Infinite Horizon Stochastic Differential Utility

Darrell Duffie, Larry Epstein and Costis Skiadas

Published in Econometrica, March 1992, as an appendix to
Duffie and Epstein, “Stochastic Differential Utility,” March 1992, 60, 387-392

Abstract: Existence and uniqueness of an infinite horizon stochastic differential
utility function is proved. The issue of existence is analogous to that of stability of a
non-linear feedback system. Stability is guaranteed by imposing a “uniform sector

7 The basic properties of the finite horizon

condition” on the “feedback function.
recursive utility presented by Duffie and Epstein generalize directly to the infinite

horizon case.

Duffie is at the Graduate School of Business, Stanford University, Stanford
CA 94305 and acknowledges the support of the U.S. National Science Foundation.
Epstein is at the Department of Economics, University of Toronto, 150 George St.,
Toronto, Ontario, Canada M5S 1A1 and acknowledges the support of the Social
Sciences and Humanities Research Council of Canada. Skiadas is a doctoral candi-
date at the Department of Operations Research, Stanford University, Stanford CA
94305. The authors thank Philippe Henrotte for useful comments.

1



1. Introduction

Duffie and Epstein (1989) introduced the notion of a stochastic differential utility
over a finite horizon [0, 7] and applied it to asset pricing problems. They showed
that for an appropriately integrable consumption process, ¢, and under regularity
conditions on f, there is a unique integrable semimartingale, V7, the recursive
utility process corresponding to ¢, defined by

T
VIi=FE / flcs, VI ds
t

ft] a.s., te0,T]. (1)

A utility function, U7, is then defined by letting U7 (c) = ViI. In this paper it
is shown that, under regularity conditions on f and ¢, the finite horizon recursive
utility process corresponding to ¢ converges to an integrable semimartingale as the
horizon length goes to infinity:

Vi = lim V' a.s. (2)

T—oo

Furthermore, V; satisfies, for all t and T > t,

T
Vi=FE / fles, Vi) ds+Vr
t

Ft] a.s. (3)

It is also shown that V' is the unique integrable semimartingale satisfying (3) and a
transversality condition of the form:

lim ™ B (|Vi]) =0, (4)

for a suitable constant v. We call V' the infinite horizon recursive utility process
corresponding to c¢. An infinite horizon stochastic differential utility function, U,
is then defined by letting U(c) = Vj, and is shown to posess all of the elementary
properies of U7 discussed by Duffie and Epstein (1989). Duffie and Lions (1990)
show existence of infinite-horizon stochastic differential utility by partial differential
equation techniques in a Markov diffusion setting, admitting some weakening of the
conditions below on f.

We now proceed with the formal details of the model. For simplicity we will
omit the a.s. (almost sure) qualification whenever it obviously applies. The ba-
sic primitive of the model is a filtered probability space (2, F, IF, P), where the
filtration IF' = {F; : t > 0} is assumed to satisfy the usual conditions. It is also
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assumed that Fy is trivial, that is, it only contains events of probability one or
zero. Consumption processes are valued in a closed convex subset, C, of some sep-
arable Banach lattice. The reader may choose to think of C as a finite dimensional
Euclidean space or its positive cone. We let ||¢|| denote the norm of ¢ € C. For
fixed v € IR, D, is defined to be the space of all optional, C-valued processes,
¢ = (¢ ; t >0), such that E (fooo e V!|lc||* dt) < oo, and is equipped with the
norm |clp, = [E ([~ e " |lct|? dt)}%. Finally, for any horizon length T' < oo,
D|0,T] is defined to be the space of all optional, C-valued processes, ¢, such that
E (fOT lle: || dt) < oo and ¢; = 0 for all ¢t > T. Notice that D[0,T] C D, for all

choices of T < oo and v. Duffie and Epstein defined a recursive utility U” over
D|0,T]. In this paper the definition is extended to all of D, for an appropriate v.

2. Assumptions

The issue of existence of the infinite horizon recursive utility has the flavor of that
of stability of non-linear feedback systems. We can view f as a non-linear feedback
function. In control theory literature, f is often required to satisfy a “sector condi-
tion.” (See for example Vidyasagar (1978).) Here we will employ a more stringent
“uniform sector condition,” which can also be viewed as a generalized Lipschitz

condition.

DEFINITION. A function g : IR — IR is said to satisfy a sector condition if, for
some constants « and (5 and all z € IR\{0},

QSMSB-

We denote this by g € sector|a, 3], and say that g satisfies a uniform sector condition

if for all x € R, g(- — ) € sector|a, B]. We denote this by g € usector|a, f3].

Intuitively, g € usector|[a, 8] if and only if the slope of the line connecting any two
points of the graph of ¢ lies between a and 3.

In the sequel f : C x IR — IR will be taken to be a measurable function satisfying
the following regularity conditions:

ASSUMPTION 1. f satisfies a growth condition in consumption. That is, for some
constants ki and kg, and all ¢ € C, |f(c,0)| < k1 + ka||c]|.

ASSUMPTION 2. f satisfies a uniform sector condition in utility. That is, for some
constants v and k with v < k, and all c € C, f(c,-) € usector[—k, —v].

Remarks:



1. For v = —k < 0, Assumption 2 is equivalent to a Lipschitz condition,
justifying our claim that a uniform sector condition can be viewed as a generalized
Lipschitz condition.

2. The notation in Assumption 2 has been chosen having in mind that, in
general, v > 0. However, this is not a condition required by our theory.

3. If f(c,-) is concave, then Assumption 2 is equivalent to f(c,-) € sector[—k, —v].

3. Existence and Uniqueness

Duffie and Epstein (1989) show that if f satisfies Assumptions 1 and 2, with v = —k,
then for any ¢ € D[0,T] there is a unique integrable semimartingale! V7 that
satisfies the recursive relation (1) for ¢t € [0,7] and such that V,;I' = 0 for t > T.
The finite horizon recursive utility, UT : D[0,T] — IR, is then defined by letting
UT(c) = V. The following theorem allows us to extend this definition.

THEOREM 1. Under Assumptions 1 and 2 and for all ¢ € D,,, the limit in (2) exists
and satisfies (3). Furthermore, (2) defines the unique integrable semimartingale V
satisfying (3) and the transversality condition (4)

Assumption 2 and the requirement that ¢ € D, play antagonistic roles. We
want to find the largest possible v for which Assumption 2 holds, in order to allow
the largest possible class of consumption processes implied by the theorem.

The infinite horizon recursive utility, U : D, — IR, can now be defined by
setting U(c) = V. Notice that, for 0 € C and f(0,0) = 0, U7 is the restriction of
U to D[0,T]. Before proving the theorem we give two lemmas, proved in Appendix
I, which will be useful in subsequent proofs. Until the end of the proof of Theorem
1, we fix some ¢ € D,,.

LEMMA 1. Suppose V is an integrable semimartingale satisfying (3), for some
T > 0. Then, for all stopping times Ty, 7o bounded by T,

V., =FE [/ fles,Vs) ds + Vo,

FTI} , on {1 <7}

PROOF. See Appendix I.
LEMMA 2. There exist constants K1 and K5 such that for allt < T,

T
/ lles|le™* ds ,7-",5].
t

1 'We identify semimartingales that are versions of each other.

V.| < K1 + Kqe”'E
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PROOF. See Appendix I.

PROOF OF THEOREM 1.

Ezistence: We show that the limit in (1) exists by proving that, for each time
t > 0, the sequence {V;” : n > 0} is Cauchy, almost everywhere on 2. Suppose
n,m > N, fix ¢, and define the stopping times: 7 = inf{s: s > ¢, V* < V/"} and
7n =7 A N. Lemma 1 and Assumption 2 imply, for all v € [¢,T],

TN

(Vi — Vum)l{‘r>u} =K {/ (f(es, Vi') = fles, Vi) 1{T>u} ds

]—“u}
+E [V = Vi)l rsuy | Ful

TN
<E { [V Y ay ds + VG~ VO oy ‘ fu]

=F

N
/ _V(‘/sn - ‘/sm)l{’r>s} ds + (Vﬁ - VI(fn)l{T>N} ‘ fu] .

By the stochastic Gronwall-Bellman inequality,

(Vi =Vt < e "WIOE (VR = VL sny | F

<e"WEOB[|VEI+ VR | F] .-

Because of symmetry, |V,* —V;"| < 2" WNV=DE [|[V| + |V | F] . Combining this
result with Lemma 2 proves our assertion.

To show that V satisfies (3), we start with V" = E [ftT fles, V) ds + Vi | ]—"t] :
Noting that [ f(cx, V)| < £ (€e: V') — F(e0:0)| + £ (eas 0] < max(k, —) V2] + ks
ks||cs|| and using dominated convergence and Lemma 2, we can let n — oo to derive
(2). )

Uniqueness: Suppose V and V both satisfy (3) and (4). Arguing exactly as
above, we find |V, — V4| < 2e *(N-OF [|VN| + |Vn| | .7-}] . Taking expectations on
both sides and letting N — oo, we find Vi = V.

QED.
We conclude this section by discussing the representation:

vtzE[/tooﬂcs,mw

7. 5
Tempting as it is, such a representation is not always valid.
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EXAMPLE. Let f(c,v) =1 —v. Then, clearly, Assumptions 1 and 2 are satisfied.
For any c, the corresponding utilities are, V,;'' = 1 — e®*=7) and V; = 1. While (2)
and (3) are satisfied, (5) fails. One might suggest that (5) be modified to

vtzE[/tooﬂcs,mw

for some random variable Vo, (identically equal to 1 in our case). But then consider
fle,v) =c—(1+ 1)v and take ¢, = 1+¢. Again Assumptions 1 and 2 are satisfied
while the corresponding utilities are VtT =1 +H)VIand Vi = (1 +t)V;, with V7T
and V' as above. Now (5) fails even more seriously. However, we have the following

ft:| +Vooa

positive result.

PROPOSITION 1. Suppose v < 0, Assumptions 1 and 2 are satisfied, and ¢ € D,,.
Then (3) and (5) are equivalent.

PROOF. Clearly, (3) implies (5). For the converse, we wish to let 7" — oo and then
apply the dominated convergence theorem as in the proof of the existence part of
the above theorem. The reader can verify that Lemma 2 and Fubini’s theorem yield

the required integrability condition. It is here that the condition v < 0 is crucial.
QED.

4. Properties

We conclude this paper by briefly reviewing some properties of the infinite horizon
stochastic differential utility. For this section, f is taken to satisfy Assumptions 1
and 2. Most of the basic properties are direct consequences of their finite horizon
counterparts and equation (2). Thus

e U is (strictly) increasing whenever f is (strictly) increasing in consumption.

e U is concave whenever f is concave.

e U is time consistent in the sense explained in Duffie and Epstein (1989).
The discussion on risk aversion and homotheticity in Duffie and Epstein (1989) also
extends in an obvious manner to the infinite horizon case. A less obvious result is

continuity relative to the norm || - |[p, on D,.

THEOREM 2 (CONTINUITY). The utility function U : D, — IR is continuous
provided f is continuous.

PROOF. See Appendix I.

Finally, the discussion of the Bellman equation by Duffie and Epstein (1989)
also generalizes to an infinite horizon. The only change is the terminal value condi-
tion for the value function which is now replaced by a transversality condition as in
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equation (4). The reader who has read the proofs of this paper will have no trouble
in applying the same approach in modifying the finite horizon argument.

An alternative approach to Bellman’s equation for solving optimization prob-
lems in the presence of convexity is generalized Kuhn-Tucker theory. This requires
the computation of the gradient of the utility function. Work in this direction is
reported in Duffie and Skiadas (1990).

APPENDIX I

This appendix contains the proofs omitted in the main text.

LEMMA 1. Suppose V is an integrable semimartingale satisfying (3), for some
T > 0. Then, for all stopping times Ty, 7o bounded by T,

T2
V., =FE [/ fles,Vs) ds + Vo,
T1

.7-"71} , on {1 <7}

PROOF. Equation (3) implies

t T
/f<cs,vs>ds+vt:E / (oo, V) ds+ Vi
0 0

Ft]u

which is a martingale. Doob’s Optional Stopping Theorem then allows us to replace
t by 7 or 7 in the above equation and hence in (3). Therefore,

lel 9
fn] |

Subtracting the last equation from the second to last, the result follows.

T
Vo, =FE / fles,Vs) ds+ Vrp

and using the fact that F,, C F,,,

T
EV.,|F|=F / f(cs, Vi) ds + Vr

QFED.
LEMMA 2. There exist constants K1 and Ko such that for all t < T,

T
[ ledle as ft] .
t

7

V| < Ky + Koe”'E




PROOF. Fix t and define the stopping times:
T =inf{s:s>¢t, VI <0} and 7~ =inf{s:s >t V. >0},

with the convention that inf ) = co. Let 7 represent either 7 or 7. Since 7 < T,
Lemma 1 implies that, for all u € [t,T7,

VuTl{T>u} =F |:(/ f(cstsT) ds + VTT) 1{T>u}

fu] |

The sector condition on f then implies that, for all u € [¢,T],
fu] .

fu] |

The stochastic version of the Gronwall-Bellman inequality (stated in the appendix)

ft] ,
ft] |

Adding the last two inequalities and noting that 77 = 7= = 0 = V,I' = 0, we

|

-l
and since Vﬂ Liztsa) <0,

T
VuTl{T+>u} < E / f(657 VST)1{7—+>S} ds

T
Vi1 S | [ (500 = oVT) 1oy ds

Similarly, for all u € [t, T,

T
VIl < B | [ ()] = (V) 1y ds

gives

T
Vilesy <E / e VD f(es,0)[Lrt54y ds
t

and

T
_V;Tl{q-*>t} < E / €_V(S_t)|f(0370)|1{7*>3} ds
t

conclude that

T
VI <E / e VD f(cy, 0)] ds
t

The result follows by the growth condition on f.
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QED.

THEOREM 2 (CONTINUITY). The utility function U : D, — IR is continuous
provided f is continuous.

PROOF. Suppose ¢,é € D, and let V and V be the respective associated utility
processes. Fix t and define the stopping times: 7 = inf{s : s > ¢, V; < VS} and
7n =7 A N. Lemma 1 and Assumption 2 imply that, for all v € [t, T,

A I TN A A
(Vu - Vu)1{7>u} =LK / <f(037 Vs) - f(é& Vts)) 1{T>u} ds + (VTN - VTN)l{T>u} ‘ fu:|

N
<E| [ (feaVi) = Fen Vo) + 16 Vo) = F6u 7)) Lrmsy ds

+E [(VN — V)= | fu:|

<E /UN (1700 Ve) = F@os Vol = 0Vs = Vo)Lirssy ) s fu]

+ E [(VN — VN)1{7>N} ‘ ]:u} .
By the stochastic Gronwall-Bellman inequality, applied on [¢, 17,
(Vi = Vo) <e 0B [[Va] + V] | 7]

N
+E/ e N=9)| s, Vi) — f(és,V2)| ds
t

ft] |
Therefore, by symmetry,
Vi = Vil < 2¢O (V] + V| | 7]

N
Y / e N=9)| (e, V) — f(2s,V3)| ds
t

] (6)
ft .

Suppose now that ¢® — ¢ in D,. By Jensen’s inequality, this implies that
™ — ¢||* converges? to zero in L'(2 x [0,00),F ® B[0,00), ), where p is the
product measure defined by u(A x B) = FE ( i) pe Mg dt). It follows that, given
any subsequence (c”;v; k=1,2,...), there is a further subsequence (c”g; E=1,2,...)

2 Recall that an optional process is necessarily progressively measurable.
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that converges to c, p-a.e. as k — oo. By continuity of f, |f(cs, Vi) — f(ci*, Vi) — 0
as k — oo, u-a.e. Noting that

F(en, Vi) = F(er® Vi) < | F (e, Vi) = Flew, 0)] + | (e, 0)] + | (e, 0)]
+ £, Vh) = F(e®,0)]
< 2max(k, —v)[Vi| + 2k1 + ka(|[ei]| + [ |]),

and using Lemma 2, the reader can verify that the dominated convergence theorem
allows us to conclude that for every N > 0,

E

— 0 as k — oo.

N "
/ e "N fles, Vo) = fled™, Vi) ds

0

Let V™ be the utility process corresponding to ¢ . Then given ¢ > 0, the above
result and (6), applied at ¢ = 0, imply that there exists K such that for all £ > K,

Vo = V5| < 26 E [[val + IVF] 4=

Letting N — oo and using (4), it follows that |V — Von;“/| <gforal k> K.
We have shown that every subsequence of {U(c") — U(c)} has a further sub-
sequence converging to zero. Therefore, the original sequence also converges to

Zero.

QED.

APPENDIX II

We state the Stochastic Gronwall-Bellman Inequality. A proof can be found in the
appendix of Duffie and Epstein (1989).

THE STOCHASTIC GRONWALL-BELLMAN INEQUALITY. Let (2, F, IF, P) be
a filtered probability space whose filtration IF' = {F; : t € [0,T]} satisfies the usual
conditions. Suppose {Xs} and {Ys} are optional integrable processes and « is a
constant. Suppose, for all t, that s — E [YS ‘ ]—}] is continuous almost surely. If,

forallt, V; < FE [ftT(Xs + aYs) ds | Ft] + Y7, then, for all t,

T
/ e X ds
t

The same result holds if the sense of the above inequalities is reversed.

Y, <e®TVE Yy | /] +E

Ft] a.s.
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