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Abstract

A self-contained proof is presented of the fact that any increasing, continuous pref-

erences over contingent payoffs that admit a (possibly state-dependent) additive rep-

resentation are scale (resp. translation) invariant if and only if they take the form of

CRRA (resp. CARA) expected utility, with the probabilities and coeffi cient of risk

aversion uniquely determined as part of the representation. Thus scale or translation

invariance allows a significant simplification of the ordinal foundations of subjective

expected utility.
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1 Introduction

This expository paper presents a self-contained proof of a theorem characterizing all scale

invariant (or homothetic) additive utilities, first shown1 in Skiadas (2013). An isomorphic

version of this result, characterizing additive translation invariant (or quasilinear) utilities,

is also presented. Together, the two characterizations provide simple ordinal foundations

for subjective expected utility with constant relative or absolute risk aversion.

We focus on an increasing and continuous preference order � over a set C that is the

Euclidean product of N copies of an open interval of real numbers, where N is finite.

For example, the elements of C can be thought of as payoffs that are contingent on the

realization of one of N states. Postponing precise definitions for now, we recall a corollary

of a result by Debreu (1983): Assuming N > 1, the preference order � is separable if

and only if it admits an additive utility representation. The main theorem shown here

states that for any N > 0, if � admits an additive utility representation then it is scale
invariant, meaning that x � y implies sx � sy for all s ∈ (0,∞) , if and only if it admits a

power-or-logarithmic expected utility representation, where the probabilities are uniquely

determined as part of this representation. A transformation of the same result characterizes

translation invariant additive preferences as expected exponential utility.

In the absence of scale or translation invariance, a unique subjective utility representa-

tion requires significantly more elaborate structure, as in Savage (1954), where a non-atomic

probability is implied, or Anscombe and Aumann (1963), where objectively randomized

payoffs are introduced, or any of the subjective expected utility foundations building on

the theory of additive conjoint measurement, as in the contributions of Luce and Krantz

(1971) and Wakker (1984, 1989). In a variant of the latter approach, Skiadas (1997, 2009

Theorem 4.12) separates the conditions leading to an additive representation and a sin-

gle, but rather elaborate, state-independence condition that delivers a subjective expected

utility representation. Here the simple ordinal condition of scale or translation invariance

makes an assumption of state independence redundant.

We proceed in five sections. Section 2 reviews a well-known theorem on the additive

representation of preferences. This can be thought of as providing an ordinal foundation

for the utility additivity assumption, but is otherwise not part of the argument charac-

terizing scale or translation invariant additive utilities. The uniqueness (up to positive

1Skiadas (2009) gives a version of the same result, but under a minor non-ordinal regularity assumption,

which was removed in Skiadas (2013).
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affi ne transformations) of additive representations on the other hand is essential for the

characterization and is therefore proved in Section 3. The other key component of the

argument is a consequence of a classical characterization of the so-called Cauchy equation,

which is proved in Section 4. The final two sections present the main results on scale and

translation invariant additive utilities, respectively.

2 Additive Utility Representation

We consider preferences on the set C ≡ (`,∞)N for some positive integer N and ` ∈
{0,−∞} . The lower bound ` will be assumed to be zero in the scale-invariant formulation
and −∞ in the translation invariance formulation. It is convenient for our purposes to

define utility functions on C to be monotone and continuous, although these restrictions

are not standard in the literature. A function U : C → R is increasing if 0 6= h ≥ 0

implies U (c+ h) > U (c) for all c ∈ C. A utility (on C) is a continuous and increasing
real-valued function on C.

We fix throughout a binary relation � on C (that is, a subset of C × C) with the

interpretation that a � b (meaning, (a, b) ∈�) indicates strict preference of a over b. We
assume that � is irreflexive (there is no c such that c � c), monotone (if 0 6= h ≥ 0, then

b = c or b � c implies b + h � c), and continuous (if a � b, then x � y for all x in a

suffi ciently small open ball centered at a and all y in a suffi ciently small open ball centered

at b). We denote the complement of � by � (x � y if and only if not y � x) and we assume
that � is complete and transitive. It is well-known and simple to show (see, for example,
Chapter 3 of Skiadas, 2009), that there exists a utility U that represents �, meaning that
a � b ⇐⇒ U (a) > U (b) . Conversely, if the relation � admits such a representation, then
it must satisfy all the preceding conditions assumed of � .

We are interested in additive utility representations in the following sense.

Definition 1 The utility U is additive if there exist functions Un : (`,∞)→ R such that

U (x) =
∑N

n=1
Un (xn) , x ∈ (`,∞)N . (1)

The existence of an additive utility representation is characterized by a separability

condition on � that we now define. Given any x, y ∈ (`,∞)N and A ⊆ {1, . . . , N}, we
write xAy to denote the element of C defined by

(xAy)n =

{
xn, if n ∈ A;

yn, if n /∈ A.
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Definition 2 The preference � is separable if

xAz � yAz ⇐⇒ xAz̃ � yAz̃, (2)

for all x, y, z, z̃ ∈ (`,∞)N and A ⊆ {1, . . . , N} .

A preference that admits an additive utility representation is clearly separable. The

following theorem gives a converse. The result is a corollary of a theorem by Debreu

(1983) (based on a 1952 working paper), but also captures the essential aspects of that

theorem. Debreu’s theorem is part of a broader theory of measurement, which is reviewed

in the monographs of Krantz, Luce, Suppes, and Tversky (1971) and Narens (1985). These

authors present an algebraic theory that generalizes Debreu’s topological results (see also

Wakker (1988)). A detailed proof of Debreu’s additive representation theorem can be found

in Wakker (1989).

Theorem 3 (Existence of Additive Representations) Suppose N > 2 and the rela-

tion � on C admits some utility representation. Then � admits an additive utility repre-
sentation if and only if it is separable.

It is worth noting that for N = 2, separability is not suffi cient for the existence of an

additive representation; a more elaborate ordinal condition is required.

3 Uniqueness of Additive Representations

The following theorem on the uniqueness of additive representations is also part of the

additive representation theory cited earlier. It is an important component of the proof of

our later characterization of scale/translation-invariant additive preferences.

Two utilities are said to be ordinally equivalent if they represent the same preference.
The additive utilities U and Ũ on (`,∞)N are said to be related by a positive affi ne
transformation if there exist a ∈ R++ and b ∈ RN such that Ũn = aUn + bn for every

n ∈ {1, . . . , N} .

Theorem 4 (Uniqueness of Additive Representations) For any integer N ≥ 2, two

additive utilities on (`,∞)N are ordinally equivalent if and only if they are related by a

positive affi ne transformation.
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Proof. We assume throughout that ` = −∞. This is without loss of generality, since
for ` = 0, we can apply the result for ` = −∞ to the utility functions

U∗ (z) =
∑

n
Un (ezn) and Ũ∗ (z) =

∑
n
Ũn (ezn) .

Clearly, two additive utilities related by a positive affi ne transformation are ordinally

equivalent. To show the converse, consider any ordinally equivalent additive utilities U and

Ũ on RN that satisfy

Un (0) = Ũn (0) = 0, n = 1, 2, . . . , N, and U1 (1) = Ũ1 (1) = 1. (3)

We will show that Ũn = Un for all n ∈ {1, . . . , N} . This proves the claim, since any additive
utility on RN can be made to satisfy normalization (3) after a positive affi ne transformation.

Let us fix arbitrary n ∈ {2, . . . , N} , L ∈ (−∞, 0) and scalar ∆ such that L + ∆ > 1.

We will show that

U1 (x) = Ũ1 (x) and Un (x) = Ũn (x) for all x ∈ [L,L+ ∆] . (4)

Since every x ∈ R is in an interval of the form [L,L+ ∆] ⊃ [0, 1], this argument proves

Ũn = Un.

Define the functions f, g : [0, 1]→ R by

f (z) =
U1 (L+ z∆)− U1 (L)

U1 (L+ ∆)− U1 (L)
, g (z) =

Un (L+ z∆)− Un (L)

U1 (L+ ∆)− U1 (L)
. (5)

Define also f̃ and g̃ by putting a tilde over f, g and every instance of U in the above display.

Applying Lemma 5 bellow, we conclude that (f, g) = (f̃ , g̃), from which (4) follows easily,

using the normalizations (3) .

Lemma 5 Suppose the functions f, g, f̃ , g̃ : [0, 1]→ R are increasing and continuous, and
they satisfy

f (0) = g (0) = f̃ (0) = g̃ (0) = 0 and f (1) = f̃ (1) = 1, (6)

Suppose also that for all x, y, z, w ∈ [0, 1] ,

f (x) + g (y) = f (z) + g (w) ⇐⇒ f̃ (x) + g̃ (y) = f̃ (z) + g̃ (w) . (7)

Then (f, g) = (f̃ , g̃).
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Proof. LetN be any positive integer such that 2−N < g (1) .Given any n ∈ {N,N + 1, . . . } ,
define the points xnk ∈ [0, 1] and yn ∈ (0, g (1)) by

f (xnk) = k2−n, k = 0, 1, . . . , 2n, and g (yn) = 2−n. (8)

Note that xn0 = 0 and xn2n = 1. Since g (0) = 0, we have

f (xnk) + g (0) = f
(
xnk−1

)
+ g (yn) , k = 1, . . . , 2n.

By assumption (7), it is also true that

f̃ (xnk) + g̃ (0) = f̃
(
xnk−1

)
+ g̃ (yn) , k = 1, . . . , 2n. (9)

Since g̃ (0) = f̃ (0) = 0, it follows that

1 = f̃ (1) =
∑2n

k=1
f̃ (xnk)− f̃

(
xnk−1

)
= 2ng̃ (yn) .

This proves that g̃ (yn) = 2−n, which together with (9) shows that f̃ (xnk) = k2−n for k > 0.

Comparing this conclusion to (8) , we have proved that the functions f−1 and f̃−1 are equal

on the set Dn = {k2−n : k = 0, . . . , 2n}, for every n ≥ N. Since the set
⋃
n≥N Dn is dense

in [0, 1] and the functions f−1 and f̃−1 are continuous, it follows that f−1 = f̃−1, and

therefore f = f̃ .

Let us now apply the same argument with the functions (F,G, F̃ , G̃) in place of (f, g, f̃ , g̃),

where

F (z) =
g (z)

g (1)
, F̃ (z) =

g̃ (z)

g̃ (1)
, G (z) =

f (z)

g (1)
, G̃ (z) =

f̃ (z)

g̃ (1)
.

The conclusion F = F̃ implies that g = ag̃ for some positive scalar a. Choose any ε, δ > 0

such that f (ε) = g (δ) , and therefore f (ε) + g (0) = f (0) + g (δ) (by 6). By (7), it must

also be the case that f̃ (ε) = g̃ (δ) . Since f = f̃ and g̃ = ag, this shows that a = 1 and

therefore g = g̃, completing the proof.

4 Cauchy’s Functional Equation

This section is based on Aczél (2006), who provides further historical context. The section’s

objective is to prove Lemma 7, which is key for the characterization of scale/translation-

invariant additive preferences in the following sections. The lemma solves a functional

equation by reducing it to the so-called Cauchy functional equation, stated as equation (10)

below.
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Lemma 6 Suppose that the function f : R→ R satisfies

f (x+ y) = f (x) + f (y) for all x, y ∈ R, (10)

and there exists some nonempty open interval on which f is bounded. Then f (x) = f (1)x

for all x ∈ R.

Proof. We are to prove that the function δ (x) = f (x) − f (1)x, x ∈ R, vanishes on
the entire real line. Note that δ (1) = 0 and δ (x+ y) = δ (x) + δ (y) for every x, y ∈ R.
Iterating the last equation, we have 0 = δ (1) =

∑n
i=1 δ (1/n) , and therefore δ (1/n) = 0

for every positive integer n. Similarly, for positive integers m and n, we have δ (m/n) =∑m
i=1 δ (1/n) = 0. Therefore, δ vanishes on the set of positive rational numbers. Since

δ (0 + 0) = δ (0) + δ (0) , it also vanishes at zero, and since δ (0) = δ (r) + δ (−r) , it also
vanishes on the set of negative rationals. In short, δ (r) = 0 for every rational r. The

function δ inherits from f the property that it is bounded on some nonempty open interval

(a, b) . Given any x ∈ R, we can find a rational r such that x + r ∈ (a, b) , and since

δ (x) = δ (x+ r) , it follows that δ is bounded on the entire real line. Finally, for any real

x, the set of all δ (nx) = nδ (x) as n ranges over the positives integers remains bounded

only if δ (x) = 0.

Lemma 7 Suppose that the functions f, g, h : R→ R satisfy

f (x+ y) = f (x) g (y) + h (y) for all x, y ∈ R, (11)

and f is increasing. Then there exist constants α ∈ (0,∞) and β, γ ∈ R such that either

f (x) = αx+ β and g (x) = 1, (12)

or

f (x) = α
e(1−γ)x

1− γ + β and g (x) = e(1−γ)x, with γ 6= 1.

Proof. Letting x = 0 in equation (11) , we have f (y) = f (0) g (y) + h (y) for every

y ∈ R. Subtracting the last equation from equation (11) results in

f (x+ y)− f (y) = (f (x)− f (0)) g (y) , x, y ∈ R. (13)

Let the function φ : R→ R be defined by φ (x) = f (x)− f (0) , x ∈ R. Then φ (0) = 0 and

φ (x+ y)− φ (y) = φ (x) g (y) , x, y ∈ R. (14)
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The same equation with the variable names interchanged is

φ (x+ y)− φ (x) = φ (y) g (x) , x, y ∈ R.

Subtracting the second last equation from the last one and rearranging, we obtain

φ (x) (g (y)− 1) = φ (y) (g (x)− 1) , x, y ∈ R.

If g (x) = 1 for all x ∈ R, then equation (14) and Lemma 6 imply (12) . Suppose instead

that g (z) 6= 1 for some z. The last displayed equation implies

φ (x) = A (g (x)− 1) , x ∈ R, (15)

where A = φ (z) / (g (z)− 1) . Since f is assumed increasing, it must be that A 6= 0.

Substituting expression (15) for φ into equation (14) and simplifying, we find that A cancels

out and

g (x+ y) = g (x) g (y) , x, y ∈ R.

Note that log g satisfies the Cauchy equation of Lemma 6. Equation (13) implies that

g (y) =
f (1 + y)− f (y)

f (1)− f (0)
, y ∈ R.

Therefore g is the difference of two increasing functions, which is necessarily bounded on

some open interval. By Lemma 6, we can write log g (x) = (1− γ)x for some scalar γ 6= 1

(where the last inequality follows from the fact that we are analyzing the case in which g

is not identically equal to one). Equation (15) therefore becomes

f (x)− f (0) = Ae(1−γ)x −A, x ∈ R.

Letting α = (1− γ)A and β = f (0)−A, we obtain

f (x) = α
e(1−γ)x

1− γ + β.

Note that f ′ (x) = αe(1−γ)x > 0, since f is increasing. Therefore, α > 0.

5 Scale-Invariant Additive Utility

We are now ready to show that additivity coupled with scale invariance implies a unique

power-or-logarithmic expected utility functional form. We assume that ` = 0 and define

the relation � to be scale invariant if x � y is equivalent to sx � sy for all x, y ∈ (0,∞)N

and s ∈ (0,∞) .
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Theorem 8 Suppose the relation � on (0,∞)N admits an additive utility representation

(Definition 1). Then � is scale invariant if and only if it admits a utility representation
of the form

U (x) =
∑N

n=1
wn

x1−γn − 1

1− γ , x ∈ (0,∞)N , (16)

for unique parameters γ ∈ R and w1, . . . , wN ∈ (0, 1) such that
∑

nwn = 1. The convention

for γ = 1 is that
(
x1−γ − 1

)
/ (1− γ) is equal to log x, which is the limit as γ → 1.

Proof. The “if” part is immediate. Conversely, suppose that � is scale invariant

and let U be an additive utility representing � . For any s ∈ (0,∞) , the scale invariance

of � implies that U (sz) as a function of z ∈ (0,∞)N defines another additive utility

representation of � . By Theorem 4, there exist functions a : (0,∞) → (0,∞) and b :

(0,∞)→ RN such that

Un (sz) = Un (z) a (s) + bn (s) , s, z ∈ (0,∞) , n = 1, . . . , N. (17)

Let us also define the functions fn, g, hn : R→ R by

fn (x) = Un (ex) , g (x) = a (ex) and kn (x) = bn (ex) .

We can then restate restriction (17) as

fn (x+ y) = fn (x) g (y) + hn (y) , x, y ∈ R, n = 1, . . . , N. (18)

Note that each fn is increasing, and g does not depend on the index n. By Lemma 7, there

exist constants αn ∈ (0,∞) and βn, γ ∈ R such that either

fn (x) = αnx+ βn and g (x) = 1,

or

fn (x) = αn
e(1−γ)x

1− γ + βn and g (x) = e(1−γ)x, with γ 6= 1.

(The fact that g does not depend on n implies that γ also does not depend on n.) The

preceding conditions on the fn can be summarized as

Un (z) = αn
x1−γn − 1

1− γ + βn, (= αn log xn + βn if γ = 1) .

After a positive affi ne transformation of the Un, we can set αn = wn, where
∑

nwn = 1, and

βn = 0. Since an additive representation is unique up to a positive affi ne transformation,

it follows that the wn and γ ∈ R of the preceding argument are also unique.
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6 Translation-Invariant Additive Utility

In what is essentially a transformed version of last section’s result, we show that additivity

coupled with translation invariance results in a unique exponential functional form. Let

1 = (1, 1, . . . , 1) . We assume that ` = −∞ and define the relation � to be translation
invariant if x � y is equivalent to x+ t1 � y + t1 for all x, y ∈ RN and t ∈ R.

Theorem 9 Suppose the relation � on RN admits an additive utility representation (De-

finition 1). Then � is translation invariant if and only if it admits a utility representation
of the form

U (x) =
∑N

n=1
wn

1− exp (−αxn)

α
, x ∈ RN , (19)

for unique parameters α ∈ R and w1, . . . , wN ∈ (0, 1) such that
∑

nwn = 1. The convention

for α = 0 is that (1− exp (−αx)) /α is equal to x, which is the limit as α→ 0.

Proof. Using the notation log x = (log x1, . . . , log xN ) , define the preference �log on
(0,∞)N by letting

x �log y ⇐⇒ log x � log y.

Note that � is translation invariant if and only if �log is scale invariant. The theorem’s
proof is now easily completed by applying Theorem 8 to �log .
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