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1. INTRODUCTION

This paper develops the utility gradient, or martingale, approach for
solving optimal consumption-portfolio selection problems in continuous-
time complete markets with Brownian information and stochastic differential
utility (SDU). SDU was introduced by Duffie and Epstein [12] as a
continuous time limit of the type of recursive utility studied by Kreps and
Porteus [35], Epstein and Zin [24], and many others.

The importance and structure of preferences that are not necessarily
temporally additive have been studied extensively in a literature surveyed
by Epstein [23]. It is, for example, well known that utility additivity with
respect to time and states of nature is overly restrictive in expressing
reasonable notions of risk aversion in temporal settings. (The introduction
of Duffie and Epstein [12] gives a suggestive example.) As Epstein [23]
explains in his survey, under additive temporal preferences notions of
intertemporal substitution and risk aversion are inflexibly linked to each
other. SDU, while nesting the time-additive case, is more flexible in this
regard, capturing the notion that one's present sense of well-being can
depend on one's expected future utility levels in a not necessarily risk-
neutral manner. This effect is also related to attitudes toward the timing of
resolution of uncertainty, as discussed, among others, by Kreps and
Porteus [35], Chew and Epstein [3, 4], and Skiadas [47], the last
reference covering the case of SDU.

The paper's approach generalizes the Karatzas et al. [31], and Cox and
Huang [5, 6] treatments2 of Merton's [40] optimal portfolio selection
problem with additive utilities (textbook accounts of which are given by
Merton [41], Duffie [11], and Karatzas and Shreve [33]). The basic idea
is to utilize market completeness to separate the computation of an optimal
consumption plan and that of a corresponding trading strategy. The
optimal consumption is obtained by solving the first-order conditions,
essentially stating that the agent's marginal utility process at the optimum
is proportional to an Arrow�Debreu state price density process. A corre-
sponding financing trading strategy can then be constructed using Merton's
standard replication arguments (developed in the context of the Black�
Scholes theory of option pricing). Duffie and Skiadas [20] showed that
this approach remains valid quite generally, even with non-additive
preferences, provided that a marginal utility process is well defined as
the Riesz representation of the (infinite-dimensional) utility gradient at the
optimum. Moreover, they obtained closed-form expressions for marginal
utilities in this sense for various types of temporally dependent preferences
used in practice, including SDU. Even earlier, Duffie and Epstein [12]
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used dynamic programming methods to compute the form of Arrow�
Debreu prices under SDU in a more special Markovian setting under
Brownian information. The Duffie�Epstein�Skiadas papers, however, are
oriented toward obtaining equilibrium pricing formulas and do not in fact
solve the first-order conditions for the optimal consumption plan.

With additive utilities, the solution of the first-order conditions amounts
to a straightforward inversion of the marginal utility at each state�time
separately. With SDU, the solution of the first-order conditions involves
the solution of a system of so-called forward�backward stochastic differential
equations (FBSDEs), a fixed-point problem involving the complete infor-
mation filtration at once. The mathematical theory of FBSDEs is fairly
recent, and a satisfactorily general existence theory is missing at the
moment. Ma et al. [39] have developed a useful scheme for solving
FBSDEs in Markovian settings with Brownian information via the
solution of quasilinear partial differential equations (PDEs). A first
contribution of this paper is to import the methodology of Ma et al. to the
problem of optimal portfolio selection in a Markovian setting with
Brownian information. The result is a remarkably simple solution proce-
dure that complements the more traditional dynamic programming
approach and in fact results in a numerically more tractable PDE form
than that associated with the Bellman equation. A similar approach applies
with other temporally dependent utility forms whose gradients are com-
puted by Duffie and Skiadas [20]. In order to keep this paper focused and
of manageable size, we will restrict our analysis to the SDU case. Schroder
and Skiadas [46] present extensions that include habit formation.

In addition to providing a general solution method, we will apply this
approach to a parametric class of homothetic SDU that was introduced
by Duffie and Epstein [12, 13] as a continuous-time limit of the CES
Kreps�Porteus specification studied by Epstein and Zin [24] and by Weil
[51]. Without Markovian assumptions, we will show that the first-order
conditions simplify significantly in this case, resulting in closed-form
expressions in terms of the solution to a single backward SDE. The latter
becomes trivial under a deterministic investment opportunity set, while in
more general Markovian settings the solution of this backward SDE
reduces to the solution of a numerically tractable PDE. Analytic solutions
will be derived for examples involving a stochastic investment opportunity
set. A difficulty with this parametric SDU class is that both the utility
specification and the associated first-order conditions involve backward
SDEs that violate the usual Lipschitz growth assumptions of available
existence results by Pardoux and Peng [43] and Duffie and Epstein [12].
Instead, we will prove existence, uniqueness, and basic properties from first
principles using monotonicity arguments. Another difficulty is that most of
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the technical restrictions required by the results of Ma et al. [39] and
Duffie and Skiadas [20] are also violated in this context. Again, we will
provide the requisite special arguments that prove optimality of the
proposed solutions.

For some of the utility parameter ranges we consider, Svensson [49]
and Obstfeld [42] have provided heuristic derivations of the solutions for
the special case of a constant (deterministic) investment opportunity set.
They have not addressed, however, the issues of utility function existence
and optimality verification. Fisher and Gilles [25] have also worked, con-
currently with this paper3, on a parametric homothetic case in an infinite
horizon setting with a stochastic investment opportunity set. While their
examples can be viewed as infinite horizon limits of examples we analyze
in this paper, the two papers have different objectives. Fisher and Gilles
manipulate the utility forms and first-order conditions heuristically and
proceed quickly to numerical solutions of PDEs. In contrast, the present
paper contains no numerical examples, but instead concentrates on the
theoretical development, which, as noted above, includes the requisite
backward SDE theory and optimality verification arguments.

Discrete time versions of some of our homothetic examples have been
analyzed by Giovannini and Weil [29] and Campbell and Viceira [2]. The
former concentrate on special cases resulting in myopic portfolios or con-
sumption plans, and the latter use an approximate log-linearization of the
budget constraint. Some special cases involving additive utility and specific
parameterizations of price dynamics are closely related to those of Kim and
Omberg [34], Liu [37], and Wachter [50] (the latter two were written
concurrent with and independent of the present paper.) Finally, this paper
is related to several other papers that discuss the use of FBSDEs in
different contexts of finance theory, including Cvitanic� [7]; Cvitanic� and
Ma [8]; Duffie et al. [14, 17, 18, 19]; and El Karoui et al. [22]. The last
reference also discusses a dual characterization of SDU, introduced by
Geoffard [28] (for the deterministic case) and used by Dumas et al. [21]
in their study of efficient allocations with SDU.

The remainder of this paper is organized into six sections and three
appendixes. Section 2 gives an abstract formulation of the problem,
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presenting the first-order conditions of optimality in terms of Arrow�Debreu
prices and the Riesz representation of the utility gradient. Section 3 shows
how the general analysis applies with SDU and outlines a computational
approach in Markovian settings. Section 4 introduces a parametric class of
homothetic SDU, develops their basic properties, and presents optimal
consumption and portfolio rules in closed form for several special cases.
The general solution method for this SDU class is discussed in Section 5,
followed in Section 6 by several examples with a stochastic investment
opportunity set. Section 7 concludes with an outline of how to incorporate
a bequest function in the analysis and a parametric example. The
appendixes contain proofs, and they develop some requisite mathematical
theory.

2. ABSTRACT FORMULATION

We begin with a probability space (0, F, P) supporting a n-dimensional
standard Brownian motion, B, over the finite time horizon [0, T]. All
stochastic processes introduced in this paper will be assumed progressively
measurable with respect to the augmented filtration [Ft : t # [0, T]]
generated by B. We also assume that F=FT . The conditional expectation
operator E[ } | Ft] will be abbreviated to Et throughout.

We let D denote the Hilbert space containing any progressively
measurable process of the form x : 0_[0, T] � R satisfying E(�T

0 x2
t dt)

<�. The inner product of D is defined by (x, y) =E(�T
0 xt yt dt). As

usual, we identify any x, y # D such that (x& y, x& y) =0. The space of
all processes is partially ordered by letting x�(>) y denote the condition:
x(|, t)�(>) y(|, t) for almost every (|, t). The positive cone of
D is D+=[x # D : x�0], and the strictly positive cone is D++=
[x # D : x>0]. For mathematical background material we refer to Karatzas
and Shreve [32].

2.1. Optimality in an Arrow�Debreu Market

We take as primitive a consumption space C, assumed throughout to
satisfy:

C1. C is a cone that is a subset of D+ and has the property that for
every bounded h # D+ and c # C, c+h # C.

For example, we can take C=D+, but in our main application we will
need to impose additional integrability conditions on elements of C. A
consumption process, c, is any element of C, with ct representing a time t
consumption rate in terms of a single numeraire good. For simplicity of
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exposition, we do not allow terminal consumption, although our analysis
extends in a straightforward manner to include it, as outlined in the
concluding section.

We will consider an agent with initial wealth w>0 that maximizes a
utility function V0 : C � R by trading in a complete securities market (that
is, a market in which every consumption plan can be financed given
sufficient initial wealth).

Given c # C, we let F(c) denote the set of feasible directions at c, that is,
the set of any h # D such that c+:h # C for all sufficiently small positive :.
The Gateaux derivative of V0 at c is defined by

{V0(c; h)=lim
: a 0

V0(c+:h)&V0(c)
:

, h # F(c).

This derivative is closely related to a function m : C � D, which we take
as given throughout the paper, and, for SDU, will be given in closed form.
We will use m through one of two conditions. The first condition, satisfied
under general assumptions on the utility form (see Duffie and Skiadas
[20]), but not always, is

C2. For every c # C, {V0(c; h)=(m(c), h) for all h # F(c).

In particular, C2 implies that, for every c, the Gateaux derivative of V0

at c exists and is linear. Under these conditions, {V0(c, } ) is called the
utility gradient of V0 at c, with Riesz representation m.

In some applications, condition C2 is unnecessarily strong for the pur-
pose of confirming optimality of a given consumption plan, and we will
instead use the following inequalities, where ĉ # C is some candidate
optimal consumption plan:

C2$. For all c # C, V0(c)�V0(ĉ)+(m(ĉ), c&ĉ) .

In complete markets, the determination of an optimal consumption plan
depends only on preferences, endowments, and Arrow�Debreu state prices,
while the corresponding financing strategy can be derived using standard
replication arguments. An Arrow�Debreu state price density is any strictly
positive process, ? # D++, such that capital plus dividend gains from trade
deflated by ? form a martingale. Bypassing, for now, the familiar derivation
of state price dynamics from price dynamics, we take as primitive a
(normalized) state price density process, ?, with dynamics

&
d?t

?t
=rt dt+'$t dBt , ?0=1,
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where �T
0 |rt |+'$t't dt<� a.s. The process r is the short-rate process, and

' is the market-price-of-risk process.4

The consumption process ĉ is defined to be optimal if

ĉ # arg max[V0(c) : (?, c)�w, c # C].

2.2. First-Order Conditions

Given C2, the first-order conditions for optimality of c # C take the
familiar form

mt(c)=*?t on [ct>0] for a.e. t # [0, T],

mt(c)�*?t on [ct=0] for a.e. t # [0, T], (1)

(?, c)�w, *(w&(?, c) )=0, * # R+.

The specification ``on'' some event in (1), and throughout the paper, should
be interpreted in the almost sure sense.

Proposition 1. (a) Suppose that conditions C1 and C2 hold. Then (1)
holds for every optimal c # C. (b) Suppose that conditions C1 and C2$ hold,
for some ĉ # C. If (1) is satisfied with c=ĉ, then ĉ is optimal. (c) If V0 is con-
cave and continuous and C is convex and closed, then an optimal consumption
process exists.

Proof. (a) Consider the following first-order conditions for optimality
of c # C:

{V0(c; h)&*(?, h)�0, h # F(c),

(?, c)�w, *(w&(?, c) )=0, * # R+.

By the generalized Kuhn�Tucker theorem, these conditions are necessary
for optimality of c. For example, Theorem 1 of Section 9.4 of Luenberger
[38] can be used, with only a straightforward modification of the proof to
account for the fact that the underlying space is a positive cone, and not
a linear space. Given C1 and the utility gradient Riesz representation, m,
the above conditions imply that for all bounded h # D+, (m(c)&*?, h)
�0, and therefore mt(c)�*?t a.s. for almost every t. Since we also have
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(m(c)&*?, :c) �0 for :> &1, mt(c)=*?t on [ct>0] for almost every t.
This proves part (a).

(b) If (1) holds with c=ĉ, then (m(ĉ), c&ĉ) �0 for any budget
feasible c # C, and the result follows from the gradient inequality of
condition C2$.

(c) If V0 is concave and norm-continuous, it is weakly upper-semi-
continuous. By Alaoglu's theorem, and since for convex sets strong closure
is the same as weak closure, the budget feasible set is weakly compact. The
maximum is therefore achieved. K

2.3. Securities Market

The above discussion is all in the setting of an Arrow�Debreu market.
The implementation of the optimal consumption plan by trading in a
securities market is well understood. In order to fix notation in discussing
applications later on, we now outline a simple securities market that
implements the above Arrow�Debreu market. More general formulations
and details can be found in the expositions of Duffie [11] and Karatzas
and Shreve [33].

In addition to short-term default-free borrowing and lending at a rate
given by the process r, there are n risky securities (one for each component
of the Brownian motion B). The risky asset instantaneous excess returns
(relative to r) are represented by the n-dimensional Ito process Rt=
[R1

t , ..., Rn
t ]$, with decomposition

dRt=+R
t dt+_R

t dBt ,

where +R and _R are progressively measurable processes valued in Rn and
Rn_n, respectively, and satisfy �T

0 |+R
t |+_R

t (_R
t )$ dt<� a.s. We assume that

_R
t is invertible almost everywhere, and 't=(_R

t )&1 +R
t .

A trading strategy is any progressively measurable process, �, valued in
Rn, such that � t

0 |�$s +R
s |+�$s_R

s (_R
s )$ �s ds<� a.s. for all t<T. We inter-

pret � i
t as the time t proportion of wealth invested in security i # [1, ..., n],

the remaining wealth being invested at the short rate r. Given any initial
wealth w, consumption plan c, and trading strategy �, the corresponding
wealth process W w, c, � is defined by the budget equation:

dW w, c, �
t =W w, c, �

t (�$t dRt+rt dt)&ct dt, t<T, W w, c, �
0 =w.

We say that � finances c given initial wealth w if W w, c, �
t �0 a.s. for all t<T.

For every consumption plan c, we define the process

Wt(c)=
1
?t

Et _|
T

t
?scs ds& .
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Recalling the normalization ?0=1, we have W0(c)=(?, c) . It can be
shown (see, for example, Karatzas and Shreve [33]) that for every con-
sumption plan c, there exists a trading strategy � that finances c given
initial wealth w=(?, c) , such that W(c)=W w, c, �. This trading strategy
can be calculated in terms of the wealth dynamics dWt(c)�Wt(c)=
+W(c)

t dt+_W(c)
t dBt , by matching the diffusion term with that of the budget

equation, to obtain �=(_R$
t )&1 _W(c)$

t . Conversely, if c can be financed
given some initial wealth w, then (?, c)�w. These familiar results imply
that the problem of determining an optimal trading strategy given initial
wealth w reduces to the optimal consumption problem of Section 2.1.

3. SOLUTION METHOD WITH STOCHASTIC DIFFERENTIAL
UTILITY

The general approach of the last section is further developed in this
section for the special case of stochastic differential utility.

3.1. Stochastic Differential Utility
Stochastic differential utility is defined in terms of a function f : [0, T]_

R+_R � R, called the intertemporal aggregator. We refer to the three
arguments of f as the time, consumption, and utility argument, respectively,
and we write fc and fv for the partial derivatives of f with respect to the
consumption and utility arguments, respectively. To every c # C we assign
a utility process, V(c), that satisfies

Vt(c)=Et _|
T

t
f (s, cs , Vs(c)) ds& , t # [0, T]. (2)

The following condition will be assumed throughout:

C3. There exists V�D such that, for every c # C, a unique V(c) # V

satisfies (2). The utility function V0 : C � R is defined by the initial values
of V(c) # V, c # C, and the function m : C � D (appearing in C2 or C2$) is
given by

mt(c)=exp \|
t

0
fv(s, cs , Vs(c)) ds+ fc(t, ct , Vt(c)). (3)

The combined results of Duffie and Epstein [12] and Duffie and Skiadas
[20] show that conditions C2 and C3 (with C=D+ and V=D) hold if
f satisfies certain continuity-Lipschitz-growth type conditions.5 Moreover,
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under the same restrictions on f, V0 is continuous, V0 is increasing if f is
increasing in its consumption argument, and V0 is concave if f is concave
jointly in its consumption and utility arguments.

Unfortunately, the conditions on f imposed by the Duffie�Epstein�
Skiadas results are violated in the parametric cases discussed later in this
paper. We will therefore present the general solution method by directly
assuming the validity of conditions C1, C2 or C2$, and C3, as well as the
following restriction on f whose purpose is to simplify the first-order
conditions for optimality:

C4. For all t # [0, T], c # R+, and v # R, fc(t, c, v)>0 and
limx � � fc(t, x, v)=0.

In applications, the above conditions will be verified on a case-by-case
basis.

For the case of a concave intertemporal aggregator, the following result
provides a direct justification for the expression (3) and an easy way of
confirming C2$, and hence the sufficiency of the first-order conditions for
optimality.

Lemma 1. Suppose that condition C3 is satisfied, f (t, } , } ) is concave
( jointly in consumption and utility) for all t # [0, T], and for some ĉ # C,

E _|
T

0
(max[ fv(t, ĉt , Vt(ĉ)), 0])2 dt&<�.

Then condition C2$ is satisfied (with m defined in Eq. (3)).

Lemma 1 implies in particular that V0 is concave if f is concave jointly
in its consumption and utility arguments, provided that the assumed
integrability condition holds for any ĉ # C. This conclusion generalizes
Proposition 5 of Duffie and Epstein [12] by allowing fv to be unbounded.
Later we will encounter applications in which V0 is concave, but f is not
jointly concave in consumption and utility.

3.2. First Order Conditions

Let the function I : [0, T]_R2 � R+ be defined by

I(t, x, v)=0, if ex� fc(t, 0, v);

fc(t, I(t, x, v), v)=ex, if ex< fc(t, 0, v).
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Assuming that V0 is strictly increasing (a consequence of C2 and C4), the
first-order conditions under SDU are equivalent to the system

Xt=log(*)&|
t

0 \fv(s, I(s, Xs , Vs), Vs)+rs+
1
2 '$s's+ ds

&|
t

0
'$s dBs , (4a)

Vt=Et _|
T

t
f (s, I(s, Xs , Vs), Vs) ds& , (4b)

E _|
T

0
?t I(t, Xt , Vt) dt&=w, * # R++. (4c)

Proposition 2. Given C1, C2, C3, and C4, every optimal consumption
process c # C takes the form ct=I(t, Xt , Vt), t # [0, T], where (X, V, *) #
D_V_R++ is a solution to (4). Conversely, if conditions C1, C2$, C3, and
C4 hold for a given ĉ # C of this form, then ĉ is optimal.

Proof. Defining Xt(*, c)=log(*?t)&�t
0 fv(s, cs , Vs(c)) ds, the first-order

conditions, under our assumptions, can be written as ct=I(t, Xt(*, c), Vt(c))
and (?, c) =w. The result is an easy consequence of this observation and
Proposition 1. K

The system of equations (4a), (4b) is a forward�backward stochastic
differential equation (FBSDE) system, X being the forward component,
and V being the backward component. General existence-uniqueness
results for this type of equations that do not rely on additional Markovian
structure and PDE techniques are lacking. Antonelli [1] presents
some related results under conditions that are likely to be violated in
this context. Antonelli's examples illustrate what can go wrong if his
assumptions are relaxed. In our context, Proposition 1(c) shows that a
solution to (4) is guaranteed if V0 is continuous and concave, and C is
closed and convex.

3.3. Computational Approach

Computationally, system (4) can be approached by the methodology of
Ma et al. [39], as we now show. A Markovian structure is required for this
purpose. We therefore assume that the following condition holds
throughout this subsection:
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C5. (a) The functions +Y : [0, T]_Rm � Rm, and _Y : [0, T]_
Rm � Rn are such that the following SDE has a unique (strong) solution,
Y, valued in Rm:

Yt=Y0+|
t

0
+Y (s, Ys) ds+|

t

0
_Y(s, Ys) dBs .

(b) For some (measurable) functions r : [0, T]_Rm � R and
' : [0, T]_Rm � Rn, rt=r(t, Yt) and 't='(t, Yt).

In part (b) we use r and ' to represent both the stochastic processes and
the corresponding functions of the underlying Markov state. The meaning
will always be clear from the context. Restrictions on +Y and _Y that
guarantee C5(a) are well known and can be found, for example, in Karatzas
and Shreve [32]. In the case in which r and ' are deterministic processes,
the process Y should be taken to be the empty function.

The key idea is that in a solution of (4), Vt should be a function of
(Xt , Yt), for every t. So let us hypothesize the existence of a function
g : [0, T]_Rm+1 � R such that Vt= g(t, Xt , Yt) for all t. The dynamics of
X become

Xt=log(*)+|
t

0
\(s, Xs , Ys , g(s, Xs , Ys)) ds&|

t

0
'(s, Ys)$ dBs , (5a)

where the function \ is defined by

\(t, x, y, v)=&fv(t, I(t, x, v), v)&r(t, y)& 1
2'(t, y)$ '(t, y). (5b)

Applying Ito's lemma, we are led naturally to the following quasilinear
PDE for g (where the arguments of g and its derivatives are omitted):

& f (t, I(t, x, g), g)= gx \(t, x, y, g)+ gy+Y (t, y)+ gt& g$xy_Y (t, y) '(t, y)

+ 1
2 gxx'(t, y)$ '(t, y)

(6)
+ 1

2 tr(gyy_Y (t, y) _Y (t, y)$),

g(T, } , } )=0.

Notice that the above PDE does not involve the Lagrange multiplier *.

Proposition 3. Suppose that C5 holds, g solves PDE (6), and

E _\|
T

0
&gx(t, Xt , Yt) '$t(t, Yt)& gy(t, Xt , Yt) _Y (t, Yt)&2 dt+

1�2

&<�.

(7)
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For any *>0, if X solves SDE (5), and Vt= g(t, Xt , Yt), then (X, V ) solves
the FBSDE system (4a), (4b).

Proof. The result is an immediate consequence of Ito's lemma,
condition (7) ensuring that the local martingale part of the expansion is a
martingale. K

A numerical implementation of this approach to solving the FBSDE
system (4a), (4b) can be based on the procedure of Douglas et al. [10].

Propositions 2 and 3 imply that if we can find a function g that solves
(6) and satisfies (7), then the agent's problem reduces to the simple task of
finding a value for * that makes the budget constraint tight. Given the
Markovian specification of optimal consumption, it is a standard exercise
to find a corresponding financing trading strategy in short-term borrowing
or lending and m+1 funds, each one of which is chosen to be instan-
taneously perfectly correlated with X or a component of Y.

The results of Ma et al. [39] show that the following restrictions are suf-
ficient for the existence of a solution to (6) that satisfies (7) (in particular
implying that gx and gy are bounded):

(a) There exists =>0 such that, for all (t, y) # [0, T]_Rm, the
smallest eigenvalue of ['(t, y), _Y (t, y)$]$ ['(t, y), _Y (t, y)$] is at least =.

(b) The functions '(t, y), +Y (t, y), _Y (t, y), and f (t, I(t, x, 0), 0) are
all bounded, and |\(t, x, y, v)|�,( |v| ) for all x, y, v and t, for some
function ,.

In the case of deterministic r and ', the conditions simplify further to (a)
' is bounded away from zero, and (b) the function f (t, I(t, x, 0), 0) is
bounded, and |\(t, x, v)|�,( |v| ) for all x, v, and t, for some function ,. All
of these conditions are far from necessary for Proposition 3 to apply,
however. In fact, in the remainder of this paper we will discuss exclusively
problems that violate the above conditions.

4. A CLASS OF HOMOTHETIC SDU

This section analyzes a parametric homothetic SDU specification, for
which the solution method of the last section simplifies significantly. The
main results are existence and basic properties of the utility function and
the sufficiency of the first-order conditions for optimality. The section con-
cludes with expressions for optimal consumption plans and portfolios in
some simple special cases. The general solution of the agent's problem for
this SDU class is the topic of the following section.
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4.1. Utility Specification

We begin by restricting the space of consumption processes:6

C={c # D++ : E \|
T

0
c l

t dt+<� for all l # R= . (8a)

The intertemporal aggregator we consider takes one of the forms

f (c, v)={(1+:)((c#�#) |v| :�(1+:)&;v),
(1+:v)[log(c)&(;�:) log(1+:v)],

if #{0,
if #=0,

(8b)

with parameter restrictions:7

;�0 and {:>&1, and #<min[1, (1+:)&1],
:�;,

if #{0,
if #=0.

(8c)

We have omitted the time argument of f, since f is time-independent in this
formulation. The consumption argument, c, is restricted to be strictly positive,
and for #=0, the utility argument, v, is restricted to be greater than &1�:. For
:=#=0 we interpret (8b) by taking a limit, that is, f (c, v)=log(c)&;v.

Ordinally equivalent utility processes are defined by

V 1�(1+:)
t , if #>0;

V� t={&|Vt|
1�(1+:), if #<0; (9)

:&1 log(1+:Vt), if #=0.

The backward SDE satisfied by this version of the utility takes the more
intuitive form (omitting the argument of V� =V� (c))

V� t={
Et _|

T

t
e&;(s&t)\(c#

s �#) ds+(:�2) V� &1
s d[V� ]s+& ,

Et _|
T

t
e&;(s&t)\log(cs) ds+(:�2) d[V� ]s+& ,

if #{0,

if #=0,
(10)

where [V� ] denotes the quadratic variation of V� .
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proofs to go through, but have the advantage that they are independent of utility parameters.

7 For #{0, the restriction :> &1 is assumed to keep utility finite near T. This issue can
be easily finessed by introducing a non-zero bequest function (with arbitrarily small weight),
as outlined in Section 7, where we present an interesting example with :=&1. For :< &1
the utility function to be maximized must be defined as U(c)=&V0(c). Concavity and
monotonicity of U (given the second inequality of (8c)) can then be proved as in Theorem 1.



The parameter : clearly has no impact on preferences over the set of
deterministic consumption paths. It is a measure of comparative risk aver-
sion in a sense defined by Duffie and Epstein [12], as well as a measure
of preferences for the timing of resolution of uncertainty in a sense defined
by Skiadas [47] (for a related application, see Duffie et al. [19]). If #>0,
then V� t>0 for all t<T, and a negative : penalizes variability of the utility
process. Therefore, if #>0, risk aversion increases as the value of :
decreases, a negative : indicates preferences for early resolution, and a
positive : indicates preferences for late resolution. The same conclusions
are valid if #=0, although V� need not be uniformly signed in this case.
Finally, if #<0, the role of the sign of : is reversed, because in this case
V� t<0 for all t<T. Therefore, with #<0, risk aversion increases with :,
and a positive (negative) : corresponds to preferences for early (late)
resolution of uncertainty.

4.2. Existence and Basic Properties

The above SDU specification is ordinally equivalent to a parametric
class first studied by Duffie and Epstein [12, 13], who also explain in what
sense the functional form for #=0 is a limiting case (under appropriate
normalization) of the case for #{0. The above SDU can also be obtained
as a continuous-time limit of the CES Kreps�Porteus utility specification
used by Epstein and Zin [24]. Nevertheless, a general proof of existence
and basic properties has been lacking. The aggregator, f, defined in (8)
violates the usual Lipschitz and growth conditions used by Duffie and
Epstein [12] and Pardoux and Peng [43] to prove existence and unique-
ness of the backward SDE underlying the SDU definition. Duffie and Lions
[16] give a PDE characterization of the utility process (for the infinite
horizon case), but their Markovian restrictions on consumption plans are
not appropriate in the current setting, and their parameter restrictions rule
out interesting parameter ranges satisfying (8c). Instead, we will base our
proof of existence and basic properties on our probabilistic results on back-
ward SDEs of Appendix A.

To state the main existence result, we introduce the space

D0=[V # D : E[ess sup
t

|Vt|
l ]<�, for every l>0],

and its strictly positive cone D++
0 =[V # D0 : V>0 almost everywhere].

Throughout our discussion of the utility specification (8), we will assume
that the utility process set V is given as

V={[V : #V # D++
0 ],

[V : 1+:V # D++
0 and (1+:V )&1 # D0],

if #{0;
if #=0.
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Theorem 1. Suppose that C and f are specified by (8). Then recursion
(2) is satisfied by a unique V(c) # V. Moreover, V0 is strictly concave,
increasing, and homothetic.8

Other interesting properties of V0 involve comparative risk aversion and
preferences for the timing of resolution of uncertainty, as briefly discussed
above. The respective formal treatments of Duffie and Epstein [12,
Proposition 6] and Skiadas [47, Appendix A] are based on Lipschitz con-
ditions that are violated here. Given our results in Appendix A, however,
adapting their arguments to the present setting becomes a tractable exercise
that we leave to the interested reader.

A relevant utility property that Theorem 1 does not cover is the existence
and form of the utility gradient. (Once again, the utility gradient computa-
tions of Duffie and Skiadas [20] do not apply in this context.) Due to
integrability issues, condition C2 may not be satisfied for all parameter
values specified in (8c). However, since the unique optimal consumption
plan will later be specified in closed form, all that we need is the verifica-
tion of condition C2$ at the optimum, which is accommodated by the
following result.

Lemma 2. Suppose that C and f are specified by (8). For condition C2$
to hold with m given by Eq. (3), it is sufficient that either :#=0, or :#{0
and E[exp(3 �T&=

0 | fv(ĉt , Vt(ĉ))| ) dt]<� for every = # (0, T ).

The integrability condition of Lemma 2 is required only when both :{0
and #{0, and even then it can be weakened, as indicated in the proof of
Lemma 2. Nevertheless, the above form of the lemma will suffice for
optimality verification in our applications below.

4.3. Optimal Consumption and Portfolios for Some Special Cases

Significant simplifications to the solution of the agent's problem result if
one or more of the following conditions are satisfied:

I. Time-additive utility: :=0.

II. Logarithmic SDU: #=0.

III. Deterministic investment opportunity set: r and ' are deterministic.

For easy reference, we summarize these simplifications in the following
theorem, making use of two auxiliary processes,

kt={;[;&:(1&e&;(T&t))]&1,
(1&#(1+:))&1,

if #=0;
if #{0

(11)
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and

qt=
;

1&#
&

#
1&# \rt+

kt

2
't } 't+ .

The form of the solution below under a deterministic investment oppor-
tunity set has been previously derived by Svensson [49] and Obstfeld [42]
(who, however, did not prove optimality or that the utility is well defined.)
Here, and in the following section, we will make the assumption that r and
' are bounded in order to avoid long technical discussions relating to
integrability issues. Depending on parameters, several of our proofs apply
with weaker restrictions on r and '.

Theorem 2. Suppose that C and f are specified by (8), and r and ' are
bounded.

(a) Suppose that at least one of conditions I and III holds. Then the
optimal consumption plan follows the dynamics

dct

ct
=(rt&qt+kt't } 't) dt+kt '$t dBt .

(b) Suppose that at least one of conditions II and III holds. Then the
optimal consumption to wealth ratio is

ct

Wt(c)
=_|

T

t
exp \&|

s

t
q{ d{+ ds&

&1

.

(c) Suppose that either condition III holds, or conditions I and II hold
(that is, :=#=0), or all three conditions hold. Then the optimal trading
strategy is

�t=kt(_R
t _R$

t )&1 +R
t .

Under the assumptions of part (c) of the theorem, the optimal portfolio
is instantaneously mean�variance efficient, even without additivity. But,
compared to the Merton solution (:=0), less is invested in the risky fund
if there are preferences for early resolution of uncertainty (#:<0, or #=0
and :<0), and more is invested in the risky fund if there are preferences
for late resolution (#:>0, or #=0 and :>0). An interesting observation
is that if #=0, and r and ' are deterministic and constant over time, then,
where Merton's solution involves constant over time portfolio weights, for
:{0, the optimal positions change deterministically over time, approaching
the Merton solution toward the end of the planning horizon, T.
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An example with non-additive SDU in which the optimal portfolio is
instantaneously mean�variance efficient under any state price dynamics is
outlined in Section 7.

5. GENERAL SOLUTION METHOD FOR HOMOTHETIC
SDU CLASS

This section presents a general solution method for the SDU specifica-
tion of Theorem 1 and a stochastic investment opportunity set.

5.1. A Convenient Change of Measure

In discussing cases not covered by Theorem 2, it will be convenient to
express certain backward SDEs in terms of a new probability, P� , defined
as follows. Recalling that k is given by (11), we define the new probability
P� through its density:

Et _dP�
dP&#!t #exp \&

1
2 |

t

0
(1&ks)

2 's } 's ds&|
t

0
(1&ks) '$s dBs+ . (12a)

(Since r and ' are assumed bounded, the right-hand side defines a mar-
tingale and (12a) is therefore consistent.) The expectation operator with
respect to P� will be denoted E� , and the corresponding conditional expecta-
tion given Ft will be denoted E� t . In particular, for any random variable Z,
E� t[Z]=Et[!TZ]�!t . By Girsanov's theorem, the process B� , defined by

B� t=Bt+|
t

0
(1&ks) 's ds, (12b)

is n-dimensional standard Brownian motion under the measure P� .

5.2. The Case of Zero Gamma

Throughout this subsection, we assume that C and f are specified by (8)
with #=0, and therefore kt=;[;&:(1&e&;(T&t))]&1.

In order to solve the first-order conditions, we introduce the auxiliary
processes (J, Z) # Dexp

0 _Dn (where Dexp
0 is defined in Appendix A) as the

unique adapted solution to the backward SDE

dJt=&_(1&kt) \;&rt&
kt

2
't } 't++kt(:&;) Jt+

1
2

Zt } Zt& dt

+Zt dB� t , (13)

JT=0.
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Existence and uniqueness of a solution are guaranteed by Theorem A1 of
Appendix A. Simple solutions are obtained if :=; or if :=0. Lemma A1
implies that

exp(Jt)=E� t _exp \|
T

t
(1&ks) \;&rs&

ks

2
's } 's ds++& , if :=;.

For :=0, the unique solution is the zero solution. The PDE characteriza-
tion of (13) in a Markovian setting is discussed at the end of this section.

Lemma 3. Suppose that C and f are defined by (8) with #=0, and r and
' are bounded. Then, given any *>0, the FBSDE system (4a), (4b) has a
unique solution (X, V ) in D_V. The process X is given by

dXt=&_((;&:) kt&;) Xt+(:&;) Jt&;+rt+
't } 't

2 & dt&'$t dBt ,

with initial value X0=log(*), while V satisfies

1+:Vt=exp(Jt+(1&kt) Xt). (14)

In terms of the solution (X, V ) of Lemma 3, the optimal consumption
plan is given by

ct=I(t, Xt , Vt)=e&Xt(1+:Vt)=exp(Jt&ktXt). (15)

To complete the solution, we need to determine the value of *. Part (b) of
Theorem 2 implies that the optimal consumption-to-wealth ratio is

ct

Wt(c)
=

;
1&e&;(T&t) . (16)

In particular, c0=;w�(1&e&;T ), which together with (15) determines the
value of * (and hence the initial value of X ). Applying Ito's lemma to (15)
gives the dynamics of the optimal consumption plan (without having to
solve for * first):

dct

ct
=+c

t dt+_c
t dBt . (17)

Theorem 3. Suppose that C and f are defined by (8) with #=0, and r
and ' are bounded. Then the dynamics of the (unique) optimal consumption
plan are given by (17), where

+c
t =rt&;+_c

t } 't and _c
t =kt '$t+Zt .
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The optimal consumption rate as a fraction of wealth is given by (16), and
the corresponding optimal trading strategy is

�t=kt(_R
t _R$

t )&1 +R
t +(_R$

t )&1 Zt .

The first term of the optimal trading strategy is the instantaneously
mean-variance efficient strategy of Theorem 2(c). The second term
represents the deviation from mean�variance efficiency due to the presence
of both a stochastic investment opportunity set, and time non-additivity.

5.3. The Case of Non-zero Gamma

Throughout this Section, we assume that C and f are given by (8) with
#{0, and hence kt=k#(1&#(1+:))&1. The analysis is analogous to the
zero gamma case, except that now the optimal consumption to wealth ratio
is typically stochastic.

Applying Theorem A2 (of Appendix A), we uniquely define the
(progressively measurable) processes (J, Z), where #J # D++

0 and �T
0 Zt }

Zt dt<� a.s., as the solution to the backward SDE:

dJt=&_1
#

(1+:)#�(1&#)+
#

1&# \rt&
;
#

+
k
2

't } 't+ Jt+
:k
2

Zt } Zt

Jt & dt

+Zt dB� t , t<T, (18)

JT=JT&=0.

In the additive case, J is given by

Jt=
1
#

E� t _|
T

t
exp \ #

1&# |
s

t \ru&
;
#

+
k
2

'u } 'u+ du+ ds& ,

if :=0. (19)

The PDE characterization of (18) in a Markovian setting is discussed at
the end of this section.

Lemma 4. Suppose that C and f are defined by (8) with #{0, and r and
' are bounded. Then, given any *>0, the FBSDE system (4a), (4b) has a
unique solution (X, V ) in D_V. The process X is given by

dXt=&_:
#

(1+:)#�(1&#) J &1
t &(1+:) ;+rt+

't } 't

2 & dt&'$t dBt ,

with initial value X0=log(*), while V satisfies

Vt=(#�|#| ) |Jt|
1+:k exp((1&k) Xt). (20)
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In terms of (X, V ), the optimal consumption plan is

ct=I(t, Xt , Vt)=(1+:)1�(1&#) exp \&
Xt

1&#+ |Vt|
:k�1+:k

=(1+:)1�(1&#) exp(&kXt) |Jt|
:k. (21)

Ito's lemma then delivers the optimal consumption dynamics.

Theorem 4. Suppose that C and f are defined by (8) with #{0, and r
and ' are bounded. Then the dynamics of the optimal consumption plan are
given by (17), where

+c
t =

1
1&#

(rt&;)+_c
t } 't+

k
2 \

#
1&#

't } 't&
:

J 2
t

Zt } Zt+ ,

_c
t =k \'$t+

:
Jt

Zt+ .

The optimal consumption-to-wealth ratio is given by

ct

Wt(c)
=#&1(1+:)#�(1&#) J &1

t .

The optimal trading strategy is

�t=k(_R
t _R$

t )&1 +R
t +(1+:k)(_R$

t )&1 Zt

Jt
.

As in the zero gamma case, the first term of the optimal portfolio expres-
sion represents an instantaneously mean�variance efficient allocation, while
the second term represents deviations from mean�variance efficiency due to
a stochastic investment opportunity set. Formally setting :=&1 in the
above expression results in an instantaneously mean�variance efficient
portfolio, for any price dynamics. This limiting case (not covered by
Theorem 4) is revisited in Section 7.

5.4. PDE Characterization of (J, Z)

Given the above analysis, the agent's problem reduces to the computa-
tionally well understood problem of solving the backward SDE that defines
(J, Z). Below, we outline the PDE characterization of such a solution in a
Markovian setting.
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In the remainder of this Section, we assume the Markovian structure of
condition C5. We also recall the change of measure (12), and we use the
dynamics of Y in the form dYt=+~ Y (t, Yt) dt+_Y (t, Yt) dB� t , where

+~ Y (t, y)=+Y (t, y)&(1&kt) _Y (t, y) '(t, y).

Letting Jt=h(t, Yt) for some function h, and using Ito's lemma, the
BSDE characterizing (J, Z) leads naturally to a PDE, stated below for
various parameter ranges. In all cases, the stated PDE can be viewed as a
simplified version of (6) for the given parametric SDU class, obtained by
letting

g(t, x, y)={:&1[exp((1&kt) x+h(t, y))&1],
(#�|#| ) |h(t, y)| 1+:k exp((1&k) x),

if #=0;
if #{0.

Given a solution, h, to the appropriate PDE, the BSDE solution is

Jt=h(t, Yt) and Zt=hy(t, Yt) _Y (t, Yt).

(In applications, one must of course confirm that (J, Z) are sufficiently
integrable.)

We now state the PDE that has to be solved for all parameter ranges for
which Theorem 2 does not provide a complete solution for general price
dynamics:9

Case 1 (#=0).

(;&:) kt h=(1&kt)(;&r& 1
2 kt'$')+ht+hy +~ Y

+ 1
2 tr[(hyy+h$y hy) _Y (_Y )$], h(T, } )=0. (22)

For :=#=0, this PDE is also valid, but its solution is zero, corresponding
to the optimal portfolio allocation of Theorem 2(c). Another simplification
arises if :=;, as we discussed in Section 5.2.

Case 2 (#{0 and :{0).

&
#

1&# \r&
;
#

+
k
2

' } '+ h=
1
#

(1+:)#�(1&#)+ht+hy+~ Y

+
1
2

tr _\hyy+
:k
h

h$yhy+ _Y (_Y)$& , (23)

h(T, } )=0.
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well defined, the identity tr(AB)=tr(BA) holds. Thus tr[h$yhy _Y (_Y)$]=hy_Y_Y$h$y and
tr[hyy _Y (_Y)$]=tr[(_Y)$ hyy_Y].



Case 3 (#{0 and :=0).
In this case, PDE (23) applies, but it can be further simplified. Let us

assume that the functions r(t, y) and '(t, y) are time independent, allowing
us to simplify notation to rt=r(Yt) and 't='(Yt). (This is no less general
than condition C5, since a time component can be added to Y.) Using
Eq. (19), we have

h(t, Yt)=
1
# |

T

t
e p(s&t, Yt) ds

where

e p(s&t, Yt)=E� t exp _ #
1&# |

s

t \ru&
;
#

+
k
2

'u } 'u+ du& .

The function p({, y) can be computed as the solution to the PDE

&
#

1&# \r&
;
#

+
k
2

' } '+
=&p{+ py+~ Y+

1
2

tr[( pyy+ p$y py) _Y (_Y)$], p(0, } )=0. (24)

6. EXAMPLES WITH ``AFFINE'' DYNAMICS

For the homothetic SDU class of Section 4, we have seen in the last
section that the agent's problem reduces to the solution of a single back-
ward SDE, which in general can be solved numerically, for example, by
numerically solving an associated quasilinear PDE. The complexity of the
last step is a function of the price dynamics specification. For example, a
trivial solution results if r and ' are deterministic. In this section we outline
a more general class of price dynamics, familiar from the term-structure
literature (see, for example, Duffie and Kan [15]), for which relatively
simple solutions to the first-order conditions result.

This section's models are not strictly special cases of Theorems 3 and 4,
because r and ' are not bounded. For some parameter ranges, our exact
proofs apply. For other parameter values, however, the utility process can
diverge to infinity in finite time, and our verification arguments do not
apply, because of integrability issues. Below, we provide some coarse
sufficient conditions that keep utility finite, while in some additive cases
a complete closed-form solution is possible (and optimality verification
is straightforward). A complete characterization, however, requires an
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understanding of the behavior of the underlying affine dynamics that, to
our knowledge, is not currently available in the literature and is beyond the
scope of this paper.

Throughout the section, we assume the SDU specification of Section 4
and that either #=0 or :=0. Under the price dynamics described below,
we show that the relevant backward SDE reduces to a Riccati equation
that can either be solved in closed form or is straightforward to solve
numerically.

6.1. Price Dynamics

Given any v # Rn, diag(v) denotes the diagonal matrix with v as its
diagonal, - v denotes the (column) vector (- v1 , ..., - vn )$, and v2 denotes
(v2

1 , ..., v2
n)$. Also, given any square matrix A, Aii denotes its i th diagonal

entry.
We postulate a state process Y, valued in Rn, with dynamics

dYt=(%&}Yt) dt+7 diag(- &+`Yt ) dBt , (25)

where %, & # Rn and `, }, 7 # Rn_n. Y is assumed to be the unique process
that is valued in

Y=[ y # Rn : &i+`iy>0, for all i],

and satisfies (25). We refer to Duffie and Kan [15] and Dai et al. [9] for
conditions on the parameters sufficient for this assumption to hold.

The price dynamics we consider are of the following two types:

Model A. rt=a+b } Yt and 't=diag(- &+`Yt ) 8, where a # R and
b, 8 # Rn.

Model B. rt=ar+b$rYt+Y$tcr Yt and 't=a'+b'Yt , where ar # R,
a' , br # Rn, and b' , cr # Rn_n, and cr is symmetric. Moreover, `=0 and
&i=1 for all i.

Given the above assumption, we show below how to solve the
appropriate PDE of Section 5.4. The proposed solution to the consumption-
portfolio problem is then formally constructed as in Theorems 3 and 4.

6.2. The Case of Zero Gamma

In this Section, we assume that f is given by (8) with #=0.
For Model A, we conjecture that PDE (22) has an affine solution,

h(t, y)=Gt+Ht } y,

where H and G are functions of time valued in Rn and R, respectively.
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Direct computation shows that h solves (22) if G, H solve

H4 t=[(;&:) kt I+}$+(1&kt) `$ diag(8) 7$] Ht+(1&kt) _b+
kt

2
`$82&

&
1
2

`$(7$Ht)
2, HT=0,

G4 t=(;&:) ktGt&(1&kt) _;&a&
kt

2
&$82&

&H$t _%&(1&kt) 7 diag(&) 8+
1
2

7 diag(&) 7$Ht& , GT=0.

The first equation is a Riccati equation in H, and although straightforward
to solve numerically, it can diverge to infinity in finite time. A sufficient
condition that precludes this is given by the following result:

Lemma 5. Suppose that b, `�0, and �i `ij>0 for all j. If :<0, then the
Riccati equation in H has a finite solution for any finite T.

Given H, G is easily computed using the second equation. A closed form
solution can easily be obtained in the infinite horizon version of this model
(T=�), if, for example, `, }, and 7 are diagonal.

For model B, direct computation shows that a solution to PDE (22) is
given by

h(t, y)=Ct+D$t y+y$Ft y,

with F symmetric, and where C, D, and F are deterministic functions of
time, obtained by solving the following three equations, in order:10

F4 t=(1&kt) \cr+
kt

2
b$'b'++(;&:) kt Ft+[}+(1&kt) 7b']$ Ft

+Ft[}+(1&kt) 7b']&2Ft77$Ft , FT=0.

D4 t=[(;&:) ktI+}$&2F $t77$+(1&kt) b$'7$] Dt+(1&kt)[br+ktb$'a']

&2Ft[%&(1&kt) 7a'], DT=0,

C4 t=kt(;&:) Ct&(1&kt) _;&ar&
kt

2
a$' a'&

&D$t _%&(1&kt) 7a'+
1
2

77$ Dt&&tr(Ft77$), CT=0.
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Lemma 6. If cr is positive semidefinite and :<0, then the Riccati
equation in F has a finite solution for any finite T.

A closed form solution can easily be obtained in the infinite horizon ver-
sion of this model (T=�), if, for example, cr , b' , 7, and } are diagonal.
A simple solution (with finite T ) is also obtained if cr=b'=0, implying
that r is an Ornstein�Uhlenbeck process and ' is constant. In this case Z
and _R$

t � are deterministic, F=0, and

Dt=&\|
T

t
e&}$(s&t)e&;(s&t)(k&1

s &1) ds+ ktbr .

6.3. The Additive Case

In this Section, we assume that f is given by (8) with :=0 and Case 3
of Section 5.4 therefore applies. Since the solution method is analogous to
the #=0 case above, we briefly outline the approach, referring to Schroder
and Skiadas [45] for further details.

For Model A, we conjecture a solution to (24) of the form p({, y)=
G{+H{ } y, where H and G are functions of time valued in Rn and R,
respectively. Direct computation shows that H and G satisfy an ODE
system analogous to the corresponding system for #=0 above. Moreover,
Lemma 5 (with analogous proof) remains valid if the assumptions #=0
and :<0 are replaced with #<0 and :=0. A closed form solution (given
in Schroder and Skiadas [45]) is easily obtained if `, }, 7 are diagonal,
bi , `ii , }ii�0, and ;>0.

For Model B, (24) is solved by a function of the form p({, y)=
C{+D${ y+ y$F{y, with F symmetric, and where C, D, and F are deter-
ministic functions of time satisfying an ODE system analogous to the
corresponding system for #=0 above. In many cases, the Riccati equation
in F can be solved analytically using a procedure described by Gelb [27,
Sect. 4.6]. Moreover, Lemma 6 (with analogous proof) remains valid
if the assumptions #=0 and :<0 are replaced with #<0 and :=0. A
particularly simple solution is obtained if cr=b'=0, in which case F=0.
A closed form solution (given in Schroder and Skiadas [45]) is also easily
obtained if cr , b' , 7, and } are diagonal, and }, cr�0.

7. INTRODUCING A BEQUEST FUNCTION

We conclude the main part of this paper with an outline of how to incor-
porate a bequest function in our earlier analysis. We illustrate with a
parametric example that has the interesting property that the optimal
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portfolio is instantaneously mean�variance efficient under any price
dynamics, while the optimal consumption-to-wealth ratio is typically
stochastic. This type of solution has been discussed previously in a discrete-
time setting by Giovannini and Weil [29]. We will keep our discussion
short by omitting existence and verification arguments, as well as most
technical details.

7.1. General Formulation

We modify our earlier setting, by endowing D with the new inner
product

(x, y) =E _|
T

0
xt yt dt+xT yT& .

(In particular, x= y in D implies that xT= yT a.s.) Given consumption
plan c # C�D+, we interpret cT as a lump sum terminal consumption.

The utility process V(c) is defined as a unique solution to the backward
SDE

Vt(c)=Et _|
T

t
f (s, cs , Vs(c)) ds+v(cT)& , t # [0, T],

for some function v : R+ � R. We assume that the utility function
V0 : C � R is strictly increasing. The corresponding utility gradient can be
written (under technical assumptions) as {V0(c; h)=(m(c), h) , where mt

is given by (3) for t<T, and

mT (c)=exp \|
T

0
fv(s, cs , Vs(c)) ds+ v* (cT),

where v* denotes the derivative of v.
Taking as given an Arrow�Debreu state price density ? # D++, the

agent's problem is, as before, to maximize V0(c) subject to the budget
feasibility constraint (?, c) �w. Assuming, for simplicity, that c # D++,
the first-order condition for optimality of c is m(c)=*? for some *>0,
together with the budget feasibility constraint. The solution method of this
system is analogous to our earlier analysis, with the main new element
being the boundary condition corresponding to the fact that VT(c)=v(cT).
We leave all details to the interested reader, and we proceed with an
outline of an interesting example.
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7.2. A Homothetic Example

The parametric SDU form that we analyze in the remainder of this
section is

Vt=Et _|
T

t \c#
s

#
exp(&#Vs)&

;
#+ ds+log(cT)+

$
# & , t # [0, T],

where ;�0, 0{#<1, and $ # R. The ordinally equivalent utility process
V� t=#&1 exp(#Vt) satisfies the more suggestive recursion

V� t=Et _|
T

t
e&;(s&t) \c#

s

#
ds&

1
2

V� &1
s d[V� ]s++e&;(T&t)+$ \c#

T

# +& ,

where [V] again represents the quadratic variation process of V. Apart
from the bequest function (which can be made arbitrarily small by decreas-
ing $), this corresponds to our earlier homothetic expression, (10), with
#{0 and :=&1. (In Theorem 4 we assumed :>&1 in order to avoid
having VT=&�, corresponding to $=&� in the above formulation.)

What is interesting about this case is that a consumption plan satisfying
the first-order conditions of optimality can be financed by an instantaneously
mean-variance efficient portfolio (no matter what the state price dynamics
are). To see that, we note that, since fv=&cfc , the first-order conditions
can be rearranged to

&
d
dt

exp \|
t

0
fv(cs , Vs) ds+=*?tct and

exp \|
T

0
fv(cs , Vs) ds+=*?TcT .

It follows that the wealth process, W, corresponding to c satisfies

?t Wt=Et _|
T

t
?scs ds+?TcT&=

1
*

exp \|
t

0
fv(cs , Vs) ds+ . (26)

Therefore, ?tWt is absolutely continuous, which is equivalent to the
condition _W='$. Arguing as in Section 2.3, it follows that the optimal
portfolio allocation is the same as that of an investor with time-additive
logarithmic utility (given in Theorem 2(c) with kt=1).

The optimal consumption-to-wealth ratio is given by

ct

Wt
=exp \&

#Jt

1&#+ , t # [0, T),

95OPTIMAL PORTFOLIO SELECTION



where the process J solves11

Jt=Et _|
T

t

1&#
#

exp \&
#Js

1&#+&
;
#

+rs+
's } 's

2
ds+

$
# & .

The PDE characterization of J in a Markovian setting, and examples
analogous to those of Section 6 are left to the reader.

We conclude with an outline of a proof of the above claim, omitting
several technical details. Let us first define the process X as the solution to
(4a), with

Vt=Jt&Xt and I(t, x, v)={exp((x+#v)�(#&1)),
exp(&x),

if t<T;
if t=T.

With (X, V ) thus defined, we claim that the optimal consumption plan is
given by

ct=I(t, Xt , Vt)={exp(&Xt&#Jt�(1&#)),
exp(&XT),

if t # [0, T );
if t=T,

(27)

where X0=log(*) has been chosen to make the budget constraint tight.
(We will see later that *=&w.) To show that, suppose for the moment
that V is in fact the utility process, V(c), corresponding to c. Equation (27)
is equivalent to fc(ct , Vt)=exp(Xt) for t<T, and v* (cT)=exp(XT). On the
other hand, Eq. (4a) gives

exp(Xt)=*?t exp \&|
t

0
fv(cs , Vs) ds+ . (28)

This confirms the first-order condition m=*?, which (by an omitted
verification argument) implies optimality. To confirm that V=V(c), we
notice that

& fv(ct , Vt)=#f (ct , Vt)+;=exp \&
#Jt

1&#+ .

The drift term of J is therefore equal to &( fv+r+' } '�2)& f, which
together with (4a) implies that the drift term of dVt+ f dt vanishes. It
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follows that dVt=&f (ct , Vt) dt+dMt , for some martingale M, and since
VT=($�#)&XT=VT (c), V=V(c).

Finally, Eqs. (26) and (28) give Wt=exp(&Xt) (and therefore *=&w).
Combining this with (27) results in the claimed consumption-to-wealth
ratio formula. The optimal consumption dynamics can also be easily
obtained by applying Ito's lemma to (27).

APPENDIX A

A Class of Backward SDE

In this appendix we prove existence, uniqueness, monotonicity, and
convexity properties for a class of backward SDE that arise in connection
with the homothetic specification of SDU discussed in Section 3.

The backward SDEs we will consider are of the form

dVt=&(Ut&;tVt+
1
2A(Vt) &Zt&2) dt+Zt dBt , VT=0, (A1)

to be solved for an adapted pair (V, Z). Theorem 1 and the analysis of
Section 5 require the solution of the above backward SDE with either A(Vt)
or A(Vt)Vt being a deterministic constant (and proper restrictions on U and
;). We now consider these two cases in turn. The terminal value VT has been
set to zero for brevity of exposition and since this is the case we focus on in
the main text. The mathematical arguments, however, extend readily to
incorporate a more general terminal value. In fact, in some cases it will
become apparent that the zero-terminal-value case is mathematically the
most difficult one, due to integrability concerns as time approaches T.

Throughout this appendix, the underlying probability space, the
n-dimensional Brownian motion, B, and associated filtration, and the space
D (with its positive cone D+ and strictly positive cone D++) are as in
Section 2. Dn denotes the Cartesian product of n copies of D. For any
Z # Dn, each value, Z(|, t), should be thought of as a n-dimensional row
vector with Euclidean norm &Z(|, t)&. (In particular, & }& does not denote
the norm induced by the inner product of D.) In addition to the set D0 of
Section 4.2, the following subsets of D will be used:

D1={X # D : E _|
T

0
|Xt|

l dt&<�, for every l # (0, �)= ,

Dexp
0 =[X # D : E[exp(ess sup

t
l |Xt| )]<�, for every l # (&�, �)].

Dexp
1 ={X # D : E _exp \l |

T

0
|Xt| dt+&<�, for every l # (&�, �)= .
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For any S/D, we define S+=S & D+ and S++=S & D++. As always,
we identify processes that are modifications of each other.

The Case of Constant A(V )

This section is on the backward SDE (A1) under the assumption that A
is identically equal to some constant :, U # Dexp

1 , and ; # D is non-negative
and bounded. For :=0, one obtains easily the solution: Vt=Et[�T

t Us exp
(&�s

t ;u du) ds]. Assuming :{0, a simple rescaling shows that we can
assume without loss of generality that :=1. Our objective in this section
is therefore to analyze the backward SDE

dVt=&(Ut&;tVt+
1
2 &Zt&2) dt+Zt dBt , VT=0. (A2)

The following is the central result of this section.

Theorem A1. Suppose that U # Dexp
1 , and ; # D+ is non-negative and

bounded. Then there exists a unique pair (V, Z) # Dexp
0 _Dn satisfying (A2).

Moreover, the solution V as a function of the parameter U is monotonically
increasing and convex.

The proof of Theorem A1 will proceed in a sequence of lemmas. We
assume throughout that U # Dexp

1 and that, for some ;� # R, 0�;t�;� for all t.
We begin with a convenient reformulation of the problem. For any

(V, Z) # Dexp
0 _Dn and stopping time {, we consider the recursion

Vt=log \Et _exp \|
{

t
Us&;s Vs ds+V{+&+ on [{�t]. (A3)

Lemma A1. The following statements are equivalent, for any V # Dexp
0 :

(a) There exists a unique Z # Dn such that (V, Z) satisfies (A2).

(b) There exists some Z # Dn such that (V, Z) satisfies (A2).

(c) V satisfies (A3) with {=T, and VT=0.

(d) V satisfies (A3) for any stopping time {, and VT=0.

Proof. (d) � (c). Clearly, (c) is implied by (d). Conversely, suppose
that (c) holds. We then have

exp(Vt)=exp \&|
t

0
Us&;sVs ds+ Mt , (A4)

where M is the martingale defined by

Mt=Et _exp \|
T

0
Us&;sVs ds+& . (A5)
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Suppose now that { is any stopping time. By the optional sampling
theorem, Mt=Et[M{] on [{�t]. From (A4), we have

exp \|
{

t
Us&;sVs ds+V{+=exp \&|

t

0
Us&;s Vs ds+ M{ on [{�t].

Applying the operator Et on both sides, simplifying the right-hand side,
and using (A4) again, (d) follows.

(c) O (b). Suppose that (c) holds, and let M be the martingale
defined by (A5), so that (A4) is also valid. By the martingale representation
theorem, there exists a unique predictable Z� # Dn such that dMt=Z� t dBt .
Let the process Z be defined by Zt=Z� tM &1

t . Suppose, for now, that
Z # Dn. Letting Wt=exp(Vt), and applying integration by parts to (A4),
we obtain

dWt

Wt
=&(Ut&;t Vt) dt+Zt dBt . (A6)

Finally, (A2) follows from an application of Ito's lemma to Vt=log(Wt).
To conclude that (b) holds, however, we still need to show that Z # Dn,

which we do next. Let Nt=M &1
t and N*=maxt Nt . From the definition

of Z and the Cauchy�Schwarz inequality, we have

\E _|
T

0
&Zt&2 dt&+

2

�\E _(N*)2 |
T

0
&Z� t&2 dt&+

2

�E[(N*)4] E _\|
T

0
&Z� t&2 dt+

2

& .

To show that Z # Dn, it suffices to show that the above expression is finite.
By the Burkholder�Davis�Gundy inequalities, �T

0 &Z� t&2 dt has a finite
second moment if MT has a finite fourth moment, which it does since
V # Dexp

0 and U # Dexp
1 . To show that N* has finite fourth moment, we first

notice that, by Jensen's inequality, N is a submartingale. By Doob's
maximal inequality and (A5), there exists some constant C such that

E[(N*)4]�CE[N 4
T]=CE _exp \&4 |

T

0
Us&;sVs ds+& .

The latter is finite since V # Dexp
0 and U # Dexp

1 , and the proof that Z # Dn

is complete.

(b) O (c). Suppose that (V, Z) # Dexp
0 _Dn satisfies (A2), and define

Wt=exp(Vt). By Ito's lemma, W satisfies (A6). Let M be the stochastic
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exponential of Z, that is, the unique local martingale that satisfies
dMt=Mt Zt dBt , M0=1. (As is well known, stronger restrictions on Z
than mere membership to Dn are required to make M a martingale.)
Integration by parts then gives (A4). Given any stopping time {, we let
M {

t =Mt1[t�{]+M{1[t>{] . Let [{(n)] be an increasing sequence of stop-
ping times that converges to T, such that the stopped process M {(n) is a
martingale, for every n. Arguing as in the first part of the proof (where (A3)
was derived from (A4) and the martingale property of M), we have

exp(Vt)=Et _exp \|
{(n)

t
Us&;sVs ds+V{(n)+& on [{(n)�t].

Letting n � � and using the dominated convergence theorem (made
possible by the assumption V # Dexp

0 and U # Dexp
1 ), (c) follows. Having

shown (c), it follows that M is given by (A5), and it is after all a true
martingale.

(b) � (a). Clearly, (a) implies (b). Suppose that (b) holds, and let
Wt=exp(Vt). Then Z represents the diffusion term of the Ito decomposi-
tion of dWt�Wt and is therefore uniquely determined in D. K

An interesting corollary of Lemma A1 is that for ;=0, (A3) (with {=T )
gives a closed-form expression for the V # Dexp

0 that is part of the unique
solution to (A2). For the case of nonzero ;, however, a closed-form expres-
sion is not apparent to us, and we will resort to a fixed-point argument.
For this purpose, we define a function FU : Dexp

0 � Dexp
0 , corresponding to

the parameter process U, as follows:

FU (V )t=log \Et _exp \|
T

t
Us&;sVs ds+&+ , t # [0, T].

(That FU is indeed valued in Dexp
0 can easily be confirmed using Doob's

maximal inequality.) By Lemma A1, we are interested in finding a unique
fixed point of the function FU and in showing the monotonicity of the fixed
point as a function of the parameter U. Assuming existence for now,
uniqueness and monotonicity will be consequences of the following result:

Lemma A2. Suppose that, for some U # Dexp
1 , the following conditions

hold:

(a) V # Dexp
0 satisfies V=FU (V ).

(b) V� # Dexp
0 is continuous, V� T�0, and, for any stopping time {,

V� t�log \Et _exp \|
{

t
Us&;s V� s ds+V� {+&+ on [{>t], t # [0, T].
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Then V� t�Vt , for all t # [0, T]. The result also holds with all inequalities
reversed.

Proof. Suppose that, for some t, the event A=[V� t<Vt] is non-null.
Consider the stopping time

{=inf[s�t : V� s�Vs].

Since almost all paths of V� and V are continuous and V� T�0=VT , we
have V� {=V{ on A, while V� s<Vs on A & [t�s<{]. By our hypotheses
and Lemma A1, we have, on event A,

0>exp(V� t)&exp(Vt)

�Et _exp \|
{

t
Us&;sV� s ds+V� {+

&exp \|
{

t
Us&;sVs ds+V{+&�0,

a contradiction. The same argument applies with all inequalities
reversed. K

Suppose now that, for each i # [1, 2], U i # Dexp
1 , and V i # Dexp

0 satisfies
FUi (V i)=V i. An immediate consequence of the last two lemmas is that if
U1�U2, then V1�V 2, proving the monotonicity claim of Theorem A1.
Moreover, taking U1=U2=U, it follows that any two fixed points, V1 and
V2, of FU must satisfy both V1�V2 (since U1�U2) and V2�V 1 (since
U2�U1). Therefore V1=V2, proving that FU has at most one fixed point.

Next, we turn to the question of existence of a fixed point of FU . We begin
with the special case of a bounded U. Let B be the space of progressively
measurable bounded processes, metrized by the (pseudo)metric

d(x, y)=ess sup
(|, t)

|x(|, t)& y(|, t)|, x, y # B.

As usual, we identify any two processes x, y # B such that d(x, y)=0,
which makes (B, d ) a complete metric space. B is ordered in the usual
sense: x� y means P[xt� yt]=1 for all t.

Lemma A3. If U # B, then FU (V )=V for some V # B.

Proof. Since U is fixed throughout, we simplify notation by letting
F=FU . We use Blackwell's version of the contraction fixed-point theorem
(see, for example, Theorem 3.3 of Stokey and Lucas [48]) to show that F
is a contraction if ;� T<1 (recall that ;� is an upper bound of ;). This partial
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result will then be generalized by partitioning the time horizon and by piec-
ing together a solution backward in time. Alternatively, for any T, we can
show that F composed with itself k times is a contraction for sufficiently
large k.

Given any real number x, we denote also by x the function in B identi-
cally equal to x. From the functional form of F it follows easily that, for
every V # B and positive real x, F(V+x)�F(V )&;� Tx. Consider now any
V, W # B. Since V�W+d(V, W ) and F is decreasing, we have F(V )�
F(W+d(V, W ))�F(W )&;� Td(V, W ). Interchanging the roles of V and
W, we also have F(W )�F(V )&;� Td(W, V ). Therefore, d(F(V ), F(W ))�
;� Td(V, W ), proving that F is a contraction if ;� T<1.

If ;� T�1, choose any integer N>;� T. Initially, set k=N&1. The above
argument shows that there exists a V # B satisfying (A2) for all t�(k�N) T.
We proceed inductively. Suppose that the last statement is true for
arbitrary k # [1, ..., N&1]. Let V # B be a solution of (A2) over the time
horizon [Tk�N, T]. Applying the same contraction argument over the time
interval [T(k&1)�N, Tk�N] with terminal value VkT�N , the proof of the
lemma is easily completed.

Alternatively, we can define dt(x, y)=ess sup(|, s�t) |x(|, s)& y(|, s)|.
Then, by the argument used above, dt(F(V ), F(W ))�;� (T&t) d0(V, W ).
A similar argument repeated k times gives

dt(F (k)(V ), F (k)(W ))�
(;� (T&t))k

k !
d0(V, W ).

For large enough k, F (k) is therefore a contraction and, for a unique V # B,
F (k)(V )=V. Applying F on both sides of this equation, it follows that
F(V ) is also a fixed point of F (k) and is therefore equal to V. This shows
that V is a fixed point of F. K

Using the last two lemmas, we now show that, for any U # Dexp
1 , FU has

a fixed point in Dexp
0 . Suppose first that U # Dexp

1 is bounded below. For
every integer n, let U n

t =min[Ut , n], and let Vn # B solve FUn(Vn)=Vn. By
our earlier results, Vn exists and is monotonically increasing in n. Using
these facts, we have

V n
t �log Et _exp \|

T

t
Us&;s V 1

s ds+& .

Since V1 # Dexp
0 , it follows that the sequence [Vn] is bounded above almost

surely, and therefore there exists some V such that Vn A V a.s. as n � �.
Using Doob's maximal inequality, it is also easy to conclude from the
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above bound on Vn that V # Dexp
0 . Letting n go to infinity in FUn(Vn)=V n

and using the dominated convergence theorem, we have FU (V )=V. This
proves the lemma assuming that U is bounded below. To extend the exist-
ence proof for U unbounded below, we use an analogous argument with
Un=max[U, &n], showing that the corresponding solutions Vn converge
monotonically from above to a fixed point of FU . This completes the proof
of existence and monotonicity.

Finally, we prove the convexity of the solution V as a function of the
parameter U. For i # [a, b], let U i # Dexp

1 , and let (V i, Z i) # Dexp
0 _Dn

satisfy

dV i
t=&(U i

t&;tV i
t+

1
2 &Z i

t&
2) dt+Z i

t dBt , V i
T=0.

Fixing an arbitrary & # (0, 1), we define (V &, Z&)=&(Va, Za)+(1&&)
(Vb, Zb), and we assume that (V, Z) # Dexp

0 _Dn is the solution to (A2)
corresponding to U#&Ua+(1&&) Ub. Convexity follows, if we can prove
that V &

0�V0 . To this end, we define 22t=(& &Za
t &

2+(1&&) &Zb
t &

2)&
&Z&

t&
2>0 (positivity follows from Jensen's inequality). It follows that

dV &
t =&(Ut+2t&;tV &

t + 1
2 &Z&

t&2) dt+Z&
t dBt , V &

T=0.

Ignoring for now the need for an integrability restriction on 2, Lemma A1
implies that, for any stopping time {,

exp(V &
t )=Et _exp \|

{

t
Us+2s&;sV &

s ds+V &
{+&

>Et _exp \|
{

t
Us&;s V &

s ds+V &
{+& .

By Lemma A2, we obtain V &
0�V0 (and in fact, it is not hard to show that

the inequality is strict).
As noted above, the application of Lemma A1 is not justified without

appropriate integrability restrictions on 2, a difficulty that is easily over-
come by slightly modifying Lemma A1. Returning to the last part of the
proof of Lemma A1 ((b) O (c)), we make the following two changes: (i)
We assume the localizing sequence [{(n)] converges to a stopping time {,
instead of T (by just taking the minimum of the original sequence elements
and {). (ii) By replacing 2 with min[2, 1] before taking expectations, we
conclude that

exp(V &
t )�Et _exp \|

{(n)

t
Us+min[2s , 1]&;sV &

s ds+V &
{(n)+& ,

n=1, 2, ...
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Taking the limit as n � �, we can now complete the proof as before without
the integrability concern. This also completes the proof of Theorem A1.

The Case of Constant A(V ) V

In this section we analyze the backward SDE (A1) with the specification
A(v) v equal to some constant greater than or equal to minus one,
U # D++

1 , and ; # Dexp
1 . Making the change of variable V� t=Vt exp

(&�t
0 ;s ds), it becomes clear that we can assume without loss in generality

that ;=0, which we do. More precisely, we consider the backward SDE

dVt=&\Ut+
p&1

2
&Zt&2

Vt + dt+Zt dBt , t<T, VT=VT&==, (A7)

where =�0, p>0, and U # D++
1 . Although for the purposes of the main

text we are only interested in the case ==0, we will attack this case by first
solving with a positive =, and then letting = approach zero.

Let L2 be the space of all progressively measurable processes, Z, valued
in Rn, satisfying �T

0 &Zt&2 dt<� a.s. As usual, we identify any two elements
Z, Z� # L2 such that �T

0 &Zt&Z� t&2 dt=0 a.s. The following is the section's
main conclusion

Theorem A2. Suppose that = # [0, �), p # (0, �), and U # D++
1 . Then

there exists a unique pair (V, Z) # D++
0 _L2 satisfying (A7). Moreover, the

solution V as a function of the parameter U is monotonically increasing, and
it is convex if p # [1, �) and concave if p # (0, 1].

In the remainder of this section we prove Theorem A2. The structure of
the proof parallels that of Theorem A1, but the details are considerably
more delicate. We assume throughout that =�0 and p>0.

We begin with the closely related recursion

V p
t =Et _|

{

t
pUsV p&1

s ds+V p
{& on [{>t], (A8)

where { is any stopping time.

Lemma A4. Suppose that U # D++
1 and V # D++

0 . Then the following
conditions are equivalent:

(a) There exists a unique Z # L2 such that (V, Z) satisfies (A7).

(b) There exists some Z # L2 such that (V, Z) satisfies (A7).

(c) V satisfies (A8) with {=T and VT==.

(d) V satisfies (A8) for any stopping time {, and VT==.
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Proof. The key to the proof lies in the fact that (A7) together with Ito's
lemma implies

dV p
t =&V p&1

t pUt dt+ pV p&1
t Zt dBt .

The details are analogous to Lemma A1. The weaker integrability restric-
tion on Z simplifies part of the proof. On the other hand, in deriving the
integral representation from the differential representation, it is necessary
to use a localizing stopping time sequence and take a limit (using
monotone convergence for the first term, and dominated convergence for
the second). The details are left to the reader. K

For every =�0 and U # D++
1 , we define the operator F =

U : D++
0 � D++

0 by

F =
U (V )t=\Et _|

T

t
pUsV p&1

s ds+= p&+
1�p

.

That F =
U is indeed valued in D++

0 is a consequence of Doob's maximal
inequality. Because of Lemma A4, we are interested in proving that F =

U has
a unique fixed point. We will prove this, as well as the claimed
monotonicity and convexity properties of the fixed point, for =>0 first, and
we will then let = approach zero.

We start with two lemmas that are used below, as well as in the proof
of Theorem 4.

Lemma A5. Suppose that V=F =
U (V ) for some = # [0, 1] and U # D++

1 .
Then, there exists some positive constant K, such that

Et _|
T

t
Us ds&�Vt�K \Et _|

T

t
U p

s ds+1&+
1�p

if p # (1, �),

and

K \Et _|
T

t
U p

s ds&+
1�p

�Vt�Et _|
T

t
Us ds+1& if p # (0, 1).

For p=1, we have Vt=Et[�T
t Us ds].

Proof. The case p=1 is immediate from Lemma A4. Suppose now that
p>1. By Lemma A4,

Vt=Et _|
T

t \Us ds+
p&1

2
(dVt)

2

Vt ++=&�Et _|
T

t
Us ds+=& .
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To derive the right-hand inequality, we let \=( p&1)�p # (0, 1) and use the
gradient inequality x\�1+\(x&1), x # R. In particular, letting
x=(Vt �Ut)

p and rearranging, we obtain pUt V p&1
t �U p

t +( p&1) V p
t .

Therefore,

V p
t =Et _|

T

t
pUsV p&1

s ds+= p&�Et _|
T

t
U p

s +( p&1) V p
s ds+= p& .

Lemma C1 implies

V p
t �Et _|

T

t
e( p&1)(s&t)U p

s ds+= pe( p&1)(T&t)& .

Finally, for p<1, all the above inequalities are reversed. K

Lemma A6. Suppose that U # D++
1 , V, V� # D++

0 , V� is continuous,
=, =~ # R, and if p # (1, �), then =~ >0. If V=F =

U (V ), V� T==~ �=�0, and, for
any stopping time {,

V� t�\Et _|
{

t
pUsV� p&1

s ds+V� p
{&+

1�p

on [{>t], t # [0, T],

then V� t�Vt for all t # [0, T].

Proof. Suppose first that p # (0, 1). Utilizing the gradient inequality
applied to the convex function x [ x( p&1)�p, we obtain, for any stopping
time {,

V� p
t &V p

t �Et _|
{

t
pUs(V� p&1

s &V p&1
s ) ds+V� p

{ &V p
{ &

�Et _|
{

t
( p&1)

Us

Vs
(V� p

s &V p
s ) ds+V� p

{ &V p
{ & .

The result now follows from Lemma C2. The proof is immediate for p=1.
Finally, we consider the case of p>1. Again using the gradient inequality
applied to the now concave function x [ x( p&1)�p, we obtain, for any
stopping time {,

V p
t &V� p

t �Et _|
{

t
( p&1)

Us

V� s

(V p
s &V� p

s ) ds+V p
{ &V� p

{& ,

and the result follows from Lemma C3. The required integrability restriction
in applying Lemma C3 is satisfied, because U # D1 and V� �=~ >0. K
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The above lemma immediately implies that if U1, U2 # D++
1 , F =i

Ui (V i)=
V i for i # [1, 2], and (U1, =1)�(U2, =2)>(0, 0), then V1�V2. It also
implies that F =

U has at most one fixed point in D++
0 if U # D++

1 and =>0.
Next we argue that to prove Theorem A2 it suffices to show the case of

positive terminal value. To see that, suppose that V[=] # D++
0 is the

unique fixed point of F =
U for =>0, and the dependence of V[=] on U is

monotone and convex (monotonicity and uniqueness were proved in the
last paragraph). Recalling that V[=] is decreasing in =, we define Vt=
lim= a 0 V[=]t . By Lemma A5 and dominated convergence, V # D++

0 is a
fixed point of F 0

U . Moreover, V inherits the monotone and convex
dependence on U. It remains to show that V is the unique fixed point of
F 0

U . For p # (0, 1] this is immediate from Lemma A6, but the argument
does not apply with p>1 (because the integrability restrictions required by
Lemma C3 are violated). Instead, the following indirect argument applies.
Suppose that V� is another fixed point of F 0

U . For any =>0, Lemma A6
shows that V[=]�V� . Letting = approach zero proves that V�V� . To show
the reverse inequality, we confirm that V�V� += for any =>0. Fixing =>0,
let V� =V� +=. Applying Ito's lemma to V� p (as in Lemma A4), it follows that
the assumption of Lemma A6 is satisfied and V� �V. This completes the
proof of uniqueness.

Given the above arguments, we assume that =>0 throughout the
remainder of this proof. We first show that F =

U has a fixed point. Because
of homogeneity, it is sufficient to prove the F 1

U has a fixed point. We
consider the bounded case first

Lemma A7. Suppose that there exist constants k, K such that
0<k<Ut<K, t # [0, T]. Then F 1

U has a fixed point in D++
0 , which is also

bounded from above and away from zero.

Proof. We let the metric space of progressively measurable bounded
processes (B, d ) be defined as in the last section, and we introduce the
following change of variables:

Xt=log( pUt), Yt= p log(Vt), \=
p&1

p
<1.

The lemma's hypothesis implies that X # B. The fixed-point condition
V=F 1

U (V ) can be written as

Yt=log \Et _|
T

t
exp(Xs+\Ys) ds+1&+ , t # [0, T]. (A9)

The lemma will be proved if we can construct a Y # B satisfying (A9). For
\ # (&1, 1), Blackwell's theorem (see, for example, Theorem 3.3 of Stokey
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and Lucas [48]) applies to the operator of Eq. (A9) directly, proving the
lemma for this case.

Next we prove by induction the following statement, for any integer k:
If 1>\> &k, then there is a unique solution Y # B to (A9), for any X # B.
For k=1, we have already proved the result. Suppose now we have shown
the result for some k, and we wish to prove it under the assumption
&k�\>&k&1. We break the fixed-point problem into two parts

Yt=Zt=log \Et _|
T

t
exp(Xs&(1&=) Ys+(\+1&=) Zs) ds&+1+ ,

where = # (0, 1) is chosen small enough so that \+1&=>&k. By the
induction hypothesis, for any choice of Y # B, there exists a corresponding
Z # B that solves the second of the two equations. We let Z(Y ) denote the
resulting functional relationship, which is monotonically decreasing.
(Monotonicity can be shown by the same argument, following Lemma A5,
that we used to prove the monotone dependence of the fixed point of
F =

U on U.) We complete the proof by showing that &Z( } ) satisfies the
assumptions of Blackwell's theorem and therefore has a fixed point in B.

Let $=(1&=)�(\&=) # (&1, 0). Since Z( } ) is decreasing, it suffices to
show that, for any given constant process x�0, Z(Y+x)�Z(Y )+$x, or,
equivalently, 2�$, where 2=(Z(Y+x)&Z(Y ))�x�0. Let

At=Et _|
T

t
exp(Xs&(1&=) Ys+(\+1&=) Zs(Y )) ds& .

From the definitions of Z, 2, and $, we have

(At+1) exp(2tx)=At exp((\&=)(2t&$) x+2tx)+1

�At exp((\&=)(2t&$) x+2tx)+exp(2t x).

Canceling out the term exp(2t x) and then the factor At , it follows that
(\&=)(2t&$)�0, and therefore 2t�$, completing the lemma's proof. K

To complete the existence proof, we need to show that F 1
U has a fixed

point, without assuming that U is bounded from below and above.
Suppose first that U is only bounded above, and consider the sequence
Un=max[1�n, U ], n # [1, 2, ...]. Let Vn be the fixed point of F 1

U n , shown
to exist in Lemma A7. We have argued (with Lemma A6) that Vn+1�V n

for all n, and therefore Vt=limn � � V n
t is well defined for all t # [0, T].

Moreover, the bounds of Lemma A5 imply that Vt>0 for t<T.
Dominated convergence shows U is a fixed point of F 1

U . For general U, we
consider the sequence Un=min[n, U], and we apply a similar argument to
construct a fixed point of F 1

U . This completes the proof of existence.
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The argument that proves the convexity claims is completely analogous
to the case of A(V )=0. Where we used the convexity of the function
z [ &z&2, one should now use the convexity of the function (z, v) [ &z&2�v,
for v>0, and where we used Lemma A2, one should now use Lemma A6.
This completes the proof of Theorem A2.

APPENDIX B

Proofs Omitted from Main Text

Proof of Lemma 1

Let 2t (&)=Vt (c+&h)&Vt (c), &�0, and

Lt (c)=Et _|
T

t
exp \|

s

t
fv(w) dw+ fc(s) hs ds& .

For any stopping time {, it follows that

Lt (c)=Et _|
{

t
fc(cs , Vs(c)) hs+ fv(cs , Vs(c)) Ls(c) ds+L{(c)& ,

while recursion (2) and the gradient inequality imply that

2t (&)
&

�Et _|
{

t
fc(cs , Vs(c)) hs+ fv(cs , Vs(c))

2s(&)
&

ds+
2{(&)

& & .

The proof is completed by applying Lemma C3, with x=2(&)�&&L(c).

Proof of Theorem 1

The following proof relies heavily on the mathematical results of
Appendix A.

Case 1 (#=0). Given any c # C, we define the process Ut=: log(ct).
Using the inequality exp( |x| )�exp(x)+exp(&x) and Jensen's inequality,
it follows that U # Dexp

1 , and by Theorem A1, there exists a unique pair
(V� , Z) # Dexp

0 _Dn such that

dV� t=&(Ut&;V� t+
1
2 &Zt&2) dt+Zt dBt , V� T=0.
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Defining the new process V to satisfy 1+:Vt=exp(V� t) and applying Ito's
lemma to the above equation, we obtain

dVt=&(1+:Vt) \log(ct)&
;
:

log(1+:Vt)+ dt

+exp(V� t) Zt dBt , VT=0.

The second term of the above expression is a martingale, because

E _\|
T

0
exp(2V� t) &Zt&2 dt+

1�2

&<�,

a condition that can be easily confirmed using the Cauchy�Schwarz
inequality and the fact that (V� , Z) # Dexp

0 _Dn. Integrating the expression
for dVt from t to T and taking the conditional expectation Et , it follows
that V solves (2) when f is defined by (8) and #=0. Reversing the above
argument also shows that V is the unique solution to (2) within the space
V=[V : 1+:V # D++

0 ]. Monotonicity of V0 follows from the monotone
dependence of V� on U, part of the conclusion of Theorem A1.

To show concavity, suppose first that 0�:�;. Then f is concave on the
domain [(c, v) : c>0, 1+:v>0]. (This is just a matter of confirming that
fcc<0 and fcc fvv� f 2

cv .) We can then apply Lemma 1 to show a gradient
inequality that implies concavity. If :<0, then, by Theorem A1, the
process V� in the above construction is convex and increasing in U, which
is in turn convex in c. This shows that 1+:V=exp(V� ) is convex in c, and
therefore V is concave in c.

Finally, homotheticity is easily discernible in the ordinally equivalent
utilities defined in (9), since, for any *>0, we have

V� (*c)=V� (c)+log(*)
1&exp(&;(T&t))

;
.

This can easily be derived from (10) in differential form, which in turn
follows from the original recursion (2) and Ito's lemma.

Case 2 (#{0). Given any c # C, we define the process Ut=(c#
t �|#| )

exp(&;t). By Theorem A2 and Lemma A4 (with p=1+:), there exists a
unique V� # D++

0 such that

V� 1+:
t =Et _|

T

t
(1+:) UsV� :

s ds& , t # [0, T].
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Suppose now that V is related to V� by Vt=(|#|�#) V� 1+:
t exp((1+:) ;t).

Then the above recursion is equivalent to

Vt e&;(1+:) t=Et _|
T

t
(1+:)

c#
s

#
e&(1+:) ;s |Vs|

:�(1+:) ds& , t # [0, T].

Writing the above as

d(Vte&;(1+:) t)=&(1+:)
c#

t

#
e&(1+:) ;t |Vt |

:
1+: dt+Zt dBt ,

for some Z # Dn, and using integration by parts, it follows that V solves (2)
when f is defined by (8) and #{0. Letting V=[V # D0 : #V>0], the above
argument shows that V is the unique solution in V. Monotonicity of V0 is
also a consequence of the above argument and Theorem A2.

To prove concavity of V0 , we distinguish cases. If :#>0, and, as usual,
#<min[1, (1+:)&1], then f is concave on the domain [(c, v) : c>0,
#v>0]. (This is just a matter of confirming that fcc<0 and fcc fvv� f 2

cv .)
Lemma 1 can then be used to show a gradient inequality, which in turn
implies concavity. If :>0 and #<0, then by Theorem A2, V� in the above
construction is convex and increasing in U, which is in turn convex in c.
It follows that #V is convex in c, and therefore V is concave in c. If :<0
and #>0, then V� , and hence V, is concave and increasing in U, which is
concave in c. This completes the proof of concavity.

Finally, homotheticity is easily discernible in the ordinally equivalent
utility defined in (9), since, for any *>0, we have V� t (*c)=*#V� t (c).

Proof of Lemma 2

When #=0 and :>0, or :, #<0, the result follows from Lemma 1.
The remaining cases follow (in some cases, using weaker integrability
restrictions than that assumed by Lemma 2).

Case 1 (#=0 and :<0). Let Yt=1+:Vt (c), Y� t=1+:Vt (ĉ), 2c=
c&ĉ, 2Y=Y&Y� , f (t)= f (ĉt , Vt (ĉ)), and analogously for the partials of f.
By Lemma A1, we have

Y� t=Et _exp \|
T

t
: log(ĉs)&; log(Y� s) ds+& , (B1)

and similarly for Y. These conditions, together with the gradient
inequalities

: log(c)�: log(ĉ)+
: 2c

ĉ
, and &; log(Y )�&; log(Y� )&;

2Y

Y�
,
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imply

2Yt�Et _exp \|
T

t
: log(ĉs)&; log(Y� s) ds+

_\exp \|
T

t

:2cs

ĉs

&;
2Ys

Y� s

ds+&1+& .

Letting Rt=exp(� t
0 fv(s)+; ds) and using the fact that : log(ĉs)&

; log(Y� s)= fv(s)+; and the inequality ex&1�x, we obtain

2Yt�Et _RT

Rt
\|

T

t

: 2cs

ĉs

&;
2Ys

Y� s

ds+& .

Next we define the new probability, Q, by letting dQ�dP=RT �E[RT].
Using the change of measure formula for conditional expectations and
(B1), we have Et[dQ�dP]=Rt Y� t�E[RT], and hence

E Q
t _|

T

t

: 2cs

ĉs

&;
2Ys

Y� s

ds&=
1

RtY� t

Et _RT \|
T

t

:2cs

ĉs

&;
2Ys

Y� s

ds+&
�

2Yt

Y� t

.

By Lemma C1, it follows that

2Yt

Y� t

�:E Q
t _|

T

t
e&;(s&t) 2cs

ĉs

ds&=
:

RtY� t

Et _RT |
T

t
e&;(s&t) 2cs

ĉs

ds& .

Simplifying, we obtain

Vt (c)&Vt (ĉ)�
1

Rt
Et _RT |

T

t
e&;(s&t) 2cs

ĉs
ds&

=
1

Rt
Et _|

T

t
Es[RT] e&;(s&t) 2cs

ĉs
ds&

=Et _|
T

t
e&;(s&t) Rs

Rt

Y� s

ĉs
2cs ds&

=Et _|
T

t
exp \|

s

t
fv(u) du+ fc(s) 2cs ds& .
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Case 2 (#>0 and :>0). In this case, we show C2$ under the weaker
condition E[�T&=

0 f 2
v(ĉs , Vs(ĉ)) ds]<� for every = # (0, T).

We fix some h # F(ĉ) and define h=
t=ht1[t # [0, T&=]] . Concavity of f, the

gradient inequality, the above restriction on fv , and Lemma C3 imply

V0(ĉ+h=)�V0(ĉ)+(m(ĉ), h=) , = # (0, T). (B2)

The next step is to take the limit in (B2) as = a 0. The first-order conditions
(1) and square integrability of h and ? imply lim= a 0 (m(ĉ), h=) =
(m(ĉ), h) . The proof is completed by showing that lim= a 0 V0(ĉ+h=)=
V0(ĉ+h). The dominated convergence theorem (justified below), con-
tinuity of f in its arguments, and lim= a 0 h==h, imply

lim
= a 0

Vt (ĉ+h=)=Et _|
T

t
f (ĉs+hs , lim

= a 0
Vs(ĉ+h=)) ds& , t # [0, T].

If follows from Theorem A2 that lim= a 0 Vt (ĉ+h=)=Vt (ĉ+h). The last step
is to justify the interchange of limit and expectation. With the uniform (in
=) bounds

ĉt �2� ĉt+h=
t�2ĉt+ht

(because c+h>0, we can always rescale h to ensure that the lower bound
holds),

0� f (ĉt+h =
t , V(ĉ+h=))� f (2ĉt+ht , V(2ĉ+h)).

It is easy to show that ĉ�2, 2ĉ+h # C, which establishes the integrable
uniform bounds.

Case 3 (#>0 and :<0). We prove C2$ under the restriction
E[exp(&3 �T&=

0 fv(ĉs , Vs(ĉ))) ds]<� for every = # (0, T ).

We fix some feasible direction h # F(ĉ) and define h= as in Case 2. For
any &�0, we define 2t (&)=Vt (ĉ+&h=)&Vt (ĉ) and 2$t(0)=lim& a 0 2t (&)�&.
Below, we prove that the last limit exists, and 2$0(0)=(m(ĉ), h=).
Inequality (B2) then follows from concavity of V(c) in c and the proof is
completed as in Case 2.

Given any &>0, by the mean value theorem, we have

2t (&)
&

=Et _|
T

t
fc(ĉs+`&

s , Vs(ĉ+&h)) h=
s+ fv(ĉs , Vs(ĉ)+!&

s)
2s(&)

&
ds& ,
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where `&
s # [0, &hs], and !&

s # [0, 2s(&)] (with the convention [0, a]=
[a, 0] if a<0). Since fv+(1+:) ;<0, the above linear SDE has the
unique solution

2t (&)
&

=Et _|
T

t
G&

t, s ds& ,

where G&
t, s=exp(�s

t fv(ĉu , Vu(ĉ)+!&
u) du) fc(ĉs+`&

s , Vs(ĉ+&h)) h=
s .

To accommodate taking a limit, we derive uniform integrable bounds on
G& for small &. Monotonicity of V(c) in c and fcc , fcv<0 imply that there
exists small enough &� >0, such that for all & # (0, &� ),

0� fc(ĉs+`&
s , Vs(ĉ+&h=))� fc(ĉs �2, Vs(ĉ�2)). (B3)

Because the right-hand side of (B3) is proportional to fc(ĉs , Vs(ĉ)), we have
uniform integrable bounds on G& if E �T&=

0 f 1+}
c (ĉs , Vs(ĉ)) ds<� for some

}>0 and every = # (0, T ). This condition is implied by the square
integrability of m, the first-order conditions (1), our assumed restriction on
fv , and an application of the Ho� lder inequality. A first implication of these
bounds is that lim& a 0 2t(&)=0, and therefore

lim
& a 0

G&
t, s=G 0

t, s #exp \|
s

t
fv(ĉu , Vu(ĉ)) du+ fc(s, ĉs , Vs(ĉ)) h=

s .

A second implication of the bounds on G& is that we can apply the
dominated convergence theorem to conclude that 2$t(0)=Et[�T

t G0
t, s ds],

completing the proof.

Case 4 (#<0 and :>0). In this case, we prove C2$ under the
restriction E[exp(2 �T&=

0 fv(ĉs , Vs(ĉ))) ds]<� for every = # (0, T ).

Let V� } denote the ordinally equivalent utility process as in (10) but with
terminal value V� T=}, where } # R& . Also, let ĉ}

t =max(ĉt , |}| ). Then
V� t(c)�e&;(T&t)} and fv(ĉ}

t , V }
t (c)) is uniformly bounded for any c # C. We

define 2}
t (&)=V }

t (ĉ+&h=)&V }
t (ĉ). As in Case 3, we use (B3), V} # D0 , and

the dominated convergence theorem to show that lim& a 0 2}
0(&)�&=

(m}(ĉ}), h=) where m}(c}) is given by (3) with V } taking the place of V.
Concavity implies

V }
0(ĉ}+h=)�V }

0(ĉ})+(m}(ĉ), h=) , }<0.

We take the limit as } A 0 to obtain (B2) by using the dominated
convergence theorem together with the assumed restriction on fv , and the
uniform upper bound

m}
t (ĉ})�exp \|

t

0
fv(ĉs , V 0

s(ĉ)) ds+ fc(ĉt , V }�
t (ĉ)), }<}� .
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The proof is completed as in Case 2 using the uniform (in =) bounds

f (ĉt �2, V(ĉ�2))� f (ĉt+h=
t , V(ĉ+h=))�0.

Proof of Theorem 2

We prove Theorem 2 using the results of Theorems 3 and 4.

Part (a). Under condition I or III, the optimal consumption dynamics
are corollaries of Theorems 3 and 4. (For #=0, we obtain Z=0, and for
#{0, we obtain :Z=0.)

Part (b). Using the notation of Eq. (17), we have the general identity

?scs

?tct
=exp \|

s

t
+c

{&r{&_c
{ } '{ d{+ `s

`t
,

where ` is the exponential supermartingale

`t=exp \|
t

0
& 1

2 &_c
{&'${&2 d{+|

t

0
_c

{&'${ dB{+ .

Suppose first that r and ' are deterministic. Then, by part (a) we have

+c
t &rt&_c

t } 't=&qt , and _c
t &'$t =(kt&1) '$t .

Since the appropriate Novikov condition is satisfied, it follows that ` is a
martingale, and therefore

Wt(c)
ct

=Et _|
T

t

?scs

?t ct
ds&=|

T

t
exp \&|

s

t
q{ d{+ ds.

Next, we consider the case of #=0, while r and ' are potentially
stochastic. By Theorem 3, we again have +c&r&_c } '=&q. Given the
boundedness of r and ', ` is a martingale, and the same argument applies.
A direct argument that does not rely on Theorem 3, beyond the fact that
the unique solution c satisfies the first-order conditions, is as follows. Using
the transformation of Lemma A1, we know that the utility process
V=V(c) satisfies

1+:Vt=Et _exp \|
T

t
: log(cs)&; log(1+:Vs) ds+&

=e;(T&t)Et _exp \|
T

t
fv(cs , Vs) ds+& .
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From this equation and (3), it follows that mt(c)=e;(T&t)Mt �ct , where M
is the martingale defined by

Mt=Et _exp \|
T

0
fv(cs , Vs) ds+& .

The first-order condition mt(c)=*?t can be restated as ct*?t=e;(T&t)Mt .
Using the definition of the wealth process, we obtain Wt(c) *?t=
;&1(e;(T&t)&1) Mt . Dividing the last two equations proves the result.

Part (c). The optimal trading strategy is computed as explained in
Section 2.3. Under condition II or condition III, part (b) implies that
_W(c)=_c. Under condition I or condition III, part (a) implies that
_c=k'$. Combining these observations gives the result.

Proof of Lemma 3

Letting V and c be defined in terms of X and J by (14) and (15), respec-
tively, it suffices to prove that Vt+� t

0 f (cs , Vs) ds is a martingale. From
Eqs. (14) and (15) and the definition of f, we have

:f (ct , Vt)
1+:Vt

= fv(ct , Vt)+;=((;&:) kt&;) Xt+(:&;) Jt .

Using these equations and (4a) in the Ito expansion of (14), we obtain

:
1+:Vt

(dVt+ f (ct , Vt) dt)=[AtXt+Bt] dt+(Zt&(1&kt) '$t ) dBt ,

(B4)

where At=(;&:) k2
t &;kt&k4 t , and, with +J denoting the drift term of J,

Bt=+J
t &(1&kt) \rt&;+

kt

2
't } 't++kt(:&;) Jt

+
1
2

Zt } Zt&(1&kt) Zt } 't .

(Hint: In computing A and B, express everything in terms of fv first, and
substitute in the expression for fv last.) We are to show that both A and
B vanish. In fact, the condition At=0, together with kT=1, is equivalent
to (11) (with #=0), while the condition Bt=0, together with JT=0, is
equivalent to (13). This completes the proof of the lemma.
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Proof of Theorem 3

We have already argued that the unique solution to the first-order condi-
tions is given by (15) for properly selected *. (That this solution is an
element of C follows by combining Lemma C1, (15), and the assumption
that r and ' are bounded.) Applying Ito's lemma, we obtain

dct

ct
=

de&Xt

e&Xt
+

: dVt

1+:Vt
+\de&Xt

e&Xt +\ : dVt

1+:Vt+ .

From the dynamics of X in (4a) and Lemma 3 (see Eq. (B4)), we have

de&Xt

e&Xt
=( fv(ct , Vt)+rt+'t } 't) dt+'$ dBt ,

: dVt

1+:Vt
=&

:f (ct , Vt)
1+:Vt

dt+(Zt&(1&kt) '$t ) dBt .

Substituting back into the consumption dynamics and using the identity

:f (ct , Vt)
1+:Vt

= fv(ct , Vt)+;,

the optimal consumption dynamics of Theorem 2 follow immediately.
Optimality verification follows easily from Lemma 2, while uniqueness is

a consequence of strict concavity of the utility function.
We proved Eq. (16) as part of Theorem 1, while the optimal trading

strategy follows by the argument in Section 2.3, after observing that, by
(16), _W(c)=_c.

Proof of Lemma 4

Letting V and c be defined in terms of X and J by (20) and (21), respec-
tively, it suffices to prove that Vt+� t

0 f (cs , Vs) ds is a martingale. We define
+~ J and _J so that

dJt

Jt
=+~ J

t dt+_J
t dB� t=(+~ J

t +(1&k) _J
t } 't) dt+_J

t dBt .

We can now expand (20) using Ito's lemma, the dynamics of X in (4a), and
the identity

f (c, v)
v

=
1+:

:
( fv(c, v)+;)
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to obtain

dVt+ f (ct , Vt) dt
Vt

=(1+:k) _At dt+\_J
t +

#
1&#

'$t+ dBt& , (B5)

where

At=+~ J
t +

fv(ct , Vt)
:

+
#

1&# \rt+
k
2

't } 't++
:k
2

_J
t } _J

t +
1

1&#
;
:k

.

We are therefore to show that At=0. To do so, we begin with the expression

fv(ct , Vt)=:
c#

t

#
V &1�(1+:)

t &(1+:) ;.

Using Eqs. (20) and (21) and simplifying, we observe that the coefficient of
Xt in the exponent vanishes, resulting in

fv(ct , Vt)
:

=
1
#

(1+:)#�(1&#) J &1
t &

1+:
:

;. (B6)

Given this expression, the backward SDE (18) (where Zt=_J
t Jt) is clearly

equivalent to At=0. Using the above expression for fv in (4a) results in the
claimed dynamics for X.

Proof of Theorem 4

Suppose that the assumptions of Theorem 4 are satisfied and that c is
given by (21) (as constructed in Section 5.3). The following lemma shows
that c # C.

Lemma B1. The process |Jt|
: exp(� t

0 fv(cs , Vs(c)) ds) is bounded above
and away from zero (by deterministic constants, and uniformly in time).

Proof. Fix some t # [0, T), and let

js=#Js exp _|
s

t
au du& , s�t,

where au=#(1&#)&1 [ru&(;�#)+(k�2) 'u } 'u]. Then, with B� defined in
(12), we have

djs=&_(1+:)#�(1&#) exp \|
s

t
au du++

:k
2

zs } zs

js & dt+zs dB� s , jT=0.
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By the boundedness of r and ', we choose a K>0 such that |at|<K for
all t # [0, T]. Using the monotonicity result in Theorem A2, upper and
lower bounds for jt are found by replacing au with K and &K, respectively,
when u�t. This results in the following bounds for Jt :

1&e&K(T&t)

K
�#Jt(1+:)&#�(1&#)�

eK(T&t)&1
K

.

Using Eq. (B6) and integrating, it follows that, for some constants
C1 , C2>0 that do not depend on the choice of t,

C1(eK(T&t)&1)&:�exp \|
t

0
fv(s) ds+�C2(eK(T&t)&1)&:.

From the same bounds on #Jt we also get

C3(eK(T&t)&1):�|Jt|
:�C4(eK(T&t)&1):,

for some constants C3 , C4>0 (independent of t). Multiplying the last two
sets of inequalities completes the proof of Lemma B1. K

Returning to Eq. (21), and applying Ito's lemma, we obtain the
dynamics:

dct

ct
=&k dXt+

k2

2
(dXt)

2+:k
dJt

Jt
+

:k(:k&1)
2 \dJt

Jt +
2

&:k2(dXt) \dJt

Jt + .

Simplifying the expression using (18) and the dynamics of X of Lemma 4
results in the theorem's expressions for +c and _c. Optimality verification
follows easily from Lemma 2 using

fv(ct , Vt)=
:
|#|

(1+:)#�(1&#) |Jt|
&1&(1+:) ;.

The boundedness of r and ' and the bounds in Lemma A5 imply that for
any =>0, |Jt| is uniformly bounded away from zero for t # [0, T&=].
Uniqueness follows from strict concavity of the utility function.

To determine the optimal consumption and portfolio rules, we use
Lemma B2 below in conjunction with Eq. (28) to obtain

Wt(c)=(1+:) #Vt exp(&Xt). (B7)
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Equations (B7), (20), and (21) combined give the claimed optimal
consumption-to-wealth ratio. Using expression (B5) (where _J

t =Zt�J t) and
(B7), we find

_W(c)
t =k'$+(1+:k)

Zt

Jt
.

Arguing as in Section 2.3 we obtain the claimed optimal portfolio
allocation.

Lemma B2. For all t<T,

?t Wt(c)=*&1(1+:) #Vt exp \|
t

0
fv(s) ds+ , #{0.

Proof. We start with the Ito expansion

Et _VT&= exp \|
T&=

0
fv(s) ds+&&Vt exp \|

t

0
fv(s) ds+

=Et _|
T&=

t
exp \|

s

0
fv(u) du+ (Vs fv(s)& f (s)) ds& ,

for any = # (0, T ). In eliminating the martingale part, we have used the fact
that E exp(�T&=

0 2fv(u) du)<� (which follows from fv�0 if :�0 and from
the boundedness of r and ' if :>0) and the fact that E(�T&=

0 Z$sZs ds)<�
for every = # (0, T) (which follows from the Burkholder�Davis�Gundy
inequality and the bounds in Lemma A5). Substituting #[Vs fv(s)& f (s)]=
&c#

s |Vs|
:�(1+:) and using the first-order condition

(1+:) exp \|
s

0
fv(u) du+ c#

s |Vs|
:�(1+:)=*cs?s

we obtain, for all = # (0, T ),

*&1(1+:) #Vt exp \|
t

0
fv(s) ds+

=Et _|
T&=

t
?scs ds&+*&1(1+:) #Et _VT&= exp \|

T&=

0
fv(s) ds+& .

The proof is completed by letting = approach zero, provided that we show

lim
t A T

Es _Vt exp \|
t

0
fv(s) ds)&=0, s # [0, T). (B8)
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If :�0, then fv�0 and (B8) follows trivially since limt A T Es(Vt)=0. If
:>0, we use (20) and the definition of X to get

Vt exp \|
t

0
fv(s) ds+=(#�|#| ) *1&k?1&k

t |Jt|
1+:k exp \|

t

0
kfv(s) ds+ .

The limit (B8) then follows by Lemma B1. K

Proof of Lemma 5

We first show that H�0. We have the upper bound for J from (13)

Jt�K&Et _|
T

t
exp \|

s

t
(:&;) ku du+ (1&ks) \b+

ks

2
(82)$ `s+ Ys ds&

for some constant K. If :<0 then kt<1 for t<T. The restrictions on !
along with Yt # Y imply that Y has a uniform constant lower bound, which
implies a constant upper bound on J. This is contradicted, however, if
H i

t>0 for some i since we can consider starting the Y process at time t
with Y i

t arbitrarily large, violating the upper bound on J. It remains to
show that H has a finite lower bound. The ODE for H is of the form

H4 {=P{+Q{H{+ 1
2`$(7$Ht)

2, H0=0,

where P{ # Rn, Q{ # Rn_n, and {=T&t measures time from the horizon
date. For any K # R,

1
d{

1$e&K{H{=1$e&K{[P{+(Q{&KI ) H{+
1
2

`$(7$Ht)
2]

�1$e&K{[P{+(Q{&KI ) H{]

Because Q is uniformly bounded, we can choose K large enough so that
1$(Q{&KI )�0, for all {�0, which, combined with H�0 implies
1$H{�1$ �{

0 eK({&s)Ps ds.

Proof of Lemma 6

The ODE for F is of the form

F4 {=P{+Q${Ft+FtQ{+2F{ 77$F{ , F0=0,

where P{ # Rn, Q{ # Rn_n, and {=T&t measures time from the horizon
date. The matrix P is negative semidefinite. Lemma 6 then follows from the
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following claim, which can be shown by adapting the proof of Lemma
16.4.2 in Lancaster and Rodman [36] to the variable coefficient case: For
any z # Rn,

z$F{z= max
h bounded {|

{

0
Z$s (P{&s&2h$shs) Zs ds,

where Z is Rn valued and satisfies Z4 s=(Q{&s&27hs) Zs , Z0=z.

APPENDIX C

Extensions of the Gronwall�Bellman Inequality

In this appendix we derive some generalizations of the ``stochastic
Gronwall�Bellman'' inequality of Duffie and Epstein [12], results that are
used in several of our proofs. The probabilistic setting and notation are
the same as in Appendix A. We also use standard lattice notation:
x7 y=min[x, y], x 6 y=max[x, y], x+=max[x, 0].

Lemma C1. Suppose that : # Dexp
1 , ; # D1 , x # D0 , and = # R. If :t�0

and xt�Et[�T
t (:sxs+;s) ds+=] for all t # [0, T], then

xt�Et _|
T

t
;s exp \|

s

t
:u du+ ds+= exp \|

T

t
:u du+& , t # [0, T].

The result is also valid with the last two inequalities reversed.

Proof. Let yt represent the right-hand side of the last inequality. It can
easily be shown that yt=Et[�T

t (:s ys+;s) ds+=] for all t. Letting
$=x& y, it follows that $t�Et[�T

t :s$s ds] for all t. Let now At=
exp(� t

0 :s ds), Ct=� t
0 :s$s ds, and Mt=Et(CT). We observe that M is a

martingale, and $�M&C. It follows that d(At Ct)=:tAt(Ct+$t) dt�
Mt dAt=d(AtMt)&At dMt . Integrating from t to T and applying the
operator Et gives M&C�0, and therefore $�0. The above argument is
also valid with all inequalities reversed. K

Lemma C2. Suppose that :+ # Dexp
1 , ; # D1 , x # D0 , and x is right-

continuous. If for every stopping time {, xt�Et[�{
t (:sxs+;s) ds+x{] on

[t<{], t # [0, T], and xT�0, then

xt�Et _|
T

t
;s exp \|

s

t
:u du+ ds& , t # [0, T].

The result is also valid with the last three inequalities reversed.
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Proof. The same argument as in the first part of Lemma C1 shows that
it is enough to prove the result when ; vanishes. Assuming ;=0, suppose
that, for some time t, the event A=[xt>0] is non-null, and define
{=inf[s�t : xs�0]. Since x is assumed right-continuous, x{�0, and
xs>0 on A & [t�s<{]. It follows that, on the event A & [t�s<{],
xs�Es[�{

s :u xu du]. Therefore,

xs�Et _|
T

s
:+

u 1[u�{] xu ds& on A, s # [t, T].

Applying Lemma C1 on A_[t, T], we conclude that xt�0 on A,
a contradiction. K

A more elaborate argument in the following lemma shows that, for ;=0,
Lemma C2 is valid under much weaker integrability assumptions.

Lemma C3. Suppose that : and x are progressively measurable processes
satisfying E[�T

0 :+
t dt]<� and E[�T

0 :+
t x+

t dt]<�. Suppose further that
x is right-continuous, and, for every stopping time {,

xt�Et _|
{

t
:s xs ds+x{& on [{>t], (C1)

and xT�0. Then xt�0 for all t.

Proof. Suppose, to the contrary, that, for some time t, the event
A=[xt>0] is of positive probability. In the argument that follows
we restrict time to the interval [t, T]. Consider the stopping time
{=inf[s : s�t, xs�0]. Since x is right-continuous, x{�0, and xs>0 on
A & [t�s<{]. Moreover, defining the process Xs=Es[�{ 6 s

s :+
u xu du],

s # [t, T], we have, from (C1), that

xs�Xs on [s�{], for all s�t, (C2)

and in particular, Xt>0 on A, while of course X{=0. We also define the
stopping times

{n=inf {s : s�t, Xs�
1
n= 1A+t10"A , n=1, 2, ...,
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and the martingales

Ms=Es _|
{

t
:+

u xu du& , N n
s =|

s 7{n

t

dMu

Xu
, s�t, n=1, 2, ... .

By Ito's lemma,

log \
X{n

Xt +=|
{n

t

dXs

Xs
&

1

2 \
dXs

Xs +
2

�|
{n

t

dXs

Xs

=&|
{n

t

:+
s xs

Xs
ds+N n

{ &N n
t .

Since Xt>0 on A, there exists =>0 small enough so that the event
[Xt>=] is of positive probability. Fixing such an =, and using the fact that
X{n

�1�n, we obtain

log(=n)�E _|
{n

t

:+
s xs

Xs
ds&�E _|

T

0
:+

s ds& ,

where the last inequality follows from (C2). Letting n approach infinity, we
reach the conclusion that E[�T

0 :+
s ds]=�, contradicting the lemma's

assumptions. K

The above lemma is not valid without the assumption E[�T
0 :+

t dt]<�.
For example, if :t=(T&t)&1, then (C1) is satisfied as an equality by
xt=Mt(T&t) for any martingale M.
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