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This paper provides an axiomatic basis for a representation of personal preferences
in which the utility of an act can be expressed as an expected value of conditional
utilities of the act given any set of mutually exclusive and exhaustive scenarios,
under a unique subjective probability. The representation is general enough to
incorporate state-dependent utilities and�or utilities with dependencies across states,
as, for example, in the case of disappointment aversion. More generally, this is a
model incorporating subjective probability and subjective consequences, since
neither probabilities nor consequences are included among its primitives. The
model reduces to subjective expected utility under the additional assumptions of
separability and state-independence with respect to an objective state-contingent
structure of acts. Journal of Economic Literature Classification Numbers: D81, D84.
� 1997 Academic Press

1. INTRODUCTION

In the paradigm of subjective probability created by Ramsey [29] and
Savage [30] the decision maker ranks acts (courses of action), each one of
which is an explicit list of state-contingent consequences. In a sense, the
(implied) objectivity of consequences is used to provide a decision-theoretic
foundation for subjective probability. A problem is that consequences, like
probabilities, are also in general subjective or ill-defined. This paper presents
a decision theoretic foundation of subjective probability when consequences
are also subjective.

In economic applications, acts do usually have an objective state-contingent
structure in terms of money or well specified commodities. The overall
subjective consequences at a given state, however, may depend on more
than the corresponding objective payoff; for example, they may depend on
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the state itself, as well as on payoffs at other states. We refer to these two
effects as state-dependence and nonseparability,1 respectively. Including
these effects as part of a consequence's description in Savage's setting leads
to familiar problems: highly subjective and ambiguous consequences, and
nonsensical acts (such as an act whose consequence in good weather is dis-
appointment at the weather). These issues are recognized in a well developed
literature, referenced below, as is the need for decision models incorporating
state-dependence and nonseparability.

Another fundamental reason for considering subjective consequences is
complexity. For example, someone who has to decide between living in city
A and living in city B may consider the overall consequences of each
alternative under a coarse set of scenarios. But the determination of the
detailed consequences of each action under all economic, political, ecological,
and other relevant uncertain outcomes is clearly impractical. The point is
that what we call a state can always be thought of as an event on a finer
state-space, and a consequence on such a state or event is typically a subjective
perception of a large number of more detailed consequences that are
contingent on the finer (sub)states. It is therefore not always practical to
isolate the type of elementary consequences assumed by Savage.

This paper's approach is consistent with state-dependence, nonseparability,
and the view of subjective consequence as representations of complex
situations. The main representation result preserves a notion of additivity:
conditional utility functions combine additively across events, using subjective
probabilities as weights, to give an unconditional utility function. Such a
representation differs from expected utility in that conditional utilities can
be related to objective payoffs in a state-dependent and nonseparable way.
The paper extends the theory of additive aggregation of conditional preferences
developed in Skiadas [31], henceforth referred to as C6A. As explained
below, the main contribution beyond C6A is the development of a sufficiently
structured setting for subjective probabilities to be meaningful. As an example
of an application with nonseparable preferences, we will discuss disappoint-
ment aversion, generalizing the representations of Dekel [7] and Gul [14]
by incorporating subjective probabilities and possible state-dependence.
Further examples that one can apply this paper's results to are discussed
in C6A.

1.1. Overview

Unlike consequences, states of nature and acts will be regarded as
objective throughout the paper. As a first illustration, we consider the
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1 Our use of the term ``separable'' is essentially that of Machina [25], and will be formalized
later on in the paper. It is closely related to the independence axiom of von Neumann and
Morgenstern, and Savage's sure-thing principle.
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simplest nontrivial type of objective state space: the two outcomes of a coin
toss. We also postulate a space of acts, X. The paper's main conclusions
hold if the elements of X are mere names of the possible courses of action,
and possess no specific structure. In order to make the notions of separability
and state-independence meaningful, however, we will assume that every x
in X is associated with two monetary payoffs, x(H) and x(T), corresponding
to the outcomes of heads and tails, respectively. As in C6A, a key distinction
of this paper's approach is that the overall consequences of an act on an
event are not necessarily represented by the specified objective payoffs on
the given event. For example, the consequences of an act on the event of
heads may include a subjective sense of disappointment that the monetary
payoff turned out to be lower than expected. The word ``consequence'' will
be used informally in the widest sense possible. In particular, a consequence
should include any subjective effect of the relevant state of nature, or
unrealized payoffs.

Because consequences can be highly subjective (or complex), we do not
wish to include them among the theory's formal primitives. Instead, their
effect is reflected in the properties of the decision maker's preferences. In
C6A these preferences are modeled in terms of conditional rankings of the
form xpE y, where x, y # X, and E is any nonempty event (in the current
example, one of [H, T], [H], or [T]). The interpretation of xpE y is that
the decision maker considers the overall consequences of act x on event E
at least as desirable as the overall consequences of act y on event E, not
knowing whether E will occur or not. The conditional ranking xpE y does
not necessarily imply that x would be preferred to y given the knowledge
that E has or will occur. For example, one can expect to be disappointed
if an event resulting in a low payoff occurs, while of course there can be no
(further) disappointment if the occurrence of that event is already a known
fact. For any event E, pE is assumed to be complete and transitive, with
oE and t

E representing its asymmetric and symmetric parts, respectively.
In the current context, preferences are separable if x(H)= y(H) implies

xt
[H] y, and x(T)= y(T) implies xt

[T] y. The intuition is that the objective
payoff fully captures the relevant consequences on a given event. More
generally, however, we allow for the possible violation of separability. For
example, if x is considered overall a better choice than y, the decision
maker may rationally anticipate that on the event that x and y yield identical
payoffs there will be a feeling of disappointment if act x is chosen, and a
feeling of elation if act y is chosen. The ranking yo[H] x, under the
assumptions x(H)= y(H) and xo[H, T] y, can therefore be interpreted as
an expression of disappointment aversion, and constitutes a violation of
separability. To re-emphasize a point made earlier, notice that the decision
maker would be indifferent between x and y if the coin was already tossed,
and the outcome of heads was known. This formulation of disappointment
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aversion, introduced in C6A, will be used in this paper as a canonical
example of nonseparability.

In terms of the unmodeled (subjective) consequences, the agent will be
assumed to be Bayesian in the usual sense. In particular, C6A provides a
set of axioms on the primitives2 so that, in the context of the current
example, pE has an ordinal utility representation U E, for any event E, and
these utilities can be chosen so that

U[H, T](x)=U [H](x) P(H)+U [T](x) P(T), x # X, (1)

for some probability P. In the above representation, the quantity UE (x)
should be interpreted as the utility of the overall consequences of x on the
event E. In the separable case, one is able to write U [H](x)= f (H, x(H))
and U[T](x)= f (T, x(T)), for some function f : [H, T]_R � R, reducing
(1) to the familiar state-dependent expected utility representation. In the
case of disappointment aversion, however, conditional utilities can depend
on both payoffs through the unconditional utility: U[H](x)= f (H, x(H),
U[H, T](x)), and analogously for tails, as explained in Section 5 and in C6A.

The question that remains unanswered in C6A, and will be answered in
this paper, is the meaning of the probability P in (1). In fact, without any
further structure, P has no meaning. While, under the assumptions of
C6A, utilities are determined up to positive affine transformations for a
given P, the probability P itself is indeterminate. To see that, take any
other probability, P� , with the same null sets as P, and define the new
utilities U� E (x)=UE (x) P(E)�P� (E), for any event E of positive probability.
Clearly U� E is an ordinal utility representation of pE. Moreover, (1) remains
valid with hats over U and P. Under separability and state-independence,
this difficulty does not arise because U [H] and U [T] can also be thought
of as ordinal utilities over acts with constant payoffs across states, and they
therefore cannot be rescaled independently of each other. Under state-
dependent preferences, however, a fundamental indeterminacy between
utilities and probabilities arises (whether preferences are separable or not).
The following subsection discusses a number of papers that propose ways
of resolving this indeterminacy for the case of state-dependent but separable
preferences. While the present paper's approach is new in the separable
case as well, its main innovation lies in the fact that it applies to non-
separable preferences. The approach will be introduced here, while a discussion
of how it relates to the literature will be given in the following subsection.
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2 C6A assumes that the state space has at least three elements, and therefore, strictly speaking,
does not include the current example. One can circumvent this problem by simply including
an auxiliary coin toss. Alternatively, this paper's extension of C6A can be easily modified to
give a theory of additive aggregation for the two-state case, as explained in Remark 2.
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The novel ingredient of this paper's theory is the notion that the decision
maker is able to rank the desirability of disjoint events conditionally on the
choice of an act. For example, suppose that the acts under consideration
are going to the office or going to the beach, and that the uncertain states
of nature are good or bad weather. C6A postulates that the decision maker
is able to state whether going to the office or going to the beach will yield
the more desirable consequences in each state of the weather. Here we will
also assume that the decision maker can state whether good weather or
bad weather will yield the more desirable consequences for each choice of
an act. For example, the decision maker might state that he prefers good
weather when he goes to the beach, and bad weather when he goes to the
office. This ranking should be thought of as representing implicit preferences
over subjective consequences resulting from the corresponding combina-
tions of contingencies and acts. While apparently new, the idea of comparing
disjoint events given acts in order to separate utilities from probabilities is
related to other approaches in the literature (for separable preferences), as
explained in the following subsection.

All existing decision-theoretic foundations of subjective probability share
the feature that the decision maker is required to rank a very large class of
objects, typically involving either a set of acts yielding arbitrary combina-
tions of consequences (as in Savage [30]), or a set of objective probabilities
allowing arbitrary mixing (as in Anscombe and Aumann [1]). The present
paper faces the same limitation by relying on structural ``solvability''
assumptions, which effectively imply that acts can yield arbitrary combinations
of utility levels on any finite set of scenarios. As a result, given our
structural assumptions, the conditional ranking of disjoint events given acts
is uniquely determined by a set of indifference relations of the form t

x,
where x is any act. For disjoint events, E and F, the statement Et

x F has
the interpretation that the overall consequences of x on E are equally
desirable as the overall consequences of x on F. Non-disjoint events need
not be comparable under any t

x. The formal theory of this paper adds the
relations t

x to the primitives of C6A, as well as a list of related axioms.
In the additive representation (1), it will also be required that Et

xF
implies UE (x)=UF (x). This additional restriction will imply that conditional
utilities can no longer be arbitrarily rescaled on disjoint events, a fact that
will be utilized to calibrate the underlying probabilities.

The structural restrictions of the paper will also imply that there exists
a unique preference order, p, on the space of all pairs of the form (x, E),
where x is an act and E is an event, that is compatible with the primitives,
in the sense that xpE y � (x, E)p ( y, E), and Et

xF O (x, E)t(x, F ).
Moreover, p has a utility representation, U, that satisfies (1) (with U(x, E)
=UE (x)). An arbitrary act-event pair, (x, E), which we will formally call
a ``situation,'' should be thought of as an indirect representation of all
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consequences of act x on event E. The existence and uniqueness of the
preference order p shows that our primitives and axioms indirectly specify
a consistent complete ranking of all subjective consequences of any possible
situation. Clearly, one could rewrite the whole paper by replacing at the
outset all conditional preferences with a single complete preference order
over all situations, as in Luce and Krantz [22] and Fishburn [11]. This
would afford us minor simplifications of the axioms (although it would
necessitate the addition of a new axiom, as explained in Section 4). However,
direct comparisons of arbitrary situations can be harder to interpret than
conditional comparisons. In our earlier example, the decision maker's condi-
tional preferences seem more natural than a statement of the form: going
to the office under good weather is less (or more) desirable than going to
the beach, without specifying the weather condition while at the beach.

1.2. Related Literature

The literature of nonseparable preferences is extensive, and well motivated
by an abundance of empirical findings. Relevant discussions and surveys
include: Fishburn [12], Machina [24, 25], Karni and Schmeidler [18],
and Epstein [10]. On the other hand, there are only few papers on the
meaning of subjective probability in the context of nonseparable preferences.
If we restrict attention to transitive preferences and additive probabilities,
as we do throughout this paper,3 the theories of Machina and Schmeidler
[26, 27] (with Grant's [13] extension) seem to be the only alternatives.
The two papers by Machina and Schmeidler, which generalize those by
Savage [30] and Anscombe and Aumann [1], respectively, differ from the
present paper significantly. First, they assume a state-contingent structure
of acts, thereby implicitly assumming objective consequences. Second, they
assume state-independence. Neither of the two are assumed in this paper.
On the other hand, within the class of state-independent preferences with
objective consequences, the present paper's primitives and representation is
more structured (and therefore less general) than those in the Machina�
Schmeidler theories, in that conditional utilities are meaningful, and can be
aggregated additively.

The well known reasons for considering state-dependent preferences are
reviewed by Karni [15, 16, 17], while Aumann [2], in a letter to Savage,
articulates the conceptual difficulties that arise due to subjective and
state-dependent consequences. Under the additional assumption of preference
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3 Subjective probability has also been axiomatized in the context of a certain type of non-
transitive preferences, surveyed by Fishburn [12] (also see Sugden [32]). These so-called SSB
(skew-symmetric bilinear) representations are based on an interpretation of ``expected regret.''
In Skiadas [31] it is shown that regret can also be modeled in the context of the present
paper, with transitive preferences.
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separability, this paper provides a new foundation for state-dependent sub-
jective expected utility, complementing a number of related papers, briefly
discussed below. When this paper's setting is further restricted to separable
and state-independent preferences, it reduces to essentially Wakker's [36]
theory of subjective expected utility.4 The mathematical structure of the
main result's proof is a direct extension of Wakker's arguments.5 The
remainder of this section briefly reviews, and relates to this paper, the
existing literature of state-dependent separable preferences.

One of the earliest axiomatic formulations of subjective probability
under state-dependent preferences was provided by Fishburn [11] (and
extended by Balch and Fishburn [3]). Fishburn's approach relies on a
mixture-set structure of acts in terms of objective mixing probabilities, in the
tradition of Anscombe and Aumann [1]. Since linearity of conditional
utilities in the probabilities is a crucial ingredient of this approach, it does not
seem suited for applications in which utilities are nonlinear in the
probabilities, as in the case of disappointment aversion. Like Luce and Krantz
[22], Fishburn postulates preferences over pairs of acts and events. But while
Luce and Krantz rely on an objective state-contingent consequence structure
of acts, Fishburn never introduces a space of consequences among his
primitives. In this sense, Fishburn's theory can be interpreted as a subjective-
consequence theory, but in a more limited sense than in the present paper,
since subjective consequences cannot depend on unrealized payoffs.

Another approach to subjective probability under state-dependent preferences
is suggested by Karni, Schmeidler, and Vind [19], and is also followed by
Wakker [34]. The basic idea is to assume that the primitives include the
decision maker's hypothetical preferences in an imaginary world in which
all probabilities are given objectively in some arbitrarily prescribed way.
Under this assumption, equation (1) would have to hold with P being the
prescribed hypothetical probability, and U[H, T] representing the hypothetical
unconditional ranking of acts. Since the probability P is fixed, utilities are
now calibrated (up to positive affine transformations). Passing from probability
P to the decision maker's actual subjective beliefs should not affect the
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4 Strictly speaking, this paper's theory does not reduce to Wakker's under state-independence
and separability, but the differences are not that significant. Remark 2 of Section 4 outlines a
variant of the paper's main result which is a strict generalization of Wakker's theorem.

5 Closely related to Wakker's formulation, and therefore to the present paper, are the theories
of subjective expected utility of Luce and Krantz [22] and Nakamura [28], who use the
(formally more general) ``algebraic approach'' to additive conjoint measurement, as opposed
to the (simpler) ``topological approach'' adopted by Wakker and this paper (see also Krantz,
et al. [20] and Wakker [35]). Whether in a topological or algebraic form, the type of
generalization discussed in this paper could also be applied to Nakamura's theory, or to its
variations discussed by Chew and Karni [5].
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conditional utilities U [H] and U [T], and thus there can only be one set of
subjective beliefs consistent with additivity of the already calibrated
utilities. Whatever the merits or drawbacks of this approach in the separable
case, it does not appear to be a viable solution under nonseparable preferences.
Considering again the example of disappointment aversion, one can see
that the assumption that the conditional utilities given heads or tails
remain unaltered when changing the assumed underlying probabilities is
no longer valid. Changing the probabilities also changes unconditional
expectations, and therefore the degree of disappointment or elation felt
in each state. The hypothetical-probabilities approach is therefore not
feasible without being explicit about the structure of potential non-
separabilities.

A third general approach for determining probabilities under state-depen-
dence can be loosely characterized by the idea that there exists some way
of calibrating utilities that does not make use of any objective or hypothetical
probabilities. Dre� ze [8, 9], for example, postulates the existence of two
``omnipotent'' acts (``games'' in his terminology) whose conditional utilities
are directly normalized to be constant across states. Karni [17] avoids
axioms involving utilities (which should be endogenously derived) by intro-
ducing the idea of ``constant valuation'' acts. In terms of our earlier discussion,
constant valuation acts can be thought of as acts that have equally
desirable consequences in every state of the world, where again (unlike
Karni) we use the word ``consequence'' in the wide sense, to include the
state-dependent subjective impact of objective payoffs. Constant valuation
acts in Karni's theory play the role of constant acts in Savage's [30]
theory, and are used to calibrate utilities and probabilities. (Karni [16]
applies an analogous approach in the Anscombe�Aumann [1] setting.) The
present paper's theory is essentially a variation of this third approach,
since its structural assumptions imply the existence of acts with equally
desirable consequences on all states, analogous to Dre� ze's omnipotent acts,
or Karni's constant valuation acts. Unlike the above papers, however, this
paper derives such acts endogenously, in terms of properties of conditional
comparisons of disjoint events, given acts. Of course, as indicated earlier,
the more substantial innovation of this paper is that, unlike any of the
above references on subjective probability under state-dependence, it
accommodates nonseparable preferences.

The rest of the paper is organized in four sections and two appendices.
Section 2 reviews from C6A the idea of additive aggregation of conditional
preferences. Section 3 provides the additional primitives and assumptions
required to make subjective probability meaningful. Section 4 states and
discusses the central representation theorem. Section 5 concludes with examples.
Appendix A extends the main Theorem to the case of countably additive
representations, and Appendix B contains mathematical proofs.
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2. ADDITIVE AGGREGATION OF CONDITIONAL PREFERENCES

This section reviews the relevant theory of conditional preferences and
additive aggregation from C6A [31], which can be consulted for further
discussion and examples. The new primitives and axioms that are required
for this paper's main result, and that cannot be found in C6A, are presented
in the following section.

Uncertainty is modeled by a state-space 0, whose elements are called
states, and an algebra6 F of subsets of 0. We let L denote the set of all
random variables (that is, F-measurable functions of the form V : 0 � R).
We also take as primitive a subset N of F, whose elements are the null
sets, and should be thought of as contingencies that the decision maker
considers so unlikely so that any corresponding consequences can be
ignored ex ante. The reader who wishes to only consider the case of a finite
0 can safely assume that the only null set is the empty set. More generally,
N will be assumed throughout the paper to have the following properties:7

(a) 0 � N.

(b) For all F # F and N # N, F�N implies F # N.

(c) For all disjoint N1 , N2 # N, N1 _ N2 # N.

An event is any non-null element of F. The set of all events is denoted
E=F"N.

Preferences will be defined over a set X, whose elements we call acts. An
act is to be thought of as a label of a course of action, and not necessarily
as a specification of state-contingent consequences. As explained in the
Introduction, consequences will not be part of our primitives, because of
their possible subjective or vague nature. We will, however, use the term
``consequence'' informally in discussing our assumptions.

In order to obtain an additive representation, the following structural
topological assumption will be made:

A1. X is a connected compact topological space.

As discussed in Remark 3 of Section 4, the compactness assumption is
made mainly for simplicity of exposition.
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6 An algebra in this context is a nonempty set of sets that is closed with respect to disjoint
unions, and complementation.

7 Alternatively, null sets could be derived in terms of properties of preferences. Since this
aspect of the theory is of secondary importance here, we find it simpler to simply postulate
the existence of the set N. In the language of Boolean Algebra, N is assumed to be any
subset of F that is a proper ideal.
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Given any event E, the decision maker is able to rank any two acts on
the basis of their consequences on E. We model that with a set of preference
orders, that is, complete and transitive (binary) relations,8 on X:

A2. For every E # E, pE is a continuous9 preference order on X.
Moreover, EqF # N implies pE=pF, for all E, F # E.

Here EqF denotes the symmetric difference between E and F. The
symmetric and asymmetric parts10 ofpE are denoted t

E and oE, respectively.
The statement xoE y represents the decision maker's ex-ante judgment

that, on event E, the overall consequences of x are preferred to those of y.
The implicit consequences of x on E can be subjective, they may depend on
E, and they may depend on x's payoffs at states not belonging to E. As
indicated in the Introduction, xoE y does not necessarily imply that the
consequences of x are preferred to those of y given the knowledge that E
has in fact occurred. We clarify these interpretations by reviewing two
examples from C6A:

Example 1 (Separable Preferences). We fix a space M, whose elements
represent objective payoffs. For example, M could be the real line, representing
all possible monetary payoffs. We also assume that every act is a function
from 0 to M. The payoff x(|) should not, however, be confused with the
overall consequences of act x at |, which could be subjective. We say that
``x= y on E '' if x(|)= y(|) for all | # E. Preferences are defined to be
separable if

x= y on E O xt
E y, x, y # X, E # E. (2)

The interpretation of separability is that the objective payoff structure of
an act on any given event is sufficient for evaluating the act's overall
consequences on that event. Example 1 will be further discussed in Sec-
tion 5.

Example 2 (Disappointment Aversion). Suppose that acts have the
same state-contingent payoff structure as in Example 1. Instead of separability,
however, we now only require that

(x= y on E and yp0 x) O xpE y, x, y # X, E # E. (3)
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8 A binary relation, R, on X is complete if, for any x, y # X, xRy or yRx, and transitive if,
for all x, y, z # X, xRy and yRz implies xRz.

9 A preference order, p, on X is continuous if the sets [ y : ypx] and [ y : xp y] are closed
for all x # X.

10 Given preference order p, its symmetric part is the relation t on X defined by (xty) �
(xpy and ypx), and its asymmetric part is the relation o on X defined by (xo y) � (xpy
and not ypx).
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This represents (weak) disappointment aversion: Suppose that acts x and
y yield identical payoffs on event E, but y is expected to yield overall no
less desirable consequences than x. Then, on event E, y will yield no more
desirable consequences than x, since it may involve a feeling of disappoint-
ment, while x may involve a feeling of elation. A strict version of disappointment
aversion is obtained by replacing all weak preferences with strong preferences
in (3). This example illustrates a point made earlier: the consequences of an
act on an event need not coincide with the consequences of the act given
the knowledge that the event has occurred. In particular, one cannot expect
to be disappointed about an event that is already known. Example 2 is
further developed in C6A and in Section 5 of this paper.

The agent's conditional preferences will be required to satisfy the following
monotonicity condition, called ``strict coherence'' in C6A:

A3. For any disjoint events E, F, and any acts x, y, xpE y and
xpF y implies xpE _ F y; and xoE y and xpF y implies xoE _ F y.

The interpretation of strict coherence is essentially the informal ``sure-thing
principle'' of Savage [30]: If the consequences of x are preferred to those
of y under each of two scenarios, then the same is true under the combined
scenarios. The two implications in A3 formalize a weak and a strict version
of this basic idea, respectively. Coherence differs, however, from the sure-
thing principle as manifested in Savage's axioms in that the latter incorporate
separability in the sense of Example 1, while coherence is compatible with
nonseparable preferences.

Assumptions A2 and A3 are necessary for the representation we are seeking.
We will use two more assumptions to obtain an additive structure, both of
which are structural (not necessary).

We will assume that, given any finite number of scenarios and corresponding
set of acts, there is a single act that exactly compensates for not following
act i on scenario i, for every i. Formally, this is expressed by the following
``solvability'' condition:

A4. Given any finite number of pairwise disjoint events E1 , ..., En ,
and any acts x1 , ..., xn there exists an act x such that xt

Ei xi for all
i # [1, ..., n].

Under state-contingent acts and separable preferences (as in Example 1),
the act x in A4 can be chosen so that x=xi on Ei for every i. For
nonseparable preferences, such a construction is clearly not sufficient in
general. Nevertheless, one can still imagine that appropriate state-contingent
payments can be adjusted in a way that makes the overall subjective
consequence on event Ei just as desirable as the prescribed act xi , for every i.
For example, C6A and Example 3 of Section 5 provide formulations of
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disappointment aversion (in the sense of Example 2) in which solvability
holds.

Our next assumption imposes a certain degree of non-degeneracy, and is
of secondary importance.

A5. For any given event E, there exist acts x, y such that xoE y.
Moreover, there exist at least three pairwise disjoint events.

A modification of the theory that works with only two states is outlined
in Remark 2 of Section 4.

Suppose for now that F is finite. It is shown in C6A (Theorem 2), using
a version of Debreu's [6] theorem, that A1 through A5 imply the existence
of a probability P and a function U : X � L such that

xpE y � |
E

U(x)(|) dP(|)�|
E

U( y)(|) dP(|), E # E, (4)

and P(F )=0 � F # N, for all F # F. This is what we mean by ``additive
aggregation of conditional preferences,'' which should not be confused with a
state-dependent expected utility representation. Under additive aggregation,
acts are not assumed to have a state-contingent structure, and if they do,
it need not be the case that we can write U(x)(|)= f (|, x(|)) for almost
every | # 0, for some function f. This point is further discussed in Section 5.

Another important point to notice is that the probability P in the above
representation plays a primarily notational role. Indeed, let Q be an arbitrary
probability with the same null sets as P, and let dP�dQ denote the Radon�
Nikodym derivative of P with respect to Q. Then (4) remains valid with
U dP�dQ in place of U, and Q in place of P. In this sense, the underlying
measure is arbitrary (up to null sets) and not necessarily one that corresponds
to the decision maker's subjective beliefs. Our objective in the following
section is to introduce sufficient additional structure that will allow us to
select a unique probability that is compatible with an interpretation of sub-
jective beliefs. A by-product of this additional structure is an additive
aggregation theorem for an infinite number of events (that differs from the
one given in C6A).

3. COMPARISON OF CONSEQUENCES ACROSS EVENTS

This section presents the primitives and assumptions that this paper adds
to the theory of additive aggregation of C6A, outlined in the last section,
in order to make subjective probabilities meaningful. Specifically, we are
going to postulate that, for any given act, the decision maker is able to identify
any two disjoint events on which the act's consequences are believed to be
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equally desirable. The purpose of the section's assumptions is twofold.
First, to make the formalization of this new type of comparisons given acts
consistent with their informal interpretation in terms of consequences, and
second to provide a sufficiently rich set of acts, so that there is a unique
underlying probability that is consistent with additive aggregation and the
agent's subjective beliefs.

Formally, we start with the following relations:

A6. For every act x, t
x is a (binary) relation on E satisfying, for all

pairwise disjoint E, F, G # F,

(a) Et
x F � Ft

x E; and

(b) (Et
x F and Ft

x G) O Et
x G.

The interpretation of the statement Et
x F, where E and F are disjoint

events, is that act x has equally desirable consequences on event E as it
does on event F. This is not the same as saying that the decision maker
would prefer the consequences of x under the knowledge that E will occur
to the consequences of y under the knowledge that F will occur. As in the
analogous discussion of the last section, the case of disappointment aversion
should make the distinction clear. In general, the subjective consequences
implicit in all relations of the form pE or t

x (where x is an act and E is
an event) should be interpreted as consequences perceived ex ante, without
any knowledge about the ``true'' state of nature that is not already reflected
in the decision maker's beliefs.

Assumption A6 does not include any statement of completeness. In fact,
the formal structure so far does not preclude the possibility that each t

x

is empty. The degree of completeness of t
x will be dictated by our next

two assumptions.

A7. Given any pairwise disjoint events E1 , E2 , F, and any act x such
that E1 t

x E2 , we have E1 _ E2 t
x F � E1 t

x F.

The idea behind A7 is that if x has equally desirable consequences on E1

and E2 , then to say that the consequences of x on E1 _ E2 are equally
desirable to the consequences of x on F should be the same as saying that
the latter are equally desirable to the consequences of x on either E1 or E2 .

A more restrictive structural assumption is the following ``solvability''
condition, which should be thought of as complementing A4:

A8. Given any act x and disjoint events E and F, there exists an act
y such that yt

E x and Et
y F.
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Like A4, this condition is automatically satisfied in Savage's [30] setting,
but it is nevertheless a demanding assumption.11 The role of the assump-
tion is to provide a sufficiently rich space of acts, so that utility levels of
(implied) consequences can be compared meaningfully across disjoint
events. Such comparisons will then be used to calibrate probabilities, and
to interpret these probabilities as representations of subjective beliefs.
A consequence of A8 is that any two disjoint events are comparable under
some t

x. In general, we are not going to require that non-disjoint events
are comparable under any t

x (but see Section 4).
So far, the assumptions of this section have not involved conditional

preferences given events. Clearly, relations of the form t
x and pE must be

consistent, in the following sense:

A9. For all disjoint events, E, F, and acts, x, y, we have

(a) (Et
x F and Et

y F ) implies (xpE y � xpF y).

(b) (xt
E y and xt

F y) implies (Et
x F � Et

y F ).

Condition A9(a) says that if x has equally desirable consequences on E
and F, and likewise for y, then the ranking of the consequences of x and
y on the two events has to be consistent. Condition A9(b) has a similar
interpretation.

Our final assumption concerns the compatibility of statements about
compensating trade-offs across events. Although somewhat complicated, this
is an intuitive and necessary condition for the representation of the main
theorem. In the separable case it reduces to a variant of Wakker's [36]
``no-contradictory-trade-offs'' condition. Some preliminary notation and
discussion will help simplify its statement and meaning. First, given any
disjoint events E, F, and acts x, y, we will write xEyF to denote any choice
of an act z that satisfies zt

E x and zt
F y. For example, a statement of the

form ``there exists xE yF such that...'' should be interpreted as ``there exists
z # X satisfying zt

E x and zt
F y such that...'' Second, we define a notion

of ``equal trade-offs on events,'' an idea that builds on earlier formulations
by Luce and Krantz [22] and Wakker [36].

Before any formal statements, it is instructive to consider Fig. 1, with the
following interpretations: The symbols E and F represent two disjoint
events, while v, w, x, y, z are all acts. The position of these acts on the
leftmost vertical line should be thought of as representing the subjective
degree of desirability of the consequences of each act on event E, and
analogously for the other vertical line. The higher the position on the line,
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the more desirable the consequences. The line connecting act x on E to act
v on F represents some act xEvF , which, according to our earlier notational
convention, has equally desirable consequences with x on E, and with v
on F. The remaining lines connecting the two vertical lines also represent
acts with the analogous properties. We assume that all the acts represented
by the lines of Fig. 1 exist. Suppose now, that xEvF t

E _ F yEwF and
yEvF t

E _ F zEwF . The last two indifferences reveal that the reduction in
desirability of consequences on event F from the level represented by v to
that represented by w is exactly compensated for by an increase in
desirability of consequences on event E either from the level of x to that of
y, or from the level of y to that of z. In this sense, the two indifferences
reveal that the pairs of acts (x, y) and ( y, z) represent equal trade-offs on
event E as measured by compensating consequences on event F. We denote
this fact by (x, y)=E

F ( y, z).
Definition 1 below formally summarizes the discussion of the last

paragraph, and also introduces the relation {E
F on the set of act pairs. The

interpretation of (x, y){E
F ( y, z) is that the agent's conditional preferences

reveal that the act pairs (x, y) and ( y, z) represent unequal trade-offs on
event E as measured by compensating consequences on event F.

Figure 1
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Definition 1. For any disjoint events E, F, the relations =E
F and {E

F

on X2 are defined by:

(a) (x, y)=E
F ( y, z) if there exist acts v, w, xEvF , yEwF , zEwF , and

yEvF such that xEvF t
E _ F yEwF and yEvF t

E _ F zEwF .

(b) (x, y){E
F ( y, z) if there exist acts v, w, xEvF , yEwF , zEwF , and

yEvF such that xEvF t
E _ F yEwF and not yEvF t

E _ F zEwF .

Given our assumptions and definitions so far, (x, y){E
F ( y, z) is not

formally equivalent to not (x, y)=E
F ( y, z). Nevertheless, under our inter-

pretation of the primitives, {E
F should be thought of as the complement of

=E
F , a fact that will become formally true as well, once we introduce our

last assumption, A10, below.
Consider now acts x1 , x2 , x3 , and disjoint events E, F. Loosely speaking,

our last assumption states that, in deciding that (x1 , x2)=E
F (x2 , x3), the

decision maker disregards the likelihood of E. In other words, the equality
of trade-offs is a statement about desirability of consequences only, and not
about the relative likelihood of E and F. To express this in the language of
our primitives, consider a third event G that is disjoint of E _ F, and
suppose that each xi has equally desirable consequences on E as on G, that
is, Et

xi G, for all i # [1, 2, 3]. While the event G need not have the same
probability of occurrence as E, the equality of trade-offs on E, (x1 , x2)=E

F

(x2 , x3), should imply a corresponding equality of trade-offs on G, (x1 , x2)=G
F

(x2 , x3), which in turn should be contradicted by the statement (x1 , x2){G
F

(x2 , x3). This is precisely the content of our last assumption:

A10. Given any pairwise disjoint events E, F, G, and any acts xi ,
i # [1, 2, 3], such that Et

xi G for all i, it is not the case that (x1 , x2)=E
F

(x2 , x3) and (x1 , x2){G
F (x2 , x3).

This completes the presentation of the assumptions used in the paper's
main result, which is the topic of the following section.

4. REPRESENTATION THEOREM

This section discusses the main theorem of the paper. Intuitively, the
result states that the overall (unmodeled) consequences of acts on events
can be assigned utilities that on the one hand are compatible with the
comparisons expressed by the relations of the form pE and t

x, and on the
other hand they can be aggregated additively under a unique probability.
After the statement of the main result, we will argue that this unique
probability is consistent with the decision maker's subjective beliefs.

The formal statement of the paper's main result follows. Its proof can be
found in Appendix B.
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Theorem 1. Suppose that assumptions A1 through A10 hold. Then there
exist a function U : X_E � R and a finitely additive probability P on F such that

(a) For any disjoint E, F # E, and any x, y # X,

xpE y � U(x, E)�U( y, E) (5)

Et
x F � U(x, E)=U(x, F ); (6)

U(x, E _ F ) P(E _ F )=U(x, E) P(E)+U(x, F ) P(F ). (7)

Moreover, for all F # F,

P(F )=0 � F # N. (8)

(b) Any other pair (U� , P� ) with the above properties of (U, P) satisfies
P� =P and P[U� =:U+;]=1 for some : # (0, �) and ; # R.

(c) For every E # E, the function U( } , E) is continuous, and maps X
onto a (closed and bounded ) interval that is independent of the choice of E.

Given the representation (U, P) of Theorem 1, two natural questions
arise. First, in what sense is P compatible with a notion of subjective
probability? Second, what meaning, if any, should we attribute to general
comparisons of the form U(x, E)�U( y, F )? Both questions have simple
answers. To show that, let us assume, for the remainder of this section, that
A1 through A10 hold, and (U, P) is as in Theorem 1.

To address the first question, we formulate a notion of revealed probability
comparisons in the tradition of Ramsey [29] and Savage [30]. We adopt
the same notational conventions used in Definition 1.

Definition 2. The binary relation � on F is defined as follows:

(a) For all disjoint E, F # E, we let E�F if xE yF pE _ F yExF for any
choice of x, y, xE yF , yExF such that Et

x F, Et
y F, and xoE y.

(b) For all N # N and F # F, we have: (i) F�N, and (ii) N�F O
F # N.

(c) Given (a) and (b), for arbitrary E, F # F, we have E�F �
(E"F )�(F"E).

The interpretation of E�F in part (a) is that the decision maker believes
E to be more likely than F, and therefore would rather have the more
desirable consequences occur on E, and the less desirable consequences on
F, than the other way around. Once again, this interpretation is consistent
with state-dependent valuation of objective payoffs, because the effect of
such state-dependence is part of the subjective consequences implied by the
conditional rankings of acts. Part (b) of Definition 2 states that a null set
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is less likely than any other set in F, and an element of F that is less likely
than a null set is also null. Part (c) compares the likelihood of overlapping
events by removing from both their intersection and using parts (a) and (b)
to compare the remaining disjoint parts.

The reader can easily confirm that

P(E)�P(F ) � E�F, E, F # F.

In this sense, the probability P is compatible with the decision maker's
subjective beliefs. It should be emphasized that P need not be the only
probability that represents the relation � on F. This is to be expected,
because, unlike Savage [30], we do not require nonatomicity (for example,
the state space can be finite). Our assumptions only imply that among all
probabilities consistent with the decision maker's revealed probabilistic
rankings, one and only one is compatible with additive aggregation.

To answer the second question posed above, regarding the interpretation of
utilities, we think of a pair (x, E) # X_E as an indirect objective representation
of the (possibly subjective) consequences of act x on event E. For instance,
recalling an example from the Introduction, if x represents the act of living
in city A, and E represents the event of politician X becoming mayor of A,
then the pair (x, E) objectively represents the overall consequences of living
in city A with X as mayor. The decision maker can objectively describe the
situation leading to these consequences, but the exact nature of the consequences
themselves remains subjective and complex. With this motivation, we
formally call an element of X_E a situation. We now wish to interpret the
ranking of situations implied by the utility function U.

A preference order, p, on X_E will be called compatible (with the
decision maker's conditional preferences), if for all x, y # X and E, F # E,

(x, E)p ( y, E) � xpE y and (x, E)o (x, F ) O not Et
x F,

where o is the asymmetric part of p.

Proposition 1. If p is a compatible preference order on X_E, then for
every x, y # X, and any disjoint E, F # E, we have

(x, E)p ( y, F ) � U(x, E)�U( y, F ). (9)

Proof. Suppose E and F are disjoint events, and x, y # X. Choose any
z # X such that zt

E x and Et
z F (there is one by A8). By the compatibility

of p , we then have (x, E)p ( y, F ) � zpF y, and U(x, E)=U(z, F ), from
which (9) follows. K

Proposition 1 shows that there is only one compatible ranking of any
two situations, (x, E) and ( y, F ), with E and F disjoint, and this ranking
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is the one defined by U. There remains the question, however, of the inter-
pretation of (9) when E and F are not disjoint. Our assumptions so far do
not rule out the possibility that non-disjoint events are not comparable
under any t

x. As a result, compatible preference orders on X_E can rank
situations involving events that are not disjoint in a non-unique way. To
remedy this situation, we introduce a new assumption, that has no effect on
any of our earlier results:

A11. For every x # X, and any disjoint E, F # F, Et
x F implies

Et
x E _ F.

The following is proved in Appendix B, and completes our interpretation
of U as a utility function of preferences over situations:

Proposition 2. Under the additional assumption A11, (9) defines the
only possible compatible preference order, p, on X_E.

The above discussion shows that Theorem 1 and its assumptions could
be formulated directly in terms of a preference order on the space of
situations, simplifying somewhat its formal structure. A complete ranking
of arbitrary situations is, however, more difficult to interpret as a primitive
than the rankings expressed by conditional preferences with respect to events
and acts. The more elements two situations have in common, the easier it
is for a decision maker to visualize them and compare them. Conditional
preferences involve the comparison of situations having an underlying
event or act in common. A preference order over situations, on the other
hand, involves the comparison of potentially completely unrelated situations.
What Proposition 2 shows is that, under our assumptions, the consistent
ranking of related situations induces a unique ranking of all situations.

Finally, given the preference order p on situations of Proposition 2, we can
return to our first question, and formulate another sense in which P is consis-
tent with the decision maker's subjective beliefs, which directly generalizes
Savage's [30] formulation: for any x, y # X and E, F # E such that
(x, E)t( y, F)o (x, Ec)t( y, Fc), we have xp0 y � P(E)�P(F). This is an
easy consequence of the fact that U is additive under P, and represents p.

The following section provides examples of the application of Theorem 1
with separable and nonseparable preferences. We close this section with
brief remarks on some variations of Theorem 1, which should be omitted
on a first reading.

Remark 1. If F is finite, and (U, P) is as in the conclusion of Theorem 1,
we can also view U as a function of the form U : X � L satisfying

U(x, E)=
1

P(E) |E
U(x)(|) dP(|), x # X, E # E. (10)
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Appendix A provides a sufficient and necessary condition for such a represen-
tation to be valid (in the context of Theorem 1) with an infinite number of
events and P countably additive.

Remark 2. Another variation of Theorem 1 applies with only two states
of uncertainty. This is achieved by eliminating the assumption in A5 that
there are more than two disjoint events, while replacing the last phrase in
A10 with ``it is not the case that (x1 , x2)=E

0"E (x2 , x3) and (x1 , x2){G
0"G

(x2 , x3),'' thus eliminating the need for the third event F. A proof of such
a version of Theorem 1 is a generalization of Wakker's [36] proof of his
subjective expected utility theorem, using similar arguments as those used
in the current proof of Theorem 1. An underlying additivity theorem that
works with only two components can be used, based on the ``hexagon condition''
(see Wakker [36] and Krantz et al. [20]), which can be verified using the
modified condition A10. The details are left to the interested reader.

Remark 3. In some applications the assumption that X is compact may
appear overly restrictive. Using Theorem 2 of C6A, however, we can modify
the assumptions of Theorem 1 by relaxing compactness, while strengthening
A4 (solvability) to a condition of ``continuous solvability'' stated in C6A.
The main results remain valid under these assumptions, without any sub-
stantial change in their proof. Moreover, Example 3 below can easily be
modified so that M is unbounded (and therefore X is not compact), and
continuous solvability holds. Intuitively, continuous solvability states that,
in A4, small perturbations of the acts xi should correspond to small
changes in the compensating act x.

5. EXAMPLES: SEPARABILITY AND
DISAPPOINTMENT AVERSION

We conclude with examples that illustrate the application of Theorem 1
under separable or nonseparable preferences. For simplicity of exposition,
and to avoid purely technical issues, we assume the following throughout
this section: 0 is finite, N=[<], F consists of all subsets of 0, and X
consists of all functions of the form x : 0 � M. As in Examples 1 and 2, M
represents a space of objective payoffs.12 We also assume throughout that
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(U, P) is as in Theorem 1, and by taking an appropriate affine transformation
of U, we assume, without loss of generality, that U( } , E) maps X onto the
unit interval, [0, 1], for every E # E.

In general, U(x, [|]) represents the utility of the subjective consequences
of x at state |. Under the separability condition (2) (applied with E=[|]),
it follows immediately that U(x, [|])= f (x(|), |), for some function
f : M_0 � [0, 1]. In this case, the representation of Theorem 1 reduces to
state-dependent expected utility. State-independent expected utility is
obtained if, in addition to separability, one assumes that

(x=m on E _ F and E & F=<) O Et
x F, E, F # E, x # X, m # M.

(11)

This condition simply states that a payoff m is valued the same on any two
disjoint events. (The condition is formulated in a form that applies even
when all singleton events are null. In the current special context, it suffices
to assume that (11) holds for singleton E and F.) Given separability, (2),
and state independence, (11), it follows easily that U(x, |)= f (x(|)) for
some function f : M � [0, 1], and the representation of Theorem 1 reduces
to a state-independent expected utility representation.

While Theorem 1 reduces to familiar situations under separability, the
main innovation of the result is that it can also accommodate nonseparable
preferences. We demonstrate with the case of disappointment aversion,
introduced in Example 2, where the utility of a consequence of an act at a
state depends not only on the act's payoff at the given state, but also on
the unconditional utility of the act. The following result formalizes such a
representation, and also summarizes the discussion of the last paragraph.
Part (a) of Proposition 3 characterizes the separable case, as discussed
above. Part (b) characterizes state-independent preferences, but more
broadly than discussed above, since we now allow for the possibility of
nonseparable state-independent preferences exhibiting disappointment
aversion. Finally, part (c) gives a fixed-point characterization of an act's
unconditional utility under disappointment aversion:

Proposition 3. In the context of this section, disappointment aversion in
the sense of (3) is equivalent to the existence of a function f : 0_M_[0, 1]
� [0, 1] that is nonincreasing in its last argument, and satisfies

U(x, E)=|
E

f (|, x(|), U(x, 0)) dP(|), x # X, E # E. (12)

Moreover, the following hold:
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(a) The function f can be chosen not to depend on its third (utility)
argument if and only if preferences are separable (that is, (2) holds).

(b) The function f can be chosen not to depend on its first (state)
argument if and only if preferences are state-independent (that is, (11) holds).

(c) U(x, 0) uniquely solves the equation

U(x, 0)=|
0

f (|, x(|), U(x, 0)) dP(|). (13)

The proof is a straightforward extension of the proof of Proposition 2 of
C6A, and is therefore omitted. It can also be easily confirmed that strict
monotonicity of f in its third (utility) argument corresponds to strict
disappointment aversion in the sense of Example 2.

Under state-independence, the implicit utility representation (13) is of
the type modeled by Dekel [7], who considered preferences over objective
probability distributions. In Dekel's representation f is monotone in its
second (payoff) argument, rather than its third (utility) argument, and
consequently his representation is not linked to disappointment aversion.
Dekel's formulation is easily embedded in our setting, however, by replacing
(3) with the assumption

(x� y on E and xt
0 y) O xpE y, x, y # X, E # E,

assuming that M is ordered by �. (The latter condition can also be combined
with the disappointment-aversion condition, (3), obtaining a function f in
Proposition 3 that is nondecreasing in its payoff argument, and nonincreasing
in its utility argument.) In more special parametric models using objective
probabilities, disappointment has been formalized by Bell [4], Loomes and
Sugden [23], and within Dekel's class of preferences, by Gul [14].

Finally, we use the current context to provide a concrete instance of the
primitives of this paper for which all the assumptions of Theorem 1 are
satisfied, without assuming separability or state-independence. For simplicity,
we will make this example more restrictive than necessary. (See Appendix A
of C6A for the infinite state-space case.)

Example 3. With (0, F, N, X) as fixed earlier in this section, and
with M=[0, 1], we will define conditional preferences on X in terms of a
strictly positive probability P on F, and a function f : 0_M_[0, 1] �
[0, 1], assumed to satisfy the following conditions:

(a) f is nonincreasing in its last argument.

(b) f is jointly continuous in its last two arguments at every state.

(c) f (|, 0, v)=1& f (|, 1, v)=0 for all | # 0 and v # [0, 1].
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Given such an f and P, (13) has a unique solution in U(x, 0). Uniqueness
follows from (a), just as in Proposition 3. For an existence proof, let g : [0, 1]
� [0, 1] be the continuous function defined by g(v)=�0 f (|, x(|), v)
dP(|)&v, and notice that g(0)�0 while g(1)�0, implying that g vanishes
somewhere on [0, 1]. Having defined U(x, 0) implicitly by (13), we use
(12) to define U(x, E) for all x # X and E # E, and (5) and (6) to define all
relations of the form pE and t

x. The reader can now confirm that A1
through A10 hold. The preferences just defined satisfy strict disappointment
aversion, and are therefore nonseparable.

C6A discusses settings in which acts are not assumed to have a state-
contingent payoff structure in the sense of the above examples, but Theorem 1
still applies. For example, X could be (or have a component that is) a set
of opportunity sets, a formalism useful for modeling ``regret'' as in Example
2 of C6A, or ``preferences for flexibility'' as in Kreps [21]. Or X could be
a set of algebras, representing possible information sets. Such a setting is
useful in modeling the subjective value of information (Example 3 of C6A).

APPENDIX A: COUNTABLE ADDITIVITY

In this appendix we show that adding a (necessary) continuity require-
ment in the list of assumptions of Theorem 1 allows us to conclude that the
probability P is countably additive, and that a representation of the form
given by (10) exists.

Throughout this appendix we assume that F is a _-algebra and N is a
_-ideal. (That is, in addition to their previously assumed properties, F and
N are closed under countable disjoint unions.) The additional assumption
we will use is as follows:

A12. Suppose that [xn : n=1, 2, ...] is a sequence of acts converging
to some act x, and that [En : n=1, 2, ...] is an increasing (En+1 $En for all
n) sequence of events such that ��

n=1 En=0. If there is some y # X such
that xnt

En y for all n, then xt
0 y.

The following result extends Theorem 1, by deriving countable additivity
and a density representation as in (10). We call two functions of the form
U : X � L and U� : X � L versions of each other if [U(x){U� (x)] # N for
every x # X.

Theorem 2. Suppose that A1 through A10, and A12 are all satisfied.
Then there exist a function U : X_E � R and a countably additive probability
P satisfying (a), (b), and (c) of Theorem 1. Given U and P, (10) holds for
some, unique up to versions, U : X � L. Finally, A12 is necessary for this
extension of Theorem 1.
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Proof. Let U and P be as in Theorem 1. We will first show that P is
countably additive. By parts (b) and (c) of Theorem 1, we can and do
assume that U( } , E) maps onto the interval [0, 1] for every E # E. Let
[En : n=1, 2, ...] be a decreasing sequences of events such that ��

n=1 En=<.
To show countable additivity of P, it suffices to prove that the sequence
[P(En)] converges to zero. For any given n, let Fn be the (finite) algebra
generated by the events [E1 , ..., En]. Using A4 (solvability), we can then
choose yn # X such that U( yn , F )=0 for every non-null F # Fn . Similarly,
there is an xn # X such that U(xn , En)=1 and U(xn , 0"En)=0. Given that
X is compact, we can assume (after passing to a subsequence) that the sequences
[xn] and [ yn] converge to some x and y, respectively. Clearly,
U( y, 0)=0. Also, for every given n, we have xn t

0"En ym for all m�n, and
therefore xn t

0"En y for all n. Using A12, we conclude that xt
0 y. Finally,

(7) implies that

P(En)=U(xn , 0) � U(x, 0)=U( y, 0)=0 as n � �.

This proves that P is countably additive.
For any given x # X, we can now define the finite measure +x on F, by

letting +x(E)=U(x, E) P(E) for all E # E and +x(N)=0 for all N # N.
The measure +x is countably additive, since U is valued in [0, 1], and is
of course dominated by P. Applying the Radon�Nikodym theorem, the
unique (up to versions) representation in (10) follows.

The proof of necessity is straightforward, and is left to the reader. K

APPENDIX B: PROOFS

This appendix contains the proofs omitted from the main text.

Proof of Theorem 1

The following proof generalizes an argument due to Wakker [36, Theorem
IV.2.7], whose setting assumes state-contingent acts, separability, and
state-independence. (In fact, our setting differs from Wakker's even under
these assumptions, but not in a significant way). We assume throughout
that A1�A10 hold.

Step 0: Preliminaries. We begin by assuming that F is finite and that
N=[<]. This assumption will be in effect until Step 4 below. We also
collect here some terminology, notation, and facts that will be of use
throughout the proof. A pair (U, P) is an additive representation if

(a) U is a function of the form U : X � L, P is a probability on F,
and (4) holds.
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(b) Any other function U� such that (a) holds with U� in place of U
satisfies: P[U� =:U+;]=1 for some : # (0, �) and ; # L.

(c) �E U( } )(|) dP(|) is continuous for every E # E.

Theorem 2 of C6A implies that, given our standing assumptions, an
additive representation exists. Given an additive representation (U, P), we
also regard U as a function of the form U : X_E � R satisfying (10).
Moreover, the following are true: (i) For any : # (0, �) and ; # L, (:U+;, P)
is also an additive representation; and (ii) If Q is another probability with
the same null sets as P, then (U dP�dQ, Q) is also an additive representation
(where dP�dQ denotes a Radon�Nikodym derivative). These facts will be
used without further explanation.

Next, we introduce some convenient notation. We denote by [F1 , ..., Fn]
the partition of 0 that generates F. Our standing assumptions imply that
each Fi is non-null, and that n�3. We simplify the notation by using the
index i to denote the set Fi , for every i. Therefore, pi=pFi, and we write
ipx j instead of Fi px Fj . The statements xt

i y and itx j are analogously
defined. In the same vein, we write =i

j instead of =Fi
Fj

, xiyi instead of xFi
yFj

,
and so on. (Consequently, xi yj represents any choice of an act v that satisfies
vt

i x and vt
j y.) By A4, an xi yj always exists.

We now fix a reference probability Q, defined by Q(Fi)=1�n for all
i # [1, ..., n], and a function V : X � L such that (V, Q) is an additive
representation. For every i and x, we define Vi (x)=V(x)(|) for all | # Fi .
Notice that the function Vi is then a utility representation of pi. The pair
(U, P) of Theorem 1 will be constructed from (V, Q) by appropriate
transformations of the type (i) and (ii) discussed above.

Step 1: Construction of U and P. Given any i, j # [1, ..., n], and any
act x, A8 implies that there exists an act y such that yt

i x and ity j. For
any given x, we let xij denote a choice of such an act y. From A9, it follows
that no matter what the particular choice of xij and yij is, we have

xpi y � xij pi yij � xij p j yij . (14)

We now define the functions Ui: X �R, by letting U1=V1 , and for i # [2, ..., n],
Ui (x)=V1(xi1). Because of (14), the definition of Ui (x) is independent of
the particular choice of xi1 , and Ui is a utility representation of p i.

For every i, let Ii=[Vi (x) : x # X], an interval since X is assumed
connected and Vi is continuous. By A5, each interval Ii has nonzero length.
Fix any i # [1, ..., n]. Since Ui and Vi both represent the same preference
order, there exists a strictly increasing function ,i : Ii � I1 such that Ui (x)
=,i (Vi (x)) for all x # X. Moreover, ,i is surjective. (This is because, by A8
and A9, an x1i exists and U1(x)=Vi (x1i), for every x.) Therefore, ,i is also
continuous.
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Lemma. ,i is affine.

Proof. Let I 0
k denote the interior of Ik for every k. Following Wakker

[36], we will show that, for any : # I 0
i , there is a positive = such that

,i (:+$)&,i (:)=,i (:)&,i (:&$), for all $ # (0, =). (15)

A standard exercise in real analysis shows that this property of ,i , together
with continuity, implies that ,i is affine.

Fix any : # I 0
i and any j � [1, i]. By A8, there exists an act y such that

:=Vi ( y) and 1t
y i. (16)

We fix such a y, and we notice, using A8 and A9, that V1( y) # I 0
1 . There

exists, therefore, a sufficiently small =>0 with the following property:
Given any $ # (0, =), there exist x, z # X such that

Vi (z)&Vi ( y)=Vi ( y)&Vi (x)=$, (17)

Vi (x)+Vj (v)=Vi ( y)+Vj (w), (18)

V1(x)+Vj (v$)=V1( y)+Vj (w$), (19)

for some acts v, v$, w, w$. Furthermore, by A8 we can and do assume that
the x, z above are always chosen so that

1t
x i and 1t

z i. (20)

Using the shorthand notation t
ij=t

Fi _ Fj, one can easily check, using
solvability (A4) and coherence (A3), that

xt
ij y � Vi (x)+Vj (x)=Vi ( y)+Vj ( y), x, y # X.

Combining this fact with (17) and (18), we obtain

xi vj t
ij yiwj and yi vj t

ij ziwj .

Therefore (x, y)=i
j ( y, z), and by A10 it is not the case that (x, y){1

j ( y, z).
But (19) gives x1v$j t

1 j y1w$j , and therefore y1v$j t
1 j z1w$j . The last two

indifferences together give

V1(z)&V1( y)=V1( y)&V1(x)=Vj (v$)&Vj (w$).

Using (16) and (20), and the definition of Ui , we therefore have Ui(z)&Ui ( y)
=Ui ( y)&Ui (x). Finally, using the definition of ,i , and (16) and (17), we
see that (15) holds, and the proof that ,i is affine is complete. K
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Given the Lemma, suppose now that Ui=:i Vi+;i for some :i # (0, �)
and ;i # R, for all i # [1, ..., n]. We define the probability P on F by letting
P(Fi)�Q(Fi)=:�:i , where : is the unique constant that makes P a probability.
The function U : X � L is then defined by letting U(x)(|)=Ui (x) whenever
| # Fi .

Step 2: (U, P) is an additive representation satisfying (6) for all
disjoint E, F # E. Define ; # L by letting, for every i, ;=;iP(Fi)�Q(Fi)
on Fi . It follows from the definitions that U(dP�dQ)=:V+;, and therefore
(U(dP�dQ), Q) is also an additive representation, and therefore so is (U, P).
Defining U : X_E � R through (10), it follows that (5), (7), and (8) hold
for all x # X and disjoint events E, F.

To show (6), we use induction on the size of E _ F, defined as the
number of events of the partition [F1 , ..., Fn] whose union is E _ F. For
size two, we have E, F # [F1 , ..., Fn], and the claim is immediate from the
definition of U. Suppose now that s # [3, 4, ...], and (6) holds for all x # X
and disjoint events E, F such that E _ F has size less than s. Fixing any disjoint
events E and F such that E _ F has size s, we now prove (6) for any x # X.

Let E=E1 _ } } } _ Em , where Ei # [F1 , ..., Fn] for all i. Since both
U(x, E) and U(x, F ) are in I1 , the range of each Vk , there exists, for any
i # [1, ..., m] an act yi such that U( yi , Ei)=U(x, E). By A4, we can then
choose a single act y such that yt

F x and yt
Ei yi for all i. Fixing such a

y, we have U( y, F )=U(x, F ) and U( y, Ei)=U( y, E)=U(x, E) for all i. By
the induction hypothesis, we then have E1 t

y E"E1 . On the other hand,
A9 implies that Et

x F � Et
y F. Given these facts, (6) now follows directly

from A7 and the induction hypothesis.

Step 3: Part (b) of the Theorem holds. Let U� : X_F � R and the
probability P� also satisfy part (a) of the Theorem, as (U, P) has been
shown to do. Through equation (10), we regard U and U� as functions from
X to L, as well. Since (U(dP�dP� ), P� ) is an additive representation, there
exist : # (0, �) and ; # L such that

U� =:U
dP
dP�

+;. (21)

We will show that in fact both dP�dP� and ; must be constant, thus proving
the result. For every x # X and i # [1, ..., n], let Ui (x)=U(x)(|) for all
| # Fi , Pi=P(Fi), and define U� i and P� i analogously. From (21) we then
obtain

(U� k(x)&U� k( y))=:(Uk(x)&Uk( y))
Pk

P� k
, x, y # X, i # [1, ..., n]. (22)
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Fix any given i, j # [1, ..., n], divide the equation obtained from (22) by
setting k=i with the equation obtained from (22) by setting k= j.
Moreover, assume that x=vij and y=wik for some v, w # X such that
voi w, and that i{ j. The result is the equation Pi �P� i=Pj�P� j . This proves
that dP�dP� is constant, and therefore P=P� , and (21) reduces to U� =:U+;.
Given any distinct i, j, we can then derive the equation

U� i (x)&U� j (x)=:(Ui ( y)&Uj ( y))+(;i&;j), x, y # X.

By choosing x, y # X such that itx j and ity j, it follows that ;i=;j , and
therefore ; is constant.

This proves part (b). Part (c) is immediate from the definition of U, and
we have therefore proved the Theorem for a finite number of events and no
nonempty null sets.

Step 4: The general case. Suppose first that F is finite, but there exist
nonempty null sets. Then there is a unique decomposition 0=00 _ 01 ,
where N=[F # F : F�00] and 00 & 01=<. The result follows by
applying Steps 0 through 4 on the restricted state-space 01 , and by letting
P(N)=0 and U(x, E _ N)=U(x, E) for all N # N, x # X, and E # E such
that E�01 .

Consider now the general case, with no restrictions on F or N. Let an
algebra of events be nice if it is finite and it contains three given disjoint
events (fixed arbitrarily). Given any nice algebra G, one can apply Theorem 1
for the finite case, to obtain a representation (UG , PG ) satisfying all the
conditions that (U, P) satisfies in the theorem, but with G in place of F.
If further UG( } , E) maps X onto [0, 1] for all E # E, we call the pair
(UG , PG) a nice G-representation. There are two important facts to notice:
First, given any nice algebra G, any two nice G-representations are identical.
Second, if H�G are nested nice algebras, then the nice H-representation
is the restriction of the nice G-representation on H. Given these observations,
we can now consistently define (U, P) as follows: Given any G # F, pick
any nice algebra G containing G, with corresponding nice G-representation
(UG , PG ), and let U( } , G)=UG( } , G) and P(G)=PG(G). It is not hard to
see that the definition of (U( } , G), P(G)) does not depend on the specific
choice of G. Using this fact, one can then easily confirm that P is a finitely
additive probability, and that all nice representations are restrictions of
(U, P). The remaining conclusions of Theorem 1 follow from this observa-
tion and the finite case. K

Proof of Proposition 2

Clearly, U is the utility representation of a compatible preference order
on situations. Conversely, suppose that p is a compatible preference order
on X_E. We will show that (9) must hold. Fix arbitrary situations (x, E)
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and ( y, F ). If E=F, then (9) clearly holds. We will therefore assume that
F"E{< (the case in which E"F{< is analogous). Using A8, we also fix
a z # X such that zt

E x and Et
z F"E. By compatibility of p and the

properties of U, we have

U(x, E)=U(z, E)=U(z, F"E)=U(z, E _ F ).

Using compatibility of p, A11, the assumed properties of U, and the last
set of equalities, we now confirm (9) in each of the following two cases:

Case A. E�F. In this case the following is true:

(x, E)p ( y, F ) � (z, E)p ( y, F ) � (z, F )p ( y, F )

� zp Fy � U(z, F )�U( y, F ) � U(x, E)�U( y, F ).

Case B. E�3 F. In this case, we use, in addition to the earlier stated
properties, the fact that Case A is already proved:

(x, E)p ( y, F ) � (z, E)p ( y, F ) � (z, F"E)p ( y, F )

� U(z, F"E)�U( y, F ) � U(x, E)�U( y, F ).

This completes the proof of Proposition 2. K
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