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Abstract

Motivated by notions of aversion to Knightian uncertainty, this paper develops the theory

of competitive asset pricing and consumption/portfolio choice with homothetic recursive pref-

erences that allow essentially any homothetic uncertainty averse certainty-equivalent form. The

market structure is scale invariant but otherwise general, allowing any trading constraints that

scale with wealth. Technicalities are minimized by assuming a finite information tree. Pricing

restrictions in terms of consumption growth and market returns are derived and a simple re-

cursive method for solving the corresponding optimal consumption/portfolio choice problem is

established.
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1 Introduction

This paper shows how scale invariance of preferences and markets can be used on a finite information

tree to establish a general and simple theory of asset pricing and consumption/portfolio choice,

incorporating recursive utility with any risk/uncertainty-averse conditional certainty equivalent

(CE). Scale invariance of preferences means homotheticity. Scale invariance of markets means

that (possibly constrained) positions can be scaled with wealth. Equilibrium pricing restrictions

are given in terms of consumption growth or market returns, based on the solution of a single

backward recursion on the information tree. In the case of a constant but non-unit elasticity of

intertemporal substitution (EIS), pricing restrictions are shown to further simplify, dispensing with

the backward recursion altogether, just as in the familiar special case of Epstein and Zin (1991)

and Weil (1989, 1990). A simple recursive procedure for computing optimal consumption/portfolio

policies follows essentially as a corollary of the pricing theory.

In the asset-pricing literature, scale-invariant recursive utility appears mainly in the Epstein-

Zin-Weil form, which is the homothetic, constant-EIS case of Kreps and Porteus (1978) utility

(that is, recursive utility with an expected-utility CE). Chapter 6 of Skiadas (2009) reviews the

motivation behind this type of preferences and presents a simplified version of the present paper,

restricted to the case of Kreps-Porteus utility and linear markets. The contribution here relative

to that chapter is to relax the assumption of an expected-utility CE and to allow for any type of

scale-invariant trading constraints.

A major motivation for broadening the class of allowable CEs is ambiguity aversion in the

sense of Knight (1921) and Ellsberg (1961). Ambiguity-averse representations include the maxmin

expected utility of Gilboa and Schmeidler (1989) and its variational extensions by Maccheroni,

Marinacci, and Rustichini (2006), Chateauneuf and Faro (2009), and Cerreira-Vioglio et. al. (2008)

(which include the entropic variational preferences of Hansen and Sargent (2001) and Strzalecki

(2011)). Skiadas (2013) shows that scale invariance superimposed on any of these preferences

has strong parametric implications and provides a unified representation of homothetic ambiguity

averse preferences, which can be directly imported to the present paper.1 Epstein and Schneider

(2010) survey the existing asset-pricing literature with ambiguity aversion.

This paper relates to a long line of research of asset pricing and portfolio choice with recursive

utility. Following Epstein and Zin (1991) and Weil (1989), discrete-time pricing calculations with

Epstein-Zin-Weil utility that rely on specific consumption dynamics have several precedents in the

literature, for example, Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008), although

much of the earlier theory was developed in continuous-time settings. Duffi e and Epstein (1992a,b)

formulated and applied to asset pricing a continuous-time version of Kreps-Porteus utility. The

variational or “utility gradient” approach for recursive preferences, adopted in this paper, was

1The homothetic case of second-order expected utility of Klibanoff, Marinacci, and Mukerji (2005) and Nau (2006)

is also consistent with the present paper. Skiadas (2008b) argues that in high frequency with Brownian/Poisson

information, recursive utility with smooth second order expected utility becomes quantitatively indistinguishable

from expected utility, a fact that limits the appeal of this approach for asset pricing and portfolio choice.
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introduced in Skiadas (1992), Duffi e and Skiadas (1994) and Schroder and Skiadas (1999), and was

further developed in El Karoui, Peng, and Quenez (2001) and Schroder and Skiadas (2003, 2005,

2008). The last three references are closely related to this paper, emphasizing the role of scale

or translation invariance and allowing for trading constraints, but in continuous-time settings and

more specialized CE specifications.

The variational approach employed in this paper is complementary to the dynamic-programming

approach in the tradition of Merton (1990). While the Bellman equation is a highly flexible and

intuitive tool, an advantage of the variational approach is that it separates the analysis of the market

and the analysis of preferences. The set of all state-price densities (or Arrow-Debreu prices) that

are consistent with no incremental arbitrage at the reference plan is characterized independently

of preferences. This part of the argument relates to the traditional literature of arbitrage pricing,

including the more recent literature of limits to arbitrage, surveyed by Gromb and Vayanos (2010).

A separate argument characterizes the superdifferential of the utility function, without reference

to the market. The two components are then put together to characterize optimality. Thus if one

changes the market specification, the utility part of the analysis need not be repeated, and likewise

if one changes the utility specification, the market side of the analysis need not be repeated.

The remainder of this paper is organized in seven sections and an appendix. Section 2 in-

troduces the stochastic setting and some notation and convex analysis facts used throughout the

paper. Section 3 introduces the market structure and characterizes all state-price densities that are

consistent with no incremental arbitrage at a given reference plan. Sections 4, 5 and 6 develop the

recursive utility structure. Section 7 presents the main pricing results, and Section 8 presents the

optimal consumption/portfolio theory. The Appendix contains proofs omitted from the main text.

2 Preliminaries

We begin with the basic primitives defining the stochastic setting and a review of some notation

and simple results from convex analysis to be used later on. This section can be skimmed over

and referred to as needed. For additional background material we will occasionally refer to Skiadas

(2009), which is henceforth abbreviated to S09.

2.1 Information and Processes

Taken as primitive are a finite state space Ω and a filtration {Ft : t = 0, 1, . . . , T} , where F0 = {Ω, ∅}
and FT is the set of all subsets of Ω. Each algebra Ft is generated by a partition of Ω, denoted F0

t .

A spot is any pair (F, t) such that F ∈ F0
t , t ∈ {0, . . . , T} . Spots can be visualized as nodes on

an information tree. The immediate successors of spot (F, t− 1) are the spots (F1, t) , . . . , (Fn, t) ,

where F1, . . . , Fn are the elements F0
t whose union is F. Spots of the form (F, T ) are terminal. The

set of all Ft-measurable random variables is denoted L (Ft) .
A (stochastic) process x : Ω × {0, 1, . . . , T} → R is adapted if xt = x (·, t) ∈ L (Ft) for every

time t (and therefore x0 is constant). If x is an adapted process and F ∈ F0
t , then x (F, t) denotes
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the common value of xt on F, which is referred to as the value x takes at spot (F, t) . A process x is

predictable if x0 is constant and xt ∈ L (Ft−1) for every time t > 0. If x is a predictable process and

F ∈ F0
t−1, then x (F, t) denotes the common value of xt on F. Period t is the time interval starting

at time t − 1 and ending at time t. The time-t value of a predictable (resp. adapted) process is

known at the beginning (resp. end) of period t. The sets of all adapted processes and all predictable

processes are denoted L and P, respectively, with P0 = {x ∈ P : x0 = 0} .
If x is either a random variable or a process, the notation x ≥ 0 means that x is valued in

[0,∞), while we say that x is strictly positive to indicate that x is valued in (0,∞) . For any set S

of random variables or processes, S+ = {x ∈ S : x ≥ 0} and S++ = {x ∈ S : x is strictly positive} .
For any function of the form f : S → R, we say that f is increasing if x ≥ y 6= x =⇒ f (x) > f (y) ;

and that f is decreasing if −f is increasing.
The symbol 1 can represent any vector (for example, a random variable or stochastic process)

whose entries are all one. For any F ⊆ Ω, 1F denotes the random variable that takes the value one

on F and zero on Ω \ F.

2.2 Probabilities

Fixed throughout the paper is a reference probability P on FT = 2Ω that assigns a positive value

to every nonempty event. The corresponding expectation operator is denoted E, while Et is short
for the conditional expectation operator E [ · | Ft ] .

Q denotes the set of every probability on FT that, like P, assigns a positive value to every
nonempty event. Given any Q ∈ Q, the corresponding expectation operator is denoted EQ, with
the usual abbreviation EQt for the conditional expectation operator EQ [ · | Ft ] . The density of Q

(with respect to P ) is the random variable, denoted dQ/dP , whose value at state ω is the ratio

Q ({ω}) /P ({ω}) . The conditional density process of Q (with respect to P ) is the process

ξQt = Et
[
dQ

dP

]
, t = 0, 1, . . . , T. (1)

For any spot (F, t) , ξQ (F, t) = Q (F ) /P (F ) , which is the ratio of the probabilities assigned by Q

and P to the path on the information tree that leads from time zero to spot (F, t) . The process ξQ

is a strictly positive martingales of unit mean. Conversely, any such martingale ξ defines an element

Q of Q by letting Q (F ) = E [ξT 1F ] , F ∈ F , in which case, ξQ = ξ. The following change-of-measure

formula will be useful (see, for example, in Lemma B.48 in S09):

EQt [x] = Et

[
ξQt+1

ξQt
x

]
. (2)

Given any π ∈ L++, let the processes ζ ∈ P0 and ξ ∈ L++ be defined so that

πt
πt−1

=
1

1 + ζt

ξt
ξt−1

, where
1

1 + ζt
= Et−1

[
πt
πt−1

]
and ξ0 = 1. (3)

Setting ζ0 = 0, the second equation in (3) defines the predictable process ζ. Given ζ, the first

equation in (3) recursively defines ξ, which is a strictly positive unit-mean martingale. Let Q be
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the unique probability such that ξQ = ξ.We call the pair (Q, ζ) the risk-neutral representation of π.

Given any pair (Q, ζ) ∈ Q×P0, a process π ∈ L++ that has (Q, ζ) as its risk-neutral representation

must satisfy recursion (3) with ξ = ξQ, and is therefore uniquely determined up to positive scaling.

2.3 Certainty Equivalents

We use the term certainty equivalent (CE) on (0,∞)n to mean an increasing continuous function of

the form ν : (0,∞)n → (0,∞) such that ν (s1) = s for all s ∈ (0,∞) . Let us fix any inner product2

(· | ·) on (0,∞)n . The superdifferential3 of a concave CE ν : (0,∞)n → (0,∞) at x ∈ (0,∞)n is the

set

∂ν (x) = {p ∈ Rn : ν (y) ≤ ν (x) + (p | y − x) for all y ∈ (0,∞)n} .

Since ν is concave and its domain is an open set, ∂ν (x) 6= ∅ (see, for example, Proposition A.31 of
S09). Since ν is increasing, ∂ν (x) ⊆ Rn++.

The following duality is key for our analysis.

Lemma 1 Suppose ν : (0,∞)n → (0,∞) is a concave CE and X ⊆ Rn is a convex set containing
the origin. For any z ∈ (0,∞)n , the following two conditions are equivalent:

1. ν (z) = max {ν (z + x) : x ∈ X and z + x ∈ (0,∞)n} .

2. There exists some p ∈ ∂ν (z) such that (p | x) ≤ 0 for all x ∈ X.

Proof. (2 =⇒ 1) Suppose p ∈ ∂ν (z) is such that (p | x) ≤ 0 for all x ∈ X. For any x ∈ X
such that z + x ∈ (0,∞)n , ν (z + x) ≤ ν (z) + (p | x) ≤ ν (z) .

(1 =⇒ 2) See Appendix.

The CE ν is scale invariant (SI) if ν (sx) = sν (x) for every s ∈ (0,∞) and x ∈ (0,∞)n . The

following implications of scale invariance will be of repeated use.

Lemma 2 If ν is as an SI concave CE, then for every x ∈ (0,∞)n ,

[ s ∈ (0,∞) =⇒ ∂ν (sx) = ∂ν (x) ] and [ p ∈ ∂ν (x) =⇒ ν (x) = (p | x) ] . (4)

Proof. The first implication is immediate from the definitions. For the second one, given any

p ∈ ∂ν (x) , note that 2ν (x) = ν (x+ x) ≤ ν (x) + (p | x) and therefore ν (x) ≤ (p | x) . Similarly,

ν (x) = ν (2x− x) ≤ 2ν (x)− (p | x) and therefore ν (x) ≥ (p | x) .

2This is the same as saying that we fix a positive definite matrix Π ∈ Rn×n and write (x | y) = x′Πy for all column

vectors x, y ∈ (0,∞)n.
3The term subdifferential is often used in place of superdifferential, following Rockafellar (1970), who nevertheless

suggests on p. 308 that the term “superdifferential”might be more appropriate. Our use of the term corresponds to

Clarke’s notion of generalized gradient (see, for example, Clarke (1990)) as well as the way the term is used in the

literature of viscosity solutions of Hamilton-Jacobi-Bellman equations (see, for example, Bardi and Capuzzo-Dolcetta

(2008)). The terms Fréchet superdifferential (and D-superdifferential for the finite-dimensional case) also map to

what we call superdifferential, given concavity (see Clarke, Ledyaev, Stern, and Wolenski (1998), p. 142).
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3 Market, Optimality and State Pricing

We consider an agent who consumes a positive amount of a single good at every spot. The agent

is endowed with some initial (financial) wealth that can be exchanged in a market for a feasible

consumption plan. In this section we define the market and feasibility, as well as the associated

notion of a state-price density relative to a given feasible consumption plan. We then proceed to

characterize all state-price densities and to related them to optimality under an abstract utility

function on the set of all consumption plans. The remainder of the paper is about implications of

the structure of this utility function.

At each nonterminal spot (F, t− 1) , the agent selects a portfolio allocation out of a nonempty

subset A (F, t) of a Euclidean space RJ . Setting A0 = {0} , one can view A as a set-valued

predictable process assigning the set A (F, t) to spot (F, t− 1). A trading policy is any column

vector ψ = (ψ1, . . . , ψJ)′, where ψj ∈ P0 for every j, such that

ψt ∈ At, t = 1, . . . , T, (5)

meaning that ψ (F, t) ∈ A (F, t) for every nonterminal spot (F, t− 1) .

Let (F1, t) , . . . , (Fn, t) be the immediate successor spots to spot (F, t− 1) . The selection of

the portfolio allocation α ∈ A (F, t) generates a period-t gross return R i
F,t(α) ∈ R at spot (Fi, t) .

Letting

RF,t(α) =

n∑
i=1

R i
F,t(α) 1Fi ,

we regard RF,t as a function from A (F, t) to L (Ft) with the property RF,t(α) = RF,t(α) 1F . The

period-t return corresponding to a trading policy ψ is the Ft-measurable random variable Rt[ψt] ,

where

Rt[ψt] 1F = RF,t(ψ (F, t)) , for every F ∈ F0
t−1.

Example 3 (Linear Returns) Suppose the agent can trade in 1 + J assets, indexed 0, . . . , J.

Asset zero implements single-period default-free borrowing and lending with corresponding short-

rate process r ∈ P0; a dollar invested in asset zero at time t−1 generates 1+rt dollars at time t. The

excess-return processes of the remaining J assets are listed in the column vector r̃ = (r̃1, . . . , r̃J)′

of adapted processes, with r̃0 = 0. A dollar invested in asset j at time t − 1 generates 1 + rt + r̃jt
dollars at time t, and therefore

Rt[ψt] = 1 + rt + ψ′tr̃t, ψt ∈ At.

The specification of At reflects trading constraints. For example, letting At = RJ+ means that the

risky assets cannot be sold short.

The following restrictions on A and R are assumed throughout.

Condition 4 For every nonterminal spot (F, t− 1) , A (F, t) is closed and convex, the function

RF,t : A (F, t) → L (Ft) is continuous and concave, and the restriction of RF,t(α) on F is strictly

positive for every α ∈ A (F, t) .

6



The agent is endowed with an initial wealth w ∈ (0,∞) . A wealth process is any strictly positive

adapted process W such that W0 = w. A consumption policy is any adapted process % such that

%t ∈ (0, 1) for t < T and %T = 1. The interpretation of %t is as the fraction of time-t wealth

consumed; in particular, all terminal wealth is assumed to be consumed. An allocation policy is a

pair of a consumption policy % and a trading policy ψ. The allocation policy (%, ψ) generates the

wealth process W determined recursively by the budget equation

W0 = w and Wt = Wt−1

(
1− %t−1

)
Rt[ψt] , t = 1, . . . , T. (6)

A consumption plan is any process c in L++, with c (F, t) representing contingent consumption

at spot (F, t) . The allocation policy (%, ψ) is said to finance the consumption plan c = %W. A

consumption plan c is feasible if it can be financed by some allocation policy.

Let us now fix a reference feasible consumption plan c. Relative to c, we define the set of feasible

incremental cash flows:

X (c) = {x : c+ x is a feasible consumption plan} .

We regard the set L of all adapted processes as an inner product space, where the inner product
of the processes x and y is defined by

(x | y) = E
[∑T

t=0
xtyt

]
. (7)

A state-price density (SPD) at c is any adapted process π with the property

x ∈ X (c) =⇒ (π | x) ≤ 0.

For convenience, throughout this paper, we use the term utility function to mean an increasing

continuous function of the form U0 : L++ → R such that U0 (s1) = s for every s ∈ (0,∞) . The last

restriction means that utility will always be measured in terms of equivalent annuities and entails

no loss of generality, since any increasing continuous function Ũ : L++ → R is ordinally equivalent
to the utility function U0 = f−1 ◦ Ũ , where f (s) = Ũ (s1) . Note that L++ can be identified with

(0,∞)n , where n is the total number of spots, and therefore every utility function is a CE on

(0,∞)n in the sense discussed in Section 2.3.

We henceforth take as given a concave utility function U0, representing the given agent’s pref-

erences over consumption plans from the perspective of time zero. The feasible consumption plan

c is optimal if there exists no feasible consumption plan c̃ such that U0 (c̃) > U0 (c) . Clearly, c

is optimal if and only if U0 (c+ x) ≤ U0 (c) for every x ∈ X (c) . While the preceding definition

of optimality is from the perspective of time zero, the recursive dynamic utility to be introduced

implies dynamic consistency, and therefore time-zero optimality is equivalent to optimality at every

spot. (Chapter 6 of S09 gives a detailed explanation of this point.)

We combine the SPD notion with that of the utility superdifferential to characterize optimality.

Recall that U0 can be regarded as a CE on L++. Given the inner product (7) , the superdifferential

of U0 at c is therefore the (nonempty) set

∂U0 (c) = {π ∈ L++ : U0 (c+ y) ≤ U0 (c) + (π | y) if c+ y ∈ L++} .
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The following key observation, which is essentially a restatement of Lemma 1, motivates our interest

in the preceding notion of an SPD at c.

Lemma 5 Suppose the utility function U0 : L++ → R is concave and c is any feasible consumption
plan. Then c is optimal if and only if there exists some π ∈ ∂U0 (c) that is an SPD at c.

Our next task it to characterize all state-price densities at the feasible consumption plan c,

without any reference to preferences. Given π ∈ L++, it will be helpful to define the process

Vt = Et

[
T∑
s=t

πs
πt
cs

]
, t = 0, . . . , T. (8)

In a hypothetical complete (linear) market in which π is a state-price density, Vt represents the cum-

dividend time-t value of a traded contract that generates c as a dividend process. (See Chapter 5

of S09 for details.)

The paper’s central result on state pricing follows.

Theorem 6 Suppose the consumption plan c is financed by the allocation policy (%, ψ) , which

generates the wealth process W. The following are true for any π ∈ L++.

(a) Let V be defined by (8) . Then V = W if and only if

1 = Et−1

[
πt
πt−1

Rt[ψt]

]
, t = 1, . . . , T. (9)

(b) The process π is an SPD at c if and only if

1 = Et−1

[
πt
πt−1

Rt[ψt]

]
= max

αt∈At
Et−1

[
πt
πt−1

Rt[αt]

]
, t = 1, . . . , T. (10)

Remark 7 Condition (9) is the same as (10) if At = {ψt}. This proves that V = W if and only if

π is an SPD at c relative to the market generated by varying % but not ψ (that is, with X (c) defined

as the set of every x such that c + x is a consumption plan that is financed by some consumption

policy and the given trading policy ψ).

Remark 8 The conclusions of Theorem 6 can be equivalently stated in terms of the risk-neutral

representation (Q, ζ) of π :

(a) V = W if and only if 1 + ζt = EQt−1Rt[ψt] for t = 1, . . . , T.

(b) π is an SPD at c if and only if

1 + ζt = EQt−1Rt[ψt] = max
αt∈At

EQt−1Rt[αt] , t = 1, . . . , T. (11)

We close this section with an example, which is a discrete version of corresponding results

derived by Schroder and Skiadas (2003) in a continuous-time setting with Brownian information.
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Example 9 (Linear Returns and Trading Constraints) Consider the setting of Example 3
and fix π ∈ L++, with risk-neutral representation (Q, ζ) . In a hypothetical complete market for

which π is an SPD, ζ is the short-rate process (in the credit-risk-free sense of Example 3) and Q is

the unique equivalent martingale measure (see Chapter 5 of S09). If the risky assets were all traded

in this hypothetical complete market, then it should be the case that Et−1r̃t = − covt−1[ξQt /ξ
Q
t−1, r̃t].

Since A can imply trading constraints, the last equality is not necessary for π to be an SPD at c.

The difference between the conditional expected excess returns in the actual market and those in the

hypothetical complete market implied by π is

εt = Et−1r̃t + covt−1

[
ξQt

ξQt−1

, r̃t

]
= Et−1

[
ξQt

ξQt−1

r̃t

]
= EQt−1r̃t.

Letting ε0 = 0, this defines a process ε ∈ P0. In an unconstrained market, π is an SPD at c if and

only if ζ = r and ε = 0. We now generalize this statement to account for trading constraints.

Given any nonempty set S ⊆ RJ , the support function δS : RJ → (−∞,∞] is defined by

δS(y) = sup
{
x′y : x ∈ S

}
.

We define the process δA[ε] ∈ P0 by letting δA[ε] (F, t) = δA(F,t)(ε (F, t)), for every nonterminal

spot (F, t) .

Suppose the consumption plan c is financed by the allocation policy (%, ψ) , which generates the

wealth process W. Specializing Theorem 6 (in the form of Remark 8) to the current setting, we

conclude:

(a) W = V if and only if ζ = r + δA[ε] .

(b) The process π is an SPD at c if and only if

ζ = r + δA[ε] and ψ′ε = δA[ε] . (12)

If a set S ⊆ RJ is a cone (meaning that x ∈ S and s ∈ (0,∞) =⇒ sx ∈ S) then δS(y) = 0

if x′y ≤ 0 for all x ∈ S, and δS(y) = ∞ otherwise. Therefore, if A is a cone at every spot, then

condition (12) is equivalent to

ζ = r and ψ′tεt = max
{
α′tεt : αt ∈ At

}
.

For example, if there is a single risky asset (J = 1) that cannot be sold short (At = R+) , then

condition (12) becomes ζ = r and ε ≤ 0, with ε < 0 only if ψ = 0.

4 Recursive Utility

We saw in Lemma 5 that optimality of a feasible consumption plan c is equivalent to the existence

of an element of the utility superdifferential at c that is also an SPD at c. The SPD property

was characterized in Theorem 6 in terms of a recursive market structure. We now shift our at-

tention to the utility side, postulating a recursive utility structure and characterizing the utility

superdifferential.
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Recursive utility is defined in terms of a conditional certainty equivalent, which specifies, at

every nonterminal spot, a rule for collapsing a one-period-ahead contingent payoff to an equivalent

certain payment at the given spot.

Definition 10 A conditional certainty equivalent (conditional CE) is a mapping υ that assigns to
each time t ∈ {0, . . . , T − 1} a continuous function of the form υt : L (Ft+1)++ → L (Ft)++ such

that υt(s1) = s for every s ∈ (0,∞) , and the following conditions hold for every nonterminal spot

(F, t) and x, y ∈ L (Ft+1)++ :

• x = y on F implies υt (x) = υt (y) on F.

• x ≥ y 6= x on F implies υt (x) > υt (y) on F.

Consider any nonterminal spot (F, t) , and let (F1, t+ 1) , . . . , (Fn, t+ 1) be its immediate suc-

cessor spots. The two bullet conditions of Definition 10 state that the value of υt (x) on F, which

we denote υF,t (x) , is an increasing function of the restriction of x on F. Given this fact, we write

υF,t (x1F ) = υF,t (x) (even though x1F is not valued in (0,∞)). We will occasionally use the

notation

ῡF,t (α) = υF,t

(∑n

i=1
αi1Fi

)
, α ∈ (0,∞)n , (13)

which defines a CE ῡF,t on (0,∞)n (in the sense discussed in Section 2.3). Conversely, given a CE

ῡF,t at each nonterminal spot (F, t), equations (13) determine an entire conditional CE υ on the

information tree. We call the conditional CE υ concave, differentiable, or scale invariant if ῡF,t has

the respective property for every choice of a nonterminal spot (F, t) .

The sense in which we use the term recursive utility can now be rigorously defined as follows.

Definition 11 An aggregator is a function f : {0, . . . , T − 1} × (0,∞)2 → (0,∞) such that, for

every nonterminal time t, the section f (t, ·) is increasing and continuous and satisfies f (t, 1, 1) = 1.

The utility function U0 : L++ → (0,∞) is recursive utility if there are a conditional CE υ and an

aggregator f such that for any given c ∈ L++, U0 (c) is the initial value of the process U in L++

specified by the backward recursion

Ut = f (t, ct, υt (Ut+1)) t < T ; UT = cT . (14)

In this case, we refer to U as the utility process of c.

An aggregator f is said to be concave, differentiable, or scale invariant (SI) if f (t, ·) has the
respective property for every time t < T. Mathematically speaking, f (t, ·) is a CE on (0,∞)2 , and

therefore f (t, ·) is SI if and only if it is homogeneous of degree one.
Chapter 6 of S09 provides ordinal axioms that characterize preferences with a recursive utility

representation and establishes some basic properties of recursive utility. For example, the aggregator

f determines and is determined by preferences over deterministic consumption plans, while making

the conditional CE υ more risk averse, with f fixed, makes the utility function U0 more risk

10



averse. Concavity (resp. scale invariance) of U0 corresponds to concavity (resp. scale invariance)

of both the aggregator and the conditional CE. Every recursive utility in this paper will be further

restricted by the ordinal properties of scale invariance and quasiconcavity, properties that imply

concavity. Postponing discussion of scale invariance until the next section, we close this section with

an extension of Proposition 6.15 of S09 that gives a key recursive formula for the superdifferential

of concave recursive utility, assuming a smooth aggregator but a potentially nonsmooth concave

conditional CE. The latter generality is essential in accommodating some of the most common

representations of ambiguity aversion.

Consider any concave conditional CE υ. For each time t < T and random variable z ∈
L (Ft+1)++ , we define the superdifferential of υt at z :

∂υt (z) =
{
κt+1 ∈ L (Ft+1)++ : υt (y) ≤ υt (z) + Et [κt+1 (y − z)] for all y ∈ L (Ft+1)++

}
. (15)

To make this definition more concrete, given any nonterminal spot (F, t) , let n be the number of

its immediate successor spots and consider the function ῡF,t defined in (13). It is then clear that

κt+1 ∈ ∂υt (z) if and only if for every choice of F ∈ F0
t , we have

p ∈ ∂ῡF,t (α) , where z1F =
∑n

i=1
αi1Fi and pi = κ (Fi, t+ 1)P [Fi | F ] .

To anchor the discussion to something familiar, we review the standard case of a smooth

expected-utility CE. Specifications that are motivated by ambiguity aversion are discussed in the

following section.

Example 12 (Expected-Utility CE) Suppose υt−1 = u−1EQt−1u for some Q ∈ Q and differen-

tiable increasing concave function u : (0,∞)→ R. Then

∂υt−1 (Ut) =

{
u′ (Ut)

u′ (υt−1 (Ut))

ξQt

ξQt−1

}
, for every Ut ∈ L (Ft)++ . (16)

The recursive characterization of the superdifferential of any concave recursive utility with

differentiable aggregator f is given below, with fc and fυ denoting the partial derivatives of f with

respect to its consumption and CE arguments, respectively.

Lemma 13 Suppose U0 is recursive utility with a concave conditional CE υ and a concave, dif-

ferentiable aggregator f. Given any c ∈ L++, let U be the corresponding utility process (defined by

recursion 14) and let q and λ be the processes defined by

qt =
fυ (t, ct, υt (Ut+1))

fc (t, ct, υt (Ut+1))
and λt = fc (t, ct, υt (Ut+1)) , t < T ; qT = 0, λT = 1. (17)

Then π ∈ ∂U0 (c) if and only if π solves a recursion of the form

π0 = λ0 and
πt
πt−1

= qt−1κtλt, κt ∈ ∂υt−1 (Ut) . (18)

11



Given a reference consumption plan c, we refer to the process λ defined in (17) as the shadow-

price-of-wealth process. (The reason for this term is explained in Remark 6.16 of S09.) Later

sections explain how the factors qt−1, κt and λt of recursion (18) can be computed in terms of

consumption growth and market returns, assuming U0 is scale invariant.

Finally, it is worth noting that recursion (18) can be equivalently stated in terms of the risk-

neutral representation (Q, ζ) of π, as

1

1 + ζt
= qt−1Et−1 [κtλt] and

ξQt

ξQt−1

=
κtλt

Et−1 [κtλt]
, ξ0 = 1. (19)

5 SI Conditional CEs

A utility function U0 : L++ → R is defined to be scale invariant (SI) if for every a, b ∈ L++ and

s ∈ (0,∞) , U0 (a) > U0 (b) implies U0 (sa) > U0 (sb) . Recall that every utility function U0 in this

paper is, by definition, increasing continuous and normalized in the sense that U0 (sc) = sU0 (c) if

s ∈ (0,∞) . Therefore, U0 is SI if and only if it is homogeneous of degree one. The focus of the

remainder of this paper is on a recursive SI utility function U0 that is quasiconcave and therefore

concave (see, for example, Proposition 3.33 of S09). These properties of U0 are easily shown to be

equivalent to the requirement that the corresponding conditional CE and aggregator are SI and

concave. This section discusses SI concave conditional CEs and the following section discusses SI

concave aggregators.

The definition of scale invariance of a conditional CE υ can be restated as the requirement that

υt (stUt+1) = stυt (Ut+1) for every s, U ∈ L++. (20)

Lemma 2, applied at each nonterminal spot, implies the following important properties of a concave

SI conditional CE υ :

∂υt (stUt+1) = ∂υt (Ut+1) for every s, U ∈ L++. (21)

κt ∈ ∂υt−1 (Ut) =⇒ υt−1 (Ut) = Et−1 [κtUt] for every U ∈ L++. (22)

Some examples of conditional CEs of interest follow. For any coeffi cient γ ∈ R, we use the
notation uγ for the function on (0,∞) defined by4

uγ (z) =

{
log (z) , if γ = 1;

z1−γ/ (1− γ) , if γ 6= 1.
(23)

Example 14 (SI Expected-Utility CE) As is well-known (and follows from Theorem 3.37 of

S09), the expected-utility conditional CE of Example 12 is SI if and only if there is a coeffi cient of

relative risk aversion (CRRA) γ ∈ [0,∞) such that

υt−1 (Ut) = u−1
γ E

Q
t−1uγ (Ut) .

4This definition is consistent with the use of uγ in Skiadas (2013), where it is important that the range of

uγ is either ± (0,∞) or R. Nothing would change in the present paper, however, if we were to redefine uγ (z) =(
z1−γ − 1

)
/ (1− γ) , which is more consistent in the sense that u1 = limγ→1 uγ .

12



In this case, the superdifferential expression (16) specializes to

∂υt−1 (Ut) =

{(
Ut

υt−1 (Ut)

)−γ ξQt

ξQt−1

}
. (24)

By developing the theory in terms of a general SI conditional CE, we can accommodate any of

the SI ambiguity-averse specifications in Skiadas (2013), with the associated computation of the CE

superdifferential being a routine exercise. If the CE is smooth, as in the case5 of source-dependent

constant relative risk aversion, then the superdifferential is obtained by computing the partial

derivatives of ῡF,t, for each nonterminal spot (F, t) . More generally, given the unifying multiple-

prior representation of Theorem 5 in Skiadas (2013), each element of the CE superdifferential can

be obtained by fixing a corresponding minimizing prior and differentiating as if the minimizing prior

were exogenous. Rather than presenting the notationally burdensome general case, we illustrate

with a simple parametric example,6 which is within the broader divergence class of Maccheroni,

Marinacci, and Rustichini (2006). In this example a single parameter provides a continuum of CE

specifications, ordered by ambiguity aversion, which connects the familiar entropic and quadratic

cases. The entropic case defines a conditional CE that is of the SI expected utility form with a

CRRA greater than one, while the quadratic case defines a mean-variance criterion.

Example 15 (A Parametric Divergence CE Class) We assume that for some positive scalar
parameters p and χ,

υt−1 (Ut) = inf
Q∈Q

exp

(
EQt−1 log (Ut) +

1

χ
Et−1ϕp

(
ξQt

ξQt−1

))
, (25)

where

ϕp (y) ≡ yp − y
p− 1

− y + 1.

Note that ϕp is strictly convex, smooth and satisfies ϕp (1) = ϕ′p (1) = 0 and ϕ′p (∞) = ∞. Note
also that ϕ′p (0+) = −∞ if and only if p ∈ (0, 1] . Some examples of ϕp are plotted in Figure 1. The

higher the value of p, the larger ϕp (pointwise) and therefore the higher values the conditional CE υ

takes, corresponding to lower uncertainty aversion. Assuming that the infimum in (25) is achieved

as a minimum, Corollary 2 in Section 2.8 of Clarke (1990) implies7 that

∂υt−1 (Ut) =

{(
Ut

υt−1 (Ut)

)−1 ξQt

ξQt−1

: Q is a minimizing probability in Q
}
. (26)

5See Skiadas (2012) for an axiomatic characterization of recursive utility with a constant EIS, constant rate of

impatience and constant source-dependent CRRA.
6Note that the presentation in Skiadas (2013) is based on a filtration that is generated by two sources of uncertainty,

an ambiguous one (horse-race uncertainty) and an unambiguous one (roulette risk). One could take the filtration

{Ft} of the present paper to coincide with that in Skiadas (2013) (as, for example, would be required if one were to
adopt the source-dependent CRRA specification). In Example 15, we take the alternative view that roulette risk is

nontradeable and this paper’s filtration {Ft} is identified with the horse-race filtration in Skiadas (2013).
7Clarke’s result can be applied at the CE ν = ῡF,t at each nonterminal spot (F, t). A quick way to show the

superdifferential expression is to use an envelope theorem for the directional derivatives of ν at w, which characterize

∂ν (w) via Theorem 23.2 of Rockafellar (1970).
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Figure 1: Examples of the graph of the function ϕp. From top to bottom the lines correspond to p

taking the values 2, 1, 0.5 and 0.1.

Letting ϕ = ϕp/χ in Lemma 8 of Skiadas (2008b) leads to the following conclusions.

Case of p ∈ (0, 1) . In this case, the infimum in (25) is a minimum, for any U ∈ L++. The

unique minimizing Q ∈ Q can be computed recursively by

ξQt

ξQt−1

=

(
1 +

p− 1

p
χ log

(
kt−1

Ut

))1/(p−1)

, ξQ0 = 1, (27)

where kt−1 is the unique element of L (Ft−1)++ such that Et−1ξ
Q
t /ξ

Q
t−1 = 1.

Case of p = 1. This case corresponds to the entropic specification ϕ1 (y) = y log y − y + 1,

resulting in the well-known identity υt−1 = u−1
γ Et−1uγ, with γ = 1 + χ.

Case of p ∈ (1,∞) . In this case, for any U ∈ L++, a minimum in (25) exists if and only if

Et−1

[(
p− 1

p
χ log

(
U∗t
Ut

))1/(p−1)
]
< 1, t = 1, . . . , T, (28)

where U∗ is the least predictable process such that U∗ ≥ U and U∗0 = U0. Therefore, equation (25)

defines a conditional CE only on the cone of adapted processes satisfying condition (28) . For any

U ∈ L++ satisfying (28) , the minimizing Q ∈ Q is again computed by (27). An application with

this type of conditional CE requires either a further restriction of the consumption set (so that all

corresponding utility processes satisfy (28)) or a suitable extension of the conditional CE (meaning

that the preceding representation is only valid locally at a reference consumption plan). The issue is

illustrated by setting p = 2, corresponding to the quadratic divergence specification ϕ2 (y) = (y − 1)2 ,

resulting in the conditional CE

υt−1 (Ut) = exp
(
Et log (Ut)−

χ

4
Vart−1 [log (Ut)]

)
, (assuming p = 2) (29)

for any adapted process U such that Et−1 log (U∗t /Ut) < 2/χ. Further details on the quadratic

case can be found in Maccheroni, Marinacci, and Rustichini (2006) and Maccheroni, Marinacci,

Rustichini, and Taboga (2009).
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6 Proportional Aggregators

An SI recursive utility is specified by a pair of an SI conditional CE, discussed in the last section,

and an SI aggregator, which is the topic of this section.

An aggregator f is said to be scale invariant (SI) if the section f (t, ·) : (0,∞)2 → (0,∞) is

homogeneous of degree one for every t ∈ {0, . . . , T − 1} . In this case,

ft (c, υ) = υgt

( c
υ

)
, t = 0, . . . , T, (30)

where gt (x) = ft (x, 1) .We will refer to the function g as a proportional aggregator, a term defined

more formally as follows.

Definition 16 A proportional aggregator is a mapping g that assigns to each nonterminal time

t a continuous and increasing function gt : (0,∞) → (0,∞) such that gt (1) = 1 and the mapping

x 7→ gt(x) /x is decreasing. The proportional aggregator g is concave or differentiable if gt has the

respective property for every time t < T.

If g is any proportional aggregator, then (30) defines an SI aggregator f. If f and g are so related,

concavity of f is equivalent to concavity of gt for all t < T.

For simplicity, every proportional aggregator in this paper is assumed to be strictly concave

and differentiable, with a derivative that is unbounded near zero and goes to zero at infinity. These

restrictions are adopted in the interest of expositional economy and are peripheral to our main focus,

which is the structure of the conditional CE. More formally, the following condition is henceforth

assumed.

Condition 17 U0 : L++ → (0,∞) is recursive utility with a concave and SI conditional CE υ, and

a strictly concave and differentiable proportional aggregator g. The derivative of the proportional

aggregator satisfies

lim
x↓0

g′t (x) =∞ and lim
x→∞

g′t (x) = 0. (31)

Several transformations of the proportional aggregator g appear in the sequel. These are all

introduced here for easy reference.

Since the derivative g′t is decreasing and continuous, condition (31) implies the existence of the

inverse function It : (0,∞)→ (0,∞) , defined by the requirement that

g′t (It (λ)) = λ.

The convex dual of gt is the function

g∗t (λ) = max
x∈(0,∞)

{gt (x)− λx} = gt (It (λ))− λIt (λ) , λ ∈ (0,∞) . (32)

The elasticity of gt is the function

ht (x) =
d log gt (x)

d log x
=
xg′t (x)

gt (x)
, x ∈ (0,∞) . (33)
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Since x, gt (x) and g′t (x) are all positive, so is ht (x). The assumption that gt (x) /x is decreasing

is equivalent to the requirement that

ht (x) ∈ (0, 1) , x ∈ (0,∞) .

Since gt (1) = 1, it follows in particular that g′t (1) = ht (1) ∈ (0, 1) .

The superdifferential calculation of Lemma 13 motivates the definition of the function

qt (x) =

(
1

ht (x)
− 1

)
x, x ∈ (0,∞) . (34)

Fix any reference consumption plan c, and let U be the corresponding utility process. A simple

calculation shows that the superdifferential characterization of Proposition 13 holds with

qt = qt (xt) and λt = g′t (xt) , where xt =
ct

υt (Ut+1)
, xT = λT = 1. (35)

While qt denotes both the function (34) and the random variable qt (xt) , the meaning is generally

clear from the context. In the following section the superdifferential is expressed in more interesting

ways in terms of consumption growth and market returns.

The processes λt and ht (xt) play a key role in our analysis by virtue of the following straight-

forward implications of the assumed scale invariance of the utility function.

Lemma 18 Suppose π ∈ ∂U0 (c) and V is defined in terms of c and π by (8) . Then

Ut = λtVt and
ct
Vt

= ht (xt) , t = 0, . . . , T,

with the convention hT ≡ 1.

The elasticity ht of gt should not be confused with the elasticity of intertemporal substitution

(EIS), which is defined as the reciprocal of the elasticity of the function qt :

EIS t (x) =
d log x

d log qt (x)
= − d log (c/υ)

d log (fc (t, c, υ) /fυ (t, c, υ))
.

Equivalently, (1/EISt)− 1 is the elasticity of (1/ht)− 1.

Example 19 (Constant EIS) Imposing a constant EIS results in the proportional aggregator

gt (x) =

{ (
(1− β)x1−δ + β

)1/(1−δ)
, if δ 6= 1;

x1−β, if δ = 1.

In this case,

β = 1− g′t (1) , ht (x) =
(1− β)x1−δ

(1− β)x1−δ + β
, qt (x) =

βxδ

1− β and EISt =
1

δ
. (36)

A constant-EIS proportional aggregator can be combined with any conditional CE specification.

The most familiar case is reviewed in the following example.
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Example 20 (Epstein-Zin-Weil Utility) Combining the constant EIS proportional aggregator
of the last example with the expected-utility SI conditional CE of Example 14 results in Epstein-Zin-

Weil utility. Finally, we recall the well-known fact that Epstein-Zin-Weil utility is time additive if

and only if γ = δ, in which case

1

1− β
U0 (c)1−γ − 1

1− γ = EQ
[
T−1∑
t=0

βt
c1−γ
t − 1

1− γ +
βT

1− β
c1−γ
T − 1

1− γ

]
.

7 Pricing with SI Recursive Utility

Having established the general SI recursive utility form of interest, in this section we turn our

attention to pricing restrictions relative to a given optimal consumption plan. More precisely,

we derive restrictions on the utility superdifferential, which when coupled with the assumption of

optimality imply pricing restrictions in terms of consumption growth and/or market returns by

virtue of the analysis of Section 3.

Recall that Condition 17 is a standing assumption. Fixed throughout this section is a reference

consumption plan c. In a homogeneous-agent economy, c can be taken to be the aggregate con-

sumption and U0 the representative agent’s utility function (see Section 3.4 of S09). Alternatively,

c can represent the consumption plan of an individual agent with utility function U0. We let U

denoted the utility process associated with c, defined through the backward recursion

Ut = υt (Ut+1) gt

(
ct

υt (Ut+1)

)
t < T ; UT = cT . (37)

The associated process x, q and λ are defined in (35) .

7.1 Pricing in Terms of Consumption Growth

We begin with a recursive method for computing ∂U0 (c) as a function of the consumption growth

process associated with the reference consumption plan c. Assuming optimality of c, which is to

say that an element of ∂U0 (c) must be an SPD at c, this computation together with the SPD

characterization of Theorem 6 leads to joint restrictions on market returns and consumption growth.

Theorem 21 The consumption-to-CE process x is determined by the backward recursion

xt−1 = υt−1

(
gt (xt)

xt

ct
ct−1

)−1

, t = 1, . . . , T ; xT = 1. (38)

The process π ∈ L++ is an element of ∂U0 (c) if and only if π0 = g′0 (x0) and

πt
πt−1

= qt−1 (xt−1) g′t (xt)κt for some κt ∈ ∂υt−1

(
gt (xt)

xt

ct
ct−1

)
.

Proof. The definition xt = ct/υt (Ut+1) and the utility recursion (37) give

Ut = υt (Ut+1) gt (xt) = ct−1
gt (xt)

xt

ct
ct−1

.
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Substituting the last expression for Ut in xt−1 = ct−1/υt−1 (Ut) and using the homogeneity of υt−1

(equation 20) to cancel out ct−1 results in (38) . The same expression for Ut and the fact that ∂υt−1

is homogeneous of degree zero (equation 21) result in the identity

∂υt−1 (Ut) = ∂υt−1

(
gt (xt)

xt

ct
ct−1

)
. (39)

Lemma 13 completes the proof.

Example 22 (Unit EIS) Assume the unit-EIS proportional aggregator gt (x) = x1−β for some

β ∈ (0, 1) . In this case, the recursion for x is

xt−1 = υt−1

(
x−βt

ct
ct−1

)−1

, xT = 1.

Given x, π ∈ ∂U0 (c) if and only if

πt
πt−1

= βxt−1x
−β
t κt for some κt ∈ ∂υt−1

(
x−βt

ct
ct−1

)
.

7.2 Pricing in Terms of Market Returns

Pricing restrictions implied by the optimality of the reference consumption plan c can alternatively

be formulated in terms of the market returns of a claim on c, which in the representative-agent

interpretation correspond to the returns of the market portfolio. To spell out how this can be done,

we henceforth assume that the consumption plan c is financed by the allocation policy (%, ψ) , which

generates the wealth process W. In this section we establish a variant of Theorem 21 in which the

role of ct/ct−1 is assumed by Rt[ψt] .

The key link between consumption and the returns Rt[ψt] is provided by the assumption that

the consumption policy % is optimal given ψ, meaning that there is no allocation policy of the form

(%̃, ψ) that finances a consumption plan c̃ such that U0 (c̃) > U0 (c) . The following characterization

is a corollary of Lemma 5 and Theorem 6, using the argument of Remark 7.

Lemma 23 The consumption policy % is optimal given ψ if and only if there exists some π ∈ ∂U0 (c)

such that

Et−1

[
πt
πt−1

Rt[ψt]

]
= 1. (40)

We are now ready to characterize all members of ∂U0 (c) that satisfy (40) in terms of a backward

recursion. For notational simplicity, this recursion is stated in terms of the shadow-price-of-wealth

process λ, as opposed to the consumption-to-CE ratio process x used in Theorem 21. Given the

assumed Condition 17, one can easily go back and forth between x and λ, since λt = g′t (xt) and

xt = It (λt) . Recall that g∗t denotes the convex dual of gt defined in (32) .
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Theorem 24 Suppose the consumption plan c is financed by the allocation policy (%, ψ) and %

is optimal given ψ. Then the corresponding shadow-price-of-wealth process λ is determined by the

following backward recursion, which also computes q along the way:

qt−1 =
g∗t−1 (λt−1)

λt−1
=

1

υt−1 (λtRt[ψt])
, λT = 1. (41)

Suppose further that π ∈ L++ is such that (40) holds. Then π ∈ ∂U0 (c) if and only if π0 = λ0 and

πt
πt−1

= qt−1κtλt for some κt ∈ ∂υt−1 (λtRt[ψt]) . (42)

Proof. Suppose that π ∈ ∂U0 (c) satisfies (40) . Such a π exists by Lemma 23. By Theorem 6(a)

and Lemma 18, we have

Ut = λtWt and %t = ht (xt) . (43)

The first equation in (43) and the budget equation (6) imply

Ut = Wt−1

(
1− %t−1

)
λtRt[ψt] . (44)

The first equation of (41) follows from the definition (34) of qt and expression (32) for the

convex dual g∗t with xt = It (λt) . Substituting %t for ht (xt) in the definition of qt and using (44)

and the homogeneity of υt proves the second equation of (41).

Lemma 6.41 of S09 shows that the function z 7→ g∗t (z) /z maps (0,∞) one-to-one onto itself

(as a consequence of Condition 17). Thus for any choice of λt ∈ L (Ft)++ , there is a unique

λt−1 ∈ L (Ft−1)++ solving (41) , and therefore the entire processes λ is uniquely determined by

recursion (41) given its terminal value λT = 1.

Since ∂υt−1 is homogeneous of degree zero, condition (44) implies

∂υt−1 (Ut) = ∂υt−1 (λtRt[ψt]) . (45)

Lemma 13 completes the proof.

Example 25 (Pricing with SI Kreps-Porteus Utility) Suppose that υt = u−1
γ Etuγ , where uγ

is defined by (23) for some γ ∈ (0,∞) . The corresponding derivative is given in (24) (with Q = P ).

Since the utility is differentiable, ∂U0 (c) = {π} for some π ∈ L++. Assume that % is optimal given

ψ, and therefore π satisfies (40) . Theorem 24 implies that π0 = λ0 and

πt
πt−1

= (qt−1λt)
1−γ

(
1

Rt[ψt]

)γ
, t = 1, . . . , T, (46)

with q and λ given by (41) . If γ = 1, then πt/πt−1 = 1/Rt [ψt] .
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To better understand the relationship between the last two theorems, as well as for later use,

let us introduce the ratio of consumption growth to market returns:

Zt =
ct
ct−1

1

Rt[ψt]
=

(
1

%t−1

− 1

)
%t, (47)

where the last equation follows easily from the budget equation. Note that given
(
%t−1, %t

)
, ct/ct−1

and Rt[ψt] carry the same information. If % is optimal given ψ, then %t = ht (xt) = ht (It (λt)) .

Therefore, given x or λ, the ratio Zt is also determined, which explains why either consumption

growth or market returns can be used for pricing.

Example 26 (Unit EIS) As in Example 22, suppose gt (x) = x1−β, and therefore ht (x) = 1− β.
Assuming % is optimal given ψ, the second equation in (43) implies that %t = 1− β. Recursion (41)

becomes

λt−1 = (1− β)1−β (βυt−1 (λtRt[ψt]))
β , λT = 1.

Equation (47) in this context gives

ct
ct−1

= βRt[ψt] (assuming unit EIS).

Since λt = (1− β)x−βt , the above recursion for λ is easily seen to be equivalent to the recursion for

x of Example 22.

7.3 The Case of Invertible Proportional-Aggregator Elasticity

As in the last section, we assume that c is financed by the allocation policy (%, ψ) and % is optimal

given ψ. As we saw in (43) , this means that %t = ht (xt) . The key to this section’s analysis is the

inversion of this equation to write x, and therefore also q and λ, as a function of %. As the unit-EIS

case demonstrates, Condition 17 does not imply the invertibility8 of the proportional aggregator

elasticity function ht. For the remainder of this section, we assume that ht : (0,∞) → (0, 1) is

invertible, with Jt : (0, 1)→ (0,∞) denoting the corresponding inverse function: ht (Jt (z)) = z for

all z ∈ (0, 1) . Using the identity %t = ht (xt) , we can write

xt = Jt (%t) , qt =

(
1

%t
− 1

)
Jt (%t) and λt = g′t (Jt (%t)) . (48)

Therefore, if % can be treated as an observable process, so can x, q and λ. Each element π of ∂U0 (c)

satisfying (40) is then characterized either in terms of consumption growth or market returns by

π0 = λ0,
πt
πt−1

= qt−1λtκt for some κt ∈ ∂υt−1

(
gt (xt)

xt

ct
ct−1

)
= ∂υt−1 (λtRt[ψt]) . (49)

This follows from Theorems 21 and 24, and identities (39) and (45) .

The preceding conclusions apply in particular under a constant but non-unit EIS. In this case

the ratio πt/πt−1 in (49) can be expressed entirely as a function of the pair (ct/ct−1, Rt[ψt]) .

8 In fact, ht need not even be monotone; the proportional aggregator gt (x) =
√
x exp

(
e−1 − e−x

)
satisfies condi-

tion 17 but defines the elasticity function ht (x) = (1/2) + xe−x, which is hump-shaped.
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Theorem 27 (Pricing with Constant Non-Unit EIS) Suppose the consumption plan c is fi-
nanced by the allocation policy (%, ψ) , and % is optimal given ψ. Assume the constant-EIS propor-

tional aggregator of Example 19 with δ 6= 1, and let Zt be the period-t ratio of consumption growth

to market return, defined in (47) . For every π ∈ L++ satisfying (40) , π ∈ ∂U0 (c) if and only if

π0 = λ0 and
πt
πt−1

= β1/(1−δ)Z
−δ/(1−δ)
t κt for some κt ∈ ∂υt−1

(
Z
−δ/(1−δ)
t Rt[ψt]

)
. (50)

Proof. Inverting %t = ht (xt) results in

Jt (%) =

(
β

1− β
%

1− %

)1/(1−δ)
. (51)

Expressions (48) for qt and λt become

qt =

(
β

1− β

)1/(1−δ)( %t
1− %t

)δ/(1−δ)
and λt = (1− β)1/(1−δ)

(
1

%t

)δ/(1−δ)
.

These equation together with (47) imply that

qt−1λt = β1/(1−δ)Z
−δ/(1−δ)
t and ∂υt−1 (λtRt[ψt]) = ∂υt−1

(
Z
−δ/(1−δ)
t Rt[ψt]

)
. (52)

Therefore, condition (49) becomes (50) .

Remark 28 To the conclusion of the preceding theorem we can also add the identity

υt−1

(
Z
−δ/(1−δ)
t Rt[ψt]

)
= β−1/(1−δ). (53)

This follows from the first equation in (52) and recursion (41) .

Expression (50) generalizes a well-known pricing formula of Epstein and Zin (1991) and Weil

(1989), which is extended below to a version that adds robustness in the sense of Example 15.

Example 29 (Robust Extension of Epstein-Zin-Weil Pricing) In addition to the assump-
tions of Theorem 27, suppose that the conditional CE takes the SI ambiguity-averse form of Exam-

ple 15, assuming the validity of (28) for p > 1. The value (25) is therefore achieved as a minimum.

Let Q∗ be the set of every Q ∈ Q that achieves the minimum in (25). Because of identity (53), the

superdifferential expression (26) implies

∂υt−1

(
Z
−δ/(1−δ)
t Rt[ψt]

)
=

{(
β1/(1−δ)Z

−δ/(1−δ)
t Rt[ψt]

)−1 ξQt

ξQt−1

: Q ∈ Q∗
}
.

Applying (27) with Ut = Z
−δ/(1−δ)
t Rt[ψt] , expression (50) becomes

πt
πt−1

=
1

Rt[ψt]

(
1 +

p− 1

p
χ log

(
kt−1

(
ct
ct−1

)δ/(1−δ)( 1

Rt[ψt]

)1/(1−δ)
))1/(p−1)

, (54)
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where kt−1 is the unique element of L (Ft−1)++ that makes condition (40) valid. Letting p converge

to one in (54) with kt−1 = 1/β, the expression for πt/πt−1 reduces to

πt
πt−1

=

(
β

(
ct
ct−1

)−δ)φ( 1

Rt[ψt]

)1−φ
, where φ =

1− γ
1− δ , (δ 6= 1) , (55)

where γ = 1+χ. This is the familiar pricing formula of Epstein and Zin (1991) and Weil (1989), as

it should be given our earlier discussion of the case p = 1 in Example 15. In fact, it is straightforward

to confirm that if U0 takes the Epstein-Zin-Weil form of Example 20 with prior Q = P, then

Theorem 27 reduces to the claim that for any π ∈ L++ satisfying (40) and π0 = λ0, π ∈ ∂U0 (c) if

and only if π satisfies (55) .

The analysis in Skiadas (2008b) suggests that pricing using (54) is consistent with Epstein-

Zin-Weil pricing in the limiting case of a Brownian filtration, but it has quantitatively different

implications in the presence of Poisson jumps if p 6= 1. In a calibration, the pair of parameters

(p, χ) provides the flexibility to price Brownian and Poissonian risks differently.

8 Optimal Consumption and Portfolio Choice

As before, we consider an agent with a utility function U0 : L++ → R satisfying Condition 17, who
takes as given the market introduced in Section 3. We use the analysis of Section 7.2 to establish

a recursive method for computing every optimal allocation policy.

Theorem 30 Suppose Condition 17 is satisfied. An allocation policy (%, ψ) is optimal if and only

if it can be computed by the following recursive procedure:

1. (Initialization) Set λT = %T = 1 and t = T.

2. (Recursion) With λt already computed, select ψt ∈ L (Ft−1)++ so that ψt ∈ At and

υt−1 (λtRt[ψt]) = max
αt∈At

υt−1 (λtRt[αt]) . (56)

Also compute λt−1 ∈ L (Ft−1)++ as the unique solution to

λt−1

g∗t−1 (λt−1)
= υt−1 (λtRt[ψt]) , (57)

and set %t−1 = ht−1 (It−1 (λt−1)) .

3. While t > 1, decrease t by one and repeat Step 2.

The process λ defined in this procedure is the shadow-price-of-wealth process corresponding to the

optimal consumption plan c that is financed by (%, ψ) . Finally, if W is the wealth process generated

by (%, ψ) , the utility process of c = %W is given as U = λW.
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Example 31 (Unit Relative Risk Aversion) Suppose υ is an SI Expected-Utility CE with unit
relative risk aversion, that is, υt = expEt log . Then equation (56) implies that an optimal allocation

can be determined myopically, independently of the value of λt :

E log (Rt[ψt]) = max
αt∈At

E log (Rt (α)) .

The optimality of the myopic portfolio allocation is not, however, generally valid if one adds ro-

bustness by adopting the SI conditional CE of Theorem 5 in Skiadas (2013) with γ = 1.

The preceding procedure for computing optimal consumption-portfolio strategies under trading

constraints takes the form of a direct backward recursion on the information tree, in contrast to

the duality approach of Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitaníc and Karatzas

(1992). Small-risk conditional-CE approximations of the type discussed in Skiadas (2008a,b) can

be used to relate the discrete backward recursion of Theorem 30 to continuous-time solutions in

terms of BSDEs, as in Schroder and Skiadas (2003, 2008). The basic idea behind the relationship

between a backward recursion and a BSDE is explained in Skiadas (2008a,b), where one can also

find some references to a large mathematics literature that develops numerical BSDE solution

methods, as well as the close relationship between BSDEs and associated PDEs. The discrete

consumption/portfolio theory offers a simplified entry point to the continuous-time methodology,

analogous to the simplification of the Black-Scholes theory achieved by the binomial model of option

pricing.

A Appendix: Remaining Proofs

A.1 Proof of Lemma 1

We already showed (2 =⇒ 1) , we now show (1 =⇒ 2) . Suppose the first condition is satisfied

and consider the convex sets

A = {(α, x) : α > ν (z) , x ∈ X} , B = {(β, y) : β ≤ ν (z + y) , z + y ∈ (0,∞)n} .

If (α, x) ∈ A ∩ B, then ν (z) < α ≤ ν (z + x) for some x ∈ X satisfying z + x ∈ (0,∞)n , which

contradicts the assumed condition. Note also that (ν (z) , 0) is in the closure of both sets. Therefore,

by the separating hyperplane theorem, there exists some (r, p) ∈ R× Rn such that

[(α, x) ∈ A =⇒ rα+ (p | x) ≤ rν (z)] and [(β, y) ∈ B =⇒ rβ + (p | y) ≥ rν (z)] . (58)

The second part of this condition implies that r < 0. Indeed, if r > 0 the condition is violated

by taking β to minus infinity and if r = 0 the condition is violated by taking y = −εp for ε > 0

small enough so that z + y ∈ (0,∞)n . After rescaling, we can therefore set r = −1. Given this

normalization, the first part of condition (58) implies that (p | x) ≤ 0 for all x ∈ X, and the second
part of (58) implies that p ∈ ∂ν (z) .
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A.2 Proof of Theorem 6

For each period t, we define the function δt : At → L (Ft−1)++ by

1 + δt (αt) = Et−1

[
πt
πt−1

Rt[αt]

]
, αt ∈ At. (59)

For any trading strategy ψ, we write δ (ψ) for the element of P0 whose end-of-period-t value is

δt (ψt) .

(a) SupposeW is the wealth process generated by the allocation policy (%, ψ) through the budget

equation (6), while V is defined in (8) . We are to show that W = V if and only if δt (ψt) = 0.

Multiplying equations (6) and (3) and applying Et−1 on both sides, we find

Et−1 [πtWt] = πt−1Wt−1

(
1− %t−1

)
(1 + δt (ψt)) . (60)

On the other hand, given that WT = cT , W = V if and only if W satisfies the recursion

Et−1 [πtWt] = πt−1Wt−1 (1− %t) .

The two displayed equations are equivalent if and only if δt (ψt) = 0.

(b) The following preliminary result is key.

Lemma 32 Suppose the consumption plan c is financed by the allocation policy (%, ψ) , which gen-

erates the wealth process W. Then

E

[
T∑
t=0

πtct

]
= π0w + E

[
T∑
t=1

πt−1Wt−1

(
1− %t−1

)
δt (ψt)

]
.

Proof. Let St = Wt − ct = Wt (1− %t) . Subtracting πt−1St−1 on both sides of equation (60),

we find

Et−1 [πtSt − πt−1St−1 + πtct] = πt−1St−1δt (ψt) .

To complete the proof, take unconditional expectations on both sides, apply the law of iterated

expectations, add up the resulting equation from t = 1 to T, and use the fact that S0 = w− c0 and

ST = 0.

Returning to the main proof, suppose first that equations (12) are satisfied and therefore

(π | c) = π0w by Lemma 32. For any x ∈ X (c) , there exists some admissible allocation pol-

icy (%̃, ψ̃) that finances c + x. Applying Lemma 32 to c + x and using the fact that δ(ψ̃) ≤ δ (ψ) ,

we infer that (π | c+ x) ≤ π0w. Therefore (π | x) ≤ 0, proving that π is a SPD at c.

Conversely, suppose π is an SPD at c. We first argue that W = V. Fixing any reference non-

terminal spot (F, t) , define a new consumption policy %̃ that is equal to % everywhere except for

its value at spot (F, t) , where it is modified so the proportion saved is scaled by (1− s) , that is,
1 − %̃ (F, t) = (1− s) (1− % (F, t)) , where s is any scalar that is consistent with the requirement
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%̃ (F, t− 1) ∈ (0, 1) . The corresponding amount consumed at spot (F, t) is c (F, t)+sW (F, t). After

spot (F, t) consumption, the agent can follow the same allocation policy and finance the original

consumption plan scaled by 1− s. The allocation policy (%̃, ψ), therefore, finances the consumption

plan c+x, where x ∈ X (c) vanishes outside F ×{t, . . . , T} , takes the value sW (F, t) at spot (F, t)

and is equal to −sc on F × {t+ 1, . . . , T} . Since (π | x) ≤ 0, we have

sE

[(
πtWt −

T∑
s=t

πscs

)
1F

]
≤ 0.

Since a small enough s can be chosen to be either positive or negative, the last inequality is in fact

an equality, which proves that V = W. By part (a), we have also shown that δt (ψt) = 0.

There remains to show that

0 = max
αt∈At

δt (αt) . (61)

Suppose instead that there is some spot (F, t− 1) and some portfolio allocation α0 ∈ A (F, t− 1)

such that δt
(
α0
t

)
> 0 on the event F. For each φ ∈ [0, 1] , let

αφ = (1− φ)α0 + φψ (F, t) .

Since δ (ψ) = 0 and RF,t is concave, it follows that δt(α
φ
t ) > 0 on F for every φ ∈ (0, 1) . Moreover,

since Rt[ψt] is strictly positive and RF,t is continuous, we can select φ suffi ciently close to one so

that RF,t(α
φ
t ) is also strictly positive. Fixing such a choice of φ, we define the allocation policy ψ̃

to be the same as ψ except for the value of ψ̃t on the event F which we select to be equal to α
φ. By

construction, R(ψ̃) is strictly positive and δt(ψ̃t) > 0 on F . Suppose the allocation policy
(
%, ψ̃

)
finances the consumption plan c+ x and generates the wealth process W̃ . Note that δ(ψ̃) vanishes

except on F × {t} where it is strictly positive. By Lemma 32,

(π | c+ x) = π0w + E

[
T∑
t=1

πt−1W̃t−1

(
1− %t−1

)
δt(ψ̃t)

]
> π0w = (π | c) ,

and therefore (π | x) > 0. Since x ∈ X (c) , this contradicts the assumption that π is an SPD at c.

This shows (61) and completes the Theorem’s proof.

A.3 Proof of Lemma 13

(Suffi ciency) Suppose that π satisfies (18) . Fixing any y such that c+y ∈ L++, we will show that

U0 (c+ y)− U0 (c) ≤ (π | y) . (62)

Recall the definition of λ and q in (17) , and define

∆t =
Ut (c+ y)− Ut (c)

λt
.

The utility recursion (14), the gradient inequality for f, and the assumption that κt ∈ ∂υt (Ut+1 (c))

imply the inequalities

∆t ≤ yt + qt [υt (Ut+1 (c+ y))− υt (Ut+1 (c))] ≤ yt + qtEt [κt+1λt+1∆t+1] .
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Combined with the assumed condition (18) , this proves the recursion

πt∆t ≤ πtyt + Et [πt+1∆t+1] .

A backward-in-time induction, starting with the terminal condition ∆T = yT , shows that

Ut (c+ y)− Ut (c) = λt∆t ≤ Et

[
T∑
s=t

πs
πt
ys

]
, t = 0, . . . , T. (63)

Since π0 = λ0, the preceding inequality for t = 0 gives (62) .

(Necessity) Suppose that π ∈ ∂U0 (c) . Then π1 ∈ ∂F (c1) , where

F (z) = f (0, c0, υ0 (f (1, z, υ1 (U2 (c))))) , z ∈ L (F1) .

To prove this claim, consider any δ ∈ L (F1) and define y ∈ L by letting y1 = δ and yt = 0 for

t 6= 0. Using the utility recursion and the definitions, we have

F (c1 + δ)− F (c1) = U0 (c+ y)− U0 (c) ≤ (π | y) = E [π1δ] .

The idea now is to apply some sort of chain rule to compute ∂F (c1) . For this purpose, we use

Lemma 33 Suppose that ν is a concave CE on (0,∞)n and the function φ : (0,∞)→ R is (strictly)
increasing and differentiable. Then for every z ∈ (0,∞)n ,

∂ (φ ◦ ν) (z) =
{
φ′ (ν (z))κ : κ ∈ ∂ν (z)

}
and ∂ (ν ◦ φ) (z) =

{
κφ′ (z) : κ ∈ ∂ν (φ (z))

}
,

where ν ◦ φ denotes the function (z1, . . . , zn) 7→ ν (φ (z1) , . . . , φ (zn)) .

Proof. This follows from Proposition 4.2.5 of Bertsekas (2003) and Exercise 10.7 of Rockafellar
and Wets (1998). The reader interested in a simple direct proof may proceed as follows. Let F be

φ ◦ ν or ν ◦ φ. The nonobvious part is showing that every element of ∂F (z) is of the claim form.

To this end, the following fact can be used (see Theorem 23.2 of Rockafellar (1970)):

p ∈ ∂F (z) ⇐⇒ F ′ (z; y) ≤ (p | y) for all y ∈ Rn,

where F ′ (z; y) = limα↓0 (F (z + αy)− F (z)) /α. The last directional derivative can be computed

in each case by a chain-rule type argument. In the case F = ν ◦ φ this part of the argument is
complicated by the fact that the direction (φ (z + αy)− φ (z)) /α varies with α, although it does

converge to φ′ (z; y) . This diffi culty is easily overcome using the local Lipschitz continuity of concave

functions (see Theorem 10.4 of Rockafellar (1970)).

Lemma 33 can be applied to first compute the superdifferential of z 7→ υ0 (f (1, z, υ1 (U2 (c)))) at

c1, and then once again to compute ∂F (c1) . Given the definition of λ and q in (17) , the result is
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that π1 = q0λ0κ1λ1, for some κ1 ∈ ∂υ0 (U1 (c)) . Since U0 (c) = f (0, c0, υ0 (U1)) is differentiable in

c0, it is immediate that π0 = λ0. Therefore,

π1

π0
= q0κ1λ1, for some κ1 ∈ ∂υ0 (U1 (c)) .

We have shown condition (18) for the first period only. If the conditional superdifferential

condition (63) is assumed, the same argument applies with the role of time zero assumed by any

given nonterminal spot, resulting in the full condition (18) . We complete the proof by showing

that π ∈ ∂U0 (c) implies (63) for all y such that c + y ∈ L++. By Lemma 5, the assumption that

π ∈ ∂U0 (c) implies that U0 (c) = max {U0 (c+ x) : (π | x) = 0, c+ x ∈ L++} . In other words, c
is optimal for an agent who at time zero faces a complete market with state-price density π (see

Chapter 5 of S09 for details). By the dynamic consistency property of recursive utility (discussed

in Chapter 6 of S09), at each time-t spot, the consumption plan c must still be optimal given the

complete market defined by π; that is,

Ut (c) = max

{
Ut (c+ x) : Et

[
T∑
s=t

πs
πt
xs

]
= 0, c+ x ∈ L++

}
.

Indeed, if the last condition were violated, one would easily be able to construct an x such that

U0 (c+ x) > U0 (c) and (π | x) = 0. Applying the necessity part of Lemma 5 to each time-t spot

confirms (63) and completes the lemma’s proof.

A.4 Proof of Lemma 18

Recall that U0 can be viewed as a CE on (0,∞)n , where n is the total number of spots. Applying

the second part of (4), it follows that U0 (c) = (π | c) = λ0V0, where the last equality follows from

Lemma 13 and the definition of V. The same argument can be applied on the information subtree

rooted at any given nonterminal spot (F, t) , concluding that U (c) (F, t) = λ (F, t)V (F, t) . Finally,

for the terminal spots we use the identities UT = cT = VT and λT = 1. This proves that U = λV.

Using the latter along with the definitions of λ, x and h, and the utility recursion (37), we have

ct
Vt

=
ctg
′
t (xt)

Ut
=

ctg
′
t (xt)

υt (Ut+1) gt (xt)
= ht (xt) .

A.5 Proof of Theorem 30

A first key observation is that condition (56) is equivalent to

Et−1 [κtλtRt[ψt]] = max
αt∈At

Et−1 [κtλtRt[αt]] , for some κt ∈ ∂υt−1 (λtRt[ψt]) . (64)

This claim follows9 from Lemma 1 and will be used without further explanation. Throughout this

proof, W denotes the wealth process generated by (%, ψ) .

9To see why, fix any nonterminal spot (F, t− 1) with immediate successor spots (F1, t) , . . . , (Fn, t) . Let

ῡF,t−1 : (0,∞)n → (0,∞) be the CE defined by (13) , and for each α ∈ A (F, t− 1) let R̄F,t (α) be the vec-

tor in Rn whose ith component is the realization of RF,t (α) at spot (Fi, t) . Lemma 1 applies with ν = ῡF,t−1,

X =
{
x ∈ Rn : x ≤ R̄F,t (α)− R̄F,t (ψ (F, t)) , α ∈ A (F, t− 1)

}
, and (x | y) =

∑n
i=1 xiyiP [Fi | F ] .
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Suppose that c is an optimal consumption plan. Let λ is the corresponding shadow-price-of-

wealth process, and let (%, ψ) be any allocation policy financing c. Since % is optimal given ψ,

Theorem 24 applies, establishing the validity of recursion (57) . (Recall that λt−1 is determined

by (57) given λt by virtue of Proposition 6.41 of S09.) Also, equations (43) in the proof of The-

orem 24 establish the validity of Step 3 of the procedure and that λW is the utility process of c.

Applying Lemma 5, select any π ∈ ∂U0 (c) that is also an SPD at c. By Theorem 6, condition (10)

is satisfied. The first equation of (10) and the fact that π ∈ ∂U0 (c) gives the representation (42) of

Theorem 24, which together with the second equation of (10) gives condition (64) . This proves (56)

and completes the necessity proof.

Conversely, suppose that the allocation policy (%, ψ) and process λ are constructed by the stated

recursion. Let also q, κ and π be defined by (41) and (42) of Theorem 24. By construction,

1 = qt−1υt−1 (λtRt[ψt]) = qt−1Et−1 [κtλtRt[ψt]] = Et−1

[
πt
πt−1

Rt[ψt]

]
,

where the second equation follows by (4) . By Lemma 23, we have shown that % is optimal given ψ,

and therefore the conclusions of Theorem 24 apply, including the fact that U = λW pointed out in

its proof. We have proved that π ∈ ∂U0 (c) . Condition (56) implies (64) , which in turn implies the

rest of the SPD condition (10) . By Lemma 5, optimality of c is proved.
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