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Scale-invariant uncertainty-averse preferences and
source-dependent constant relative risk aversion

Costis Skiadas
Kellogg School of Management, Northwestern University

Preferences are defined over payoffs that are contingent on a finite number of
states representing a horse race (Knightian uncertainty) and a roulette wheel (ob-
jective risk). The class of scale-invariant (SI) ambiguity-averse preferences, in a
broad sense, is uniquely characterized by a multiple-prior utility representation.
Adding a weak certainty-independence axiom is shown to imply either unit co-
efficient of relative risk aversion (CRRA) toward roulette risk or SI maxmin ex-
pected utility. Removing the weak independence axiom but adding a separability
assumption on preferences over pure horse-race bets leads to source-dependent
constant-relative-risk-aversion expected utility with a higher CRRA assigned to
horse-race uncertainty than to roulette risk. The multiple-prior representation
in this case is shown to generalize entropic variational preferences. An appendix
characterizes the functional forms associated with SI ambiguity-averse prefer-
ences in terms of suitable weak independence axioms in place of scale invariance.

Keywords. Uncertainty aversion, ambiguity aversion, source-dependent risk
aversion, scale invariance, homotheticity.
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1. Introduction

Assuming we agree to use the definition of Gilboa and Schmeidler (1989) for ambigu-
ity aversion (without their certainty-independence axiom), this paper characterizes all
preferences within a broad class that are ambiguity averse and scale invariant (or homo-
thetic). Ambiguity aversion means aversion to Knightian uncertainty, as is commonly
motivated by the experiments of Ellsberg (1961). Scale invariance means that the rank-
ing of any two contingent payoffs is not reversed if all amounts are scaled by the same
constant. Scale invariance is ubiquitous in models1 of macroeconomics and finance,
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1Scale invariance is behind Gorman aggregation and the associated representative–agent arguments, is
an essential component of balanced growth models, and generally lends numerical tractability by reducing
a model’s dimensionality even in models with agent heterogeneity.
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as it provides the simplest reasonably realistic way to capture wealth effects. For exam-
ple, increasingly common in economic modeling is the use of Epstein–Zin–Weil utility,2

whose certainty equivalent (CE) corresponds to expected utility with a constant coef-
ficient of relative risk aversion (CRRA), the only possible type of homothetic expected
utility. Suppose we are interested in relaxing the assumption of an expected-utility CE,
while requiring ambiguity aversion, without sacrificing scale invariance. What CE pa-
rameterizations should we consider? This paper gives a parsimonious answer to this
question based on a simple axiomatic foundation.

Although the paper’s main results do not include probabilities among their prim-
itives, let us temporarily focus on the Anscombe and Aumann (1963) type setup of a
preference order on state-contingent objective lotteries. The states can be thought of as
outcomes of a horse race and the lotteries as roulette bets, the idea being that it is eas-
ier to assign probabilities to roulette outcomes than to horse-race outcomes. Ambiguity
aversion implies that the agent is less averse to roulette uncertainty than to horse-race
uncertainty. A seminal contribution that quantifies this idea is Gilboa and Schmeidler
(1989; henceforth GS), whose uncertainty aversion axiom A.5 forms the basis for the
definition of uncertainty aversion in this paper, too (albeit without reference to objec-
tive probabilities). GS also assume what they call certainty independence, which is key
in generating their familiar multiple-prior representation. If the assumptions of this pa-
per’s first theorem are interpreted in the GS setting, they essentially3 amount to replac-
ing certainty independence with scale invariance. The resulting multiple-prior utility
representation associates a unique CRRA γ with roulette risk. For γ = 1, the utility form
is within the variational class studied by Maccheroni et al. (2006; henceforth MMR).
For γ �= 1, the utility form is similar to (but not the same as) multiplicatively variational
representations appearing in Chateauneuf and Faro (2009; henceforth CF) and Cerreia-
Vioglio et al. (2011; henceforth CMMM). Whereas GS, MMR, CF, and CMMM4 derive
functional forms for aggregating horse-race uncertainty using some type of weak inde-
pendence axiom, in this paper’s central theorem, similar utility structures are derived as
a consequence of scale invariance, without any weak independence axiom.

The paper’s central representation theorem is specialized in two different directions.
The first direction clarifies the role of conditions that are the analogs of GS’s certainty
independence (CI) and MMR’s weak certainty independence (WCI), which are used to
characterize the scale-invariant case of maxmin expected utility (MEU) and variational

2The utility of Epstein and Zin (1989) and Weil (1990) is a parameterization of homothetic Kreps and Por-
teus (1978) utility, which includes expected discounted power or logarithmic utility. Another widely used
preference class, exemplified by expected discounted exponential utility, is characterized by translation in-
variance relative to a constant consumption stream. (See Chapter 6 of Skiadas 2009 for the corresponding
recursive-utility formulation.) The analysis of translation-invariant preferences also reduces to the scale-
invariant case by passing to log consumption.

3Increasing preferences and strictly positive consumption are also assumed.
4The reference here is to Theorem 26 of CMMM, which is not the paper’s main focus. The main contribu-

tion of CMMM is the application of a general form of quasiconcave duality to establish a unified multiple-
prior representation of ambiguity-averse preferences in the GS setting, without any weak independence
axiom. As explained in Appendix B.3, the duality results in the present paper build on the CMMM duality,
based on the implications of scale invariance.
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preferences. Introducing CI naturally implies MEU with a power or logarithmic von
Neumann–Morgenstern index. What is less clear is how this MEU representation re-
lates to the main result’s multiplicatively variational representation for γ �= 1. The an-
swer is given in terms of a concrete expression that provides an alternative functional
representation of MEU. Introducing WCI naturally results in the scale-invariant case of
variational preferences in the sense of MMR, but more can be said. If γ = 1, correspond-
ing to logarithmic variational preferences, then WCI is redundant, in the sense that it is
a necessary condition of scale invariance and the other assumptions of the main repre-
sentation theorem. If γ �= 1, then WCI is equivalent to CI. In other words, for nonunit
CRRA toward roulette risk, the scale-invariant case of MMR-type preferences does not
take us beyond MEU.

The second direction in which the paper’s central theorem is specialized leaves out
any form of a weak independence axiom and, instead, imposes separability of prefer-
ences over pure horse-race contingent payoffs. The result is source-dependent constant
relative risk aversion, with the CRRA associated with horse-race uncertainty being po-
tentially higher than the CRRA associated with roulette risk. The utility form in this case
is within a class of source-dependent expected utility appearing in Nau (2006) and Ergin
and Gul (2009) (see also Chew and Sagi 2008). It also corresponds to the earlier formu-
lation of Schroder and Skiadas (2003) in the context of continuous-time recursive utility
(as shown in Skiadas 2012a). Put in the variational form of the central representation
theorem, this utility class results in a new parametric specification, which converges to
the entropic variational utility of Hansen and Sargent (2001) as the CRRA toward roulette
risk converges to 1. The unit-CRRA case overlaps with the analysis of Strzalecki (2011).
The novel variational representations for MEU and source-dependent CRRA provide a
formal link between the two.

Although unrelated to the issue of ambiguity aversion, it is worth noting that the pa-
per’s main theorem embeds a simplified axiomatic foundation for scale-invariant sub-
jective expected utility (SEU) with a finite state space. Assuming more than two states,
it is shown that if a preference order over state-contingent payoffs is continuous, is in-
creasing, and satisfies a separability condition that allows the application of Debreu’s
additive representation theorem, then scale invariance is equivalent to the existence of a
unique probability and a constant-relative-risk-aversion expected-utility representation
relative to this probability. In contrast, an SEU axiomatization without scale invariance
requires considerably more structure, whether it be that of Savage (1954), Anscombe and
Aumann (1963), or any of the SEU foundations building on the theory of additive con-
joint measurement, as in the contributions of Luce and Krantz (1971) and Wakker (1984,
1989). In a variant of the latter approach, Skiadas (1997, 2009, Theorem 4.12) separates
the conditions leading to an additive representation and a single, but rather elaborate,
state-independence condition that delivers SEU. Here the simple ordinal condition of
scale invariance entirely substitutes for state independence, and further implies (glob-
ally) constant risk attitudes and smoothness. This result has essentially been noted in
Theorem 3.37 of Skiadas (2009) under a minor nonordinal regularity assumption, which
is dispensed with in this paper. Appendix B.1 provides details, along with further discus-
sion of related literature.
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Scale invariance plays two roles in this paper. For preferences over roulette payoffs,
it helps pin down an SEU representation and associated CRRA γ. Given the latter and
a preference assumption, general payoffs can be equivalently represented as horse-race
contingent utility levels. The second role of scale invariance is to put structure on the
function that takes these contingent utility levels as input and gives the utility of the
whole payoff as output. In GS, MMR, CF, and related papers, such structure is inferred
from assumed weak independence axioms. Scale invariance restricts the type of weak
independence axiom that can be assumed. For γ = 1, WCI is necessary. For γ �= 1, CI
must hold if WCI is assumed. For γ �= 1 without WCI, the functional structure implied
by scale invariance does not correspond exactly to any weak independence axiom in the
literature, but it can nevertheless be characterized in terms of new weak independence
conditions, which are similar to Axiom 5 of CF and Axiom 10 of CMMM, as spelled out
in Appendix A.

The rest of this paper proceeds as follows. Section 2 introduces the preference re-
strictions that are adopted throughout the main part of the paper. Section 3 presents
the central representation theorem, which is related to MEU and CI in Section 4, and to
variational preferences and WCI in Section 5. The theory of source-dependent constant
relative risk aversion is presented in Section 6. The role of Appendix A was pointed out in
the preceding paragraph, Appendix B proves the main results, and Appendix C collects
proofs omitted up to that point in the paper.

2. Scale-invariant ambiguity-averse preferences

There are two sources of uncertainty, represented by the two factors of the state space

{1� � � � �R} × {1� � � � � S}� where R> 2�

Informally, we think of 1� � � � � S as states representing Knightian uncertainty, for exam-
ple, the possible outcomes of a horse race. We think of 1� � � � �R as states representing
better understood uncertainty, for example, the possible outcomes of a roulette spin.
A generic element of the state space, or just state, is denoted (r� s). We refer to elements
(subsets) of {1� � � � �R} as roulette states (events) and to elements (subsets) of {1� � � � � S} as
horse-race states (events).

A payoff is any mapping of the form x : {1� � � � �R} × {1� � � � � S} → (0�∞), with x(r� s)
or xsr denoting the value of x at state (r� s). We writeX for the set of all payoffs, which we
identify with (0�∞)R×S . A roulette payoff is any payoff xwhose value is a function of the
roulette outcome only, that is, x(r� s) = x(r� s′) for all r ∈ {1� � � � �R} and s� s′ ∈ {1� � � � � S}.
If x is a roulette payoff, we write xr instead of xsr . Analogously, a payoff x is a horse-race
payoff if x(r� s)= x(r ′� s) for all r� r ′ ∈ {1� � � � �R} and s ∈ {1� � � � � S}, in which case we write
xs instead of xsr . The set of all roulette (resp. horse-race) payoffs is denoted XR (resp.
XS) and is identified with (0�∞)R (resp. (0�∞)S). So while XR and XS are subsets of X ,
we also think of a payoff x as an R-by-S matrix, whose columns, denoted x1∗� � � � � xS∗ , are
roulette payoffs. For any x� y ∈X and roulette event B, xBy denotes the payoff

(xBy)(r� s)=
{
xsr if r ∈ B
ysr if r /∈ B�
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Note that x� y ∈XR implies xBy ∈XR.
The central object of study is a binary relation � on the set of payoffs X , represent-

ing an agent’s preferences: x � y means that the agent strictly prefers x to y. As usual,
the corresponding relations 	 and ∼ on X are defined by [x 	 y ⇐⇒ not y � x] and
[x∼ y ⇐⇒ x	 y and y 	 x]. The restriction of � onXR is denoted �R:

x�R y ⇐⇒ x� y ∈XR and x� y�

The following definition lists properties of � that are imposed in each of the main rep-
resentation theorems in this paper.

Definition 1. The relation � is

• increasing if for all x� y ∈X , x �= y ≥ x implies y � x
• continuous if for all x ∈X , the sets {y :y � x} and {y :x� y} are open

• a preference order if 	 is complete5 and transitive6

• scale invariant if x� y implies αx� αy for all α ∈ (0�∞)

• �R -monotone if for all x� y ∈X ,

xs∗ �R ys∗ for all s ∈ {1� � � � � S} �⇒ x� y

• ambiguity averse if for all x� y ∈XS ,

x∼ y �⇒ xBy 	 x for every roulette event B�

The first three conditions are commonplace, while the fourth condition is the famil-
iar homotheticity condition; it formalizes the notion of scale invariance that along with
ambiguity aversion is this paper’s focal point. The last two conditions of Definition 1 are
analogous to Assumptions A.4 and A.5 of GS. The �R-monotonicity condition requires
that the agent prefers payoff x to payoff y if for every horse-race outcome s, the roulette
payoff xs∗ is preferred to roulette payoff ys∗. This is not an innocuous assumption, but we
follow GS and the related literature in adopting it. Ambiguity aversion requires that if the
agent is indifferent between horse-race payoffs x and y, then the agent (weakly) prefers
to spin the roulette wheel and select x if the ball settles in B and y otherwise. (The con-
dition corresponds to that of “second-order risk aversion” in Ergin and Gul 2009 and
Strzalecki 2011.) A commonly used illustration is as follows.

Example 2. There are only two horses (S = 2), about which the agent has no informa-
tion. Suppose x = (100�1) and y = (1�100) are horse-race payoffs. The agent’s indiffer-
ence between x and y reflects the symmetry of the situation but conceals the agent’s
discomfort with the fact that the probability π of the first horse winning is unknown.

5The relation 	 is complete if for all x�y ∈X , either x	 y or y 	 x.
6The relation 	 is transitive if x	 y and y 	 z implies x	 z.
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Suppose also that B is a roulette event that the agent knows to have probability 1/2.
Then xBy pays 100 or 1 with equal probability, for any given value of π. For this reason,
xBy is preferred to either x or y. ♦

The preceding restrictions on � imply that �R is an increasing, continuous, scale-
invariant preference order onXR. We will further assume that �R is separable.

Definition 3. The relation �R is separable if for all x� y� z� z′ ∈XR and B⊆ {1� � � � �R},

xBz �R yBz ⇐⇒ xBz
′ �R yBz′�

In the representation theorems to follow, �R has a power or logarithmic expected-
utility representation relative to a unique probability over roulette outcomes. Such a
representation of �R follows from the assumption that �R is an increasing, continuous,
scale-invariant, and separable preference order. The argument can be found as Theo-
rem 17 in Appendix B.

3. Main representation theorem

This section presents the paper’s central theorem, which characterizes all preference or-
ders onX with the properties listed in Definitions 1 and 3. Subsequent results specialize
this section’s representation by imposing additional preference restrictions.

The following terminology and notation is used to state this section’s theorem, as
well as throughout the rest of this paper.

A certainty equivalent (CE) is any increasing7 and continuous function of the form
ν :X → (0�∞) satisfying8 ν(α1) = α for all α ∈ (0�∞). The CE ν is said to represent � if
ν(x) > ν(y) is equivalent to x� y.

For any positive integer n, we write

�n =
{
p ∈ (0�1)n :

n∑
i=1

pi = 1

}
(1)

and �̄n for the closure of �n, that is, �̄n = {p ∈ [0�1]n :
∑
i pi = 1}. In particular, �R (resp.

�S) is the set of all priors over roulette (resp. horse-race) states that assign a positive
mass to every state.

Given any scalar γ, we write uγ for the real-valued function on (0�∞) defined by

uγ(z)=
{
z1−γ/(1 − γ) if γ �= 1
log(z) if γ = 1�

(2)

This serves as a convenient choice of a von Neumann–Morgenstern index with constant
CRRA γ, representing risk aversion toward roulette risk. Note that the image set of uγ ,
denoted uγ(0�∞), is equal to (0�∞) if γ < 1, to R if γ = 1, and to (−∞�0) if γ > 1.

7Throughout this paper, we use the term increasing in the strict sense: x≥ y �= x implies ν(x) > ν(y).
8We use the notation 1 = (1�1� � � � �1), the dimensionality being implied by the context.
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Finally, we define a set Cγ of functions over horse-race priors, whose role is similar
to those appearing in the variational utility forms of MMR and CF. The definition of Cγ is
contingent on the CRRA γ in a way that reflects the image set uγ(0�∞).

Definition 4. Given any γ ∈ R, Cγ denotes the set of all functions C on �S with the
following properties:

• If γ = 1, then minC = 0 and C is the restriction to �S of a convex lower semicon-
tinuous function C : �̄S → R+ ∪ {∞}.

• If γ < 1, then C is valued in [1�∞), minC = 1, and 1/C is concave.

• If γ > 1, then C is valued in (0�1], maxC = 1, and 1/C is convex.

Note that for every C ∈ Cγ with γ �= 1, both C and 1/C are finite-valued and contin-
uous.9 For any C, C̄ in Cγ , the notation C̄ ≥ C means C̄(q)≥ C(q) for all q ∈ �S .

The paper’s central result follows.

Theorem 5. Assuming R> 2, the following two conditions are equivalent:

(i) The relation � is a continuous, increasing, scale-invariant, �R-monotone, and
ambiguity-averse preference order, and �R is separable.

(ii) The CE ν :X → (0�∞) representing � exists and takes the form

uγ ◦ ν(x)= min
q∈�S

{
(
∑S
s=1qs

∑R
r=1pruγ(x

s
r))+C(q) if γ = 1

(
∑S
s=1qs

∑R
r=1pruγ(x

s
r))C(q) if γ �= 1

(3)

for some p ∈ �R, γ ∈ R, and C ∈ Cγ .

Assuming the two conditions are satisfied, the parameters p and γ are unique, and the
function C can be uniquely selected to have the property: If representation (3) is also valid
with any C̄ :�S → R+ ∪ {∞} in place of C, then C ≤ C̄ if γ ≤ 1 and C̄ ≤ C if γ > 1.

We henceforth refer to the C ∈ Cγ of representation (3) with the preceding property
as the unique extremal C (meaning minimal if γ ≤ 1 and maximal if γ > 1).

For γ = 1, representation (3) is within the utility class characterized by MMR, whose
Proposition 6 implies that the corresponding C is in fact unique10 in C1 (without the
requirement of minimality). We return to the relationship between the preceding theo-
rem and MMR in Section 5. For γ �= 1, representation (3) is closely related to but differ-
ent than the representation of CF and its extension by CMMM, as further explained in
Appendix A.

9In a finite-dimensional vector space, every convex or concave function with an open domain is contin-
uous, a fact that can be applied here to the function 1/C on the open domain �S .

10The uniqueness of C within C1 if γ = 1 is seen in the course of the proof of Theorem 5 (see Remark 24)
to be a consequence of the Fenchel–Legendre duality that is behind the MMR representation. The multi-
plicative version of this duality used for γ �= 1 does not generally imply the uniqueness of C within Cγ . For
instance, one can take the case γ > 1 in Example 9 and modify C by rotating upward the sloped sections of
the graph of 1/C in Figure 1 while keeping the flat section the same. The requirement that C be extremal
uniquely pins down C.
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While a complete proof of Theorem 5 can be found in Appendix B, some of the un-

derlying ideas are worth discussing here, as they lead to a better appreciation of the

result and its relationship to the literature. We focus on the nontrivial implication (i) �⇒
(ii), and we proceed under the assumption that � satisfies the theorem’s condition (i)

and ν is the CE representing �.

For x ∈XR, equation (3) reduces to uγ ◦ ν(x) = ∑
r pruγ(xr). The theorem’s condi-

tion (i), therefore, must imply that �R admits an expected utility representation with

prior p and a constant CRRA γ. This fact, which is proved in Appendix B.1, is the start-

ing point of the proof of condition (ii) given condition (i). (Note also that Theorem 17

of Appendix B.1, whose relationship to the foundations of SEU was discussed in the In-

troduction, is the special case of Theorem 5 that is obtained by setting S = 1 and R= n.)

Similarly to GS, an argument that hinges on the assumption that � is �R-monotone

shows that there is an increasing, continuous function f :uγ(0�∞)S → uγ(0�∞) such

that uγ ◦ ν(x) = f (y1� � � � � yS), where ys = ∑
r pruγ(x

s
r). In other words, the utility of the

payoff x can be determined by first reducing x to an equivalent horse-race payoff y mea-

sured in utils and then computing f (y). As in GS, ambiguity aversion is easily seen to be

equivalent to the quasiconcavity of f . The central question is, what else can be said

about the functional form of f ?

Let us call f scale invariant (SI) if it is homogeneous of degree 1, and translation

invariant (TI) if it is quasilinear with respect to the sure payoff 1. If f is quasiconcave

and either SI or TI, it must also be concave. In GS, the certainty-independence axiom

implies that f is both SI and TI. In this case, conjugate duality (in the sense of Section 12

of Rockafellar 1970) leads to the MEU functional form f (y)= minq∈K q ·y for a nonempty,

closed, convex K ⊆ �S . MMR weakened certainty independence in a way that implies

that f is TI but not necessarily SI. Conjugate duality in this case leads to the functional

form f (y)= minq∈�S q · y +C(q) for some C ∈ C1.

Certainty independence and its weaker version are discussed in the following two

sections, but neither is assumed here; we rely on scale invariance instead. For γ = 1, the

fact that uγ = log and scale invariance of � imply that f must be TI, resulting in an MMR-

type representation in the first part of (3). For γ �= 1, the fact that uγ is a power function

and scale invariance of � imply that f must be SI. A corresponding duality theory in this

case, developed in Appendix B, leads to the functional form f (y) = minq∈�S(q · y)C(q)
for some C ∈ Cγ , and hence the second part of representation (3). A subtlety in this

argument involves showing that in the last representation, C and 1/C are finite-valued.

As this outline suggests, scale invariance restricts the type of weak independence

axiom that can be assumed in a way that depends on the value of γ. If γ = 1, then scale

invariance implies that f is TI, a property that is characterized by the weak certainty-

independence axiom of MMR, discussed in Section 5. If γ �= 1, then scale invariance

implies that f is SI, a property that can also be characterized in terms of a certain weak

independence axiom, closely related to an axiom first introduced by CF. This alternative

way of characterizing the SI property of f is developed in Appendix A.
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4. Scale invariance with certainty independence

The purpose of this section is to clarify the relationship between the representation of
Theorem 5 and the scale-invariant case of the MEU representation characterized by GS.
The essential assumption that GS make and does not appear in Theorem 5 is certainty
independence. An analogous11 condition in the current setting is the following. We
write α for the constant payoff that takes the value α ∈ (0�∞) at every state.

Certainty Independence (CI). For any horse-race payoffs x, y, roulette events A, B,
and α ∈ (0�∞),

xA1 � yA1 ⇐⇒ xBα� yBα�

The motivation behind certainty independence is that roulette mixing with a con-
stant payoff cannot provide the type of hedging with respect to lack of knowledge of the
prior suggested by the ambiguity-aversion condition and illustrated in Example 2.

Theorem 6 below specializes the representation of Theorem 5 by adding certainty
independence, using the notation

K = set of all nonempty, closed, convex subsets of �S

L(q) = {x ∈ R
S+ :q · x= 1} and χK(q)=

{
0 if q ∈K
∞ otherwise�

Theorem 6. Assuming R> 2, the following three conditions are equivalent:

(i) In addition to condition (i) of Theorem 5, � satisfies Certainty Independence.

(ii) The CE ν :X → (0�∞) representing � exists and takes the form

uγ ◦ ν(x)= min
q∈K

{
S∑
s=1

qs

R∑
r=1

pruγ(x
s
r)

}
(4)

for some γ ∈ R, p ∈ �R, andK ∈ K.

(iii) Condition (ii) of Theorem 5 holds with C ∈ Cγ defined in terms of a setK ∈ K by12

C(q)=

⎧⎪⎨
⎪⎩

minπ∈K maxz∈L(q) π · z if γ < 1
χK if γ = 1
maxπ∈K minz∈L(q) π · z if γ > 1�

(5)

Assuming the three conditions are satisfied, the parameters γ, p, and K are unique, and
(5) defines the unique extremal C ∈ Cγ consistent with representation (3).

11GS adopt a different formal setting of preferences over acts that are horse-race contingent objective
probability distributions. Moreover, their certainty-independence condition is postulated relative to any
acts x, y , not necessarily pure horse-race payoffs, as assumed in condition CI here. In the presence of our
other assumptions, the latter difference is immaterial.

12By the minimax theorem, the order of min and max in (5) can be interchanged.
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Remark 7. The equivalence of (4) and (3) with C defined in (5) remains true if the func-
tion uγ is replaced by any function u : (0�∞)→ R with the same image set as uγ .

The argument leading to representation (4) is closely related to that of GS, as out-
lined in the discussion following Theorem 5. The third condition transforms the famil-
iar representation of GS to one that fits within the unifying representation of Theorem 5.
The proof of Theorem 6 in Appendix B shows that expression (5) is an easy consequence
of the duality behind the proof of Theorem 5. It is worth noting, however, a direct proof
of the equivalence of conditions (ii) and (iii) of Theorem 6, as well as of Remark 7, based
on the following proposition, whose simple proof can be found in Appendix C.

Proposition 8. Given anyK ∈ K and y ∈ (0�∞)S ,

min
q∈K

q · y = min
q∈�S

{
(q · y)min

π∈K
max
z∈L(q)

π · z
}
� (6)

The result remains true if the roles of min and max are interchanged.

The equivalence of representations (4) and (3) with C defined in (5) is a corollary of
this proposition. If γ < 1, then the image set uγ(0�∞) is (0�∞) and the claim follows
by applying identity (6) with ys = ∑

r pruγ(x
s
r). If γ > 1, then uγ(0�∞) = (−∞�0) and

the claim follows by applying the dual identity to (6) obtained by interchanging max and
min. The case γ = 1 is obvious. This argument depends on uγ only through its image set,
thus verifying Remark 7.

We close the section with an example illustrating the membership of the function C
defined in (5) to the set Cγ defined in the last section.

Example 9. Suppose S = 2 and the CE ν is given by the following special case of (4):

uγ ◦ ν(x)= min

{
w

R∑
r=1

pruγ(x
1
r )+ (1 −w)

R∑
r=1

pruγ(x
2
r ) :w ∈

[
1
3 �

2
3

]}

for some p ∈ �R and CRRA γ. An equivalent representation (3) also holds with C com-
puted in (5). For γ = 1, C ∈ C1 is defined by

C(w�1 −w)=
{

0 if w ∈ [ 1
3 �

2
3 ]

∞ otherwise�

For γ �= 1, a simple calculation shows that (5) implies

1
C(w�1 −w) =

{
min{3w�1�3(1 −w)} if γ < 1
max{( 3

2)(1 −w)�1� ( 3
2)w} if γ > 1�

The above function is graphed as the piecewise linear dashed lines in Figure 1, with the
case γ < 1 corresponding to the bottom, thin line and the case γ > 1 corresponding to
the top, thick line. The diagram clearly illustrates the fact that C ∈ Cγ . The superim-
posed curves of Figure 1 are analogous examples of 1/C for a specification with source-
dependent CRRA that is developed in Section 6. ♦
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Figure 1. Graph of 1/C(w�1−w) as a function of the probability weightw in Examples 9 and 14.
The dashed lines correspond to Example 9: the thick line for γ > 1 and the thin line for γ < 1. The
solid curves correspond to Example 14: the thick curve for (γ� γ̂)= (2�3) and the thin curve for
(γ� γ̂)= (0�1�1�1).

5. Scale invariance with weak certainty independence

The GS characterization of MEU was extended by MMR to a class of variational prefer-
ences by weakening the certainty-independence axiom of GS. The analogous weakening
of CI in our setting (similar to A2′ in Strzalecki 2011) is as follows.

Weak Certainty Independence ( WCI). For any horse-race payoffs x, y, roulette
event B, and α ∈ (0�∞),

xB1 � yB1 ⇐⇒ xBα� yBα�

CI implies WCI, corresponding to the fact that the GS preference class is a subset of
the MMR preference class. In contrast to CI, WCI allows the possibility that xA1 � yA1
but not xB1 � yB1 for some roulette events A, B. For example, suppose A is highly
unlikely and B is certain, while x is more ambiguous but also more promising than y. It
is conceivable that the agent is able to tolerate the ambiguity of x if there is only a tiny
probability attached to it, but not if it is the whole bet.

Assuming roulette probabilities p ∈ �R and a constant CRRA γ toward roulette risk,
the MMR representation of a CE ν, adapted to the current setting, takes the form

uγ ◦ ν(x)= min
q∈�S

{(
S∑
s=1

qs

R∑
r=1

pruγ(x
s
r)

)
+ C(q)

}
(7)

for some C ∈ C1. Clearly, if � has a CE representation ν of the form (7), then WCI must
hold. The MEU form (4) is obtained by setting C = χK . Note that for γ �= 1, the C of
representation (7) is not the same type of object as the C of representation (3).
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MMR use weak certainty independence to characterize representation (7) with a
general von Neumann–Morgenstern index u in place of uγ . The conditions of the main
Theorem 5 not only imply that u = uγ for some γ, but also restrict the role of WCI and
the associated representation (7) as follows.

Theorem 10. Suppose the two equivalent conditions of Theorem 5 are satisfied.

(i) If γ = 1, then Weak Certainty Independence is necessarily satisfied. If γ �= 1, then
Weak Certainty Independence is satisfied if and only if Certainty Independence is
satisfied (in which case Theorem 6 applies).

(ii) For any C ∈ C1, the CE ν admits the representation (7) if and only if either C = χK
for someK ∈ K or γ = 1 and C equals the C of representation (3).

Part (i) says that given the conditions of Theorem 5, WCI is redundant if γ = 1 and
equivalent to CI if γ �= 1. Theorem 10 restricted to the case γ = 1 is a corollary of Theo-
rem 5, since representations (3) and (7) coincide if γ = 1. To see the simple idea behind
Theorem 10 for γ �= 1, recall the discussion following Theorem 5, where it was pointed
out that the variational representation (7) results from a convex dual representation of
the function f under the assumption that f is TI, a property that is equivalent to WCI
(see Lemma 20(iii)). If γ �= 1, scale invariance implies that f must also be SI, but the case
in which f is both TI and SI corresponds to MEU, characterized by CI. For this reason, if
γ �= 1, WCI implies CI and representation (7) reduces to MEU.

6. Source-dependent CRRA

In the last two sections, the scale-invariant and ambiguity-averse preference class of
Theorem 5 was specialized by imposing conditions CI or WCI. In this section, the same
class of preferences is specialized in another direction by imposing separability on pref-
erences over (pure) horse-race payoffs, without any weak independence axiom. The
result is a utility representation in which both preferences on horse-race payoffs and
preferences on roulette payoffs admit a constant-relative-risk-aversion expected-utility
representation with a unique prior. The key feature of the representation is that the
CRRA assigned to horse-race payoffs can be higher than the CRRA assigned to roulette
payoffs, as a reflection of ambiguity aversion. Of course, the dual, multiple-prior repre-
sentation (3) remains valid in this case for a function C that is specified below. For γ = 1,
C takes the form of relative entropy, corresponding to a well studied class of entropic
variational preferences. For γ �= 1, the function C takes a new form that generalizes the
entropic specification, which can be obtained by letting γ approach 1.

We use the following extension of earlier notation and terminology. For any x� y ∈XS
andA⊆ {1� � � � � S}, xAy denotes the horse-race payoff defined by

(xAy)s =
{
xs if s ∈A
ys if s /∈A�
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We let �S denote the restriction of � to the set of horse-race payoffs:

x�S y ⇐⇒ x� y ∈XS and x� y�

We say that �S is separable if for every x� y� z� z′ ∈XS andA⊆ {1� � � � � S},

xAz �S yAz ⇐⇒ xAz′ �S yAz′�

Theorem 11. Assuming R�S > 2, the following three conditions are equivalent:

(i) Condition (i) of Theorem 5 is satisfied and �S is separable.

(ii) There exist (p�γ) ∈ �R × R and (p̂� γ̂) ∈ �S × R with γ̂ ≥ γ such that the CE ν
representing � is given by

uγ̂ ◦ ν(x)=
S∑
s=1

p̂suγ̂ ◦ u−1
γ

(
R∑
r=1

pruγ(x
s
r)

)
� x ∈X� (8)

(iii) Condition (ii) of Theorem 5 is satisfied with C given in terms of p̂ ∈ �S as follows.

• If γ = 1, then for some θ ∈ (0�∞],

C(q)= θ
S∑
s=1

qs log
(
qs

p̂s

)
� q ∈ �S (with ∞ · 0 = 0)� (9)

• If γ �= 1, then for some η ∈ [−∞�1)∪ (1�∞],

1
C(q)

=
(

S∑
s=1

p̂s

(
qs

p̂s

)η)1/η

� (10)

where the cases η ∈ {0�±∞} are computed by taking a corresponding limit:

1
C(q)

=

⎧⎪⎨
⎪⎩

exp(
∑
s p̂s log(qs/p̂s)) if η= 0

maxs{qs/p̂s} if η= ∞
mins{qs/p̂s} if η= −∞�

(11)

Assuming these equivalent conditions are satisfied, all parameters in conditions (ii) and
(iii) are unique, the parameters p, p̂, and γ are common between the two conditions, and
the remaining parameters are related by

θ= 1
γ̂− 1

and η= γ̂− 1
γ̂− γ � (12)

Remark 12. The following extensions of Theorem 11 are also shown in its proof.

(i) Conditions (i) and (ii) remain equivalent if ambiguity aversion is omitted in con-
dition (i) and the requirement γ̂ ≥ γ is omitted in condition (ii). In this case, � is
ambiguity averse if and only if γ̂ ≥ γ.
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(ii) The equivalence of conditions (ii) and (iii) is valid without the assumption
R�S > 2.

Representation (8) is within a class of source-dependent expected utilities studied
by Ergin and Gul (2009) and Nau (2006) (which should not be confused with the second-
order expected utility studied by Klibanoff et al. 2005). Here scale invariance pro-
vides more structure and simplifies the axiomatic foundations. As explained in Skiadas
(2012a), a continuous-time version of representation (8) already appears in Schroder
and Skiadas (2003), albeit without a decision-theoretic foundation. The dual represen-
tation for γ = 1 is an instance of the entropic variational preferences of Hansen and
Sargent (2001), and the preceding characterization is consistent with Strzalecki (2011).
For γ �= 1, the dual representation is (to my knowledge) new and extends the case γ = 1,
which can be obtained as a limiting version by letting γ→ 1, as outlined in the following
remark.

Remark 13. Let ν be the CE of condition (ii) of Theorem 11. The restriction of ν to the
set of horse-race payoffs is the expected-utility CE νS(x) = u−1

γ̂
(
∑
s p̂suγ̂(x

s)), x ∈ XS .

For γ = 1, the fact that (8) is equivalent to (3) with C given in (9) is equivalent to the well
known identity

logνS(x)= min
q∈�S

{
S∑
s=1

qs log(xs)+ θ
S∑
s=1

qs log
(
qs

p̂s

)}
� x ∈ (0�∞)S� (13)

with the convention ∞· 0 = 0. For γ �= 1, the fact that (8) is equivalent to (3) with C given
in (10) is equivalent to the new identity

uγ ◦ νS(x)= min
q∈�S

∑S
s=1 qsuγ(xs)

(
∑S
s=1 p̂

1−η
s q

η
s )1/η

� x ∈ (0�∞)S� (14)

with the limit conventions in (11). Given (12), identity (13) is the limiting version of
identity (14) as γ→ 1. To verify this claim, multiply (14) by (1 − γ), take logs, divide by
(1 − γ), and use (12) to find

logνS(x)= min
q∈�S

{
1

1 − γ log

(
S∑
s=1

qsx
1−γ
s

)
+ θ

η− 1
log

(
S∑
s=1

qs

(
qs

p̂s

)η−1
)}
�

As γ → 1, and therefore η → 1, the first term inside the curly brackets converges to∑
s qs log(xs) and the second term converges to θ

∑
s qs log(qs/p̂s), thus reducing the

above expression to (13).

The following is an example of the dual representation of condition (iii) of Theo-
rem 11 that is a smooth analog to the MEU Example 9.

Example 14. Suppose that S = 2 (see Remark 12(ii)) and the CE ν is given by (8) with
p̂ = ( 1

2 �
1
2) and 1 �= γ̂ > γ �= 1. Letting η = (γ̂ − 1)/(γ̂ − γ), the function C of the dual



Theoretical Economics 8 (2013) Uncertainty-averse preferences 73

representation (3) is given by (10), which in this context becomes

1
C(w�1 −w) =

(
1
2

)(1−η)/η
(wη + (1 −w)η)1/η� w ∈ (0�1)�

Two examples of this function are graphed in Figure 1 on top of analogous examples
in the MEU specification of Example 9. The top, thick curve corresponds to γ̂ = 3 and
γ = 2, while the bottom, thin curve corresponds to γ̂ = 1�1 and γ = 0�1. ♦

We close with some remarks on the order of aggregation in expression (8), that is, the
fact that roulette payoffs are collapsed to their certainty equivalent first and the resulting
horse-race payoff is collapsed to a certainty equivalent second. As noted in Remark 12(i),
ambiguity aversion is not relevant to this issue. Without ambiguity aversion, the roles of
roulette and horse-race uncertainty are symmetric, except for �R-monotonicity, which
dictates the order of aggregation in (8). The situation is analogous to the partial sepa-
ration of time preferences and risk aversion in Epstein–Zin–Weil utility (see footnote 2),
which over a single period is achieved by aggregating over states first and then over time.
Similarly here, to achieve a partial separation of risk attitudes toward two risk sources,
one source of risk is aggregated prior to the other. This paper follows the tradition of
GS in assuming that risk is aggregated prior to uncertainty (although the reverse order
seems worthy of future research). The topic is further explored in Skiadas (2012a), where
a minimal extension of Epstein–Zin–Weil utility to reflect CE (8) is axiomatically estab-
lished. It is also shown there that for small incremental risks, corresponding to Brown-
ian or Poisson uncertainty, the order of aggregation becomes approximately irrelevant, a
symmetry that becomes exact in the continuous-time version13 of the utility in Schroder
and Skiadas (2003).

Appendix A: Other weak independence axioms

Theorem 5 established the utility functional form (3) for evaluating horse-race uncer-
tainty. For γ = 1, this functional form corresponds to the specification of MMR, which is
characterized by Weak Certainty Independence (WCI). Moreover, we saw in Theorem 10
that if γ �= 1, the multiplicative variational form in (3) is consistent with WCI if and only
if Certainty Independence (CI) is satisfied, corresponding to an MEU representation. In
the case in which γ �= 1 and CI is not satisfied, the functional structure of (3) is related to
formulations by CF and CMMM, but lacks an exact foundation based on weak indepen-
dence conditions, rather than scale invariance. The purpose of this appendix is to close
this gap, formulating weak independence axioms that characterize all functional forms
for aggregating horse-race uncertainty in (3), without assuming scale invariance.

The relevant weak independence conditions, in addition to WCI (see Section 5), are
listed below. Recall that α denotes the constant payoff taking the value α at all states.

13The effect of ambiguity aversion in this model survives in the continuous-time Brownian/Poisson limit,
in contrast to the argument made in Skiadas (2012b) with regard to the smooth second-order expected
utility of Klibanoff et al. (2005).



74 Costis Skiadas Theoretical Economics 8 (2013)

Low-Constant Independence (LCI). For any x� y ∈ XS and roulette event B, there
exists ε > 0 such that

x� y ⇐⇒ for all α ∈ (0� ε)�xBα � yBα�

High-Constant Independence (HCI). For any x� y ∈XS and roulette event B, there
existsM > 0 such that

x� y ⇐⇒ for all α ∈ (M�∞)�xBα � yBα�

Suppose the CE representation ν of � admits the representation (3) for some p ∈ �S ,
γ ∈ R, and C ∈ Cγ . Then the following implications are easily seen to be true.

γ = 1 �⇒ WCI� γ < 1 �⇒ LCI� γ > 1 �⇒ HCI�

LCI and HCI are variants of Axiom 5 of CF and Axiom A.10 of CMMM. The latter formu-
lates weak independence relative to a fixed reference outcome, while the former further
assumes that the outcome is the worst possible. In our setting, there is no worst (or
best) outcome—LCI is weak certainty independence relative to all sufficiently bad con-
stant payoffs, and HCI is weak certainty independence relative to all sufficiently good
constant payoffs.

We show that in the absence of scale invariance, WCI, LCI, and HCI entirely charac-
terize the functional structure (3) toward horse-race uncertainty. For technical reasons,
we do so in a modified model in which roulette outcomes are uniformly distributed on
[0�1], essentially embedding our earlier treatment in a model with objective roulette
probabilities, just as in the related literature of GS, MMR, CF, and CMMM.

For the remainder of this appendix, the roulette state space {1� � � � �R} is replaced
with the unit interval [0�1]. An objective distribution over roulette outcomes is given as
Lebesgue measure λ on [0�1]. A roulette event is now any Borel subset of [0�1]. A roulette
payoff is any Borel-measurable simple random variable of the form z : [0�1] → (0�∞),
meaning that there exist finitely many disjoint roulette events B1� � � � �Bn and corre-
sponding z1� � � � � zn ∈ (0�∞) such that z = ∑n

i=1 zi1Bi . The corresponding expectation
is Ez = ∑n

i=1 ziλ(Bi). A payoff is any mapping of the form x : [0�1] × {1� � � � � S} → R such
that for every horse-race state s, the section xs : [0�1] → R, defined by xs(r)= x(r� s), is a
roulette payoff. As before, we identify a roulette payoff with a payoff that does not de-
pend on the horse-race state, while a horse-race payoff can be viewed as either a payoff
that does not depend on the roulette state or an element of (0�∞)S .

As in Section 2, we take as given a relation � on the set of payoffsX , whose restriction
on the set of roulette payoffsXR (resp. horse-race payoffs XS) is denoted �R (resp. �S).
We further assume that �R has a von Neumann–Morgenstern (vNM) representation. For
the purpose of this discussion, a vNM index is any increasing continuous function of the
form u : (0�∞)→ R and is said to represent �R if x �R y is equivalent to Eu(x) > Eu(y)

for all x� y ∈XR. We focus on the case in which �R has an unbounded vNM representa-
tion u. Since we are free to choose any positive affine transformation of u, we assume,
without loss of generality, that the image set of u is R or ±(0�∞) (meaning (0�∞) or
(−∞�0)).
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The representation theorem that follows essentially modifies Theorem 5 by replacing
scale invariance with a weak independence axiom, which one depending on the image
of u. The theorem refers to the set Cγ of Definition 4. Note that Cγ depends on γ only
through the image set uγ(0�∞), which can be R or ±(0�∞).

Theorem 15. Suppose the vNM index u is such that u(0�∞)= R or u(0�∞)= ±(0�∞),
and select any γ ∈ R such that u(0�∞) = uγ(0�∞). Then the following conditions are
equivalent:

(i) The relation � is an increasing, �R-monotone, and ambiguity-averse preference
order, and �S is continuous. Moreover, �R has the vNM representation u, and �
satisfies WCI if u(0�∞)= R, LCI if u(0�∞)= (0�∞), and HCI if u(0�∞)= (−∞�0).

(ii) The CE ν :X → (0�∞) representing � exists and takes the form

u ◦ ν(x)= min
q∈�S

{
(
∑S
s=1qsEu(x

s))+C(q) if u(0�∞)= R

(
∑S
s=1qsEu(x

s))C(q) if u(0�∞)= ±(0�∞)
(15)

for some C ∈ Cγ .

Suppose these two conditions are satisfied. The functionC can be uniquely selected so that
if representation (15) is also valid with any C̄ :�S → R+ ∪ {∞} in place of C, then C ≤ C̄ if
γ ≤ 1 and C̄ ≤ C if γ > 1. Moreover, the following statements are true:

• CI is satisfied if and only if C takes the form of condition (iii) of Theorem 6. For
u(0�∞)= ±(0�∞), CI is satisfied if and only if WCI is satisfied.

• Assuming S > 2, the preference order �S onXS is separable if and only if C takes the
form of condition (iii) of Theorem 11.

Remark 16. Representation (15) corresponds to one form of the function f that maps
the vector (Eu(x1)� � � � �Eu(xS)) to u ◦ ν(x). If CI is satisfied, then f can alternatively be
expressed as f (z)= minq∈K q · z for some (unique)K ∈ K, by the same argument used in
Theorem 6. (This fact is of course known from GS.) If S > 2 and �S is separable, then f is
alternatively given by Example 26 if u(0�∞)= R and by Example 27 if u(0�∞)= ±(0�∞),
just as in the proof of Theorem 11.

In the case u(0�∞) = R, the utility representation (15) and the characterization of
the entropic form (9) are familiar thanks to MMR and Strzalecki (2011), respectively. In
this case, the function C of (15) is unique in C1 (see Remark 24), just as in the context of
Theorem 5 for γ = 1.

The case u(0�∞) = ±(0�∞) is related to CF and Theorem 26 of CMMM, but is dif-
ferent in terms of the restrictions placed on C, reflecting the difference between LCI or
HCI and the corresponding weak independence assumptions of CF and CMMM. The
characterization in the case of separable �S with u(0�∞)= ±(0�∞) and C given by (10)
is new.
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Appendix B: Proof of representation theorems

This appendix proves the theorems of the main part of the paper and Appendix A, and
explains their underlying structure. The first section presents a key representation the-
orem for scale-invariant separable preferences that is of interest in its own right. The
second section relates preference properties to primal CE representations. The third
section develops convex duality results that, in conjunction with the primal represen-
tations, lead to the multiple-prior representations of the main results, whose proofs are
concluded in the last five sections. Omitted lemma proofs can be found in Appendix C.

B.1 Scale-invariant separable preferences

In preparation for the main analysis, this section states and proves Theorem 17, pro-
viding a characterization of scale-invariant separable preferences. The result, which is
of interest in its own right, improves Theorem 3.37 of Skiadas (2009) by removing the
nonordinal assumption that the utility is continuously differentiable in some arbitrarily
small neighborhood. As discussed in the Introduction, the remarkable aspect of Theo-
rem 17 is that separability together with scale invariance substitute for a more elaborate
SEU theory on a finite state space, delivering the power or logarithmic expected utility
structure under a unique probability. Related insights are provided by Hens (1992) and
Werner (2005). Hens notes that if a continuously differentiable additive utility has a con-
stant marginal rate of substitution along the certainty line, then it must take the form
of expected utility. Werner shows that an additive utility that is more risk averse than
risk neutral relative to an exogenously given probability must be expected utility relative
to this probability. These arguments are not special to scale-invariant preferences, but
rely on nonordinal assumptions. Theorem 17 makes only ordinal assumptions—utility
smoothness and the existence of the unique probability p are all consequences of these
ordinal assumptions, as is the fact that the utility is either (globally) risk averse or risk
seeking.

Theorem 17 is stated in terms of a binary relation � on (0�∞)n for some positive
integer n. (This is not the same � as in the main part of the paper; the result is applied
to �R with n = R and to �S with n = S.) We refer to Definition 1 for the meaning of
the terms increasing, continuous, scale-invariant, and preference order. We also use
Definition 3: � is separable if xAz � yAz implies xAz′ � yAz′ for all x� y� z� z′ ∈ (0�∞)n,
andA⊆ {1� � � � � n}, where

(xAz)i =
{
xi if i ∈A
zi if i /∈A�

We refer to (1) and (2) for the definition of the notation �n and uγ .

Theorem 17. Suppose � is a binary relation on (0�∞)n for an integer n > 2. Then the
following two conditions are equivalent:

(i) The relation � is an increasing, continuous, separable, and scale-invariant prefer-
ence order.
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(ii) There exist unique p ∈ �n and γ ∈ R such that

x� y ⇐⇒
n∑
i=1

piuγ(xi) >

n∑
i=1

piuγ(yi) for all x� y ∈ (0�∞)n� (16)

Proof. Clearly, the second condition implies the first (even without uniqueness of p
and γ). Conversely, suppose that � satisfies the first condition. By Debreu’s additive
representation theorem (see Debreu 1983, Krantz et al. 1971, and Wakker 1988), there
exist increasing and continuous functions Ui : (0�∞)→ R such that

x� y ⇐⇒
n∑
i=1

Ui(xi) >

n∑
i=1

Ui(yi) for all x� y ∈ (0�∞)n� (17)

Moreover, the representation is unique up to a positive affine transformation: If (17)
holds for functions Ũi : (0�∞)→ R in place of the Ui, there exist a ∈ (0�∞) and b ∈ R

n

such that Ũi = aUi + bi for all i. Given any s ∈ (0�∞), scale invariance states that x �
y ⇐⇒ sx� sy and, therefore, the functions Ũi(z)=Ui(sz) define another additive rep-
resentation of �. There exist, therefore, functions a : (0�∞)→ (0�∞) and b : (0�∞)→ R

n

such that

Ui(sz)=Ui(z)a(s)+ bi(s)� s� z ∈ (0�∞)� i= 1� � � � � n� (18)

Let us also define the functions fi�h�ki :R → R by

fi(x)=Ui(ex)� h(x)= a(ex)� and ki(x)= bi(ex)�

We can then restate restriction (18) as

fi(x+ y)= fi(x)h(y)+ ki(y)� x� y ∈ R� i= 1� � � � � n� (19)

(Note that the h are common for all i.) Given that each fi is strictly monotone, all solu-
tions to functional equations (19) are fully characterized in14 Corollary 1 in Section 3.1.3
of Aczél (2006) (whose argument reduces (19) to the classical Cauchy functional equa-
tion). This characterization implies that if the fi are increasing and equations (19) are
satisfied, then there exist constants αi ∈ (0�∞) and βi�γ ∈ R such that either

fi(x)= αix+βi and h(x)= 1

or

fi(x)= αi e
(1−γ)x

1 − γ +βi and h(x)= e(1−γ)x� with γ �= 1�

(The fact that h does not depend on i implies that γ also does not depend on i.) The
above conditions on the fi can be summarized as

Ui(z)= αiuγ(z)+βi�
14I thank an anonymous referee for this reference, which improves on my original bare-hands proof.
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After a positive affine transformation of the Ui, we can set αi = pi for some p ∈ �n and
βi = 0. Uniqueness of the additive representation (17), up to a positive affine trans-
formation, implies there is a unique choice of p ∈ �n and γ ∈ R that is consistent with
representation (16). �

B.2 Primal CE representation

Up to the final Section B.8, where Theorem 15 is proved, we assume the finite state space
setting of Section 2. This section’s focus is on primal CE representations. Corresponding
multiple-prior representations are derived in the next section by convex duality argu-
ments.

Definition 18. Suppose D⊆ R is an interval. A certainty equivalent (CE) on DS is any
increasing and continuous function f :DS →Dwith the property f (α1)= α for all α ∈D.
The CE f is defined to be

• scale invariant (SI) if f (αz)= αf(z) for all α ∈ (0�∞) and z ∈DS such that αz ∈DS

• translation invariant (TI) if f (z+ α1)= f (z)+ α for all α ∈ R and z ∈DS such that
z+ α1 ∈DS .

From Section 2, recall that � is a relation on the set of payoffs X and that �R is its
restriction on the set of roulette payoffsXR.

Lemma 19. The following two conditions are equivalent:

(i) The relation � is a continuous, increasing, and �R-monotone preference order, and
�R is separable and scale invariant.

(ii) The CE ν :X → (0�∞) representing � exists and takes the form

uγ ◦ ν(x)= f
(

R∑
r=1

pruγ(x
1
r )� � � � �

R∑
r=1

pruγ(x
S
r )

)
� x ∈X� (20)

for unique p ∈ �R, γ ∈ R, and CE f on uγ(0�∞)S .

Proof. That (ii) �⇒ (i) is clear (even without uniqueness). Conversely, suppose condi-
tion (i) is satisfied. Since � is a continuous, increasing preference order,

ν(x)= inf{α ∈ (0�∞) :α1 � x} (21)

defines a CE ν that represents �. Applying Theorem 17 to �R, it follows that there exist
unique p ∈ �R and γ ∈ R such that x�R y is equivalent to

∑
r pruγ(xr) >

∑
r pruγ(yr) for

all x� y ∈XR. The fact that � is increasing and �R-monotone implies that the function
f :DS →D is well defined by (20). Indeed, suppose x� y ∈X are such that

∑
r pruγ(x

s
r)=∑

r pruγ(y
s
r ) and, therefore, xs∗ ∼R y

s∗ for every s. For any ε > 0, (x+ ε1)s∗ � ys∗ and, there-
fore, ν(x+ ε1) > ν(y) by �R-monotonicity. Letting ε ↓ 0, we have ν(x) ≥ ν(y). By sym-
metry, ν(x)= ν(y) and, therefore, f takes the same value whether it is defined in terms
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of x or y in (20). The proof that f is a unique CE is also straightforward and is left to the
reader. �

Given the representation of the last lemma, the following lemma maps properties of
� to corresponding properties of the CE f :uγ(0�∞)S → uγ(0�∞).

Lemma 20. Assume that R> 1 and the two equivalent conditions of Lemma 19 are satis-
fied. Then the following statements are true.

(i) The relation � is ambiguity averse if and only if f is quasiconcave.

(ii) The relation � is scale invariant if and only if

f is

{
TI if γ = 1
SI if γ �= 1�

(iii) Weak Certainty Independence (see Section 5) is satisfied if and only if f is TI.

Proof. (i) The “if” part is immediate. Conversely, suppose � is ambiguity averse. Fix
any B⊆ {1� � � � �R} such that π ≡ ∑

r∈B pr ∈ (0�1). Then for any horse-race payoffs x� y ∈
XS , we can write

R∑
r=1

pruγ((xBy)
s
r)= πuγ(xs)+ (1 −π)uγ(ys)�

Given representation (20), ambiguity aversion requires that for all x� y ∈XS ,

L≡ f (uγ(x1)� � � � � uγ(x
S))= f (uγ(y1)� � � � � uγ(y

S))

�⇒ f (πuγ(x
1)+ (1 −π)uγ(y1)� � � � �πuγ(x

S)+ (1 −π)uγ(yS))≥L�

The same condition can be stated more simply as

f (x)= f (y) �⇒ f (πx+ (1 −π)y)≥ f (y) for all x� y ∈ uγ(0�∞)S� (22)

Because f is increasing and continuous, condition (22) is equivalent to

f (x)≥ f (y) �⇒ f (πx+ (1 −π)y)≥ f (y) for all x� y ∈ uγ(0�∞)S� (23)

To see why, suppose x� y ∈ uγ(0�∞)S satisfy f (x) > f(y). Pick any z ∈ uγ(0�∞)S such
that z ≤ x� y and let δ= x− z ≥ 0. Since f (x) > f(y)≥ f (z), δ is nonzero. The decreasing
continuous function h : [0�1] → R defined by h(α) = f (x − αδ) satisfies h(0) > f(y) >
h(1). Let α ∈ (0�1) be such that h(α) = f (y). By monotonicity and (22), we conclude
that f (πx+ (1 − π)y)≥ f (π(x− αδ)+ (1 − π)y) ≥ f (y). This proves (23). Applying the
same conclusion with the complement of B in place of B, and the notation for x and y
interchanged, we also have

f (y)≥ f (x) �⇒ f (πx+ (1 −π)y)≥ f (x) for all x� y ∈ uγ(0�∞)S� (24)
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Using (23) and (24) together, we show that f is quasiconcave. For any given z ∈
uγ(0�∞)S , we are to prove that the set C ≡ {x : f (x) ≥ f (z)} is convex. Suppose x� y ∈ C.
Using condition (23) if f (x)≥ f (y) and condition (24) if f (y)≥ f (x), it follows that

x� y ∈ C �⇒ πx+ (1 −π)y ∈ C� (25)

This is not quite the definition of convexity of C, since π is fixed, but it implies con-
vexity of C given the continuity of f . To show this claim, let J0 = {0�1} and Jn+1 =
{πα + (1 − π)β :α�β ∈ Jn}, n = 1�2� � � � . The set J = ⋃∞

n=1Jn is dense in [0�1]. Fix any
x and y in C, and consider the setK = {φ ∈ [0�1] :φx+ (1−φ)y ∈ C}. An induction using
(25) shows that J ⊆K. SinceK is closed and contains a dense subset of [0�1], it contains
all of [0�1]. Therefore C is convex.

(ii) Expression (21) implies that � is scale invariant if and only if ν is SI (that is,
homogeneous of degree 1). Given this observation, the claim is immediate from the
definitions.

(iii) We prove the “only if” part, the converse being straightforward. Suppose WCI
is satisfied and fix any roulette event B such that π ≡ ∑

r∈B pr ∈ (0�1). Suppose we are
given any a�b ∈ uγ(0�∞)S , and t ∈ R is such that a + t1� b + t1 ∈ uγ(0�∞)S . Suppose
further that t is restricted so that t(1 − γ) > 0. It is then not hard to show that there exist
x� y ∈XS and α�β ∈ (0�∞) such that

as = πuγ(x
s)+ (1 −π)uγ(α)

bs = πuγ(y
s)+ (1 −π)uγ(α)

t = (1 −π)(uγ(β)− uγ(α))�
(The idea is to pick α so that uγ(α) is close to zero: if γ = 1, choose α = 1; if γ < 1,
choose α very small; if γ > 1, choose α very large. Given sufficiently small uγ(α), clearly
x and y can be selected to satisfy the stated condition, while β can be chosen to be
positive thanks to the assumed restriction t(1−γ) > 0.) The assumed structure of the CE
ν implies that f (a)= u◦ν(xBα), f (a+ t1)= u◦ν(xBβ), f (b)= u◦ν(yBα), and f (b+ t1)=
u ◦ ν(yBβ). Using WCI, it follows that

f (a) > f(b) ⇐⇒ f (a+ t1) > f(b+ t1)� (26)

Consider now any z ∈ uγ(0�∞)S such that z + t1 ∈ uγ(0�∞)S . Definition 18 implies
that f (z) ∈ uγ(0�∞). Consider any ε > 0 sufficiently small so that f (z)+ ε ∈ uγ(0�∞).
Applying (26) with a= (f (z)+ ε)1 and b= z shows that

f (z)+ ε+ t = f (a+ t1) > f(b+ t1)= f (z+ t1)�
Since this is true for every sufficiently small ε > 0, we have f (z)+ t ≥ f (z+ t1). Similarly,
applying (26) with a = z and b = (f (a) − ε)1 for sufficiently small ε > 0, we conclude
that f (z) + t ≤ f (z + t1). We have therefore proved that f (z + t1) = f (z) + t for any
z ∈ uγ(0�∞)S and t ∈ R such that z+ t1 ∈ uγ(0�∞)S and t(1 − γ) > 0. The last inequality
entails no loss of generality, as we can always relabel z + t1 as z and flip the sign of t.
This completes the proof that f is TI. �
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B.3 Dual CE representation

The dual, multiple-prior version of the representation of Lemma 19 is based on the
following result, which can be understood in terms of basic demand theory, but
whose application to uncertainty aversion is an insight of CMMM. A proof is given in
Appendix C.

Lemma 21. Suppose D⊆ R is an open connected interval and the function f :DS →D is
increasing, continuous, and quasiconcave. Let the functionG :D× (0�∞)S → R ∪ {∞} be
defined by

G(z�q)≡ sup{f (x) :q · x≤ z�x ∈DS}� (27)

Then for every x ∈DS ,

f (x)= min
q∈�S

G(q · x�q)� (28)

The following technical lemma, which is proved in Appendix C, is key in showing that
C is strictly positive if γ > 1. (The lemma’s nontrivial part shows that F stays bounded
away from zero on the boundary of (0�∞)S ∩ {x :q · x= 1}.)

Lemma 22. Suppose that F : (0�∞)S → (0�∞) is increasing, convex, and homogeneous of
degree 1, and F(1)= 1. Then inf{F(x) :q · x= 1}> 0 for every q ∈ (0�∞)S .

Recall the notation uγ for the function defined by (2) and Cγ for the set of Defini-
tion 4. Note that Cγ depends on γ only through the image set uγ(0�∞). The duality of
Lemma 21 is specialized in this paper as follows.

Lemma 23. Suppose that f :DS →D is a CE, and eitherD= R and f is TI orD= ±(0�∞)

and f is SI. Then the functionG :D× (0�∞)S → R ∪ {∞} defined by (27) takes the form

G(z�q)=
{
z+C(q) if f is TI on R

S

zC(q) if f is SI on ± (0�∞)S�
(29)

where C : (0�∞)S → R+ ∪ {∞} is defined by

C(q)=

⎧⎪⎨
⎪⎩

sup{f (x) :q · x≤ 0�x ∈ R
S} if f is TI on R

S

sup{f (x) :q · x≤ 1�x ∈ (0�∞)S} if f is SI on (0�∞)S

− sup{f (x) :q · x≤ −1�x ∈ (−∞�0)S} if f is SI on (−∞�0)S�

(30)

The restriction of C to �S is an element of Cγ for any γ such thatD= uγ(0�∞).

Proof. The validity of (29) and (30) follows easily from the definitions. Fix any γ ∈ R

such that D= uγ(0�∞). We verify that the restriction of C on �S is in Cγ by considering
cases.

Case of D = R and f TI (and therefore γ = 1). Setting x = 1 in (28) and using (29)
shows that minC = 0. We extendC by lettingC(q)= supx∈RS {f (x) :q ·x= 0} for all q ∈ �̄S .
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We show that C : �̄S → R+ ∪ {∞} is lower semicontinuous by showing that its epigraph is
a closed set. Suppose we have a sequence (qn�αn) in the epigraph C that converges to
(q�α) ∈ �̄S×R. We are to show that (q�α) is also in the epigraph ofC, which is to say that
q ·x= 0 implies f (x)≤ α. Consider any x ∈ R

S such that q ·x and let xn = x+1(q−qn) ·x,
which converges to x as n→ ∞. By construction, qn · xn = 0 and, therefore, f (xn) ≤ αn
(since (qn�αn) is in the epigraph of C). Letting n→ ∞ and using the continuity of f , it
follows that f (x) ≤ α, completing the proof of the lower semicontinuity of C. We show
the convexity of C by confirming that for any given q1� q2 ∈ �̄S ,

1
2(C(q

1)+C(q2))≥ C
(

1
2(q

1 + q2)
)
�

This inequality is equivalent to

sup{f (x1) :q1 · x1 = 0} + sup{f (x2) :q2 · x2 = 0} ≥ sup{2f (x) : (q1 + q2) · x= 0}�
Consider any x ∈ R

S such that (q1 + q2) · x= 0. Then the preceding inequality follows if
we can produce x1 and x2 such that

q1 · x1 = q2 · x2 = 0 and f (x1)+ f (x2)= 2f (x)� (31)

This is achieved by setting x1 = x+ (q2 · x)1 and x2 = x+ (q1 · x)1. The fact that 1 · q1 =
1 · q2 = 1 and (q1 + q2) · x= 0 implies the first two equalities in (31). The fact that f is TI
implies that f (x1)= f (x)+q2 ·x and f (x2)= f (x)+q1 ·x. Adding the last two equations
and using (q1 + q2) · x= 0 gives the last equality of (31). This completes that proof that
C is convex on �S .

Case of D = (0�∞) and f SI (and therefore γ < 1). Given any q ∈ (0�∞)S , let m =
max{q−1

1 � � � � � q−1
S }. Then x ∈ (0�∞)S and q · x ≤ 1 implies x ≤m1. Since f is increasing,

the definition of C(q) in (30) implies that C(q) ≤ f (m1) =m and, therefore, C is finite-
valued. Setting x = 1 in (28) and using (29) shows that min{C(q) :q ∈ �S} = 1. Basic
demand theory tells us that C is quasiconvex and, therefore, 1/C is quasiconcave. Since
f is SI, it can easily be confirmed that 1/C is homogeneous of degree 1 on (0�∞)S and
therefore a concave function.

Case of D= (−∞�0) and f SI (and therefore γ > 1). Consider any q ∈ (0�∞)S . Since
f is increasing, the constraint q · x≤ −1 in the definition of C in (30) is binding. We use
Lemma 22 with F(x)= −f (−x) to conclude that C(q) > 0 for every q ∈ (0�∞)S . Arguing
as in the last case, C is quasiconcave and, therefore, 1/C is quasiconvex. Moreover, 1/C
is homogeneous of degree 1 and, therefore, convex on �S . Setting x = −1 in (28) and
using (29) shows that max{C(q) :q ∈ �S} = 1. �

Expression (29) means that (28) can be restated as

f (x)= min
q∈�S

{
q · x+C(q) if f is TI on R

S

(q · x)C(q) if f is SI on ± (0�∞)S�
(32)

Remark 24. Suppose f is TI on R
S and C ∈ C1 satisfies (32). By Definition 4, C is the

restriction to �S of a convex, lower semicontinuous function C on �̄S . We extend C to all
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of R
S by letting C(q)= ∞ for q /∈ �̄S . It follows that F(x)≡ −f (−x)= maxq{q · x−C(q)},

meaning that F is the Fenchel–Legendre conjugate of C. As shown in Section 12 of
Rockafellar (1970), we can invert this relationship to write C(q) = supx{q · x − F(x)}
(which is the Lagrangian dual of C(q)= supx{f (x) :q ·x≤ 0} given that f is TI). In partic-
ular, C is uniquely determined in C1 given f .

The uniqueness of an extremal C consistent with representation (32) is spelled out
in the following result.

Lemma 25. Under the same assumptions as Lemma 23, suppose that C is defined by (30),
γ is such thatD= uγ(0�∞), and (32) is satisfied with C̄ :�S → R∪{∞} in place ofC. Then
C ≤ C̄ if γ ≤ 1 and C̄ ≤ C if γ > 1.

Proof. Fixing any q ∈ �S , we show that C(q) ≤ C̄(q) if γ ≤ 1 and C̄(q) ≤ C(q) if γ > 1,
by considering cases.

Case of D= R and f TI. Let L(q)= {x ∈ R
S :q · x= 0}. For any x ∈L(q), setting p= q

implies p · x+ C̄(p)= C̄(q). Therefore,

f (x)= min
p∈�S

{p · x+ C̄(p)} ≤ C̄(q)� x ∈L(q)�

This in turn implies

C(q)= sup{f (x) :x ∈L(q)} ≤ C̄(q)� (33)

Case of D= (0�∞) and f SI. Let L(q)= {x ∈ R
S :q · x= 1}. For any x ∈ L(q), setting

p= q implies (p · x)C̄(p)= C̄(q). Therefore,

f (x)= min
p∈�S

{(p · x)C̄(p)} ≤ C̄(q)� x ∈L(x)�

Again (33) must hold.
Case of D = (−∞�0) and f SI. Let L(q) = {x ∈ R

S :q · x = −1}. For any x ∈ L(q),
setting p= q implies (p · x)C̄(p)= −C̄(q). Therefore,

f (x)= min
p∈�S

{(p · x)C̄(p)} ≤ −C̄(q)� x ∈L(q)�

which implies

−C(q)= sup{f (x) :x ∈L(q)} ≤ −C̄(q)� �

The following two examples, which are essential in proving Theorems 11 and 15,
establish the form of duality (32) when f is a TI or SI CE representing a separable and
convex preference order. It follows from Theorem 17 that if f is TI (which is to say exp◦f ◦
log is SI), then it must take the form of Example 26, and if f is SI, it must take the form of
Example 27.
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Example 26. Given parameter θ ∈ (0�∞], define the TI CE ψθ :RS → R by

ψθ(x)= −θ log

(
S∑
s=1

p̂s exp
(

−xs
θ

))
with ψ∞(x)= p̂ · x�

For f =ψθ, duality (32) takes the form

ψθ(x)= min
q∈�S

{q · x+C(q)}� C(q)= θ
S∑
s=1

qs log
(
qs

p̂s

)
� where ∞ · 0 = 0�

This is a well known identity that already appears in Donsker and Varadhan (1975). It
can also be easily verified by computing C using (30). ♦

Example 27. Given parameter η ∈ [−∞�1)∪ (1�∞], define the SI CE φη as

φη(x)=
{
(
∑S
s=1 p̂sx

η/(η−1)
s )(η−1)/η for x ∈ (0�∞)S and η ∈ [−∞�1)

−(∑S
s=1 p̂s(−xs)η/(η−1))(η−1)/η for x ∈ (−∞�0)S and η ∈ (1�∞]�

For η= 0 or ±∞, the above expressions are interpreted by taking a limit:

φ0(x)= exp

(
S∑
s=1

p̂s logxs

)
and φ±∞(x)= p̂ · x�

For f =φη, duality (32) takes the form

φη(x)= min
q∈�S

{(q · x)C(q)}� where
1

C(q)
=

(
S∑
s=1

p̂
1−η
s q

η
s

)1/η

�

with the convention (11) for η ∈ {0�±∞}. The expression for C is easily verified using
(30). ♦

B.4 Proof of Theorem 5

The proof of Theorem 5 amounts to compiling earlier lemmas. That (ii) �⇒ (i) is
straightforward to confirm. Conversely, suppose condition (i) is satisfied. Applying
Lemma 19, we obtain the primal representation (20) for unique p ∈ �R, γ ∈ [0�∞), and
CE f on uγ(0�∞)S . By Lemma 20, f is quasiconcave, and TI if γ = 1, and SI if γ �= 1.
(Therefore, f is in fact concave.) Applying Lemmas 21 and 23, we can express f as in
(32) for some C ∈ Cγ , which in combination with representation (20) gives the main rep-
resentation (3). An application of Lemma 25 proves that C in representation (20) can be
uniquely selected to be minimal if γ ≤ 1 and maximal if γ > 1. (For γ = 1, the argument
of Remark 24 shows that the C of representation (3) is unique in C1.)
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B.5 Proof of Theorem 6

We show the equivalence of the three conditions; uniqueness is a corollary of Theorem 5.
(ii) �⇒ (i). This implication is straightforward and is left to the reader.
(i) �⇒ (ii). Assuming the conditions of Theorem 5, we use CI to establish the MEU

representation (4) of the second condition. As in the last proof, Lemma 19 implies rep-
resentation (20) for unique p ∈ �R, γ ∈ [0�∞), and CE f on uγ(0�∞)S . We treat the cases
γ = 1 and γ �= 1 separately.

Case of γ = 1. In this case, we know from the preceding analysis that f is TI and ad-
mits the representation (32) for a unique (see Remark 24) C ∈ C1, given by Lemma 23 as

C(q)= sup{f (z) :q · z ≤ 0� z ∈ R
S}� (34)

We use CI to establish that there exists a positive scalar s �= 1 such that

f (sz)= sf (z)� z ∈ R
S� (35)

Given the assumptionR> 2, there exist distinct roulette eventsA and B, with respective
probabilities πA = ∑

r∈Apr and πB = ∑
r∈B pr . We verify (35) for s = πA/πB. CI implies

xA1 �αA1 ⇐⇒ xB1 �αB1 for all x ∈XS and α ∈ (0�∞)� (36)

By identity (20) defining f (with uγ = log), condition (36) is equivalent to

f (πA logx) > πA logα ⇐⇒ f (πB logx) > πB logα� x ∈XS�α ∈ (0�∞)� (37)

where logx = (logx1� � � � � logxS). Making the change of variables s = πA/πB, z =
πB logx, and l = πB logα, condition (37) can be restated as f (sz) > sl ⇐⇒ f (z) > l for
all z ∈ R

S and l ∈ R, a condition that is clearly equivalent to the claimed condition (35).
Combining (34) and (35), we have

C(q)= sup{f (sz) :q · (sz)≤ 0} = s sup{f (z) :q · z ≤ 0} = sC(q)�

Since s �= 1, it follows that C(q) ∈ {0�∞}. We have shown that C can only take the values
0 or ∞ on the open set �S and, therefore, C = χK , where K = {q ∈ �S :C(q) = 0}, cor-
responding to the MEU representation (4). Clearly, K is nonempty and convex. There
remains to show that K is closed. Since C is lower semicontinuous on �S , it is enough
to show that for any q̄ on the boundary of �S , C(q)→ ∞ as q→ q̄. Suppose instead that
there is a sequence (q1� q2� � � �) in �S that convergences to a point q̄ on the boundary of
�S , while C(qn)= 0 for all n. Let s ∈ {1� � � � � S} be such that q̄s = 0. Relabeling horse-race
states if necessary, we assume s = 1. The corresponding sequence of first components,
(q1

1� q
1
2� � � �), converges to zero. Let εn = q1

n/(q
1
n − 1), which converges to zero as n→ ∞.

Since C(qn)= 0 and q1
n + (1 − q1

n)εn = 0, it follows from (34) that f (1� εn� � � � � εn) ≤ 0 for
all n. Letting n→ ∞, this implies f (1�0� � � � �0)≤ 0, since f is continuous. Since f is a CE
in the sense of Definition 18, f (1�0� � � � �0) > f(0)= 0, a contradiction.
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Case of γ �= 1. In this case, we know from Lemma 20 that f is quasiconcave and
both SI (since � is SI) and TI (by WCI, which is implied by CI). The domain of f is
uγ(0�∞)S , where uγ(0�∞) = ±(0�∞). The function f has a unique TI extension to all
of R

S . To verify this claim, for any x ∈ R
S , define f (x)= f (x+ t1)− t for any t ∈ R such

that x+ t1 ∈ uγ(0�∞)S . Since f is TI on uγ(0�∞)S , any such choice of t gives the same
value f (x). Given the TI property, the extension just given is clearly unique. It is now
straightforward to check that the unique TI extension of f to R

S preserves scale invari-
ance, quasiconcavity, and the CE property of f . For instance, for any x ∈ R

S , s ∈ (0�∞),
and t ∈ R such that x+ t1 ∈ uγ(0�∞)S , it is also the case that sx+ st1 ∈ uγ(0�∞)S and

f (sx)= f (sx+ st1)− st = s(f (x+ t1)− t)= sf (x)�

This shows that f is SI on R
S . Other claimed properties of f can be shown similarly by

translating the property to be proved to uγ(0�∞)S . Applying Lemma 23, we can now
complete the proof just as for γ = 1, except here (35) need not be proved, as we already
know f is SI.

(ii) ⇐⇒ (iii). This follows directly from Proposition 8, but it is worth noting that
the claimed expression (5) for C follows easily from (30) with f (z) = minπ∈K π · z. For
example, suppose that γ < 1 and, therefore, C(q) = max{f (x) :x ∈ L(q)}, where we use
the fact that f is increasing and q is strictly positive, which implies that L(q) is compact.
SinceK is also compact, we can apply the minimax theorem to conclude that

C(q)= max
x∈L(q)

min
π∈K

π · z = min
π∈K

max
x∈L(q)

π · z�

The case γ > 1 is analogous, while the case γ = 1 is trivial.

B.6 Proof of Theorem 10

We assume the validity of the two equivalent conditions of Theorem 5 and we show parts
(i) and (ii) together. The case γ = 1 is straightforward: representation (3) coincides with
(7) for a unique C = C, and WCI is implied by this representation. Suppose now that
γ �= 1. As in the last two proofs, Lemma 19 implies representation (20) for uniquep ∈ �R,
γ ∈ R, and a CE f on uγ(0�∞)S , which is quasiconcave and SI by Lemma 20. For the case
γ �= 1, the preceding proof of the part (i) �⇒ (ii) of Theorem 6 only used WCI (rather
than the stronger condition CI). Therefore, assuming γ �= 1, WCI implies the validity of
condition (ii) of Theorem 6 and, therefore, the validity of CI. Of course, representation
(7) implies WCI and, therefore, the same condition. Moreover, the function C in (7) is
unique by Remark 24, which is to say that C = χK .

B.7 Proof of Theorem 11 and Remark 12

Suppose that condition (i) of Theorem 5 is satisfied, except � need not be ambiguity
averse, for now. Let also ν, f , p, and γ be defined by the second condition of Lemma 19.
Adding the assumption that �S is separable, we can apply Theorem 17 to �S to conclude
that there exist unique p̂ ∈ �S and γ̂ ∈ R such that the restriction of the CE ν on the set
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of horse-race lotteries is given by uγ̂ ◦ ν(x) = ∑
s p̂suγ̂(x

s), x ∈XS . Representation (20)
implies that

uγ ◦ ν(x)= f (uγ(x1)� � � � � uγ(x
S))� x ∈XS�

Combining the last two equations, we have

uγ̂ ◦ u−1
γ ◦ f (y1� � � � � yS)=

S∑
s=1

p̂suγ̂ ◦ u−1
γ (ys)� y ∈ uγ(0�∞)S� (38)

Using this f back in the CE expression (20) gives the claimed representation (8). By
Lemma 20, � is ambiguity averse if and only if f is quasiconcave, a condition that
is clearly equivalent to γ̂ ≥ γ, given expression (38). This proves that (i) �⇒ (ii) and
the analogous statement of Remark 12. The converse is straightforward and left to the
reader.

Assuming ambiguity aversion, the equivalence (ii) ⇐⇒ (iii) corresponds to the dual-
ity of Lemmas 21 and 23 for the specific function f defined in (38). With θ and η defined
in (12), condition (38) can be restated as

f (y)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
∑
s p̂sy

η/(η−1)
s )(η−1)/η if 1> γ < γ̂ �= 1

−θ log(
∑
s p̂s exp(−ys/θ)) if 1 = γ < γ̂

−(∑s p̂s(−ys)η/(η−1))(η−1)/η if 1< γ < γ̂

exp(
∑
s p̂s log ys) if γ < γ̂ = 1∑

s p̂sys if γ = γ̂�

(39)

Examples 26 and 27 apply, resulting in the claimed dual representation with C given by
expressions (9) and (10), with the limiting interpretations (11).

B.8 Proof of Theorem 15

We assume the setting, notation, and terminology of Appendix A, in which the roulette
state space is the unit interval. Lemmas 19 and 20 in this context are modified as follows.

Lemma 28. Suppose the relation �S on XS is a continuous, increasing preference order,
the relation �R on XR has the vNM representation u, and � is �R-monotone. Then the
CE ν onX representing � exists and takes the form

u ◦ ν(x)= f (Eu(x1)� � � � �Eu(xS))� x ∈X� (40)

for a unique CE f on u(0�∞)S . Moreover, the following statements are true:

(i) If u(0�∞)= R, then f is TI if and only WCI holds.

(ii) If u(0�∞)= (0�∞), then f is SI if and only if LCI holds.

(iii) If u(0�∞)= (−∞�0), then f is SI if and only if HCI holds.

(iv) The relation � is ambiguity averse if and only if f is quasiconcave.
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Proof. A CE νS :XS → (0�∞) representing the preference order �S on horse-race lot-
teries is well defined by νS(x)= inf{α ∈ (0�∞) :α1 � x}. We extend this CE to the whole
ofX by letting

ν(x)= νS(u−1
Eu(x1)� � � � � u−1

Eu(xS))� x ∈X� (41)

It is straightforward to confirm that ν :X → (0�∞) is a CE. Let us now show that ν rep-
resents �. Given any x ∈ X , let x̄s = u−1

Eu(xs), s = 1� � � � � S, which defines a horse-
race payoff x̄. By construction, x̄s1 ∼R x

s for every s. Arguing as in the proof of
Lemma 19, using the �R-monotonicity of �, we have x � y if and only if x̄ � ȳ, which
is in turn equivalent to νS(x̄) > νS(ȳ). By construction, ν(x) = νS(x̄) for every x ∈ X .
This completes the proof that ν represents �. Equation (40) follows from (41) with
f (y)= u ◦ νS(u−1(y1)� � � � � u−1(yS)).

Finally, we prove claims (i)–(iv).
(i) The proof of part (i) is the same as for Lemma 20(iii), with π = λ(B) being the

probability of the given roulette event B. (In fact, the argument can be simplified some-
what in the current context, since the availability of every Borel subset of [0�1] as a
roulette event means that π can take any value in [0�1].)

(ii) Suppose u(0�∞)= (0�∞). We identifyXS with (0�∞)S and write

u(x)= (u(x1)� � � � � u(xS))� x ∈XS�
Making the change of variables a= u(x) and b= u(y), LCI can be restated as the require-
ment that for any given roulette event B and corresponding probability π = λ(B), and
for any a�b ∈ (0�∞)S , there exists small enough ε > 0 such that f (a) > f(b) if and only
if for all α ∈ (0� ε), f (πa+ (1 −π)u(α)) > f(πb+ (1 −π)u(α)). Since u(α)→ 0 as α→ 0
and f is continuous, the last part of this condition is equivalent to

for all a�b ∈ (0�∞)S and π ∈ (0�1)� f (a) > f(b) ⇐⇒ f (πa) > f(πb)�

Applying the last equivalence with π−1a and π−1b in place of a and b, it is easy to see
that the preceding condition is equivalent to

for all a�b ∈ (0�∞)S and s ∈ (0�∞)� f (a) > f(b) ⇐⇒ f (sa) > f(sb)�

Since f is a CE, the last condition is equivalent to f being SI (as shown, for example, in
Section 3.5.1 of Skiadas 2009).

(iii) This proof is similar to the proof of part (ii).
(iv) The equivalence of ambiguity aversion and quasiconcavity of f follows by the

same argument as for Lemma 20(i). (As with part (i), the argument can be simplified in
this context, since ambiguity aversion implies that (22) holds for every π ∈ (0�1).) �

The equivalence (i) ⇐⇒ (ii) of Theorem 15 follows analogously to the correspond-
ing equivalence of Theorem 5 in the last section, with Lemma 28 in place of Lemmas 19
and 20. That (ii) �⇒ (i) is immediate. Conversely, Lemma 28 gives representation (40)
for a quasiconcave CE f that is TI or SI according to (i)–(iii) (and therefore also concave).
Lemmas 21 and 23 imply that f can be expressed, for some C ∈ Cγ , as in (32), which,
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in combination with representation (40), gives the main representation (15). An appli-
cation of Lemma 25 shows the existence of a unique extremal C ∈ Cγ consistent with
(15).

Suppose now the theorem’s two equivalent conditions are satisfied and, therefore,

u ◦ ν(x)= f (u(x1)� � � � � u(xS))� x ∈XS�
for a CE f that is either TI on R

S or SI on ±(0�∞)S . We show the theorem’s two bullet
points. In both cases, the “if” part is immediate, so we focus on the “only if” part.

For the first bullet point, suppose CI is satisfied. If u(0�∞)= R, we assume, without
loss of generality, that u(1)= 1, in which case we can apply the same argument used in
the proof of Theorem 6 for the special case u = log. Similarly, if u(0�∞) = (0�∞) (resp.
(−∞�0)), we can apply the argument used to prove Theorem 6 for the case γ < 1 (resp.
γ > 1), while the claim regarding WCI follows just as for Theorem 10.

For the second bullet point, define the SI CE μ on (0�∞)S by

μ(x)=

⎧⎪⎨
⎪⎩

exp f (logx1� � � � � logxS) if u(0�∞)= R and f is TI

f (x1� � � � � xS) if u(0�∞)= (0�∞) and f is SI

−f (−x1� � � � �−xS) if u(0�∞)= (−∞�0) and f is SI�

Suppose that �S is separable. Then the preference order on (0�∞)S represented by μ
satisfies the conditions of Theorem 17. There exist, therefore, unique δ ≥ 0 and p̂ ∈ �S
such that

μ(x)= u−1
δ

(
S∑
s=1

p̂suδ(x
s)

)
�

Solving for f , we find that it takes the forms (39) for any γ such that u(0�∞)= uγ(0�∞),
with γ̂ = δ if u(0�∞)= R and with γ̂ such that 1−δ= (1− γ̂)/(1−γ) if u(0�∞)= ±(0�∞).
The proof is completed just as for Theorem 11.

Appendix C: Remaining proofs

This appendix collects all proofs omitted so far.

C.1 Proof of Proposition 8

We first show that

min
q∈�̄S

{
(q · y)min

π∈K
max
z∈L(q)

π · z
}

≥ min
π∈K

π · y� (42)

The inequality holds because the left-hand side cannot increase if the operator maxz∈L(q)
is replaced with maxz∈{ȳ}, where ȳ = (q · y)−1y ∈ L(q). After this replacement, the fac-
tor q · y cancels out, giving the right-hand side of (42). Similarly, the left-hand side of
(42) does not decrease if minq∈�̄S is replaced with minq∈K , and minπ∈K is replaced with
minπ∈{q}, resulting in

min
q∈�̄S

{
(q · y)min

π∈K
max
z∈L(q)

π · z
}

≤ min
q∈K

{
(q · y) max

z∈L(q)
q · z

}
= min
q∈K

q · y� (43)
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(The last equality is true because q · z = 1 for every z ∈ L(q).) Inequalities (42) and (43)
imply identity (6), albeit with minq∈�̄S instead of minq∈�S on the right-hand side. But if
the minimizing q were on the boundary of �S , then we would have maxz∈L(q) π · z = ∞
for all π ∈K, contradicting (43) (whose right-hand side is positive and finite).

Finally, interchanging the roles of min and max in (6) simply reverses inequalities (42)
and (43), with analogous reasoning.

C.2 Proof of Lemma 21

Fix any x ∈DS . By the definition of G, it is clear that f (x)≤G(q · x�q) for all q ∈ �S . We
must, therefore, demonstrate the existence of one q ∈ �S such that f (x)=G(x · q�q). By
the supporting hyperplane theorem, there is a nonzero q in R

S that supports the convex
set {y ∈DS : f (y) > f(x)} at x, meaning that

f (y) > f(x) �⇒ q · y ≥ q · x� (44)

Since f is increasing, if δ ∈ R
S+ is nonzero and small enough so that x+ δ ∈DS , we have

f (x+ δ) > f(x) and, therefore, q · δ≥ 0. Therefore, 0 �= q≥ 0. Next we show that

f (y) > f(x) �⇒ q · y > q · x� (45)

Suppose q · y ≤ q · x. For every ε > 0 small enough so that y − εq ∈ DS , we have
q · (y − εq) < q · x and, therefore, f (y − εq) ≤ f (x) by (44). Letting ε go to zero, it fol-
lows that f (y)≤ f (x), confirming (45). Applying the latter with y = x+ δ for all nonzero
sufficiently small δ ∈ R

S+ shows that q is in fact strictly positive. After positive scaling, we
can further assume that q ∈ �S . The proof is now complete, since (45) is a restatement
of the condition f (x)=G(q · x�q).

C.3 Proof of Lemma 22

Fix any q ∈ (0�∞)S and letK = {x ∈ (0�∞)S :q · x= 1}. Since K̄ is compact, we can select
a sequence {x(n)} in K that converges to some x̄ ∈ K̄ such that F(x̄)≡ limn→∞ F(x(n))=
infF . If x̄ ∈ K, then infF = F(x̄) > 0. Suppose now that x̄ is on the boundary of K,
meaning that at least one of the coordinates of x̄ vanishes. Relabeling the coordinates if
necessary, we assume that

L≡ min{x̄1� � � � � x̄m}> 0 and x̄m+1 = · · · = x̄S = 0�

Let us also define the functionH : (0�∞)2 → (0�∞) by letting

H(a�b)= F(x)� where xs =
{
a for s = 1� � � � �m
b for s =m+ 1� � � � � S�

Consider the sequence {y(n)} in (0�∞)S , defined by

y(n)s =
{
a(n) ≡ min{x(n)s �L} for s = 1� � � � �m

b(n) ≡ min{x(n)m+1� � � � � x
(n)
S } for s =m+ 1� � � � � S�



Theoretical Economics 8 (2013) Uncertainty-averse preferences 91

Since

lim
n→∞(a

(n)� b(n))= (L�0) (46)

and y(n) ≤ x(n), we have

H(L�0)≡ lim
n→∞H(a

(n)� b(n))= lim
n→∞F(y

(n))≤ lim
n→∞F(x

(n))= infF� (47)

We complete the proof by showing thatH(L�0) > 0.
Note that H inherits the assumed properties of F , that is, it is increasing, convex,

and homogeneous of degree 1 and satisfies H(1�1)= 1. Let the function G : (0�∞)→ R

be the increasing, convex function defined by G(r)=H(1� r). Since H is homogeneous
of degree 1,

H(a�b)= aG
(
b

a

)
� a�b ∈ (0�∞)�

Let r(n) = b(n)/a(n). The limit (46) implies that limn→∞ r(n) = 0 and

H(L�0)
L

= lim
n→∞

a(n)

L
G

(
b(n)

a(n)

)
= lim
r↓0
G(r)≡G(0)� (48)

By the convexity ofG, for all n large enough so that r(n) < 1, we have the slope inequality

G(2)− 1 = G(2)−G(1)
1

≥ G(1)−G(r(n))
1 − r(n) → 1 −G(0) as n→ ∞�

This proves that

G(0)≥ 2 −G(2)� (49)

By the monotonicity ofH, we have

1
2G(2)=H

(
1
2 �1

)
<H(1�1)= 1�

Therefore, 2 −G(2) > 0, which combined with (49) and (48) proves thatH(L�0) > 0 and,
therefore, infF > 0 by (47).
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