e., used to char-

acterize state-price dynamics, is equivalent to the restrictions

ζt = f 1(t, ψt) − ψ ′
t�t and �t ∈ ∂ f 1(t, ψt) a.e.(7.2)

(A proof of this claim is given in lemma 19 of Schroder and Skiadas, 2003.)

EXAMPLE 7.1. Suppose that f 1(ω, t, ψ) = r(ω, t) + ψ ′µR(ω, t), and define the support
function δK1 : R

m → (−∞, ∞] by

δK1 (y) = sup{ψ ′y : ψ ∈ K1}.
Then condition (7.2) is equivalent to

ζ = r + δK1 (ε), ψ ′ε = δK1 (ε), ε = µR − �, a.e.

If K1 is a cone, then δK1 (ε) = 0. For example, setting K = R
m
+ corresponds to a short-

sale constraint on all assets except the money market account. In this case, the above
condition is equivalent to the following restrictions (in an a.e. sense):

ζ = r , µR ≤ �, and µRi
t = �i

t on
{
ψ i

t > 0
}
, i = 1, . . . , m.

The following characterization of state-price dynamics extends Proposition 3.2 with a
necessity argument for a scale-invariant market.

THEOREM 7.1. Suppose that Condition 7.1 holds, and (ρ, ψ) is a feasible strategy
that generates the wealth process W and finances the consumption plan c. Suppose also
that π ∈ S++

2 has the predictable representation (3.4) for some (ζ, η) ∈ P × V, � is well-
defined by (3.5), and πW ∈ S1.
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(a) (Sufficiency) If (ζ , �) satisfies (7.2), then π is a state-price density at c.
(b) (Necessity) If π is a state-price density at c, return jumps are bounded, and ρ is

càdlàg, then (ζ , �) satisfies (7.2).

Proof . See Appendix B. �

So far, we have imposed a scale-invariant structure on the market, resulting in the state-
pricing characterization (7.2). On the preference side, we further specialize the recursive
utility structure of Condition 4.1 by imposing the following homogeneity restriction on
the aggregator:

CONDITION 7.2. IU = (0, ∞) and the aggregator F is of the form

F(ω, t, c, U, �) = UG
(

ω, t,
c
U

,
�

U

)
, F(T, c) = c,

for some function G : � × [0, T ] × (0, ∞) × Z → R that we call a proportional aggrega-
tor.

The above restriction implies that the utility function is homogeneous of degree one:

U (kc) = kU(c) for all k ∈ R and c ∈ C.

Making the change of variables

xt = ct

Ut−
and σt = �t

Ut−
,(7.3)

the BSDE for the utility process U = U(c) can be written as

dUt

Ut−
= −G (t, xt, σt) dt +

d∑
i=1

σt(zi ) dBi
t +

∫
E

σt(z) p̂(dt × dz), UT = cT.(7.4)

The following example shows that the familiar additive discounted power or logarithm
utility is included as a special case.

EXAMPLE 7.2. Given the bounded deterministic processes b : [0, T ] → R and scalars
γ, D > 0, suppose that the utility process V (c) corresponding to the consumption plan c
is specified by

Vt(c) = E

[∫ T

t
e− ∫ s

t bu du c1−γ
s − 1
1 − γ

ds + e− ∫ T
t bu du D

c1−γ

T − 1
1 − γ

∣∣∣∣∣ Ft

]
,(7.5)

where we assume that c is sufficiently integrable for V (c) to be well defined. For γ = 1,
we interpret the function (x1−γ − 1)/(1 − γ ) as log x (which is the limit as γ → 1). The
dynamic utility V is ordinally equivalent to a recursive utility U specified by BSDE (7.4)
for a proportional aggregator of the form

G(t, x, σ ) = αt + βt
x1−γ − 1

1 − γ
− γ

2

d∑
i=1

σ (zi )2 −
∫

E

[
σ (z) − (1 + σ (z))1−γ − 1

1 − γ

]
h(t, dz),

(7.6)

for some α : [0, T ] → R and β : [0, T ] → (0, ∞). (Incidentally, this expression makes
clear the problem with the utility specification (7.5). The parameter γ , which is used to
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model risk aversion, is entirely determined by G(t, x, 0); that is, by the utility values of
deterministic plans.) To transform V into a recursive utility U with aggregator (7.6), we
can set

U1−γ
t − 1
1 − γ

= βtVt, αt = 0,
1
βt

=
∫ T

t
e− ∫ s

t bu duds + e− ∫ T
t bu du D.(7.7)

Alternatively, provided γ �= 1, we can set

U1−γ
t − 1
1 − γ

= βtVt +
∫ T

t
αse− ∫ s

t bu duds, αt = βt − bt

1 − γ
, βt = 1

D
.(7.8)

The expressions for α and β in transformations (7.7) and (7.8) become identical if and only
if b is constant and D = 1/b (= ∫ ∞

0 e−btdt), in which case α = 0 and β = b, and (7.8) is
valid even if γ = 1 (with the interpretation α = 0/0 = 0). On the other hand, if D �= 1/b,
transformation (7.7) results in a time-dependent aggregator, and transformation (7.8)
results in a time-independent one, but requires that γ �= 1. Intuitively, if γ �= 1, a change
in the unit of account for terminal consumption allows an arbitrary terminal utility
weight in (7.5), and hence the embedding of the utility in an infinite-horizon version with
stationary aggregator. With γ = 1, however, log (λT cT ) = log (λT ) + log (cT ) for every
strictly positive λT , and therefore changing units for terminal consumption has no effect
on the corresponding weight of terminal utility. This completes the example.

The scale-invariance assumptions on the market and the homogeneity of the utility
function suggest that the optimal utility process U , the optimal wealth process W , and
the corresponding shadow-price-of-wealth process λ are related by

Ut = λtWt.(7.9)

This simple relationship is used below to uncouple the FBSDE of the optimality condi-
tions, reducing it to a single constrained BSDE for λ.

We let Gx denote the partial derivative of G(ω, t, x, σ ) with respect to x, while the super-
differential ∂σ G is defined analogously to ∂U,�F . Under the above aggregator restriction,
and with the notation (7.3), lemma 19 of Schroder and Skiadas (2003) shows that the
condition (FU , F�) ∈ ∂U,�F(c, U, �) is equivalent to (omitting time indices):

F� = Gσ ∈ ∂σ G (x, σ ) , FU(c, U, �) = G (x, σ ) − Gx (x, σ ) c −
∫

Z
Gσ (z)σ (z)ν(dz).

(7.10)

The functions X , G∗ : � × [0, T ] × (0, ∞) × Z → R are defined by (5.9) and (5.10), re-
spectively, but with the domain and the interpretation of the variables being different
than in the last section. (Here x ∈ (0, ∞) is a possible value of c/U−, y ∈ (0, ∞) is a
possible value of λ, and the role of � is played by σ = �/U−.) Using equation (7.9), the
optimality conditions can be reduced to
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CONDITION 7.3 (optimality conditions under scale invariance relative to wealth).
(λ, σλ, σ, Gσ , ψ) ∈ S++ × V × V × V × Pm solve the constrained BSDE:

dλ

λ−
= −

(
G∗(λ, σ ) + f 1(ψ) +

∫
Z

ψ ′σ R(z)σλ(z)ν(dz)
)

dt

+
d∑

i=1

σλ(zi ) dBi +
∫

E
σλ(z) p̂(dt × dz), λT = 1,

σ (z) = σλ(z) + ψ ′σ R(z)(1 + σλ(z)1{z∈E}), Gσ ∈ ∂σ G(λ, σ ), ψ ∈ K1,

−
∫

Z
σ R(z)

(
Gσ (z) + σλ(z) + Gσ (z)σλ(z)1{z∈E}

)
ν(dz) ∈ ∂ f 1(ψ).

THEOREM 7.2. Suppose Conditions 7.1 and 7.2 hold. In each part below, we assume
that E solves SDE (4.5), where (FU , F�) is computed by equation (7.10).

(a) (Sufficiency) Suppose Condition 7.3 holds, the strategy (ρ, ψ), where ρ =
λX (λ, σ ), generates the wealth process W, and finances the consumption plan c ∈
C. Suppose also that λW ∈ U , and E, λE ∈ S++

2 . Then the strategy (ρ, ψ) is
optimal and U(c) = λW .

(b) (Necessity) Suppose (ρ, ψ) is an optimal strategy that generates the wealth
process W, and finances the consumption plan c ∈ C. Let (U, �) = (U(c), �(c))
and λ = Gx(x, σ ), with (x, σ ) defined in (7.3). Suppose further that G(ω, t, ·) is
differentiable for all (ω, t), ρ is càdlàg, return jumps are bounded, and E, λE ∈
S++

2 . Then Condition 7.3 is satisfied and U = λW .

Proof . See Appendix B. �

EXAMPLE 7.3 (a robustly optimal consumption strategy). Suppose that the propor-
tional aggregator is given as G(ω, t, x, σ ) = β(ω, t)log (x) + G(ω, t, 1, σ ), for some pro-
cess β . In the context of part (a) of Theorem 7.2, we have λ = β/x = βU−/c and U = λW .
Therefore the optimal consumption strategy is ρ = β for any specification of the trading
constraints and price dynamics.

EXAMPLE 7.4 (myopic optimal trading strategy). This example generalizes the solu-
tion of Aase (1984, 1986), who considered the case of an unconstrained agent maximizing
expected utility of terminal wealth. Suppose the proportional aggregator takes the form

G(ω, t, x, σ ) = g(ω, t, x) −
d∑

i=1

(
q(ω, t, zi )σ (zi ) + 1

2
σ (zi )2

)

−
∫

E
[σ (z) − κ(ω, t, z) log(1 + σ (z))]h(ω, t, dz),

for some predictable function κ : � × [0, T ] × Z → R++. (As shown in Example 7.2,
expected discounted logarithmic utility is the special case.) Putting technical integrability
requirements aside, the trading strategy component, ψ , of the optimality conditions in
this case is only restricted by the requirement that � ∈ ∂f 1(ψ) and ψ ∈ K1, where

� =
d∑

i=1

σ R(zi )q(zi ) +
∫

E
σ R(z)

(
1 − κ(z)

1 + ψ ′σ R(z)

)
h(dz) +

(
d∑

i=1

σ R(zi )σ R(zi )′
)

ψ.
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The computation of the optimal strategy ψ is therefore myopic, and does not require the
solution of the BSDE for λ .

8. QUASI-QUADRATIC PROPORTIONAL AGGREGATOR

Continuing in last section’s setting, but without trading constraints (although the market
can be incomplete), we explore simplifications to the optimality conditions resulting from
the assumption of a quasi-quadratic form (6.1) for the proportional aggregator. Example
7.2 shows that in the case of a Brownian filtration this section’s setting includes the additive
discounted power or logarithmic case (as well as Epstein–Zin utility, as discussed in
Schroder and Skiadas 2003, Skiadas 2008). In the presence of jumps, however, the quasi-
quadratic proportional aggregator specification is inconsistent with time additivity, yet
preserves the homotheticity assumption, and offers clear tractability advantages.

The following conditions are assumed throughout:

(i) Condition 7.1 is satisfied with K = R
1+m and the linear wealth dynamics of

Example (7.1). Therefore, K1 = R
m and f 1(ω, t, ψ) = rt + ψ ′µR

t .
(ii) Condition 7.2 is satisfied for a proportional aggregator of the quasi-quadratic

form (6.1), where q and Q are assumed bounded.

We use the notation

g∗(ω, t, y) = sup
x∈R

(g(ω, t, x) − yx), y ∈ (0, ∞),

A(σ ) =
∫

Z
Q(z)σ R(z)σ R(z)′(1 + σ (z)1{z∈E})2ν(dz), σ ∈ V.

A(σ ) depends on σ only through its jump components σ (z), z ∈ E. Provided A(σλ) is a.e.
invertible, one can easily check that the optimality Condition 7.3 reduces to the following
BSDE satisfied by λ, which includes an expression for the optimal trading strategy ψ :

dλ

λ−
= −

(
r + g∗(λ) + 1

2
ψ ′ A(σλ)ψ −

∫
Z

(
q(z)σλ(z) + 1

2
Q(z)σλ(z)2

)
ν(dz)

)

+
d∑

i=1

σλ(zi ) dBi +
∫

E
σλ(z) p̂(dt × dz), λT = 1,

ψ = A(σλ)−1
(

µR +
∫

Z
σ R(z)

{
σλ(z) − [

q(z) + Q(z)σλ(z)
] [

1 + σλ(z)1{z∈E}
]}

ν(dz)
)

.

EXAMPLE 8.1 (mean-variance efficient portfolio). Suppose that g is state independent,
q = 0, Qt(z) = θt for all z ∈ Z, where θ is deterministic and strictly positive, and the jump-
rate intensity kernel h is also deterministic. Suppose further that one of the following two
conditions hold:

(i) r, µR, and σ R are deterministic processes.
(ii) θ = 1, and either σ R

t (z) = 0 for z ∈ E (no return jumps) or (r, µR, σ R) is adapted
to the natural filtration generated by the Brownian motion B.
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Then the above expression for the optimal trading strategy ψ simplifies to the instanta-
neously mean-variance efficient trading strategy

ψ =
(

θ

∫
Z

σ R(z)σ R(z)′ν(dz)
)−1

µR.

As in Schroder and Skiadas (2003) for the Brownian case, in order to exploit a quadratic
BSDE structure, a special function form is required of the component g of the quasi-
quadratic expression of the proportional aggregator G. For the rest of this section, we
assume that15

g (ω, t, c) = δ(ω, t) + β(t) + β(t) log
(

c
β(t)

)
,

for some δ ∈ P and deterministic process β.
Making the change of variables

Yt = log (λt) ,

we note that g∗(t, λt) = δt − βtYt. To state the BSDE satisfied by Y we introduce the
notation:

(σ1, σ2) =
d∑

i=1

(Q(zi ) − 1)σ1(zi )σ2(zi ), σ1 ∈ V l×k, σ2 ∈ Vk×n .

The above BSDE for λ in this context is equivalent to BSDE (6.2) for Y , with YT = 0,
and the following new definition of the coefficients:

A =
∫

Z
Q(z)σ R(z)σ R(z)′ exp[2σ Y(z)1{z∈E}]ν(dz),

b(zi ) = µ̃R A−1σ R(zi ), i = 1, . . . , d,

α = r + δ + 1
2
µ̃R′ A−1µ̃R −

∫
E

{
σ Y(z) + [q(z) − 1](exp[σ Y(z)] − 1)

}
h(dz)

− 1
2

∫
E

Q(z)(exp[σ Y(z)] − 1)2h(dz),

µ̃R = µR −
∫

Z
σ R(z)q(z)ν(dz)

+
∫

E
σ R(z){1 − Q(z) exp[σ Y(z)]}{exp[σ Y(z)] − 1}h(dz).

The dependence of the coefficients on σ Y (z) for z ∈ E means that BSDE (6.2) is no longer
quadratic in the jump component of volatility. In order to recover a quadratic structure,
our applications will be limited to cases with deterministic volatility.

In Section 6, we saw that if Condition 6.1 is satisfied and (Y0, Yl) solve the ODE
system (6.5), then equation (6.4) defines a solution to BSDE (6.2), provided that the drift
and diffusion terms of (6.2) are suitably integrable so that the respective integrals are well-
defined. We conclude with two examples in the current context for which Condition 6.1
is satisfied and the optimality conditions reduce to an ODE system.

15 The case of no intermediate consumption can be formally embedded to this setting by letting β =
βlog (c/β) = 0.
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EXAMPLE 8.2. We assume that the risk-aversion process Q, the jump-rate intensity
kernel h, and the asset volatility processσ R are all deterministic (not dependent on the state
variable ω ∈ �). We postulate N ≥ m types of shocks represented by the partition Z =
Z1 ∪ · · · ∪ ZN (where Zi ∩ Zj = ∅ for i �= j). We assume that the instantaneous returns
of asset i are driven only by shocks in Zi; that is, z /∈ Zi =⇒ σ R

i (z) = 0. We also assume
that, for some κ0, si , υ

0
i ∈ R and κl, υl

i ∈ R
n,

r + δ = κ0 + κl′ X and µR
i = si

√
υ0

i + υl′
i X, i = 1, . . . , m,

and υl
i �= 0 implies σ R

i (z)1{z∈E} = 0; in other words, if µR
i is stochastic for risky asset

i, then the volatility of asset i has no jump component. Finally, we assume that, for
some µ0 ∈ R

n, µl ∈ R
n×n, σ̄ : Z → R

n , and q̄ : Z → R,

µX = µ0 + µlX,

σ X(zi ) = σ̄ (zi )
N∑

j=1

1{zi ∈Zj }
√

υ0
j + υl′

j X, i = 1, . . . , d,

q(zi ) = q̄(zi )
N∑

j=1

1{zi ∈Zj }
√

υ0
j + υl′

j X, i = 1, . . . , d,

z ∈ E =⇒ σ X(z) and q(z) are deterministic.

Direct computation shows that in this context Condition 6.1 is satisfied, implying a
solution of the form (6.4), provided the coefficients (Y0, Yl) solve the ODE system (6.5)
with Ȳ0 = 0 and Ȳl = 0. The ODE for Yl is independent of σ Y (z) for z ∈ E and is
therefore of the Riccati form. Once Yl is solved, the deterministic value of σ Y can be
substituted into the ODE for Y0, which is then also of the Riccati form.

EXAMPLE 8.3. We assume that Q, h, and σ R are deterministic. Given the state process
x, with drift µx and volatility σ x, we use the block notation (6.6), and analogously
σ x = [σ 1′

, σ 2′
]′, where σ 1 is �-dimensional. We further impose the restrictions:

µx = µ0 +
(

µ11 0

µ21 µ22

) (
x1

x2

)
,

σ 1 is deterministic, and σ 1(z) = 0 z ∈ E,

σ 2(z) is deterministic for all z ∈ E, and σ 2(zi ) = σ 20(zi ) + σ 2l(zi )x1, i = 1, . . . , d,

µR = υ0 + υlx1, r + δ = κ0 + κl′x + 1
2 x1′κqx1, q(z) = q0(z) + ql(z)′x1, z ∈ Z,

where µ0 ∈ R
k, µ11 ∈ R

l×l , µ21 ∈ R
(k−l)×l , µ22 ∈ R

(k−l)×(k−l), υ0 ∈ R
m, υl ∈

R
m×l , κ0 ∈ R, κl ∈ R

k, κq ∈ R
l×l ; q0 : Z → R, ql : Z → R

l , σ 20 : Z → R
k−l , σ 2l :

Z → R
(k−l)×l . Defining the expanded state process X as in Section 6, Condition 6.1 can

be verified by straight calculation, implying a solution of the quadratic form (6.7), pro-
vided the coefficients solve an ODE system. Using the notation yl = [yl1, yl2]′, were y1

is �-dimensional, the assumption σ 1(z) = 0 for z ∈ E implies σ Y(z) = yl2′σ 2(z) for z ∈ Z.
It can be shown that the ODE for yl2 simplifies to a non-homogeneous linear system.
Given a solution to the latter, the ODE system for (y0, yl1, yqt ) is of the Riccati form.
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APPENDIX A: DUALITY

A number of papers, such as Karatzas et al. (1991), Cvitani and Karatzas (1992), and
Cuoco and Cvitanić (1998), focus on duality formulations under additive utility and
Brownian information. In this appendix, we extend the duality notion of these papers to
our setting, and we argue that (under some regularity) the sufficient optimality conditions
we formulated for the primal problem are also sufficient for optimality in the dual prob-
lem. These same conditions were shown, under regularity assumptions, to be necessary
for optimality in the scale or translation invariant problem classes. Duality is defined for
an arbitrary time-zero utility function, U0 : C → R, which is not necessarily a recursive
utility.16

We consider the general market model of Section 3. For simplicity, we assume that C =
H. We define the convex dual of the function f appearing in the wealth dynamics by

f ∗(ω, t, z, θ ) = sup{ f (ω, t, w, α) − wz − α′θ : (w, α) ∈ K},
noting that the constraint set K is an important part of this definition. We let D denote
the set of all (ζ, �) ∈ P1+m

1 such that f ∗(ζ, �) ∈ P1. The primal problem is the agent’s
problem as defined in Section 3. For any (ζ, �) ∈ D, we define the (ζ , �)-problem by
making the following changes to the primal problem:

(i) Asset returns are not dependent of the agent’s market positions, there are no
trading constraints, and there is free disposal (in a sense formalized below).

(ii) The short-rate process corresponding to the money market is ζ , and the excess
return dynamics of assets 1, . . . , m are d R = �dt + dR̂ (where R is an m-vector
of cumulative excess returns).

(iii) The agent’s endowment is e + f ∗(ζ, �).

The plan (c, W , φ) is (ζ , �)-feasible if there exists some non-negative-valued process p
(representing free disposal) such that

dW = (
Wζ + φ′� + e + f ∗ (ζ, �) − c − p

)
dt + φ′dR̂, W0 = w0.(A.1)

A consumption plan is (ζ , �)-feasible if it is part of a (ζ , �)-feasible plan. We let

V(ζ, �) = sup {U0(c) : c is (ζ, �) -feasible} .

The plan (c, φ, W ) is (ζ , �)-optimal if it is (ζ , �)-feasible and V (ζ, �) = U0(c). The dual
problem is that of finding a (ζ, �) ∈ D that minimizes V (ζ, �).

Our first observation is that the optimal value of the dual problem is at least as large
as the optimal value of the primal problem:

LEMMA A.1. inf{V(ζ, �) : (ζ, �) ∈ D} ≥ sup{U0(c) : c feasible}.

Proof . Suppose (c, φ, W ) is a feasible plan in the primal problem and (ζ, �) ∈ D. By
the definition of f ∗, the process

pt = f ∗(t, ζt, �t) − f (t, Wt, φt) + Wt−ζt + φ′
t�t dt

16 Convex duality can be extended with regard to the concave aggregator of a recursive utility representation,
as discussed by El Karoui et al. (2001). Although not developed here, an analysis analogous to that of this
appendix applies with regard to this type of duality as well.
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takes non-negative values. The budget equation (3.2) for (c, φ, W ) in the primal problem
and the definition of p imply the budget equation (A.1) in the (ζ , �)-problem, and
therefore the (ζ , �)-feasibility of (c, φ, W ). This proves that V (ζ, �) ≥ U0(c). �

The above lemma allows for the possibility of a duality gap. We argue that if a feasible
plan (c, W , φ) satisfies the sufficient optimality conditions of the main part of this paper,
then (c, W , φ) closes the duality gap. Ignoring for now integrability conditions, we recall
that the sufficient optimality conditions require the existence of some (ζ, η) such that,
with � defined in (3.5), (ζ, �) ∈ ∂µ(φ, W ) and equation (3.4) defines a utility super-
gradient density π of U0 at c. By Proposition 3.2, (ζ, �) ∈ ∂µ(φ, W ) implies (under
some regularity) that π is a state-price density at c, and therefore (π | x) ≤ 0 for any
feasible consumption plan c + x. The super-gradient density property of π implies U(c +
x) ≤ U(c) + (π | x), and therefore U(c + x) ≤ U(c), verifying the optimality of c. In the
following result, we confirm that the same optimality conditions lead to the (ζ , �)-
optimality of c, a fact that implies there is no duality gap.

PROPOSITION A.1. Suppose that (c, W , φ) is a feasible plan, π ∈ S++
2 has the predictable

representation (3.4), � is defined in (3.5) (ζ, �) ∈ D, and πW ∈ S1. If (ζ, �) ∈ ∂f (φ, W )
a.e. and π is a super-gradient density of U0 at c, then (c, φ, W ) is both optimal and (ζ ,
�)-optimal, and

U0(c) = max {U0 (c̃) : c̃ feasible} = min{V(ζ̃ , �̃) : (ζ̃ , �̃) ∈ D}.

Proof . By Proposition 3.2, π is a state price density at c. Applying Proposition 3.1
shows that the plan (c, W , φ) is optimal (in the primal problem). We verify (ζ , �)-
optimality next. The assumption (ζ, �) ∈ ∂f (W , φ) implies that f ∗(ζ, �) = f (W , φ) −
Wζ − φ′�. The last equation and the budget equation (3.2) for (c, φ, W ) in the primal
problem imply the budget equation (A.1) in the (ζ , �)-problem with p = 0 (no disposal).
While we did not allow for free disposal in Proposition 3.2, the same argument goes
through in the context of the (ζ , �)-problem to show that π is a state price density at c
relative to (ζ , �)-feasibility. If c + x is any (ζ , �)-feasible consumption plan, it follows that
(π | x) ≤ 0, and therefore U(c + x) ≤ U(c) + (π | x) ≤ U(c), where we used the assump-
tion that π is a utility super-gradient density of U0 at c. This confirms the (ζ , �)-optimality
of the plan (c, φ, W ). The proposition’s last claim follows from Lemma A.1. �

APPENDIX B: PROOFS

This appendix contains proofs omitted from the main text. For simplicity, we omit in
most places the obvious a.s. or a.e. qualifications.

B.1. Proof of Lemma 3.1

Given any feasible plan (c, W , φ), integration by parts, the dynamics of π , and the
budget equation imply

d (πtWt) = πt−
(

f (t, Wt−, φt) + et − ct − ζtWt − φ′
t�t

)
dt + dMt,

where M is a local martingale. Subtracting this equation from its version obtained by
putting (c + x, W + V , φ + δ) in place of (c, W , φ) results in d(πtVt) = πt(Dt − xt) dt +
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dNt, where N is another local martingale. Letting {τn} be a localizing stopping-time
sequence for N, integrating from 0 to τn, and taking expectations results in

E [πτn Vτn

] = E

[∫ τn

0
πt (Dt − xt) dt

]
.(B.1)

By the definition of a wealth process, (W + V)− ∈ S2. Since π ∈ S++
2 , we can apply

Fatou’s lemma as follows

lim inf
n→∞ E[πτn (Wτn + Vτn )] ≥ E[πT(WT + VT)] = E[πT(WT + xT)].

On the other hand, if πW ∈ S1, E[πτn Wτn ] converges to E[πTWT]. The proof of part (a) is
completed by taking the limit inferior on both sides of equation (B.1) as n → ∞. Part (b)
follows similarly.

B.2. Proof of Proposition 4.1

Given the consumption plans c, c + x ∈ C, let

(U, �) = (U(c), �(c)) and (U + Y, � + ) = (U(c + x), �(c + x)) .

Integration by parts, the dynamics of π , and the utility dynamics imply

d(EtUt) = −Et

(
F(t, ct, Ut, �t) − FU(t)Ut −

∫
Z

F�(t, z)�(t, z)ν(t, dz)
)

dt + dMt,

where M is a local martingale. We subtract the above equation from the same equation
with (c + x, U + Y , � + ) in place of (c, U, �) to find

d (EtYt) = −Et Dt dt − πtxt dt + dNt,(B.2)

where N is another local martingale, and

Dt = F(t, ct + xt, Ut + Yt, �t + t) − F(t, ct, Ut, �t)

− Fc(t, ct, Ut, �t)xt − FU(t)Yt −
∫

Z
F�(t, z)(t, z)ν(ω, t, dz) ≤ 0 a.s.

(The last inequality follows from (4.4).) Integrating (B.2) from 0 to any stopping time τ

gives

Y0 ≤
∫ τ

0
πtxt dt + Eτ Yτ − (Nτ − N0) .

Let {τn : n = 1, 2, . . .} be an increasing sequence of stopping times that converges to T
and such that N stopped at τn is a martingale. Then

Y0 ≤ E

[∫ τn

0
πtxt dt + Eτn Yτn

]
, n = 1, 2, . . .

We let n → ∞, and apply dominated convergence. Since π, x ∈ H, the first term of
the right-hand side converges to E[

∫ T
0 πtxt dt]. Since E ∈ S2 and U, U + Y ∈ U ⊆ S2, it

follows that E[Eτn Yτn ] = E[Eτn (Uτn + Yτn )] − E[Eτn Uτn ] converges to E[ETYT]. The proof
is completed by applying the gradient inequality to F(T, ·) to conclude that YT ≤
Fc(T, cT )xT = λT xT .
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B.3. Proof of Theorem 5.1

Sufficiency: Suppose Condition 5.1 holds. Given any (ω, t, w, α) ∈ � × [0, T ] × R × R
m,

one can easily check that ∂f (ω, t, w, α) is equal to the set of all (z, θ ) ∈ R × R
m such that

µκ (ω, t) = z + κ ′θ and θ ∈ ∂f 0(ω, t, α − wκ). Given this observation, sufficiency follows
by Proposition 3.2.

Necessity: Suppose π ∈ S++
2 is a state-price density at c, and returns jumps are bounded.

For simplicity, we omit the a.e. qualifier throughout.

Step 1 We show that

πs�s = E

[∫ T

s
πtγt dt + πT�T

∣∣∣∣ Fs

]
, s ∈ [0, T ],(B.3)

reflecting the fact that trading in the γ -fund is unrestricted, and therefore the cash flow
γ is priced correctly by any state price density. We fix any (deterministic) time s ∈ [0, T),
event F ∈ Fs , and time length ε ∈ (0, T − s), and we define the processes ġ and g by

ġ(ω, t) = 1
ε

1{ω∈F, s<t≤s+ε} and g(ω, t) =
∫ t

0
ġ (ω, u) du, (ω, t) ∈ � × [0, T ].

Consider the cash flow

xt = gtγt − ġt�t, t ∈ [0, T), xT = gT�T.

(Since � ∈ S2 and γ is assumed bounded, one can easily confirm that x ∈ H.) We show
that x ∈ X (c) by verifying the feasibility of the plan (c + x, W + g�, φ + g�−κ). Integra-
tion by parts and the dynamics of � in (5.3) imply that

d (g�) = g d� + ġ� dt = (g�µκ − x) dt + g�−κ ′dR̂.

The budget equation for (c, W , φ) in this context is

dW = (Wµκ + f 0(φ − Wκ) + e − c) dt + φ′dR̂.

Combining the last two equations gives the budget equation for the plan (c + x, W +
g�, φ + g�−κ) :

d(W + g�)

= (
(W + g�)µκ + f 0(φ + g�−κ − (W + g�)κ) + e − (c + x)

)
dt + (φ + g�−κ)′ dR̂.

By Condition 5.1, (W , φ) ∈ K implies (W + g�, φ + g�−κ) ∈ K, completing the proof
that x ∈ X (c). Similarly, −x ∈ X (c), and therefore (π | x) = 0, an equation that can be
expanded to

E

[
1F

(∫ s+ε

s
πtgtγt dt − 1

ε

∫ s+ε

s
πt�t dt +

∫ T

s+ε

πtγt dt + πT�T

)]
= 0.

Letting ε ↓ 0 and using the right continuity of π and �, the boundedness of γ , and the
assumption π ∈ S++

2 , we find

E

[
1F

(
−πs�s +

∫ T

s
πtγt dt + πT�T

)]
= 0.
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Since the last equation holds for all F ∈ Fs , the proof of (B.3) is complete.

Step 2 We show that

µκ = ζ + κ ′�.(B.4)

Consider the martingale

Mt = πt�t +
∫ t

0
πsγs ds = E

[∫ T

0
πsγs ds + πT�T

∣∣∣∣ Ft

]
,

where the last equation follows from (B.3). Integration by parts and the dynamics of �

imply

dMt = πt−�t

(
µκ

t − ζt −
∫

Z
κ ′

tσ
R(t, z)η(t, z)ν(t, dz)

)
dt + dNt,

for a local martingale N. Setting the drift term to zero results in (B.4).

Step 3 We show that

� ∈ ∂ f 0(φ0), where φ0 = φ − Wκ.

Given the form of the function f and equation (B.4), for any the feasible plan (c + x, W +
V , φ + ), the process D in Lemma 3.1 is equal to D(̂), where ̂ =  − Vκ, and the
function D : � × [0, T ] × R

m → R is defined by

D (α̂) = f 0(φ0 + α̂) − f 0(α̂) − α̂′�.

For any positive integer N let

SN(ω, t) = {
α̂ ∈ R

m : φ0(ω, t) + α̂ ∈ K0, ‖α̂‖ ≤ N
}
,

DN(ω, t) = max
{

D (ω, t, α̂) : α̂ ∈ SN}
.

Since D(ω, t, 0) = 0, we know that DN(ω, t) ≥ 0. We will show that DN = 0 a.e.
Applying the Measurable Maximum Theorem (see, for example, theorem 17.18 in

Aliprantis and Border [1999]), we select a predictable process ̂ such that

DN(ω, t) = D
(
ω, t, ̂(ω, t)

)
and ̂(ω, t) ∈ SN.

Fixing any positive integer N, we also define the stopping time and stopped process

τ N = inf {t ∈ [0, T ] : |Vt| ≥ N or �t ≤ 1/N} , ̂N
t = ̂t1{t≤τ N},

where V is the incremental wealth process in the feasible plan (c̃, W̃, φ̃) = (c + x, W +
V, φ + N) that we now construct. Let N = ̂N + Vκ and x = kγ for predictable k .
The budget equations are therefore

dW = (
Wµκ + f 0(φ0) + e − c

)
dt + φ′dR̂

dW̃ = (
W̃µκ + f 0(φ0 + ̂N) + e − c − kγ

)
dt + φ̃′dR̂.

Given the first equation, the second is satisfied if

dV = (Vµκ + f 0(φ0 + ̂N) − f 0(φ0) − kγ ) dt + (̂N + Vκ)′dR̂.

Letting

kt =
{

1 if t ≤ τ N

Vτ N/�τ N if t > τ N
,
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then Vt = �tVτ N/�τ N for t > τN . Given the assumption that return jumps are bounded
above and away from zero, Vt1{t≤τ N} and Vτ N/�τ N are bounded. Therefore, using the
assumptions π, � ∈ S2, is follows that πV ∈ S1. Lemma 3.1 implies 0 ≥ E[

∫ T
0 πt DN

t dt],
and therefore DN = 0 a.e.

B.4. Proof of Theorem 5.2

Sufficiency: Let x = X (δ, �). Using the identities (5.6) and c = γ (x + U), and the quasi-
linearity of the budget equation in Condition 5.1, the wealth dynamics (5.11) imply the
budget equation (3.2). Applying integration by parts to Y = U� − W and substituting
the resulting volatility expression of Condition 5.3, as well as G∗(δ, �) = G(x, �) − δx,
it follows that U satisfies the utility BSDE. Therefore (c, W , φ) is a feasible plan and
U = U(c). Optimality is proven by showing that the process π = E/� is both a utility
super-gradient and a state-price density at c, and applying Proposition 3.1.

By assumption λ = 1/�. The aggregator form implies that λ = γ −1Gx(t, x, �) =
Fc(c, U, �). Letting FU = −Gx(x, �) (= −δ) and F� = G�(x, �), it follows that
(FU , F�) ∈ (∂U,�F)(c, U, �). By Proposition 4.1, π is a super-gradient density of U0

at c.
Finally, we verify that π = Eλ is a state-price density at c. Applying Itô’s lemma to

λ = 1/� and using the � dynamics (5.3), we find

dλ

λ−
=

(
−µκ + δ +

∫
Z

σλ(z)2

1 + 1{z∈E}σλ(z)
ν(dz)

)
dt +

d∑
i=1

σλ(zi ) dBi
t +

∫
E

σλ(z) p̂(dt × dz),

σ λ = −κ ′σ R

J
.

The above equations and integration by parts applied to π = Eλ imply the state-price
dynamics (3.4) with

ζ = µκ +
∫

Z

κ ′σ R(z)
J(z)

[
G�(z) − κ ′σ R(z)

]
ν(t, dz) and η = G� + σλ + G�σλ1{z∈E}.

By Theorem 5.1, π is a state-price density at c.

Necessity: That � = 1/λ follows by the same argument used in the proof of theorem
9(b) in Schroder and Skiadas (2005). Since λ = Gx(x, �)/γ , it follows that x = X (δ, �)
a.e. Defining Y = U� − W and φ0 = φ − Wκ, substituting into the budget equation
(3.2), and using the quasi-linearity in wealth from Condition 5.1, we obtain the wealth
dynamics (5.11). Applying Itô’s lemma to Y = U� − W , and using the dynamics of �, U
and W , and the definition of G∗ confirms the formula for � in Condition 5.3 and the
BSDE for Y . The rest of Condition 5.3 follows from the necessity parts of Proposition 9
and Theorem 5.1.

B.5. Proof of Theorem 7.1

Sufficiency: Follows from Proposition 3.2.

Necessity: The proof is similar to the proof of theorem 7(b) in Schroder and Skiadas
(2003). Their Lemma A.1 still applies (with càdlàg instead of continuous �, and using
the fact that jumps are bounded), showing that the state-price density π correctly prices
any feasible consumption plan:
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πtWt = E

[∫ T

t
πscs ds + πTcT

∣∣∣∣ Ft

]
, t ∈ [0, T ].(B.5)

Applying integration by parts to the martingale

Mt = πtWt +
∫ t

0
πscs ds,

we get

dMt = πt−Wt−

{
f 1(t, ψt) − ζ (t) + ψ ′

t

∫
Z

σ R(t, z)η(t, z)ν(t, dz)
}

dt + dNt,

for a local martingale N. Setting the drift term to zero results in

ζt = f 1(t, ψt) − ψ ′
t�t.

Consider any feasible strategy (ψ̃, ρ̃) with corresponding wealth process W̃. Then Dt

of Lemma 3.1 is given by

Dt = W̃t
{

f 1(t, ψ̃t) − f 1(t, ψt) − �t(ψ̃t − ψt)
}
.

Given the fact that π is a state price density at c, if E[
∫ T

0 πt D+
t dt] < ∞ and π (W̃ψ̃ −

Wψ) ∈ S1, then

0 ≥ (π | x) = E

[∫ T

0
πt Dt dt

]
.(B.6)

For any positive integer N, let SN(ω, t) be the set of all ψ̂ ∈ R
m such that

|ψ̂ − ψ(ω, t)| ≤ N and f 1(ω, t, ψ̂) − f 1(ω, t, ψ(ω, t)) − �(ω, t)(ψ̂ − ψ(ω, t)) ≤ N.

Applying a measurable selection theorem (see, for example, theorem 17.13 in Aliprantis
and Border [1999]), let ψ̃ be a predictable selection from SN , and let W̃ be the trading
strategy generated by (ψ̃, ρ). We also define the stopping time

τ N = inf
{
t ∈ [0, T ] : |W̃tψ̃t − Wtψt| ≥ N orW̃t/Wt ≥ N

}
.

Let

ψ̃ N
t = ψ̃1{t<τ N} + ψ1{t≥τ N},

and let W̃N be the wealth process generated by (ψ̃ N, ρ). By the construction of the
stopping time and the assumed bound on return jumps, ρW̃N ≤ bρW for some scalar b >

0, and therefore ρW̃N ∈ C. Inequality (B.6) applied to (ψ̃ N, ρ) and W̃N implies f 1(ψ̃ N) −
f 1(ψ) − �t(ψ̃ N − ψ) ≤ 0 a.s. Taking the union over all N finishes the proof.

B.6. Proof of Theorem 7.2

Sufficiency: Proposition 4.1 implies that π = λE is a utility super-gradient density at c, and
Proposition 3.2 implies that π is also a state-price density (πW ∈ S1 follows from πW =
λEW = UE , and E ∈ S2). Optimality follows from Proposition 3.1.

Necessity: Having established the pricing equation (B.5), the proof that U = λW is the
same as in the necessity proof of theorem 23 in Schroder and Skiadas (2003). Proposition
4.1 implies that π = Eλ is a utility gradient density at c. Because c is optimal, Propo-
sition 3.1 implies that π is also a state-price density. It follows from Theorem 7.1 that
condition (7.2) holds, and therefore Condition 7.3 is satisfied.
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