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Summary. This paper analyzes two equivalent equilibrium notions under
asymmetric information: risk neutral rational expectations equilibria
(rn-REE), and common knowledge equilibria. We show that the set of fully
informative rn-REE is a singleton, and we provide necessary and su�cient
conditions for the existence of partially informative rn-REE. In a companion
paper (DeMarzo and Skiadas (1996)) we show that equilibrium prices for the
larger class of quasi-complete economies can be characterized as rn-REE.
Examples of quasi-complete economies include the type of economies for
which demand aggregation in the sense of Gorman is possible (with or
without asymmetric information), the setting of the Milgrom and Stokey
no-trade theorem, an economy giving rise to the CAPM with asymmetric
information but no normality assumptions, the simple exponential-normal
model of Grossman (1976), and a case of no aggregate endowment risk. In
the common-knowledge context, we provide necessary and su�cient condi-
tions for a common knowledge posterior estimate, given common priors, to
coincide with the full communication posterior estimate.

JEL Classi®cation Numbers: D82, D84, G12.

1 Introduction

In the literature of competitive rational expectations equilibria with asym-
metrically informed agents there are several well known basic models in
which a fully informative equilibrium is known to exist, but the possibility of
partially informative equilibria is either not resolved, or not characterized.
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The following are three such familiar examples:
(a) When agents have ``concordant'' beliefs and rational expectations,

and the initial allocation is ex-ante Pareto optimal, Milgrom and Stokey
(1982) have shown that there is no trade by risk-averse agents no matter what
their private information is. The associated prices can be fully informative,
meaning that they are also equilibrium prices in an economy in which all
agents make their private information public.1 Partially informative prices
are also a possibility, however, and a clear understanding of when exactly
partial revelation is possible is lacking.

(b) Grossman (1976, 1978) has demonstrated a fully informative equi-
librium in a simple model in which agents with constant absolute risk
aversion trade risky assets and one risk-free asset, having observed private
signals, and being initially endowed with some of these assets. Grossman's
linear equilibrium relies on the assumption that payo�s and signals are
jointly normally distributed. The possibility of partially informative equi-
libria has remained an open question, despite the simplicity of the model.

(c) Aumann (1976) has argued that if some communication process has
caused agents with common priors to have common knowledge of their
estimate of a random variable, then this estimate has to be common among
all agents. The estimate need not coincide with what the agents would have
agreed upon, however, had they pooled all their private information. A
characterization of when the common posterior has to agree with the full
communication posterior is lacking. While not directly involving trading, we
will show that posterior estimates in Aumann's setting can be viewed as
equilibrium prices in an economy with risk-neutral agents, and whether the
posterior is the full-communication posterior corresponds exactly to whether
these equilibrium prices are fully informative or not.

In a paper closely related to the present one (DeMarzo and Skiadas
1996), hereafter abbreviated to DS, we have shown that all of the above
examples are instances of a type of economy with asymmetric information
that we call quasi-complete. There are several other examples of quasi-
complete economies of interest. For example, in DS we show that the class of
economies that allow demand aggregation in the sense of Gorman (1953)
under symmetric information (spanned endowments and linear risk tolerance
being key ingredients) are quasi-complete even if agents possess heteroge-
neous information. As a consequence, Gorman aggregation in these econo-
mies is possible even under asymmetric information and partially informative
prices. Grossman's (1976) model is a special case, as is an asymmetric
information version of the CAPM of Sharp (1964) and Lintner (1965), with
quadratic utilities, endowment spanning, but no normality assumptions.

1 We use the term ``fully informative'' as opposed to ``fully revealing'' to emphasize the

distinction that in a fully informative equilibrium agents need not in fact know other agents'

private signal realizations, but given their information they would not alter their decisions even if

they did observe the agents' pooled signals.
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Another example of a quasi-complete economy discussed in DS is one with
asymmetric information, common priors, and no aggregate endowment risk.
Quasi-complete economies always have a fully informative equilibrium, and
partially informative equilibria may or may not exist, depending on the
underlying distribution of the asset payo�s and agent signals. In this paper
we develop conditions that are necessary and su�cient for the existence of
partially informative equilibria in quasi-complete economies.

A key result of DS that is of interest to us in this paper is that equilibrium
prices of quasi-complete economies can always be characterized as equilib-
rium prices in an equivalent risk-neutral economy. With this fact in mind, in
this paper we formulate equilibrium prices directly in terms of the notion of a
risk-neutral rational expectations equilibrium (rn-REE). We will show that
the set of fully informative rn-REE prices is a singleton, and we will provide
necessary and su�cient conditions for the existence of partially informative
rn-REE. In the context of the common-knowledge literature, these condi-
tions can be interpreted as necessary and su�cient for a common-knowledge
posterior estimate (under common priors) to coincide with the full-com-
munication posterior. The same conditions can be applied to any instance of
a quasi-complete economy. For example, as a corollary of this paper's re-
sults, we show in DS that the fully informative equilibrium in Grossman's
(1976) model is in fact unique, but also that minor deviations from the
assumption that asset payo�s and signals are jointly normally distributed
lead to the existence of partially informative equilibria.

Examples of robust partially informative rational expectations equilibria
have been constructed by Ausubel (1990), and Polemarchakis and Siconol®
(1993). The results of this paper also provide a way of constructing partially
informative equilibria in the context of quasi-complete economies. Quasi-
complete economies, however, always possess a fully informative equilibri-
um, and therefore partial revelation is always associated with indetermi-
nacy.

The remainder of the paper is organized in ®ve sections and an appendix.
In Section 2 we de®ne the equivalent notions of a risk-neutral rational ex-
pectations equilibrium (rn-REE) and a common-knowledge equilibrium
(CKE). We show that the set of fully informative rn-REE is a singleton,
while partially informative rn-REE can also exist. In Section 3 we develop
the ``separably oriented'' (SO) condition, which is su�cient for uniqueness,
and, in a sense, nearly necessary as well. For example, it is the SO condition
that is used in DS to prove uniqueness in Grossman's model. In Section 4 we
formulate the ``overlapping diagonals'' condition (OD), the violation of
which is easy to con®rm, and provides an easy way of showing examples of
the existence of robust partially informative equilibria. We also present
special cases in which the OD condition is su�cient for uniqueness. In
Section 5, we develop the ``approximately separately oriented'' (ASO) con-
dition, which is both necessary and su�cient for uniqueness, and we discuss
its relationship with the more tractable SO and OD conditions. Section 6
concludes with a discussion of ``randomized'' versus ``pure'' prices, notions
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introduced in Section 2. The appendix develops a requisite mathematical
duality result.

2 Risk-neutral REE and common knowledge

We begin with the formal notion of a risk-neutral rational expectations
equilibrium (rn-REE), followed by an interpretation in the context of the
common-knowledge literature.

Uncertainty is represented throughout by the probability space �X;F; P�,
with E denoting the corresponding expectation operator. There are n agents.
Agent i observes a private signal Si : X ! Ai, where �Ai;Ai� is a measurable
space. Naturally, Si is assumed F=Ai-measurable. We let S � �S1; . . . ; Sn�,
A � A1 � � � � � An, and A �A1 
 � � � 
An (the product r-algebra). We also
take as primitive an Rm-valued integrable random variable V � �V1; . . . ; Vm�,
and a r-algebra R �F. Given any random vector Z, the notation r�Z�
denotes the smallest sub-r-algebra of F with respect to which Z is measur-
able.

The following are assumed throughout the paper:

Standing Assumption 1. The random vectors S and V are R-measurable.

Standing Assumption 2. There exists a random variable with continuous cu-
mulative distribution function that is independent of R.

For example, one can take R � r�S; V �, although in the context of
quasi-complete economies one would allow R to include other ``relevant''
information. The second assumption stipulates a rich enough source of ex-
traneous uncertainty, and it can always be satis®ed after an appropriate
enlargement of the underlying probability space.

2.1 Risk-neutral REE

The central equilibrium notion analyzed in this paper is that of a risk-neutral
rational expectations equilibrium, de®ned as follows:

De®nition 1. A risk-neutral rational expectations equilibrium (rn-REE), p, is a
Rm-valued random vector with the following properties:

(a) For every i 2 1; . . . ; nf g, p � E V jSi; p� �.
(b) p is conditionally independent of R given S.

A rn-REE, p, is fully informative if p � E V jS; p� �, and partially informative
otherwise. A rn-REE, p, is unique if p � q a.s. for every rn-REE q, and pure if it
is r�S�-measurable.

In its simplest interpretation, a rn-REE represents a set of competitive
equilibrium prices in an economy consisting of n risk-neutral agents with
common prior P , trading m risky assets with payo�s V , and one risk-free
asset with both payo� and price normalized to be equal to one. Agent i
observes the private signal Si as well as the information revealed by prices.
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Since agents are risk-neutral, they expect zero pro®t in equilibrium, and their
speci®c trades can be anything as long as they clear the market (for example,
we can always assume there is no trade). Alternatively, one can think of
the m risky assets as representing forward contracts, with p being the
corresponding equilibrium forward prices.

In DS we explain that rn-REE arise as a characterization of equilibrium
prices in the much broader class of quasi-complete economies, in which risk-
neutrality is no longer assumed, and equilibrium trades need not be indeter-
minate. Under this interpretation, the underlying probability P does not
represent prior beliefs, but rather an ``equivalentmartingalemeasure'' (EMM).
The construction of an EMM in each of the examples brie¯y referred to in the
Introduction is spelled out in DS, to which we refer for further details.

A rn-REE is fully informative if it remains a rn-REE after all agents have
observed the pooled signals S. Part (b) of De®nition 1 states that prices
cannot reveal more relevant information (as de®ned by R) than contained in
the pooled signals S. On the other hand, we do allow for the possibility that
prices are randomized, that is, they contain information not observed by any
of the agents, which somehow has entered prices through some unmodeled
price formation process. This type of randomized prices is further discussed
in DS, and Dutta and Morris2 (1997). While randomized prices provide the
cleanest form of our results, in Section 6 we will also provide versions in-
volving only pure prices. Of course, proving uniqueness in the broader class
of randomized prices considered here always implies uniqueness in the
narrower class of pure prices.

The following simple proposition shows that the set of fully informative
rn-REE is a singleton. The possibility of partially informative rn-REE is
illustrated in the example following this result.

Proposition 1. The random vector p is a fully informative rn-REE if and only if
p � E V jS� �.
Proof. By the law of iterated expectations, we have

E V jSi;E V jS� �� � � E E V jS� �jSi;E V jS� �� � � E V jS� � :
This shows that E V jS� � is a rn-REE. The same argument with S in place of Si

shows that p is fully informative. The converse is immediate from the de®-
nitions. (

Example 1. Suppose that m � 1, n � 2, V � S1S2, and that S1 and S2 are
stochastically independent and have zero mean. Then E V jSi� � � 0 for
i 2 1; 2f g, and therefore p � 0 is a partially informative (pure) rn-REE. Of
course, p � V is also a rn-REE. This completes Example 1.

2 Dutta and Morris developed their examples concurrently and independently of this paper.

Besides the connection of their common beliefs equilibrium and our de®nition of (randomized)

equilibrium prices, there are similarities between some of their examples, and our example in

Section 3.2.
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The main objective of subsequent sections is to provide necessary and
su�cient conditions for rn-REE uniqueness.

2.2 Common knowledge equilibria

Another interpretation of rn-REE is obtained in the context of the common-
knowledge literature surveyed by Geanakoplos (1994). To show this con-
nection, we introduce the notion of a common knowledge equilibrium
(CKE), a slight extension of the notion of common-knowledge posterior
estimates discussed by Aumann (1976) and many others.

A CKE is a collection of information sets, one for each agent, that can be
thought of as the outcome of some communication process that somehow
has caused all agents' posterior estimates of V to become common know-
ledge. The relevant (as de®ned by R) information communicated cannot
exceed what is collectively known by all the agents. We do allow, however,
for the possibility of (endogenous) noise in the communication process, in
the sense that an agent may obtain information that is irrelevant given the
agents' pooled signals. It is this last possibility which makes our de®nition
more inclusive than, say, Aumann's (1976).

The formal de®nition of a CKE is as follows:

De®nition 2. A collection, �F1; . . . ;Fn�, of sub-r-algebras of F is a common-
knowledge equilibrium (CKE) if, for every i,

(a) Si is Fi-measurable.
(b) E V jFi� � is Tn

j�1 Fj-measurable (common knowledge).
(c) Fi is conditionally independent of R given S.

The CKE is fully informative if E V jFi� � � E V jS� � for all i.

By the results of McKelvey and Page (1986) (simpli®ed by Nielsen,
Brandenburger, Geanakoplos, McKelvey, and Page, 1990), part (b) of
De®nition 2 can be replaced by the apparently weaker requirement that a
stochastically monotone aggregate of the posterior estimates (as de®ned by
McKelvey and Page) is common knowledge.

Aumann's (1976) fundamental observation is that if all the conditional
estimates, E V jFi� �, are common knowledge, then they are equal to each
other and to E V jTn

i�1 Fi
� �

. It is well known, however, that in a CKE agents
do not have to agree with the estimate, E V jS� �, that would have prevailed
had all agents made their private information public. In other words, not
every CKE is fully informative. For a simple concrete example, just take
Fi � r�Si� in Example 1.

The following result shows that the notions of rn-REE and CKE are
equivalent. While straightforward, this conclusion has the important impli-
cation that all our results about rn-REE have direct counterparts for CKE.

Proposition 2. (a) Suppose that p is a rn-REE. Then �r�S1; p�; . . . ; r�Sn; p�� is
a CKE, and it is fully informative if and only if p is fully informative.
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(b) Suppose that �F1; . . . ;Fn� is a CKE. Then E V jTn
i�1 Fi

� �
is a rn-REE,

and it is fully informative if and only if �F1; . . . ;Fn� is fully informative.

Proof. Part (a) is immediate from the de®nitions. To show part (b), suppose
that �F1; . . . ;Fn� is a CKE, and let p � E V jF0� �, where F0 �

Tn
i�1 Fi.

Using the fact that E V jFi� � is F0-measurable, and the law of iterated
expectations, we have

E V jFi� � � E E V jFi� �jF0� � � p :

(The last line is essentially Aumann's (1976) argument.) Since, p is
Fi-measurable, we also have E V jFi; p� � � p. Applying the operator
E �jSi; p� �, we conclude that E V jSi; p� � � p. Clearly, p, being F0-measurable,
is conditionally independent of R given S, and therefore p is a rn-REE. By
Proposition 1, p is fully informative if and only if p � E V jS� �, and since
p � E V jFi� � for every i, p is fully informative if and only if �F1; . . . ;Fn� is
fully informative. (

One can also easily extend the above equivalence to the notions of pure
rn-REE and pure CKE, where the latter is de®ned by strengthening part (c)
of De®nition 2, requiring that each Fi is r�S�-measurable. Given Propo-
sition 2, Proposition 1 and Example 1 have the obvious counterparts.
Similarly, most subsequent results in this paper can be interpreted as nec-
essary and/or su�cient conditions for the existence of partially informative
CKE.

A process of consecutive communications of posterior estimates that
leads to common knowledge has been discussed by Geanakoplos and Pole-
marchakis (1982), and in greater generality by Washburn and Teneketzis
(1984) (who also give further related references). These papers do not deal
with extraneous information or noise. One can easily modify the above
formulations, however, to allow for the public announcement of additional
noisy information at every stage, leading to information sets corresponding
to the CKE notion of this section. For example, if p is a partially informative
rn-REE, the public announcement of p causes the communication process to
converge in one step to a partially informative CKE.

3 The ``separably oriented'' condition

The key to determining rn-REE uniqueness lies in properties of the function,
f : A ! Rm, giving the fully informative rn-REE as a function of the sig-
nals f �S� � E V jS� �. In this section we introduce a condition on f that is
always su�cient for rn-REE uniqueness, and in a certain sense almost nec-
essary as well. At the cost of mathematical complexity, a true necessary and
su�cient condition for rn-REE uniqueness is given in Section 5.

The condition that will concern us in this section is de®ned as follows:

De®nition 3. The function f : A ! Rm is separably oriented (SO) if there
exist product-measurable and bounded functions, gi : Ai �Rm ! Rm, such
that

On the uniqueness of fully informative rational expectations equilibria 7



f �s� 6� r ) � f �s� ÿ r� �
Xn

i�1
gi�si; r� > 0; �s; r� 2 A�Rm : �1�

The term ``separably oriented'' is motivated by the geometric interpretation
of the condition: for any given reference point r, the vector f �s� ÿ r forms an
acute angle with the vector

P
i gi�si; r�.

The SO condition is useful in applications for proving equilibrium
uniqueness. For example, in DS we utilize this condition to prove that the
fully informative (linear) equilibrium in Grossman's (1976) model is unique,
thus ruling out partially informative (nonlinear) equilibria.

Some functional forms of f that imply the SO condition are summarized
in the following example. The proofs of all claims in the example are
straightforward, and are left to the reader.

Example 2. In this example we assume that f is real-valued �m � 1�, and we
provide some functional forms that deliver the SO condition. For m > 1, f is
SO if each one its components is SO, and therefore the following functional
forms are useful in this case, too.

The function f : A ! R is ordinally additive if f �s� � k
Pn

i�1 hi�si�
ÿ �

,
s 2 A, for some measurable and bounded functions hi : Ai ! R and strictly
increasing k : R ! R. An ordinally additive f is necessarily SO, and arises,
for example, in the uniqueness proof in Grossman's (1976) economy.3

A weaker condition than ordinal additivity is the following. The function
f : A ! R is implicitly additive if there exist bounded product-measurable
functions hi : Ai �R ! R such that f �s� �Pn

i�1 hi�si; f �s�� for all s 2 A,
and

P
i hi�si; r�

ÿ �ÿ r is strictly decreasing in r 2 R, for every s 2 A. (The
latter monotonicity condition implies that f is uniquely determined by the
hi.) If f is implicitly additive, then f is SO. Conversely, if f : A ! R is SO,
with the additional restriction on the gi that f �s� � r ) P

i gi�si; r� � 0,
then f is implicitly additive. This completes Example 2.

3.1 The su�ciency and near necessity of the SO condition

The su�ciency of the SO condition for rn-REE uniqueness amounts to a
simple ``adding-up'' argument:

Proposition 3. Suppose that f : A ! Rm satis®es f �S� � E V jS� � and is SO.
Then f �S� is the unique rn-REE.

Proof. Suppose that the assumptions of the proposition hold, and p is a
rn-REE. Using the law of iterated expectations, and the fact that p is con-
ditionally independent of V given S, we have, for every i,

p � E V jSi; p� � � E E V jS; p� �jSi; p� � � E f �S�jSi; p� � :

3 Strictly speaking, in Grossman's example some of the functions assumed bounded above are

not bounded, but all the arguments that lead to uniqueness go through. We assume boundedness

here for convenience of exposition.
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Therefore, E f �S� ÿ pjSi; p� � � 0 for every i. Letting the gi be as in De®ni-
tion 3, we have E�� f �S� ÿ p� � gi�Si; p�� � 0 for all i. Adding up,

E � f �S� ÿ p� �
Xn

i�1
gi�Si; p�

 !
� 0 :

In view of �1�, this equation implies that p � f �S� a.s. (

While the SO condition is not in general necessary for rn-REE uniqueness
(a counterexample will be given in the appendix), it becomes necessary under
some regularity conditions:

Proposition 4. Suppose that A is ®nite, and P �S � s� > 0 for all s 2 A.
Suppose further that every function f : A ! Rm satisfying f �S� � E V jS� � is
not SO. Then there exists a partially informative rn-REE.

The proof of this result is considerably more elaborate than Proposi-
tion 3, and follows from the more general results of Section 5. The under-
lying intuition is fairly straightforward, however, and will be illustrated
through a simple example in the following subsection.

3.2 An example

We now consider a special case that illustrates the arguments leading to
Proposition 4.We assume that n � 2, m � 1,R � r�S�, and A1 � A2 � 0; 1f g,
with P �S � s� > 0 for every s 2 A. In particular, V � f �S� for a function
f : A ! R. We assume that f is not SO, and using this fact we are going to
demonstrate the existence of a partially informative rn-REE.

Because A is ®nite, the technical restrictions on the gi of boundedness and
measurability in De®nition 3 can be safely ignored (this is part of the proof
of Proposition 9). Since f is not SO, there exists r 2 R such that f 6� r and
there is no choice of the gi�si; r� for which �1� holds. Without loss of gen-
erality, we assume that this is the case for r � 0 (otherwise, we would apply
the same arguments with f ÿ r in place of f ). In matrix form, we are as-
suming that there is no g 2 R4 such that Fg� 0, where

F �
f �0; 0� 0 f �0; 0� 0

0 f �1; 0� f �1; 0� 0
f �0; 1� 0 0 f �0; 1�

0 f �1; 1� 0 f �1; 1�

2664
3775 and g �

g1�0; 0�
g1�1; 0�
g2�0; 0�
g2�1; 0�

2664
3775 :

Equivalently, the range of F does not intersect the interior of the positive
cone in R4. By the separating hyperplane theorem, there exists some non-
zero row vector w � �w�0; 0�;w�1; 0�;w�0; 1�;w�1; 1� � such that wF � 0 and
0 6� w � 0. By proper scaling, we assume w is a probability distribution.
Moreover, we can always choose w so that f �s�w�s� 6� 0 for some s. (To see
that, simply remove from F the rows corresponding to the values of f that
vanish, and apply the same argument in a lower dimensional space.) Let the
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probability Q be de®ned so that dQ=dP is r�S�-measurable, and Q�S � s� �
w�s� for all s. It follows easily that

EQ f �S�jSi� � � 0; i 2 1; . . . ; nf g ; �2�
where EQ denotes the expectation operator relative to Q. Therefore, zero
price is a partially informative rn-REE when the underlying probability P is
replaced by Q.

Our next task is to take the partially informative rn-REE under Q, and
randomize it appropriately in order to create a partially informative
rn-REE under the original probability P . Imagine four coins, one for every
s 2 A, such that coin s will land heads with probability kw�s�=P �S � s�, for
some constant k 2 �0; 1�. (The constant k can be chosen arbitrarily in the
interval �0;K�, where K � mins2A P �S � s�=w�s�.) The formal justi®cation for
the availability of such coins can be provided using Assumption 2. We de®ne
a price vector, p, as follows. On the event S � sf g, we assign the value zero to
p if coin s turns out heads, and the value f �s� if the coin turns out tails. By
construction, P p � 0jS � s� � � kw�s�=P �S � s�. Therefore k � P � p � 0 �,
and, by Bayes' rule, w�s� � P S � sjp � 0� �. Using the equation wF � 0, it
follows that p is a partially informative rn-REE. On the event p 6� 0f g, p is
fully informative, but on the event p � 0f g both agents expect a payo� of
zero, while f is not identically zero. This proves Proposition 4 for this ex-
ample.

The example also illustrates the indeterminacy that results when the SO
condition is violated. In the speci®c context, if f is not SO, then there exists a
manifold (with boundary) of partially informative rn-REE, whose dimension
is at least one. One source of indeterminacy is the value of the parameter k.
Another source of indeterminacy is the fact that the probability Q solving the
system of equations �2� is typically non-unique. To illustrate, consider the
extension of the above example in which each signal space consists of N � 3
possible values, and there are n � 2 agents. Then the vector w lives in a space
of dimension Nn. On the other hand, the number of constraints in the con-
dition wF � 0 is only Nn. Of those, nÿ 1 are redundant, because the columns
corresponding to each agent all add up to the same vector. (This corresponds
to the fact that if EQ V jSi� � � 0 then EQ�V � � 0.) Adding the constraint that w
is a probability, we are left with a set of probabilities, W, that generically is
the intersection of an �N n ÿ Nn� nÿ 2�-dimensional linear manifold and the
positive cone of an N n-dimensional Euclidean space. For some (robust)
choice of the primitives, it is possible that the manifold of pure partially
informative REE has dimension Nn ÿ Nn� nÿ 2. Moreover, any element of
W produces a continuum of partially revealing rn-REE (parameterized by k).

4 The ``overlapping diagonals'' condition

In applications, such as with quasi-complete economies, we are interested in
demonstrating that a given speci®cation of the primitives of an economy
leads to the existence of partially informative equilibria. In the context of
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Proposition 4, that would require us to prove that a function f satisfying
f �S� � E V jS� � is not SO. We now provide a new condition, called the
overlapping diagonals (OD) condition, that is necessary for f to be SO if
m � 1, and whose violation, when it occurs, is robust and easy to con®rm.
We will also encounter special cases in which the OD condition is equivalent
to the SO condition. Moreover, under regularity assumptions and with
m � 1, the OD condition will be shown to be necessary for rn-REE
uniqueness even when the SO condition is violated. Finally, in a special
setting of a two agent economy, the OD condition delivers uniqueness of a
rational expectations equilibrium under risk-aversion and heterogeneous
beliefs, and without assuming quasi-completeness in the sense of DS.

To state the OD condition, we introduce, for any I � 1; . . . ; nf g, the no-
tation �xI ; yÿI� to denote the vector z with zi � xi for i 2 I , and zi � yi for i j2 I .

De®nition 4. The function f : A ! R has overlapping diagonals (OD) if, for
all I � 1; . . . ; nf g and x; y 2 A,

max f �x�; f �y�f g � min f �xI ; yÿI�; f �yI ; xÿI�f g : �3�
The term ``overlapping diagonals'' is suggestive of the following geometric
picture: Imagine the rectangle formed by the four points x, y, �xI ; yÿI�, and
�yI ; xÿI�, and for each diagonal consider the interval de®ned by the values of
f at the end points of the diagonal. The two intervals overlap for any choice
of x and y in A, if and only if f has OD. For example, the OD condition is
violated in Example 1.

Example 3. As in Section 3.2, suppose that m � 1, n � 2, A1 � A2 � 0; 1f g,
and R � r�S�, implying that V � f �S� for some function f : 0; 1f g2! R. In
other words, all relevant uncertainty is represented by a two by two matrix,
where the one agent knows which row contains the true state, and the other
agent knows which column contains the true state. The elements of the
matrix indicate the possible values of V , and the fully informative rn-REE is
of course V itself. In such a simple context one can easily con®rm that the
OD condition is necessary and su�cient for V to be the unique rn-REE.
Surprisingly, the pattern that arises in this simplest interesting instance of the
problem, turns out to be key in quite more general settings described below.

4.1 The necessity of the OD condition

With m � 1, the OD condition follows from the SO condition, and is
therefore necessary for rn-REE uniqueness under the assumptions of Prop-
osition 4.

Proposition 5. If f : A ! R is SO, then f has OD.

Proof. Suppose that �3� is violated for some x; y 2 A and I � 1; . . . ; nf g. We
can then ®nd some level r 2 R such that

max f �x�; f �y�f g < r < min f �xI ; yÿI�; f �yI ; xÿI�f g : �4�
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If f is SO, there exist functions gi : Ai �R ! R, such that f �s� > r )P
i gi�si; r� > 0, and f �s� < r ) P

i gi�si; r� < 0, for all s 2 A. Combining
these implications with �4�, one obtains a contradiction. (

The OD condition is also necessary for rn-REE uniqueness in some in-
®nite settings in which Proposition 4 does not apply. We now put together
two useful, from an applications standpoint, cases in which the violation of
the OD condition leads to the existence of partially informative rn-REE. For
this purpose, we call a measure, l, on a Euclidean space di�use if every set of
l-measure zero has Lebesgue measure zero.

Proposition 6. Suppose that m � 1, and either one of the following regularity
conditions are valid:

(a) A is ®nite and P �S � s� > 0 for all s 2 S.
(b) Ai is a Euclidean space, for all i, f is continuous, and the distribution

of S is di�use.
If the function f : A ! R satisfying f �S� � E V jS� � does not have OD, then
there exists a partially informative rn-REE.

The ®rst part of Proposition 6 is a corollary of the last two propositions.
The second part is a corollary of the more general results of Section 5. It is of
some interest to note that, at least for the case of a ®nite A, the violation of
the OD condition is a robust phenomenon: small perturbations of the
function f also violate the OD condition. (A similar statement can be made
when A is compact and f is continuous.) Therefore, the existence of partially
informative equilibria as a consequence of the violation of the OD condition
is likewise robust to small perturbations of the function f .

4.2 Some special cases

While f having OD is not in general su�cient for f to be SO, the two notions
are equivalent in the following special case, which includes Examples 1 and
3, as well as the setting of Section 3.2.

Proposition 7. Suppose that n � 2, and at least one of A1 or A2 is countable
(or ®nite). Then f : A ! R is SO if and only if it has OD.

Proof. The ``only if '' part is a special case of Proposition 5. We now prove
the converse, assuming that A2 is countable. Given any s � �s1; s2� 2 A and
r 2 R, we de®ne the sets

G�s1; r� � y 2 A2 : f �s1; y� > rf g ;
H�s2; r� � y 2 A2 : f �x; s2� < r and f �x; y� > r for some �x; y� 2 Af g :

These sets have the properties:

f �s� < r ) G�s1; r� � H�s2; r� ;
f �s� > r ) H�s2; r� � G�s1; r�n s2f g and s2 2 G�s1; r� :

12 P. DeMarzo and C. Skiadas



The ®rst implication is immediate from the de®nitions, while the second one
follows from the OD condition. Let now m be any ®nite measure on the
subsets of A2, with m�s2� � m� s2f g� > 0 for all s2 2 A2. De®ning, for every
s 2 A and r 2 R,

g1�s1; r� � m�G�s1; r�� and ÿ g2�s2; r� � m�H�s2; r�� � m�s2�
2

;

condition �1� follows. This shows that f is SO. (

With two agents, one risky asset, one risk-free asset, and a ®nite signal
space that describes all relevant uncertainty, the OD condition turns out to
be su�cient for equilibrium uniqueness, even when the equilibrium notion is
extended to allow for risk aversion and heterogeneous priors (without the
assumption of quasi-completeness). We now formalize and prove this result.

Suppose that m � 1, n � 2, A is ®nite, and V � f �S� for some
f : A ! R. Deviating from our usual setup, suppose that agent i has prior
Pi, a probability that is absolutely continuous with respect to P , and maxi-
mizes a smooth concave von Neumann-Morgenstern utility given the private
signal Si and the observed equilibrium prices. The two agents trade one risky
asset with payo� V , and a risk-free asset with both its payo� and price
normalized to be equal to one in every state. Let p represent an equilibrium
price of the risky asset. (Alternatively, one can think of the agents entering
into a single forward contract with payo� V and forward price p). A vector
of Arrow-Debreu state price densities (s.p.d.), p � �p1; p2�, is any strictly
positive random vector valued in R2. In an equilibrium, the ®rst order
conditions of optimality for the two agents take the form:

Ei pi�V ÿ p�jSi; p� � � 0; i 2 1; 2f g ; �5�
where p is a s.p.d. vector, and Ei denotes the expectation operator with
respect to Pi. For more details on the equilibrium notion alluded to above,
one can refer to DS. Mathematically, the ®rst order conditions �5� provide
su�cient restrictions to uniquely determine the equilibrium price of the risky
asset if f has OD. For example, it is su�cient that f be monotone in at least
one of its two arguments.

Proposition 8. Suppose that n � 2, m � 1, A is ®nite,4 and V � f �S� for some
function f : A ! R with overlapping diagonals. If the random variable p
satis®es �5� for some vector of Arrow-Debreu state price densities p, then
P � p � f �S� � � 1.

Proof. By Proposition 7, since f has OD it is SO. Let gi, i 2 1; 2f g, be the
corresponding functions of De®nition 3. In particular, f �s� > r ) g1�s1; r�
�g2�s2; r� > 0, and f �s� < r ) g1�s1; r� � g2�s2; r� < 0.

Let m be the distribution of p on R, and let w : A�R ! �0;1� be the
conditional density of S given p, in the sense that

4 The proof shows that, except for minor summability conditions, it is su�cient to take A1 ®nite,

and A2 countable. For expositional simplicity we only consider the ®nite case here.
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P � S 2 B; p 2 C � �
X
s2B

Z
r2C

w�s; r�m�dr�

for all B � A and any Borel set C. We also de®ne the strictly positive func-
tions hi : A�R ! R, i 2 1; 2f g, to satisfy hi�S; p� � E �dPi=dP�pijS; p� �.

By a change of measure and the law of iterated expectations, �5� implies
that E hi�S; p�� f �S� ÿ p�1fSi�sigjp

� � � 0 for all si 2 Ai, and all i 2 1; 2f g.
Therefore, for some set C � R with m�C� � 1, and all r 2 C, we haveX

s22A2

w�s; r�h1�s; r�� f �s� ÿ r� � 0; s1 2 A1;X
s12A1

w�s; r�h2�s; r�� f �s� ÿ r� � 0; s2 2 A2 :
�6�

Next we show that �6� in conjunction with the existence of the functions gi

above imply that for all r 2 C and s 2 A such that w�s; r� > 0, we have
f �s� � r. This of course implies that P � p � f �S� � � 1.

To con®rm our claim, ®x any r 2 C, and let Ar � s 2 A : w�s; r� > 0f g.
Suppose that, contrary to our claim, there exists �s01; s02� 2 Ar such that
f �s01; s02� < r, and therefore g1�s01; r� � g2�s02; r� < 0. (The case f �s0� > r is
treated symmetrically.) By �6�, it follows that there must then exist some
�s11; s02� 2 Ar such that f �s11; s02� > r. The latter inequality implies that
g1�s11; r� � g2�s02; r� > 0, and therefore g1�s11; r� > g1�s01; r�. Similarly, �6� also
implies that there exists some �s11; s12� 2 Ar such that f �s11; s12� < r. Repeating
these steps, we obtain a sequence �sk

1; s
k
2� : k � 0; 1; 2; . . .

� 	
such that

g1�sk
1; r� < g1�sk�1

1 ; r� for all k. But this contradicts the assumption that A1 is
®nite, and completes the proof. (

There are deeper formal connections between the OD and SO conditions.
For m � 1, the OD and SO conditions are closely related to the independence
condition and additive representation, respectively, discussed by Vind (1991),
who was motivated by completely unrelated economic questions. (This can
be seen by taking the set Q considered by Vind to be a level set of the form

f > af g or f < af g.) For m � 1 and n > 3, Vind's results can be used to
formulate the equivalence of the SO and OD conditions under further reg-
ularity and continuity properties.5 The details are beyond the scope of this
paper.

5 In interpreting Vind's results, the reader should be aware that all topological properties in Vind

(1991) are with respect to an underlying order topology that di�ers from the Euclidean topology.

For example, Vind's Theorem 6 is not valid relative to the Euclidean topology: it can easily be

proved that the set Y � x 2 Rn : dx1e � � � � � dxne � 0f g (where dxe is the smallest integer

greater than or equal to x) is closed (in the Euclidean topology), essential, and independent, but it

has no representation of the form x 2 Y , P
i fi�x� � 0 for fi that are continuous in the

Euclidean topology.
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5 A necessary and su�cient condition for uniqueness

As pointed out earlier, the SO condition is su�cient but only ``nearly nec-
essary'' for rn-REE uniqueness. In this ®nal section we formulate a true
necessary and su�cient condition, which is an approximate version of the SO
condition (ASO). We also discuss how this new ASO condition is related to
the SO and OD conditions. Some of the mathematical machinery needed in
the proofs of this section is developed in the appendix.

5.1 The ASO condition

We begin with some terminology and notation that will be used throughout
this section. We de®ne D as the set of every probability distribution on
A�Rm whose marginal distribution on A is the distribution of the pooled
signals S. More formally, letting Bm denote the Borel subsets of Rm, D
contains every countably additive function of the form p : A
Bm ! �0; 1�
such that p�B�Rm� � P � S 2 B � for all B 2A. We now introduce the ASO
condition in terms of the set D.

De®nition 5. The function f : A ! Rm is approximately separably oriented
with respect to p 2 D, or p-ASO for short, if there exist sequences of product-
measurable functions hk : A�Rm ! Rm

� 	
k�1;2;... and gk

i : Ai �Rm !�
Rmgk�1;2;..., i 2 1; . . . ; nf g, and a product-measurable function h : A�Rm !
Rm, such that

(a) For every i and k, gk
i is bounded, and hk is p-integrable.

(b) � f �s� ÿ r� �Pn
i�1 gk

i �si; r� � hk�s; r�, or all �s; r� 2 A�Rm.
(c)
R

hk ÿ h
�� ��dp! 0 as k ! 1.

(d) f �s� 6� r ) h�s; r� > 0 for all �s; r� 2 A�Rm.
The function f is ASO if it is p-ASO for every p 2 D.

The following are some elementary relationships between the SO and
ASO conditions:

Proposition 9. (a) If f is SO, then f is ASO.
(b) If A is ®nite, P �S � s� > 0 for all s 2 A, and f is ASO, then f is SO.

Proof. Part (a) is immediate from the de®nitions. We now show part (b).
Given any r 2 Rm, consider the condition of De®nition 5 corresponding to
the fact that f is p-ASO when p is the distribution of the random vector
�S; r�. Since A is ®nite, and P �S � s� > 0 for all s 2 A, for a su�ciently large
integer k�r�, we have

f �s� 6� r ) � f �s� ÿ r� �
Xn

i�1
gk�r�

i �si; r� > 0; s 2 A :

For each i, de®ne the function gi : Ai �Rm ! Rm by letting gi�si; r� �
gk�r�

i �si; r�. Then �1� is satis®ed by construction, but we do not know whether
the functions gi are measurable and bounded. We now de®ne new functions

On the uniqueness of fully informative rational expectations equilibria 15



ĝi : Ai �Rm ! Rm that, in addition to satisfying �1�, are measurable and
bounded by construction.

Let a; b 2 Rm be such so that aj < f �s�j < bj for all s 2 A and
j 2 1; . . . ;mf g. For every s 2 A, we de®ne ĝi�si; r� � 1 if r � a, and
ĝi�si; r� � ÿ1 if r � b. This guarantees that �1� holds (with gi � ĝi) for all
r j2 �a; b�. Consider now any r 2 �a; b�, and let N�r� be a small enough open
interval of r so that

� f �s� ÿ r0� �
Xn

i�1
gi�si; r� > 0 for all r0 2 N�r� and s 2 A :

Since �a; b� is compact, there is a ®nite set r1; . . . ; rKf g, such that
�a; b� � SK

k�1 N�rk�. De®ne recursively: I0 � ;, and Ik � �a; b� \ N�rk�� �nS
j<k Ij, so that Ikf g forms a ®nite partition of �a; b�, while Ik � N�rk� for

every k. De®ning ĝi�s; r� � gi�s; rk� whenever r 2 Ik, it follows easily that the
ĝi have the desired properties. (

5.2 The main theorem

Recall that f �S� � E V jS� � is always a (fully informative) rn-REE. The
question is whether other (partially informative) rn-REE exist. This question
is answered in the following central theorem, which generalizes the results of
Section 3.1:

Theorem 1. Suppose that E V jS� � � f �S� for some function f : A ! Rm.
Then f �S� is the unique rn-REE if and only if f is ASO.

In the remainder of this subsection we give a proof of this result, utilizing
Theorem A of the appendix. We begin with some preliminary notation,
terminology, and a technical lemma.

Given any random variable Z (valued in any measurable space), we let Z�

denote its distribution (meaning that Z��B� � P �Z 2 B� for any measurable
set B). An admissible price vector is any random vector valued in Rm that is
conditionally independent of R given S.

Lemma 1. Suppose that p 2 D. Then there exist an admissible price vector p,
and a random variable U , with the following properties:

(a) P �U � a � � a for all a 2 �0; 1�.
(b) U is independent of R _ r�p�.
(c) p � �S; p��.

Proof. First, we notice that our standing Assumption 2 implies the existence
of a �0; 1�-uniform random variable that is independent of R. Indeed, if X is
any random variable independent of R, with continuous cumulative distri-
bution function FX , then FX �X � is uniformly distributed and independent of
R.

A second fact we will use is the following: Suppose that U0 is a �0; 1�-
uniform random variable that is independent of R, and suppose that m is a
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probability measure on Bk, the Borel r-algebra on Rk, for any integer k.
Then there exists a measurable function F : �0; 1� ! Rk such that F �U0� has
distribution m. Brie¯y, this follows from the well-known fact that there exists
a Borel isomorphism (see, for example, Dudley (1989), Chapter 13)
H : �0; 1� ! Rk. Letting G : �0; 1� ! �0; 1� be de®ned by G�a� � inf x : a �f
m� H�u� : u � xf g�g, it follows easily that G�U0� has distribution mH , and
therefore H�G�U0�� has distribution m. We can therefore simply de®ne
F � H � G.

A corollary of the above observations is that there exist �0; 1�-uniform
random variables, U1 and U2, that are mutually independent, and jointly
independent of R. Letting U � U1, we now use U2 and the discussion of the
last paragraph to construct a �U2; S�-measurable price vector p so that U and
p satisfy (a) through (c).

We ®x any p 2 D, and we de®ne l to be the distribution of S. Let
g : Bm � A ! �0; 1� be a regular conditional distribution6 of p given S,
meaning that g��; s� is a probability measure for all s 2 A, g�B; �� is
A-measurable for all B 2 Bm, and

p�C;B� �
Z

C

Z
B

g�dr; s�l�ds�; C 2A; B 2 Bm :

By our earlier discussion, there exists, for every s 2 A, a function
Fs : �0; 1� ! Rm such that Fs�U2� has distribution g��; s�. Letting
F �a; s� � Fs�a�, our explicit construction of Fs above shows that F can be
chosen to be measurable. Finally, the Lemma is proved by taking U � U1

and p � F �U2; S�. (

A corollary of Lemma 1 is the following useful characterization of the
set D:

D � �S; p�� : p is an admissible price vectorf g :

Proof of Theorem 1. If f is ASO, then uniqueness follows by Theorem A of
the appendix, applied with X � f �S� ÿ p and Fi � r�Si; p�, where p is any
Rm-valued random vector conditionally independent of R given S.

Conversely, suppose that f is not p-ASO for some p 2 D. Let p and U be
as in Lemma 1. We will use p and U to construct a partially revealing
rn-REE. Arguing by Theorem A as above, it follows that there exists pro-
bability Q, absolutely continuous with respect to P , such that dQ=dP is
bounded, and EQ f �S� ÿ pjSi; p� � � 0 for all i, and Q� f �S� 6� p � > 0. Let
Z � kE dQ=dP jS; p� �, where k > 0 is any scalar such that Z is valued in �0; 1�.
By the law of iterated expectations, we have

E � f �S� ÿ p�ZjSi; p� � � kE � f �S� ÿ p� dQ
dP

���Si; p
� �

� 0 :

6 For a discussion of regular conditionals see, for example, Dudley (1989, Chapter 10), or

Theorem 8.1 of the appendix of Ethier and Kurtz (1986), which is in a form that applies more

directly to the present setting.
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Let F � U � Zf g, with 1F denoting the random variable that is equal to one
on F , and zero otherwise. Clearly, F is conditionally independent of R given
S, and P � F j S; p � � Z. Again by the law of iterated expectations,

E � f �S� ÿ p�1F jSi; p� � � E � f �S� ÿ p�E 1F jS; p� �jSi; p� �
� E � f �S� ÿ p�ZjSi; p� � � 0 :

We now de®ne q � p1F � f �S�1XnF . Since f �S� ÿ q � � f �S� ÿ p�1F , we have
that E f �S� ÿ qjSi; p� � � 0 for all i. Since p � q on F and f �S� ÿ q � 0 on
X n F , we also have that E f �S� ÿ qjSi; q� � � 0 for all i. By construction, q is
admissible. Arguing as in the ®rst part of the proof of Proposition 3 in
Section 3.1, it follows that q is a rn-REE.

Finally, we show that q is not fully-informative. Let �k k denote the Eu-
clidean norm. Using the de®nition of F , and the fact that Q� f �S� 6� p � > 0,
we have

E� f �S� ÿ qk k1F � � E f �S� ÿ pk kE� 1F j S; p �� �

� kE f �S� ÿ pk k dQ
dP

� �
� kEQ� f �S� ÿ pk k � > 0 :

This shows that f �S� is not a.s. equal to q. (

5.3 A connection between the ASO and OD conditions

Su�cient conditions for f to be ASO useful in applications are the same
conditions, discussed in Example 2, that make f SO. We will now show that,
under regularity assumptions, if f : A ! R is ASO, then f has OD. This is
a useful result when f does not have OD, because it provides an easy way of
proving that f is not ASO (in a robust way), and therefore the existence of
partially informative rn-REE. For simplicity, we assume that signals are
valued in Euclidean spaces. (There are straightforward extensions to settings
in which each Ai is a Polish space.)

Theorem 2. Suppose that each Ai is an open subset of some Euclidean space
(depending on i), with Ai consisting of the usual Borel sets. Suppose also that
for every B 2 A, P �S 2 B� � 0 implies that B has Lebesgue measure zero.
Then every continuous ASO function of the form f : A ! R has OD.

Proof. Let l be the distribution of S. Given any e > 0 and r 2 R, we de®ne
f : A ! R to be �e; r�-SO if there exist measurable sets gi : Ai ! R such
that

� f �s� 6� r and s j2N� ) � f �s� ÿ r�
Xn

i�1
gi�si� > 0 ;

for some N 2 A such that l�N� < e. We ®rst prove that if f : A ! R is
ASO, then f is �e; r�-SO for every e > 0 and r 2 R. Fix any such e and r, and
consider the condition of De®nition 5 corresponding to the fact that f is
p-ASO for p � �S; r��. Let d > 0 be small enough so that h�s; r� > d for all
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s j2N1 for some N1 2 A of l-measure less than e=2. Subsequently, choose k
large enough so that hk�s; r� ÿ h�s; r��� �� < d for all s j2N2 for some N2 2 A
also of l-measure less than e=2. Letting gi � gk

i ��; r� and N � N1 [ N2, it
follows that f is �e; r�-SO.

Suppose now that f : A ! R is continuous, ASO, and does not have
OD. We will show a contradiction. Since f does not have OD, there exist
r 2 R, nonempty I � 1; . . . ; nf g, and some x; x� y 2 A such that

max f �x�; f �x� y�f g < r < min f �xI ; �x� y�ÿI�; f ��x� y�I ; xÿI�
� 	

: �7�
Let us ®x y, and de®ne

y0 � 0; y1 � y; y2 � �0I ; yÿI�; y3 � �yI ; 0ÿI� ;

so that x� yi, i � 0; . . . ; 3, are the four points involved in �7�. By continuity
of f , there exists an open ball, B0, such that �7� holds for all x 2 B0, while at
the same time

T
i Bi � ;, where Bi � B0 � yi. Let now B be a ball large enough

so that it contains
S

i Bi, and let k represent Lebesgue measure on A. Since
k� l, it is a standard result7 that we can ®nd e > 0 small enough so that

l�B \ C� < e ) k�B \ C� < k�B0�; C 2 Bm :

Let us ®x such an e for the remainder of the proof. Since f is ASO, f is �e; r�-
SO. We also ®x the set N 2 A that appears in the above de®nition of the
�e; r�-SO condition. Notice that by the choice of e, we have

k�B \ N� < k�B0� : �8�

If we can ®nd some x 2 B0 so that x� yi j2N for all i, then we can derive a
contradiction from �7� and the �e; r�-SO condition just as in the proof of
Proposition 5. We therefore conclude this proof by showing that such an x
exists.

Suppose to the contrary that for each x 2 B0, x� yi 2 N for some
i 2 0; 1; 2; 3f g. Intuitively, it should be clear that �8� must then be violated.
Formally, de®ne recursively

Ni � Bi \ N� � n
[
j<i

Nj � yi ÿ yj

 !
; i � 0; 1; 2; 3 :

Then the sets Ni are pairwise disjoint, and Ni ÿ yi : i � 0; 1; 2; 3f g forms a
partition of B0. Therefore, k�Si Ni� �

P
i k�Ni� �

P
i k�Ni ÿ yi� � k�B0�. ButS

i Ni � B \ N , contradicting �8�. This proves that for some x 2 B0,
x� yi j2B0 for all i, and the proof the theorem is then completed by the same
argument used in Proposition 5. (

7 If p and q are ®nite measures such that p is absolutely continuous with respect to q, then, for
any given d > 0, there exists an e > 0 such that q�C� < e implies p�C� < d, for all C. This is

proved, for example, in Section 32 of Billingsley (1995). Here we apply this result with

p�C� � l�B \ C� and q�C� � k�B \ C�.
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6 The case of pure prices

We conclude with a brief discussion on how our results should be modi®ed
when all equilibrium prices are required to be pure (that is, S-measurable).
The basic idea is illustrated by the example of Section 3.2. There we saw that
if f is not SO (or does not have OD), then we can construct a partially
informative pure rn-REE, not under the original probability P , but under
some new probability Q absolutely continuous with respect to P . This situ-
ation generalizes.

Departing from our standard setup, in this section we assume that
R �F, that is, all uncertainty is ``relevant.'' By necessity, our standing
Assumption 2 can no longer be valid, and is therefore dropped. To say that a
price vector p is admissible (conditionally independent of R given S) is now
the same as saying that p is r�S�-measurable, that is, pure. Given any
probability Q, we de®ne p to be a rn-REE under Q, if it is a rn-REE in the
sense of De®nition 1, but with the underlying probability P replaced by the
probability Q. We let EQ denote the expectation operator with respect to Q.

In this setting we have the following version of Theorem 1:

Theorem 3. In the context of this section, suppose that E V jS� � � f �S� for
some function f : A ! Rm. Then the following are equivalent:
(a) f is ASO.
(b) For every probability Q, absolutely continuous with respect to P , and with

dQ=dP bounded, EQ V jS� � is the unique rn-REE under Q.
The result follows immediately from Theorem A of the appendix. Simi-

larly, one can easily state a version of Proposition 4 corresponding to the
above result. In either case, the condition of f not being ASO leads to the
existence of a partially informative pure rn-REE under some probability Q.
When these results are applied to quasi-complete economies, we can interpret
the choice of the probability Q as corresponding to a choice of the priors held
by the agents in the economy. Details of this interpretation can be found in
DS.

Appendix: An auxiliary mathematical result

In this appendix we develop the basic duality theorem used in our treatment
of the uniqueness of risk-neutral rational expectations equilibria. The pre-
sentation is self-contained.

We ®x throughout a probability space �X;F; P�, and n sub-r-algebras of
F, denoted F1; . . . ;Fn. As in the main text, E denotes the expectation
operator relative to P , and ``a.s.'' means ``with P -probability one.'' A random
variable, Z, is integrable if E� Zj j� <1, and bounded if P � Z > K � � 0 for
some constant K (depending on Z). Given any r-algebra G �F, we let L1�G�
be the set of all integrable G-measurable random variables, and we let L1�G�
be the set of all bounded G-measurable random variables. For p � 1 or 1,
we write Lm

p �G� to denote the Cartesian product of m copies of Lp�G�.
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We now ®x an integer m, and an Rm-valued random variable
X 2 Lm

1 �F�. We are interested in the validity of the following condition:

A1. For every probability8 Q� P , with dQ=dP bounded, EQ X jFi� � � 0 a.s.
for all i 2 1; . . . ; nf g implies Q�X � 0 � � 1.

We will show that A1 is equivalent to the following condition:

A2. There exist a sequence Zk : k � 1; 2; . . .
� 	

in L1�F�, and, for each i, a
sequence Y k

i : k � 1; 2; . . .
� 	

in Lm
1�Fi�, such that

(a) X � Pn
i�1 Y k

i

ÿ � � Zk a.s. for all k.
(b) For some Z 2 L1�F�, limk!1 E� Zk ÿ Z

�� ��� � 0 and P �X 6� 0 )
Z > 0 � � 1.

Remark A. The random variables Zk and Z can always be chosen to be zero
on X � 0f g, making Z non-negative.

Theorem A. Conditions A1 and A2 are equivalent.

Proof. We ®rst show that A2 implies A1. Suppose that A2 holds, and let the
sequences Y k

i

� 	
and Zk

� 	
, and the random variable Z be as in A2. We can

and do assume that Z is non-negative (see Remark A). Let now Q be a
probability such that Q� P , dQ=dP is bounded, and EQ X jFi� � � 0 for all i.
We then have EQ�X � Y k

i � � 0 for all i and k, and therefore,

0 � EQ X �
Xn

i�1
Y k

i

 !
� EQ�Zk� ;

for all k. Letting k ! 1, we ®nd that EQ�Z� � 0. But since Z is non-nega-
tive, and almost surely strictly positive on X 6� 0f g, it follows that
Q�X � 0� � 1. This proves A1.

Conversely, suppose that A2 is false. We provide L1�F� and L1�F� with
their usual norms, making the latter the topological dual of the former.
Consider the following convex cones in L1�F�:

A � X �
Xn

i�1
Yi : Yi 2 Lm

1�Fi�; i 2 1; . . . ; nf g
( )

B � W 2 L1�F� : W � 0 a.s. and P �X 6� 0) W > 0� � 1f g :
One can easily check that B \ �Aÿ B� 6� ; implies A2 (where the bar over
Aÿ B denotes the closure operator in L1�F�). Therefore, B \ �Aÿ B� � ;.
Since 1fX 6�0g 2 B, we can then ®nd a neighborhood N of 1fX 6�0g such that
N \ �Aÿ B� � ;. Let C be the convex cone generated by B� N (not in-
cluding the origin):

C � kZ : k > 0 and Z 2 B� Nf g :
It then follows that A \ C � ;.

8 The notation Q� P means P �F � � 0) Q�F � � 0, and dQ=dP denotes the Radon-Nikodym

derivative of Q with respect to P .
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By the Hahn-Banach separation theorem, there exists nonzero W 2
L1�F� such that

(a) E�WZ� � 0 for all Z 2 A, and
(b) E�WZ� � 0 for all Z 2 C.

Condition (b) implies that W � 0 a.s. and that E�W 1fX 6�0g� > 0 (since 1fX 6�0g
is in the interior of C). De®ning the probability Q by dQ=dP � W =E�W �, if
follows that Q� P , dQ=dP is bounded, and Q�X 6� 0� > 0. On the other
hand, since A is a linear subspace, condition (a) implies that
E�WZ� � EQ�Z� � 0 for all Z 2 A, or, equivalently, EQ�X � Yi� � 0 for all
Yi 2 Lm

1�Fi� and i 2 1; . . . ; nf g. Therefore, EQ X jFi� � � 0 for all i. We have
shown the existence of a measure Q that violates A1. This proves that if A2 is
false, then so is A1. (

In the case of a ®nite X, the following simpler condition is equivalent to
A2, and therefore to A1, too:

A3. For some Yi 2 Lm
1�Fi�, i 2 1; . . . ; nf g,

P X 6� 0 ) X �
Xn

i�1
Yi > 0

" #
� 1 :

Condition A3 corresponds to the SO condition of Section 3, which, for a
®nite signal space, is essentially necessary and su�cient for rn-REE
uniqueness. It is therefore important to know if A3 is in fact equivalent to A2
(corresponding to the ASO condition of Section 5) in the in®nite case as well.
The following counterexample shows that it is not. The example also pro-
vides an instance of a function that is ASO but not SO.

Example A. We take X � �0; 1� � �0; 1�, with F being the usual Borel r-
algebra. The diagonal of X is denoted D � x 2 X : x1 � x2f g. The prob-
ability P is de®ned so as to place half its mass uniformly on X n D, and the
other half uniformly on D. We also let Pi : X ! �0; 1� be the projection
function for the ith coordinate, de®ned by Pi�x� � xi. We let n � 2,
Fi � r�Pi�, and

X � �1 if x1 � x2,
ÿ1 if x1 > x2 .

�

We ®rst prove directly that A1 holds. Suppose that Q is a probability such
that Q� P and EQ X jPi� � � 0 a.s. for i 2 1; 2f g. Then EQ�X �P2 ÿP1�� � 0,
implying that Q�D� � 1. But we also have EQ�X � � EQ�X1D� � 0, and since
X is one on the diagonal, Q cannot be a probability. This proves A1, and by
Theorem A, A2 also holds. Alternatively, the reader can con®rm A2 directly,
by taking Y k

1 � �1=2� ÿ kP1 and Y k
2 � kP2, for k 2 1; 2; . . .f g, and Z � 1=2.

(A plot of X �Y k
1 � Y k

2 � along a diagonal perpendicular to D makes the validity
of A2 clear.)
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Finally, we show that A3 cannot hold.9 If A3 held, then there would exist
bounded measurable functions gi : �0; 1� ! R, i 2 1; 2f g, and a set
X0 2 F with P �X0� � 1, such that, for all x 2 X0,

x1 � x2 ) g1�x1� � g2�x2� > 0; and

x1 > x2 ) g1�x1� � g2�x2� < 0 :
�9�

Assuming the existence of a such a g1 and g2, we now derive a contradiction.
The reader is advised to represent the following arguments diagrammatically
on a unit square.

Let k represent Lebesgue measure on �0; 1�, and de®ne

K�d� � k� t 2 �0; 1ÿ d� : �t � d; t� 2 X0f g�; d 2 �0; 1� :
By the de®nition of P , we have

1

4
� P �X0 \ x : x1 > x2f g� � 1

2

Z 1

0

K�d� dd :

It follows that the set D � d 2 �0; 1� : K�d� � 1ÿ df g has Lebesgue mea-
sure one. In particular, there exists a sequence dnf g � D converging to zero.

Using �9�, it follows easily that

0 >

Z 1ÿdn

0

g1�t � dn� � g2�t� dt

�
Z 1

0

g1�t� � g2�t� dt ÿ
Z dn

0

g1�t� dt �
Z 1

1ÿdn

g2�t� dt
� �

:

Letting n ! 1, the term in parenthesis vanishes, giving
R 1
0 g1�t��

g2�t� dt � 0. But since P places half its mass uniformly on D, P �X0 \ D� �1=2,
and X0 \ D has positive Lebesgue measure. Therefore, the last inequality
contradicts �9�. (
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